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Abstract

The repair problem for functional dependencies is the problem where an input database needs to be modified such that
all functional dependencies are satisfied and the difference with the original database is minimal. The output database is then
called an optimal repair. If the allowed modifications are value updates, finding an optimal repair is NP-hard. A well-known
approach to find approximations of optimal repairs builds a Chase tree in which each internal node resolves violations of one
functional dependency and leaf nodes represent repairs. A key property of this approach is that controlling the branching
factor of the Chase tree allows to control the trade-off between repair quality and computational efficiency. In this paper,
we explore an extreme variant of this idea in which the Chase tree has only one path. To construct this path, we first create
a partition of attributes such that classes can be repaired sequentially. We repair each class only once and do so by fixing
the order in which dependencies are repaired. This principle is called priority repairing and we provide a simple heuristic
to determine priority. The techniques for attribute partitioning and priority repair are combined in the Swipe algorithm. An
empirical study on four real-life data sets shows that Swipe is one to three orders of magnitude faster than multi-sequence
Chase-based approaches, whereas the quality of repairs is comparable or better. Moreover, a scalability analysis of the Swipe
algorithm shows that Swipe scales well in terms of an increasing number of tuples.

1 Introduction
We study the problem of repairing an inconsistent database through value modifications in the case where constraints are
functional dependencies (FDs). More precisely, starting from a database that violates some FDs (i.e., a dirty database) we
seek to generate a database that satisfies all FDs (i.e., a repair) and that originates from the dirty database by sequentially
changing the value of a cell in a table. Beyond the scope of toy problems, there usually exist many possible repairs for a
given dirty database and most of them are perceived as “not good” because they simply make too much changes to the dirty
database. To deal with this, one of the most prevalent approaches, is to define a cost model that assigns a positive cost to each
change. Introducing this cost model gives rise to the repair problem for FDs, which is the problem of finding a repair that
minimizes the accumulative cost of all changes one must make to produce that repair. Such a repair is called a minimal-cost
repair. The following example illustrates the repair problem for FDs and will be used as a running example throughout the
paper.

Example 1 Figure 1 (top) shows a snippet of the Hospital data set [13], for which the seven FDs shown must be satisfied.
If we assume that any change to an attribute value has cost 1, then a minimal-cost repair can be obtained by changing the
values marked in grey (which happen to be here the actual errors in the data set). This repair has cost 6 and it can be verified
by the reader that no repair of cost 5 exists. It can be seen from this example that minimal-cost repairs are not unique, since
several other repairs of cost 6 exist. For example, the violation of measure code → condition by tuples 1 and 5 can also be
resolved by changing the value of measure code for tuple 5.

The Llunatic Chase algorithm Although we can easily find a minimal-cost repair in Example 1, it is known that the repair
problem for FDs as defined here, cannot be solved efficiently. Deciding whether there exists a repair with a cost lower than
a constant C, is NP-complete and finding constant-factor approximations of minimal-cost repairs is NP-hard [30]. To deal
with this, algorithms have been proposed to search for approximate solutions [8, 30, 5, 32]. In the current paper, we focus on
one particular approach that relies on the Chase algorithm and has been implemented in the open-source framework Llunatic
[24, 25]. We note and emphasize here that Llunatic can in fact deal with constraints that are more expressive than FDs. Yet,
we limit the explanation of Llunatic here to FDs only, as these constraints are the focus of the current paper. Originally, the
Chase algorithm was designed to work as a proof engine for dependency implication [3, 1]. Informally, the algorithm takes
as input (i) a set of tuples and (ii) a set of FDs and then builds a sequence of Chase steps. In each such Chase step, one FD
that is currently violated on the given set of tuples, becomes satisfied by equating the right-hand side attributes of the FD. The
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hospital name → city
hospital name → zip
hospital name → state
hospital name → #provider
city → county
#provider → hospital name
measure code → condition

tid #provider hospital name city county zip state measure code condition

1 10006 eliza coffee memorial hospital florence lauderdale 35631 al ami-4 heart attaxk

2 10006 eliza coffee memorial hospital florence lauderdale 35631 al hf-2 heart failure

3 10006 eliza coffee memorial hospital florence lauderdale 35631 al ami-2 heart attack

4 10006 eliza coffee memorial hospital florence lauderdale 35631 al pn-3b pneumonia

5 1003x huntsville hospital huntsville madison 35801 al ami-4 heart attaxk

6 1003x huntsville hospital huntsville madison 35801 al ami-5 heart attack

tid #provider hospital name city county zip state measure code condition

1 10006 eliza coffee memorial hospital florence laudxrdalx 35631 al ami-4 heart attack

2 10006 eliza coffee memorial hospital florence laudexdale 35631 al hf-2 heart failure

3 10006 eliza coffee memorial hospital florence lauderdale 3563x al ami-2 heart attack

4 1000x eliza coffee memorial hospital florence lauderdale 35631 al pn-3b pneumonia

5 1003x huntsville hospital huntsville madison 35801 al ami-4 heart attaxk

6 10039 huntsville hospital huntsville madison 35801 al ami-5 heart attack

#provider ≻ hospital name city county zip state measure code condition

Figure 1: An example cleaning scenario with hospital data [13] (top) and seven FDs (middle right). Actual errors in the data
are marked in grey. A partition of attributes is shown (middle left) over which FDs are forward repairable. The first partition
class shows a priority model over its attributes. For this partition, a repair obtained by using majority voting with random tie
breaking as repair function is shown (bottom). Correct changes are shown in green bold font and incorrect changes are shown
in red bold font.

output of a Chase step is then used as input for the next Chase step and this process continues until all FDs are satisfied. In the
original algorithm, tuples contained labelled variables and conflict resolution among variables with different labels is done by
a consistent choice (e.g., if labels are integer-valued indices, we can always choose the variable with the lower index). In this
setting, it is well-known that the Chase algorithm terminates and satisfies the Church Rosser property [1]. The latter property
states that the output of the Chase algorithm does not depend on the order in which FDs are selected.

In order to use the Chase algorithm as a repair tool in the presence of constants, a modification of the Chase algorithm
called the Llunatic Chase has been proposed [25]. In this algorithm, resolution of conflicts is based on a partial order that
models preferences of different constants and variables (e.g., null values). If a conflict cannot be resolved by means of this
partial order, special labelled variables (i.e., lluns) are introduced, which can later be used to query for human input. While the
Llunatic Chase has been shown to terminate, it does not satisfy the Church Rosser property and the outcome of a sequence of
Chase steps is thus dependent on the order in which FDs are selected for repair. To deal with this, Llunatic considers a Chase
tree in which each path is a sequence of Chase steps and leaf nodes are repairs. From all repairs in a Chase tree, a repair can
then be selected. For example, one could consider a cost model and choose the repair with minimal cost.

Because it is infeasible to generate the complete Chase tree, Llunatic uses a cost manager that allows the definition of a
wide range of pruning strategies. Examples of these strategies include (i) limiting the number of outgoing branches of a node
by means of a branching threshold, (ii) limiting the amount of leaf nodes by a potential solutions threshold and (iii) limiting
modifications to forward repairs only [25]. The cost manager thus offers a trade-off between repair quality (i.e., generating
more repairs implies a higher chance of a finding a high quality repair) and computational cost (i.e., generating more repairs
implies larger Chase trees).

2



Single-path Chase trees with Swipe The key contribution of the current paper is to investigate an extreme case of cost
management. More specifically, we investigate a degenerate variant of the Llunatic Chase where a Chase tree represents a
single sequence of Chase steps and generates only one repair. In addition, we restrict to forward repairs only, which means
that violations of an FD are always restored by equating values of the right-hand side attributes in that FD. The main problem
we face in this scenario, is how to best select the next FD to repair. To solve this problem, we will first partition the attributes
involved in a given set of FDs such that the partition is forward repairable. This means we can iterate over the partition classes
sequentially and for each class C, apply forward repairing for those FDs of which the right-hand side attribute is in C. Once a
partition of attributes is available, the next step is to visit each partition class and for each class, consider a priority model for
the FDs we must repair for that class. The combination of (i) the partition of attributes and (ii) the priority models for each
class gives us the ability to produce a (degenerate) Chase tree with a single-sequence of Chase steps, where each Chase step
uses forward repairing. We can now summarize the key contributions of this paper as follows:

• We present the Swipe algorithm to repair FD violations. This algorithm is grounded on two key ideas: (i) the notion of a
partition of attributes that is forward repairable and (ii) the notion of a priority model for FDs. We show that for any set
of FDs there always exists a partition that is forward repairable and we present a simple algorithm to construct one that
is maximally refined. In addition, we provide a simple but effective heuristic to create a priority model for FDs when a
class from a forward repairable partition is given.

• Similar to other FD repair algorithms, we use equivalence relations on the set of tuples to keep track of repair steps
previously done. In order to do this in an efficient way, the Swipe algorithm uses disjoint set forests. These data
structures model equivalence classes in a tree-based manner and have the property that the asymptotic complexity of
merging two classes, is constant.

• We study the theoretical properties of Swipe. We prove that it always terminates and when it does, it produces a repair.
Moreover, we show that for unary FDs (i.e., FDs with a singleton left-hand side), each FD must be repaired at most
once whenever resolution of conflicts is based on choice.

• We empirically study the trade-off between repair quality and computational cost. On one hand, we demonstrate that
the generation of repairs with Swipe is one to three orders of magnitude faster than with Llunatic. On the other hand,
the repair quality in terms of F-score of correctly repaired attribute values, is shown to be comparable or better. This
provides first evidence for the fact that the construction of a single sequence of Chase steps can lead to good repairs.

The remainder of this paper is organized as follows. In Section 2, we revise the vast body of literature on FD repairing
and highlight the most important connections to existing methods. In Section 3, we introduce the basic concepts and notations
related to the relational model and functional dependencies used throughout the paper. In Section 4, we first formalize the
notion of an attribute partition that is (forward) repairable (Section 4.1) and then develop an algorithm to produce such a
partition for a given set of FDs (Section 4.2). Next, we show how repair of a partition class is done (Section 4.3) and finally
combine our results to formulate the Swipe algorithm (Section 4.4). We provide an experimental analysis in Section 5 and
summarize the main contributions in Section 6.

2 Related work
In this section, we provide a concise overview of existing solutions for repairing violations of FDs and contrast them to the
proposed algorithm in this paper. For a more detailed discussion, the interested reader is referred to overview papers [28]
and monographs [21, 29]. We make a distinction between (i) traditional approaches where searching repairs is cast into an
(approximate) optimization problem and (ii) more recent approaches where learning techniques are used to generate repairs.

The traditional approach towards repairing violations of FDs is to consider a cost model that encodes a positive cost to
changes made to the original data. The goal is then to find repairs that can be produced with a minimal sum of costs. In
the setting of Consistent Query Answering (CQA) [2] one usually considers the deletion of tuples as an elementary change
[41, 32]. In the current paper, we focus on the problem where each elementary change is the replacement of the value of one
attribute in one row, with some other value. Finding an optimal repair (i.e., a repair with minimal cost) in this setting, has been
shown to be max-SNP hard ([30], Theorem 5). Several strategies have therefore been proposed to search for approximate
optimal repairs efficiently, including greedy search algorithms [8, 7, 15, 30], sampling approaches [5], usage of MAX-SAT
solvers [16] and alignment with knowledge graphs [14]. Many of these approaches make use of the notion of equivalence
classes over the set of tuples in order to keep track of which rows must receive the same value for some attribute. This
technique has been found necessary to ensure termination of repair algorithms [8]. The way in which equivalence classes
are used, can differ between approaches. Equivalence classes could for example be gradually built as a repair is constructed
row by row [8]. Another approach that has been used, initializes equivalence classes in a greedy way prior to repair, thereby
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determining equivalences that already exist in the dirty relation [5]. The algorithm we present also uses equivalence relations
on rows, although without this notion of greedy initialization. Moreover, we explicitly use the notion of disjoint set forests to
manage equivalence relations on rows efficiently.

When we evaluate search-based approaches, several experimental studies show that they either deal with scalability issues
(even for moderate-sized data sets) [16, 8, 7] or produce repairs of low quality [37]. This provides empirical evidence that it
is challenging to find a good trade-off between computational cost and repair quality. One particular method that facilitates
this trade-off, is the open-source framework Llunatic [24, 25], which uses a variant of the Chase algorithm. As mentioned in
the introduction, this approach produces a Chase tree where each path is a sequence of repair steps and leaf nodes are actual
repairs, associated with a certain cost. To control the space and time complexity, the Chase tree can be pruned in several
ways. The algorithm we present here can be thought of as a degenerate variant of such a Chase algorithm that considers a
single sequence of Chase steps. By doing so, we minimize the computational cost and try to maximize quality of repairs as
much as possible. Informally, the key idea is hereby to repair small groups of attributes of a dirty relation one after the other.
This idea is similar to the Fellegi-Holt approach to repair tuple-level constraints [22, 9, 6, 10]. Interestingly, in the case of
tuple-level constraints, it can be shown that if the set of constraints is satisfiable, there always exists a partition composed of
singleton classes, such that we can repair sequentially. This result follows from Theorem 1 in [22] for nominal edit rules and
has been extended for other types of tuple-level constraints [17, 6]. As a consequence, it is possible for these constraints to
repair one attribute at a time for each separate row. A similar property does not hold for FDs: we cannot ensure the existence
of a partition that is sequentially repairable in the sense defined here and that consists solely of singleton classes [26].

Over the past decade, there has been a growing interest in using learning approaches to deal with the repair problem. The
most well-known approach is HoloClean [36], which combines integrity constraints with statistical information about a given
data set to compose a probabilistic model that generates repairs. This learning-based technique has gained a lot of attention
[33] and inspired others to increase the role of learning. More specifically, learning approaches have also been used for error
detection [34, 27, 35] where a sample of clean data is used to learn how errors should be characterized. In these approaches,
there is no need anymore to use explicit integrity constraint formalisms. Rather, there is a model that is being trained to
recognize errors. Although these approaches are promising for the future, their experimental evaluations have shown they
face scalability issues as well, displaying run times of over 10 seconds for data sets with 1000 tuples. We believe there is a
requirement for tools that allow to produce repairs much faster than that. Evidence for that requirement can be found in a
recent survey paper investigating the landscape of commercial tools for data quality monitoring [20]. Interestingly, none of
those tools have adopted methods for automated error detection or repair, whereas we are convinced that these methods are
key in measurement and improvement of data quality.

3 Preliminaries
Let A be a countable set of attributes. For each a ∈ A, let A denote the domain of a. We define a (relational) schema as a
non-empty and finite set of attributes R = {a1, . . . , ak} and a relation R with schema R as a finite set R ⊆ A1× . . .×Ak. Elements
of R are called tuples. We assume that R always has a special attribute tid that is unique for each r ∈ R. For a relation R with
schema R, a set of attributes X ⊆ R and a predicate P, we denote the projection of R over X by R[X] and the selection over P
by RP. For convenience of notation, if X is a singleton set {a}, we denote R[{a}] by R[a]. In a similar way, if R contains only
one tuple r, we use the notation r[X]. Note that the projection R[X] is a set and therefore contains no duplicate tuples. In some
cases, it is useful to restrict the schema to attributes X but keep duplicates. We denote R⟦X⟧ as the multiset of values obtained
after restricting the schema to attributes X without removal of duplicates.

A functional dependency (FD) ϕ defined over a schema R is an expression of the form X → a such that X ⊆ R and a ∈ R.
In this expression, X is called the left-hand side and a is called the right-hand side of the FD1. For an FD ϕ, we will use the
notation LHS (ϕ) for the left-hand side of ϕ and RHS (ϕ) for the right-hand side of ϕ. A relation R with schema R satisfies ϕ
(denoted by R |= ϕ) if:

∀r1 ∈ R : ∀r2 ∈ R : r1[X] = r2[X]⇒ r1[a] = r2[a].

Similarly, R satisfies a set of FDs Φ (denoted by R |= Φ) if it satisfies all ϕ ∈ Φ. For a set of FDs Φ and a set Z ⊆ R, the
projection of Φ over Z is denoted by Φ[Z] and defined as:

Φ[Z] = {ϕ | ϕ ∈ Φ ∧ LHS (ϕ) ⊆ Z ∧ RHS (ϕ) ∈ Z}.

An FD ϕ defined over R is said to by implied by a set of FDs Φ, if for any relation R with schema R, we have R |= Φ⇒ R |= ϕ
(i.e., satisfaction of Φ implies satisfaction of ϕ). We use the notation Φ |= ϕ to say that ϕ is logically implied by the set Φ.
Two sets of FDs Φ and Φ′ are said to be equivalent, denoted by Φ ≡ Φ′ if:(

∀ϕ ∈ Φ : Φ′ |= ϕ
)
∧
(
∀ϕ′ ∈ Φ′ : Φ |= ϕ′

)
.

1We can assume the right-hand side is a single attribute without loss of generality.
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An FD X → a is called minimal if it is not implied by any {X′ → a} where X′ ⊂ X. Finally, for a given set of FDs Φ, a minimal
cover of Φ is any set Φ such that (i) Φ ≡ Φ, (ii) all ϕ ∈ Φ are minimal and (iii) no proper subset of Φ is equivalent with Φ.

Table 1: Overview of symbols and key concepts.

Symbol Meaning

A Countable set of attributes
a ∈ A An attribute with domain A
R Relational schema {a1, . . . , ak}

tid Tuple identifier attribute
R Relation with schema R
r ∈ R A tuple in relation R
R[X] Projection of R over X ⊆ R
R⟦X⟧ Projection of R over X ⊆ R with preservation of duplicates
ϕ Functional dependency (FD) of the form X → a
Φ A set of FDs
Φ |= ϕ FD ϕ is implied by Φ
Φ A minimal cover of Φ
Φ[Z] Projection of Φ over Z

P A partition of R of the form [C1 . . .Cm]
Ri For P = [C1 . . .Cm] and 1 ≤ i ≤ m, Ri = {C1 ∪ . . . ∪Ci}

R∗i Partial repair: a relation with schema R that satisfies Φ[Ri]
P⇝ Φ Φ is sequentially repairable over P
P⇝F Φ Φ is forward repairable over P
P+ The preorder obtained from a set of FDs Φ

DSF (a) A disjoint set forest (DSF) for a
ρa A repair function for a

4 Sequential repairing

4.1 Basic definitions
Consider a schema R and a set of FDs Φ defined over R. Let P = [C1 . . .Cm] denote a partition of R where m ≤ k and for any
i ∈ {1, . . . ,m}, Ci ⊆ R are mutually disjoint partition classes. We assume in this paper that partition classes Ci are ordered
by their index i and we refer to this order as the natural order of the partition. In the context of such a partition P, for any
i ∈ {1, . . . ,m}, we denote by R∗i a relation with schema R such that R∗i |= Φ[Ri] where Ri = {C1 ∪ . . . ∪ Ci}. In the context
of our repairing approach, we will call such a relation a partial repair. We now say that Φ is sequentially repairable over P,
denoted by P⇝ Φ, if:

∀i ∈ {1, . . . ,m} : ∀R∗i−1 : ∃R∗i : R∗i [Ri−1] = R∗i−1[Ri−1] (1)

where we adopt the convention that R∗0 = R. In words, if Φ is sequentially repairable over P then any partial repair R∗i−1 can
be transformed into a partial repair R∗i by modifying only the values for attributes in Ci. By repetition, we eventually obtain a
relation R∗m that satisfies Φ. The relevance of sequential repairability lies in the fact that if P⇝ Φ, then classes from P can be
repaired one at a time in order of increasing i. We now make two refinements to the notion of sequential repairability in order
to make it a useful repair instrument.

First, it easy to see that for any schema R and any setΦ defined over R, there always exists at least one (trivial) partition for
which Φ is sequentially repairable. Indeed, since FDs are always satisfiable, we have that [R]⇝ Φ. This partition is not very
useful because it simply tells us we can repair violations of Φ. However, if we are able to refine this partition (i.e., splitting
classes into disjoint sub-classes) and still satisfy the condition of sequential repairability, we can separate the treatment of
different FDs and exploit this property in a repair algorithm. For that reason, we are interested here in those partitions P that
are maximally refined without losing the property of sequentially repairability for Φ.

Second, if P⇝ Φ, it is possible that FDs must be satisfied by either equating the values for the right-hand side attribute
or differentiating the values for the left-hand side attributes. For example, if R = {a, b} and Φ = {a → b} then we have
[{a}, {b}] ⇝ Φ as well as [{b}, {a}] ⇝ Φ. That is, for given values of a, we can choose values for b and make sure equal
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values for a imply equal values for b. Similarly, for given values of b, we can choose values for a that do not cause a violation
of a → b. In this paper, we restrict repairing to the case where violations of FDs are resolved by changing the values of the
right-hand side attribute. This operation is also known as forward repairing [25]. We provide the following definition.

Definition 1 For a schema R and a set of FDs Φ defined over R, let P be a partition of R. Then Φ is forward repairable over
partition P, denoted by P⇝F Φ, if and only if:

∀Ci ∈ P : ∀ϕ ∈ Φ[Ri] \ Φ[Ri−1] : RHS (ϕ) ∈ Ci (2)

In words, Φ is forward repairable if for every class Ci, every FD that was not considered in the scope of previous classes, has
a right-hand side attribute that is an element of Ci. We now have the following result.

Proposition 1 For a schema R and FDs Φ defined over R, we have (P⇝F Φ)⇒ (P⇝ Φ).

In this paper, we seek to repair violations of FDs by first building a partition of attributes that allows forward repairing and then
apply a repair algorithm to each class of this partition, following the natural order of that partition. This repair algorithm uses
a priority model that dictates the order in which FDs are repaired. We now demonstrate the main ideas behind this algorithm
in the context of the running example.

Example 2 In Figure 1, the attribute partition (middle left) is forward repairable for the FDs. This partition is also maximally
refined w.r.t. forward repairability. That means we cannot split classes without breaking the condition of forward repairability.
To construct a repair R∗, we visit the classes of P in their natural order. The first class is C1 = {hospital name, #provider}
and we have:

Φ[C1] = {hospital name→ #provider, #provider→ hospital name}.

We then sort these FDs (this sorting is made more precise later in the paper) and visit them in order. Suppose for now we
first visit hospital name→ #provider, then we find two violations: one for tuples {1, 2, 3, 4} and one for tuples {5, 6}. We then
do two things. First, we register that these two groups of tuples must have the same value for #provider in a special data
structure. This data structure is used to keep track of decisions made during repair of visited FDs. Second, we resolve the
violation by applying a function that maps the bag of values observed for #provider in the violating tuples to a single value.
In this example, we do this by majority voting with random tie breaking. Concretely, this means we change #provider for
tid = 4 into 10006. For the other violation, we have a random choice between the values so assume we choose 1003x. We
then visit #provider → hospital name and find no violations. Since all FDs in Φ[C1] are now satisfied, we have constructed
the first partial repair R∗1. We then proceed to C2 = {city}. The set Φ[C1 ∪ C2] now has one additional FD, which is
hospital name → city and it has no violations. Moreover, the FDs from the previous step are ensured to remain satisfied
so we now have a second partial repair R∗2 for which R∗2 |= Φ[C1 ∪ C2]. This procedure continues until we have visited
C7 = {condition}. After this last step, the original data has been iteratively transformed into a repair R∗ that satisfies all FDs.
An example repair under the assumption of majority voting with random tie breaking to fix violations, is shown in Figure 1
(bottom).

From the example given above, two important questions arise. The first question deals with the generation of a maximally
refined partition that is forward repairable for a given set of FDs. We will treat this question in Section 4.2. The second
question deals with how violations of FDs are resolved for a single class. We will treat this question in Section 4.3. After that,
we combine all these ideas in Section 4.4 to present the Swipe algorithm.

4.2 Attribute partition building
This section presents a method to construct, for given R and Φ over R, a partition P that (i) is maximally refined and (ii)
satisfies P⇝F Φ. To do so, note that Definition 1 (Eq. (2)) implies that for any FD X → a in Φ, attributes in X must be part
of a class that does not lie after the class that contains a. We will encode this information in a preorder relation constructed
from Φ.

As a first step, we verify that Φ does not contain any trivial or implied FDs. This is to avoid that trivial FDs intro-
duce unnecessary constraints on the order of attributes. In the scope of the running example in Figure 1, introducing the
trivial FD {county, zip} → county would create a constraint on the order of the classes that contain county and zip. This
constraint is unnecessary since the FD is always satisfied. The same observation holds for FDs that are not minimal (e.g.,
{hospital name, state} → zip). To ensure that we encode only necessary requirements, we transform Φ into a minimal cover
Φ. From such a minimal cover, we compose a binary relation P ⊆ R × R that satisfies the following criteria:

1. ∀a ∈ R : (a, a) ∈ P,
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2. ∀ (X → a) ∈ Φ : ∀b ∈ X : (b, a) ∈ P.

Here, (b, a) ∈ P expresses the requirement that b should not occur after a in the sequence of partition classes. Next, P is
transformed into its transitive closure denoted by P+ [40]. The obtained relation P+ is the finest preorder (reflexive and
transitive) that contains P. We say that P+ is the preorder obtained from Φ. This preorder contains an equivalence relation
≡P+ on R. More specifically, we have a ≡P+ a′ whenever both (a, a′) ∈ P+ and (a′, a) ∈ P+. Consider now any partition
P = [C1 . . .Cm] such that:

∀a ∈ R : ∀a′ ∈ R : a ≡P+ a′ ⇔
(
∃Ci ∈ P : a ∈ Ci ∧ a′ ∈ Ci

)
(3)

and:
∀Ci ∈ P : ∀C j ∈ P : i < j⇒

(
∀a ∈ Ci : ∀a′ ∈ C j : (a′, a) < P+

)
(4)

A partition P that satisfies these two constraints is said to be induced by P+. A partition induced by P+ can be constructed
readily by first assigning each equivalence class from ≡P+ to a class Ci and then sort the obtained classes to enforce Eq.(4).
This construction shows that a partition induced by P+ is a topological sort of the quotient set R/ ≡P+ . We can now state the
following result.

Theorem 1 For a schema R and a set of FDs Φ defined over R, let P be a partition induced by P+. Then (i) P⇝F Φ and (ii)
¬ (P′ ⇝F Φ) for any refinement P′ of P.

𝑃+
hospital

name
#provider city county zip state

measure
code

condition

hospital 
name

x x x * x x

#provider x x * * * *

city x x

county x

zip x

state x

measure 
code

x x

condition x

Figure 2: The construction of a preorder P+ for the FDs from Figure 1 (middle). Elements derived directly from the FDs are
marked with ‘x’ and elements added to compute the transitive closure are marked with ‘*’. The preorder is the union of two
weak orders, marked by bold lines.

Example 3 For the FDs shown in Figure 1 (middle), Figure 2 shows the construction of the preorder P+. First, we derive P
from a minimal cover of the given FDs as explained. In our example, the available FDs are already a minimal cover and thus
we proceed with the FDs as given. In Figure 2, the entries in P are marked by ‘x’ symbols. We then compute the transitive
closure P+ and the additional entries to get P+ are marked by ‘*’ symbols. Because hospital name ≡P+ #provider, both
attributes must belong to the same partition class. Attributes determined by hospital name appear in singleton classes after
the class that contains hospital name and #provider. Finally, condition should be after measure code.

4.3 Priority repair
Assume a partition P = [C1 . . .Cm] for R such that P⇝F Φ for a given set of FDs Φ. Definition 1 then ensures we can visit
classes Ci in their natural order and generate a partial repair R∗i by changing only attributes from Ci. That is, we are given a
partial repair R∗i−1 and we must modify attributes Ci to fix violations of FDs Φ[Ri] and obtain a new partial repair R∗i . To do
this, we propose a technique called priority repairing. The main principles of this technique are the following:
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• FDs are inspected and repaired in a specific order, dictated by a priority model. The key idea is to repair FDs that
contain less reliable attributes in their right-hand side first and thereby try to maximize the accuracy of the repairs. We
propose a simple heuristic to estimate the reliability of an attribute by means of the estimated number of changes that
an attribute requires.

• In order to keep track of tuples that must receive the same value for a ∈ Ci, we use a disjoint set forest (DSF) [23] to
represent equivalence classes on tuples. A DSF has the advantage that the necessary operations on equivalence classes
have a near-constant time complexity [38]. This mitigates the complexity of FD revision, where one FD must be repaired
again because of possible new violations caused by the repair of another FD.

• The value assigned to an equivalence class for a ∈ Ci is determined by a repair function ρa. This is a function that maps
the bag of values of a involved in a violation onto a new value. We have a particular interest in those repair functions
that are preservative. These functions simply choose one of the values involved in a violation.

In the remainder of the section, we detail and formalize these main principles.

Priority model In order to repair class Ci, we must ensure that the FDs over Φ[Ri] are satisfied. Clearly, any FD from
Φ[Ri−1] contains no attributes from Ci and must therefore not be considered. We can therefore restrict ourselves to the set
Φi := Φ[Ri] \ Φ[Ri−1]. In this set there can be FDs ϕ for which:

LHS (ϕ) ∩Ci = ∅. (5)

Those FDs have a left-hand side that contains only attributes that are clean at the time of repairing class Ci because these
attributes are all part of a class C j with j < i. Such FDs are called pilot FDs for class Ci and we repair them first, with two
clear advantages. First, because we rely on clean data to make the first changes to attributes a ∈ Ci, we expect these changes to
be accurate. Second, pilot FDs never require revision as the values of their left-hand side attributes never change. Therefore,
they need to be considered only once.

Example 4 In Example 2, there are no pilot FDs for class C1. For all other classes, we have only pilot FDs because the
left-hand side of the FDs contains no attributes that are part of the class.

If an FD is not a pilot FD for class Ci, it contains at least one attribute from Ci in the left-hand side. Those FDs are further
sorted by means of a simple priority model that encodes the order in which attributes must be repaired. This priority model is
a simple total order ≻ on attributes Ci where a ≻ a′ indicates that a must be repaired prior to a′. In other words, we require
that X → a is repaired before X′ → a′ whenever a ≻ a′. To construct a priority model, we propose to rank attributes within
class Ci by increasing reliability. To make such a ranking, the most obvious method would be to ask for input of a human
supervisor, which is not uncommon in repair approaches [24, 25]. However, such input might not be easy to collect, either
because there is no supervisor, or a supervisor cannot easily rank attributes. In that case, we propose to use an estimate of the
number of changes we will need to make to values of a as follows.

Suppose we have an FD ϕ := X → a and a relation R, then for any x ∈ R[X], the bag RX=x⟦a⟧ gives us the values for
attribute a of those tuples for which X = x. If there are different elements in this bag, we must change values for a in order to
satisfy X → a. If we denote the element with highest multiplicity2 in this bag by mv (x, a), then changing the values of a for
tuples RX=x∧a,mv(x,a) allows to resolve the conflict with a minimal amount of changes. We can now collect these tuples for all
values x ∈ R[X]:

VioFD (X → a) :=
⋃

x∈R[X]

RX=x∧a,mv(x,a), (6)

and finally aggregate over all FDs ϕ ∈ Φ where RHS (ϕ) = a:

Vio (a) :=
⋃

ϕ∈Φ∧RHS(ϕ)=a

VioFD (X → a) (7)

The set Vio (a) basically gives us the tuples in R that require a change to attribute a if (i) we are interested in keeping the
number of changes as small as possible and (ii) we would consider each FD independently. The more changes an attribute
requires, the less reliable that attribute is. We therefore use |Vio (a) | to build our priority model such that:

a ≻ a′ ⇔ |Vio (a) | ≥ |Vio
(
a′
)
| (8)

The rationale of this heuristic is that since we now must sort non-pilot FDs, there are attributes from Ci that appear in the
left-hand side of these FDs. It is likely that some of these attributes will themselves contain errors (i.e., because they appear in

2If there are multiple such values, we choose one at random.

8



the right-hand side of another FD). We thus seek to first repair an FD that has attributes in the left-hand side, that are maximally
reliable. We now make two observations about this heuristic.

First, the assumption about FD independence, is a naive one. When repairing two FDs with the same right-hand side
attribute a we must merge equivalence classes induced by both FDs (this is explained later) and our estimate neglects this. We
accept this error in our estimate at the benefit of simple and efficient computation. Moreover, we will show empirically that
classes Ci are in practical scenarios often singleton set, in which case the estimate must not be computed because all FDs are
then by definition pilot FDs. If we do have multiple attributes in Ci, then empirical results show that the heuristic leads to
sequences of FDs with repair quality superior to other possible sequences.

A second observation is that |Vio (a) | can be computed at different times with different results. One could for example
compute |Vio (a) | on the original relation R, before any modifications are done. The advantage of doing so would be that
estimates are unbiased and not dependent on changes made by the Swipe algorithm. An alternative strategy is to postpone the
computation of Vio (a) up to the moment where the class that contains a is visited. In other words, we then compute Vio (a)
from the partial repair R∗i−1. Variations of this strategy are possible. We can for example estimate reliability before repair
of Ci starts or postpone it to the point where pilot FDs have been repaired. Empirically, we have however not observed any
significant differences between these variations on the data sets we tested. In the remainder of this paper, we favor a strategy
where estimation of reliability is done on partial repairs.

Example 5 In Example 2, we have C1 = {hospital name, #provider}. Both attributes appear once in the right-hand side of
an FD. It can be verified that Vio (hospital name) = ∅ and Vio (#provider) is either {4, 5} or {4, 6}. It follows that #provider ≻
hospital name and thus that we repair hospital name→ #provider first and then #provider→ hospital name.

Example 5 demonstrates (i) the estimation of reliability of attributes and (ii) the implied order on FDs. Note that the two
sorting principles we use (i.e., pilot FDs first and then least reliable right-hand side first) provides us with a partial order on
the FDs we must repair. Any total order that contains this partial order can be used in Swipe.

Tuple equivalence Having determined the order in which FDs are treated, we turn our attention to the actual repair process.
In order to repair attributes in Ci, we consider for each a ∈ Ci, an equivalence relation on the set of tuples from R∗i−1. We use
these equivalence classes to keep track of which tuples must receive the same value for a in order to satisfy FDs ϕ for which
RHS (ϕ) = a. More specifically, whenever two tuples are in the same equivalence class for attribute a, we require they must
receive the same value for a. Initially, each tuple is put in a separate singleton class. As we fix violations of FDs of the form
X → a, we require that tuples with the same value for X also have the same value for a. In other words, if we observe tuples
in R∗i−1 with equal values for X, we must merge the corresponding classes in which these tuples appear. In order to do this
efficiently, we use a disjoint set forest [23] for each attribute a, denoted by DSF (a). With this data structure, each equivalence
class is represented by a tree on tuple identifiers (i.e., values for tid). Each DSF (a) basically supports three operations:

• Operation makeset (id) adds a new singleton set (i.e., {id}) to the forest. Such a singleton set is represented by a
one-node tree. This operation is used to initialize each DSF (a).

• Operation find (id) finds the root tid of the tree in which id resides and is used to determine if two values are in the same
class or not.

• Operation union (id1, id2) merges the classes in which id1 and id2 reside. This is done by finding the root nodes of the
trees and in case the root nodes are distinct, attach one root as a child of the other. During the repair of an FD X → a,
this operation is used to merge equivalence classes for tuples that have equal values for X.

A key result is that the three elementary operations of a disjoint set forest can be implemented such that their asymptotic time
complexity is very efficient. More specifically, one can provide an implementation such that the asymptotic time complexity of
makeset (id) and union (id1, id2) isO (1), while that of find (id) isO (α(n)) where α(.) is an inverse functional of the Ackermann
function and n is the number of elements in the class where id is located [38, 39, 4]. The asymptotic efficiency of these
operations is key because it allows us to provide an efficient strategy for the update of DSF (a) during the repair of an FD
X → a. More specifically, if we want to repair X → a, then we must update DSF (a) such that after the update we have:

∀r ∈ R∗i−1 : ∀r′ ∈ R∗i−1 : r[X] = r′[X]⇒ find (r[tid]) = find
(
r′[tid]

)
(9)

In words, after the update is done, we want that any two tuples from R∗i−1 with equal values for X are equivalent in DSF (a)
and thus must receive the same value for a.

The pseudo-code shown in Algorithm 1 provides a simple way to do so by using a map H with constant-time complexity
for get and put operations. This map keeps, for each value in R∗i−1[X], the root node of the tree in DSF (a) in which tuples
with this value reside. We then iterate over tuples r ∈ R∗i−1 and check if H currently contains r[X]. If this is not the case, we
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Algorithm 1 Update DSF (a) for X → a and R∗i−1

1: procedure update(R∗i−1, X → a,DSF (a))
2: H ← [] ▷ Initialize empty map
3: for r ∈ R∗i−1 do
4: if H[r[X]] = null then
5: H[r[X]]← DSF (a) .find (r[tid]) ▷ Register root
6: else
7: DSF (a) .union (r[tid],H[r[X]]) ▷Merge classes
8: H[r[X]]← DSF (a) .find (r[tid])
9: end if

10: end for
11: end procedure

register the root node of the tree where r[tid] is currently located (line 5). Else, we merge the current root node with the tree
where r[tid] is currently located and update the map H (lines 7 - 8). The update procedure described here requires in each step
one find operation and possibly one union operation on DSF (a), which implies an asymptotic complexity of O

(
|R∗i−1| · α (n)

)
,

with n the size of the largest equivalence class in DSF (a).

Example 6 In Example 5 it is shown that during the visit of C1, we first repair hospital name → #provider. This is the first
FD we visit, which means DSF (#provider) contains a singleton class for each tuple. Then application of

update (R, hospital name→ #provider,DSF (#provider))

modifies DSF (#provider) in such a way that tuples with equal values for hospital name are in the same class. In other words,
after the update, DSF (#provider) has classes {{1, 2, 3, 4}, {5, 6}}.

Fixing violations with repair functions After updating DSF (a) for some FD X → a with Algorithm 1, DSF (a) represents
classes of tuple identifiers from R∗i−1 that must have the same value for a. In other words, DSF (a) corresponds with set
{E1, . . . ,Eℓ} such that ∀i ∈ {1, . . . , ℓ} : Ei ⊆ R∗i−1[tid]. For each such set E, we can get the corresponding tuples from R∗i−1
and verify whether or not these tuples have equal values for a. If not, the tuples violate X → a and we fix this violation by
application of a repair function defined by ρa : B(A) → A, where B(A) is the set of all bags (or multisets) with elements
from A. A repair function maps a bag of values from A onto a single value3 from the domain A. A particular class of repair
functions are those that are preservative, which means that ρa (B) ∈ B for any bag B ∈ B(A) [12]. Our interest in preservative
repair functions is not coincidental. First of all, preservative repair functions possess important properties: they are idempotent
(ρ{v, . . . , v} = v), they ensure that for any repair R∗, we have ∀a ∈ R : R∗[a] ⊆ R[a] (i.e., they do not introduce new values in
the repair) and they play an important role in notion of cardinality-minimal repairs [5]. Second, preservative repair functions
have some well-known representatives like majority voting, weighted voting and median or min/max selection for domains
equipped with an order relation. Finally, we will show in the following that they play a key role in the avoidance of revisions
for unary FDs.

Algorithm 2 provides the pseudo-code for the resolution of violations of X → a. It first updates the DSF (a) by using
Algorithm 1. Then, for each class of tuple identifiers in the updated DSF (a), it gets the tuples from R∗ with identifiers in this
class and stores these tuples in a variable R∗

E
(line 5). These tuples are inspected for their values for a (line 6). If a violation

is observed, the repair function for a is applied to the bag of values R∗
E
⟦a⟧ and the result is stored in the variable vfix (line 7).

This value is then assigned to attribute a for all the tuples of R∗i−1 involved in the violation (line 8)

Example 7 In Example 6 we showed that DSF (#provider) has two equivalence classes. Suppose we choose as repair function
majority voting with random tie breaking then fixing hospital name→ #provider must change the value of #provider for tuple
4 into 10006. In addition, we must change also tuple 5 or 6.

Priority repair We now have all components in place to present an algorithm that performs priority repair on a class of
attributes Ci. The pseudo-code for this algorithm is shown in Algorithm 3. The algorithm receives a class of attributes Ci and
the corresponding set of FDs Φi := Φ[Ri] \ Φ[Ri−1], which contains only those FDs that are possibly still violated in R∗i−1.
The algorithm starts with sorting the FDs according to the principles explained before: we prioritize pilot FDs (see Eq. (5))
followed by the other FDs, which are sorted by their right-hand side attribute based on the cardinality of the set Vio(.). FDs
are added to a stack that maintains this order at all time (line 2).

3In the literature on repairing FDs, many existing approaches allow labelled variables during repair, but we restrict ourselves to constant values only.
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Algorithm 2 Fix violations of X → a
1: procedure fix(R∗i−1, X → a,DSF (a))
2: update

(
R∗i−1, X → a,DSF (a)

)
▷ Algorithm 1

3: fixes← 0 ▷ Count violations
4: for E ∈ DSF (a) do ▷ For each class in DSF (a)
5: R∗

E
← {r | r ∈ R∗i−1 ∧ r[tid] ∈ E}

6: if |R∗
E
[a]| > 1 then ▷ Violation check

7: vfix ← ρa

(
R∗
E
⟦a⟧
)

▷ Apply repair function
8: exec update R∗i−1 set a = vfix where tid ∈ E ▷ Fix violation
9: fixes++

10: end if
11: end for
12: return fixes
13: end procedure

Algorithm 3 Repair FDs Φi by changing attributes Ci to obtain partial repair R∗i
Require: Ci is a class of P such that P⇝F Φ

1: procedure priorityRepair(R∗i−1,Φi,Ci)
2: init (S,Φi) ▷ Sorted stack of FDs
3: ∀a ∈ Ci : init (DSF (a)) ▷ Initialize DSF with singleton classes
4: while S , ∅ do
5: ϕ← poll (S)
6: fixes← fix

(
R∗i−1, ϕ,DSF (RHS (ϕ))

)
▷ Fix step

7: if fixes , 0 then ▷ Revision step
8: for ϕ′ ∈ (Φi \ S) do
9: if RHS (ϕ) ∈ LHS (ϕ′) then

10: add (S, ϕ′)
11: end if
12: end for
13: end if
14: end while
15: return R∗i−1
16: end procedure

Next, we initialize a DSF structure for each a ∈ Ci. This initialization creates a singleton class for each r ∈ R∗i−1 and thus
requires |Ci| · |R∗i−1| makeset operations (line 3). We then start a loop that continues until the stack with FDs is empty. In
each iteration, we poll the first FD from the stack and perform two steps: the fix step and the revision step. In the fix step, we
retrieve the current DSF structure for RHS (ϕ) and we apply Algorithm 2 to fix any violations (line 6). In the revision step,
we verify if the fix step made changes to R∗i−1. If this is the case, then the values for RHS (ϕ) in R∗i−1 have been modified. We
then check if there are FDs ϕ′ that have RHS (ϕ) in the left-hand side and add those FDs back to the stack to check if new
violations have been introduced (line 9). This continues until no new violations are found.

Algorithm 3 can now be attributed with the following properties. First of all, for each attribute a, the DSF structure is
initialized only once and during each update (Algorithm 1), we change DSF (a) only by merging classes. In particular, this
means that DSF (a) before update is a partition refinement of DSF (a) after update. As such, any FDs that were previously
repaired and have a in the right-hand side, remain satisfied. For FDs that have a in the left-hand side, this might not be the case
and these FDs are added to the stack for revision (only if fixes > 0). During such a revision, DSF (a) can again only change
by merging classes, which means that in consecutive revisions, the number of classes in DSF (a) is monotonically decreasing.
This leads us to the formulation of the following theorem.

Theorem 2 Let P = [C1 . . .Cm] be a partition of R such that P ⇝F Φ for a set of FDs Φ. Then for any class Ci from
P and any partial repair R∗i−1, we have (i) execution of priorityRepair

(
R∗i−1,Φi,Ci

)
(Algorithm 3) terminates and (ii) after

termination R∗i−1 is modified into a partial repair R∗i .

Theorem 2 states that even in case of revisions, we eventually end up with a partial repair R∗i . Nevertheless, the presence of
revisions comes with a cost as it requires a new update of the DSF structure and potential modifications to the repair. It is
therefore clear that avoiding revisions has a computational advantage. In that regard, we note that whenever |Ci| = 1, all FDs

11



are necessarily pilot FDs and thus never require revision. Moreover, in the case of unary FDs, revision is not needed if the
repair function for the single left-hand side attribute is preservative.

Proposition 2 Let P = [C1 . . .Cm] be a partition of R such that P ⇝F Φ for a set of FDs Φ. Then for any class Ci from P
and any partial repair R∗i−1, a unary FD a′ → a can be ignored in the revision step of priorityRepair

(
R∗i−1,Φi,Ci

)
if ρa′ is

preservative.

The proposition above shows that if we use preservative repair functions, then repair of unary FDs is extremely efficient as it
is revision-free.

4.4 The Swipe algorithm
The ability to (i) construct a maximally refined partition that is forward repairable and (ii) repair classes of such a partition
by means of a priority model can now be used to construct a repair algorithm for FDs that we call the Swipe algorithm. The
pseudo-code to repair a dirty relation R in this way is shown in Algorithm 4. The algorithm starts by computing a minimal
cover of FDs in order to remove any redundant information that is present (line 2). Based on such a minimal cover, we
construct a partition P = [C1 . . .Cm] induced by the preorder P+ (line 3) as explained in Section 4.2. We initialize the repair
with the original dirty relation R. This repair is then modified step by step. More precisely, we iterate over the classes Ci of
P in the natural order and in each step apply the priority repair algorithm, where we give the current partial repair R∗i−1 as
input, together with those FDs that involve at least one attribute from Ci (line 6). During the execution of the priority repair
algorithm, R∗i−1 is modified by assigning values to attributes in Ci in such a way we get a new partial repair R∗i . Because the
partition is forward repairable, we know that such a modification is possible in each iteration. Eventually, we obtain a repair
R∗ := R∗m that satisfies all FDs.

Algorithm 4 Swipe
1: procedure swipe(R,Φ)
2: Φ← minimalCover (Φ) ▷Minimal cover
3: P ← buildFromPreorder

(
Φ
)

▷ Construct P from preorder P+ on Φ
4: R∗0 ← R ▷ Initialize repair
5: for i ∈ {1, . . . , |P|} do
6: R∗i ← priorityRepair(R∗i−1,Φ[Ri] \ Φ[Ri−1],Ci) ▷ Priority repair on Ci for new FDs
7: end for
8: return R∗m
9: end procedure

5 Experimental evaluation
In this section, we report the results of an empirical study that scrutinizes the efficiency and accuracy of the Swipe algorithm.
Because the intent of the paper is to optimize the trade-off between repair quality and computational cost in a Chase-like
procedure, we are primarily interested in comparing the Swipe algorithm (a single-sequence Chase procedure) with Llunatic
(a multi-sequence Chase procedure). The goal is hereby to seek evidence for the hypothesis that the Swipe algorithm allows
to find good repairs of FD violations in an efficient manner and that exploring many repairs does not necessarily improve the
quality of the final repair. To that end, the study assesses both the quality of repairs in terms of precision, recall and F-score
(Section 5.3) as well as the scalability of the Swipe algorithm (Section 5.4). All experiments reported below were executed on
a machine running Ubuntu 20.04.1 with 64GB of RAM memory, 12 cores (i9-10920X/3.50GHz) and two 500 GB Solid State
Disks in mirror (WDS500G3XHC-00SJG0).

5.1 Data sets
Real-life data sets The study involves four real-life data sets, which differ in size, number of errors and number of considered
constraints. Two of them (Hospital [16, 36, 25] and Flight [31, 25, 10]) are commonly used in experiments on data quality,
while the others have been composed and used in previous work by the authors. Each data set is accompanied by a gold
standard that contains the correct tuples for a sample of the data set.
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Table 2: Summary of data sets used in the experiments. Repairable attributes are attributes that occur in at least one FD. Cells
in error are cells for which the value is different in Rgold compared to R.

Hospital Allergen Eudract Flight

# rows 1000 1160 86670 776067
# rows w. ground truth 1000 206 3133 70951
# attributes 19 22 9 5
# repairable
attributes 15 22 9 5

# FDs 15 21 11 4
# cells in error 509 (2.68%) 358 (8.28%) 2962 (11.82%) 123799 (43.62%)
# cells with null 0 0 1722 (6.87%) 59837 (21.08%)

Table 2 provides a summary of the data set descriptions, including the size of the gold standard and the number of
constraints considered in our experiments. More details on the origin of these data sets and their gold standard, as well as full
downloads, are openly available4. A short description for each data set is included below.

• Hospital. A benchmark data set often used in literature on data cleaning [16, 36]. The original data [16] stems from
the U.S. Department of Health and Human Services5. We use the version consisting of 1000 tuples that has been used
before in data repairing experiments [36]. The running example from Figure 1 is a sample from this data set.

• Allergen. A data set containing data regarding allergens of food products as found on two different websites [10]. The
attributes indicate the presence (‘2’), traces (‘1’), or absence (‘0’) of allergens in a product which can be identified by
its barcode. A gold standard was compiled by manual consultation of pictures of a sample of products [10].

• Eudract. A data set with data about clinical trials conducted in Europe [11, 10] and obtained from the Eudract register6.
A gold standard was compiled based on the information of the same studies in other registries.

• Flight. A data set that describes flights annotated with the departing and arrival airports as well as their expected and
actual time of departure and arrival. The original data set was used in the context of data fusion [31, 18, 19] and is
available online7. In the current study, we use the version and gold standard proposed in recent work [10].

Artificial data sets In order to assess scalability, artificial data sets (i.e., an artificial relation R paired with a set of constraints
Φ) are used in Section 5.4. The process to generate these data sets takes two parameters: the number of attributes (i.e., |R|)
and the number of tuples (i.e., |R|). For a given number of tuples and attributes, we generate tuples by randomly assigning
values to attributes under the condition that |A| = 10 for each attribute a. By choosing the domain size sufficiently small, we
ensure that there are many violations of FDs that need repairing. Clearly, if we would increase domain sizes |A| we would
obtain less violations and observe faster run times. Once relations are generated, we generated a set Φ such that |Φ| = |R|,
meaning that the number of FDs is equal to the number of attributes. This reflects the fact that for larger schemata, one can
expect more dependencies that must be satisfied. To generate an FD, we first choose the size of the left-hand side by sampling
from a uniform distribution unif{1, ⌈|R|/10⌉}. This reflects that for larger schemata, it becomes more likely to have FDs with
multiple attributes in the left-hand side. We then sample for that FD the required number of attributes uniformly from R to
compose the left-hand side. The right-hand side attribute is chosen from the remaining attributes. When a dirty relation R and
a set of FDs has been generated, we apply Swipe to obtain a repair R∗.

5.2 Repair techniques
We compare the Swipe algorithm with Llunatic [25]. The data sets were stored in a PostgreSQL database in separate schemas.
Note that we used PostgreSQL version 9.5 because Llunatic relies on the ‘‘with oids’’ option during table creation, which
is abandoned as of version 128.

4https://gitlab.com/antoonbronselaer/swipe-reproducibility
5http://www.hospitalcompare.hhs.gov
6https://eudract.ema.europa.eu/
7http://lunadong.com/fusionDataSets.htm
8See https://www.postgresql.org/docs/12/release-12.html, section E.13.2
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Table 3: Configuration details of LLunatic (FT) for each data set.

Data set Llunatic (FT)

Hospital

Similarity cost manager
Higher branching threshold

More potential solutions
Backward repairs allowed

Allergen Mimic max repair function

Eudract
Higher branching threshold

More potential solutions
Backward repairs allowed

Flight

Similarity cost manager
Higher branching threshold

More potential solutions
Backward repairs allowed

Llunatic. Llunatic is a general purpose Chase engine that builds a Chase tree where nodes correspond to (sequences of)
repair steps and leaf nodes represent repairs. The implementation allows configuration of (i) pruning strategies to keep the
search efficient and (ii) a partial order that indicates preferences of values for repair. We use the most recent version (2.0)
available at GitHub9. We made a local build of the Llunatic code in order to be able to run it from the command line on an
lxc container. We encoded the available FDs for each data set in separate configuration files. As Llunatic allows for a wide
range of configuration options, we decided to create two configurations for each data set:

• The first configuration is the standard one (S) and is the same for each data set. It searches for forward repairs only
and we set both the branching threshold and the potential solutions threshold to 2. This means that the Chase tree is
binary and we stop searching after two repairs have been found. The partial order to resolve conflicts is based on the
frequency of values. The main idea of this standard configuration is that it resembles the search strategy of Swipe. More
specifically, it resolves conflicts in the same way as the default method in Swipe (i.e., majority voting), it uses forward
repairing only and it constructs few sequences. The main difference is thus that Swipe will construct a specific order on
the FDs and uses no variables.

• The second configuration is a fine-tuned configuration (FT) that is tailored to each data set individually. First of all, we
allowed backward repairing for Hospital, Eudract and Flight to see if this helps in finding better repairs. We did not
allow this for Allergen as there we wanted to focus on mirroring the behaviour of Swipe when using the max repair
function. Second, to account for typographical errors that are present in the attributes of Hospital and Flight, we used a
cost manager that uses Smith-Waterman string similarity between values to guide resolution. For Hospital, Eudract and
Flight, we also increased the branching threshold such that a larger part of the search space is explored and more repairs
are searched for.

A summary of the main differences of the FT configurations is given for each data set in Table 3. The full configuration files
are available online and can be used for reproduction purposes 4.

Swipe. The Swipe algorithm was implemented in Java (Version 8 or higher) as part of the ledc framework10, which is an
open-source framework that bundles various techniques for data quality under one umbrella project. The implementation of
Swipe contains a set of basic repair functions. We consider three of them in our experiments:

• The first one is a majority voting function (mv) with random tie breaking. This repair function was used in the examples
throughout this paper and is considered a default choice.

• The second one is a weighted voting function (wv) with random tie breaking. The weight of a value in the bag is based
on the number of null values that occur in the row where that value is taken. More specifically, if a value from the bag
is taken from a tuple with N null values, the weight for that value is equal to (|R| − N)4. We include this repair function
as it has been shown effective in previous work [10].

9https://github.com/donatellosantoro/Llunatic
10https://gitlab.com/ledc/ledc-fundy
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• The third repair function simply chooses the maximal value (max) and can be used in a scenario where attribute domains
are equipped with an order relation that is relevant to the repair. This is true for all datasets included in the experiment,
except for the Hospital dataset, where using the natural order simply sorts the attribute values alphabetically.

For each data set, we run Swipe three times and in each run use a different repair function. That repair function is then used
for all attributes in the data set. Note that each of these three functions is preservative, which means Proposition 2 applies in
each scenario we test here.

5.3 Precision and recall
In order to examine the quality of repairs, we compare, for each data set, the given relation R with a repair R∗ and a gold
standard Rgold and compute the following measures:

• Precision (P): the number of correctly repaired cells divided by the number of repaired cells.

• Recall (R): the number of correctly repaired cells divided by the number of erroneous cells.

• F-score (F): harmonic mean of precision and recall.

Hereby, a repaired cell is a cell for which the value is different in R∗ as compared to R. A correctly repaired cell is a repaired
cell where in addition the values are the same in R∗ and Rgold. An erroneous cell is a cell for which the value is different in
Rgold compared to R. As Llunatic uses a multi-sequence Chase method, it provides multiple repairs. We report here the results
for the repair that has the lowest cost. Moreover, in the case of Llunatic, R∗ may contain named variables (llun-values) that
indicate that the cell should be assigned some constant value, but the value self remains unspecified. Llunatic offers the option
to call on human intervention to fill in the correct constant. To report repair quality in the presence of variables, we propose
to consider two extreme cases: one in which all variables are assigned the correct constant and one in which all variables are
assigned an erroneous constant. These cases provide a best and worst outcome of precision, recall and F-value whenever all
variables would be assigned with constant values at random. As such, for Llunatic, we will report intervals of repair quality
rather than single values. Recent studies on Llunatic have used measures that correspond to our proposed upper bound [25].
However, the inclusion of the lower bound introduces an important dimension to the analysis of results in the sense that a
large amount of variables implies a big gap between lower and upper bound. This is important to recognize as many variables
imply many human interventions after the repair has been produced.

Table 4: Overview of precision (P), recall (R) and F-score obtained for Llunatic (two configurations) and Swipe (three repair
functions). Best results are marked in bold font. n/a indicates the repair function was not applicable on that dataset.

Data set Llunatic (S) Llunatic (FT) Swipe (mv) Swipe (wv) Swipe (max)

P

Hospital [0.93,0.96] [0.11,0.12] 0.96 0.96 n/a
Allergen [0.00,0.57] [0.64,0.64] 0.21 0.21 0.64
Eudract [0.80,0.84] [0.80,0.84] 0.83 0.84 0.23
Flight [0.67,0.72] [0.80,0.80] 0.71 0.79 0.56

R

Hospital [0.83,0.85] [0.29,0.31] 0.89 0.89 n/a
Allergen [0.00,0.54] [0.30,0.30] 0.10 0.10 0.30
Eudract [0.31,0.32] [0.31,0.32] 0.36 0.37 0.32
Flight [0.66,0.71] [0.54,0.54] 0.68 0.79 0.58

F

Hospital [0.88,0.90] [0.16,0.17] 0.92 0.92 n/a
Allergen [0.00,0.55] [0.41,0.41] 0.13 0.13 0.41
Eudract [0.44,0.47] [0.44,0.47] 0.51 0.52 0.27
Flight [0.67,0.72] [0.65,0.65] 0.69 0.79 0.57

Table 4 provides an overview of the repair quality obtained by the two configurations of Llunatic and the three configu-
rations of Swipe on all data sets. For each combination of data set and measure of quality, we indicate the best performing
approach in bold font. For recall and F-score on the Allergen data set, we did not indicate a best approach as it cannot be
indicated with certainty. When inspecting the results in Table 4, several interesting observations can be made. A first obser-
vation is that results are sensitive to the exact configurations. This is especially true for the Allergen dataset, which provides
allergen information for each product coming from only two sources. This low number of sources makes voting procedures
less suitable. The resolution of conflicts by means of the max repair function, is a superior choice here. This behaviour is also
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Table 5: Mean execution times (in seconds) of the repair methods.

Data set Llunatic (S) Llunatic (FT) Swipe (best)

Hospital 20.31 167.09 0.20
Allergen 1.52 264.82 0.28
Eudract 19.38 98.09 7.15
Flight 910.05 3987.90 17.80

encoded in the FT scenario of Llunatic and it was confirmed that in this case, Llunatic and Swipe produced exactly the same
results.

Interestingly, for other datasets, the voting scenarios of Swipe provide robust and good results. When a data set has no
null values (Hospital and Allergen), both voting scenarios are equivalent. When null values are present (Eudract and Flight),
weighted voting produces better results and turns out to be a good baseline choice. The max function provide good results
only in particular scenarios like the Allergen dataset.

For Llunatic, the sensitivity to configuration choices seems to be higher than for Swipe. For the Hospital data set, there
is a large difference in repair quality between the two configurations, most likely due to the usage of backward repairing
in the second configuration. In general, we found that giving Llunatic the possibility to include backward repairs (this is
the case in the fine-tuned configurations) seems to decrease repair quality on the data sets considered here. Generalizing this
observation should be done with caution, but the results reported here make a strong case for at least questioning the usefulness
of backward repair on real-life data sets.

A second observation is that when we compare the repair quality of Swipe with that of the configurations of Llunatic, it
can be seen that Swipe produces repairs that are sometimes comparable and usually better than the best possible outcomes
of Llunatic. The improvement in F-score is hereby mostly attributed to an improvement in recall, whereas precision behaves
comparable. In this regard, it is interesting to see that Llunatic allows the usage of variables (i.e., lluns) when generating
repairs. Opposed to that, repair functions used in the Swipe algorithm always produce constants. The results in Table 4 show
that the more aggressive strategy where we always choose some constant is usually paying off. Moreover, it can be seen that
the number of variables might become very high. This happens for example with the Allergen data set when using the standard
configuration of Llunatic. A high number of variables can be problematic as it requires much human intervention in the repair
process. This might however be a necessity in order to obtain good repairs. Indeed, we see that for the Allergen data set, the
upper bound of recall and F-score are much higher for the standard configuration of Llunatic than for the other approaches.

An interesting result is found for the Eudract data set, which is the only data set where we encounter a partition class
with more than 2 attributes. For this class with 3 attributes, the Swipe algorithm estimates the reliability of the involved
attributes and uses that estimate to rank order FDs. Table 4 shows that using this order of FDs eventually produces a repair
with P = 0.84 and R = 0.37. To investigate how good this order is, we repeated the experiment but forced Swipe to use a
different priority model for this class. More precisely, we considered every possible priority order for the involved attributes
in order to compute a best and worst case for precision and recall. We then found that precision ranged between 0.69 and 0.84
and recall ranged between 0.31 and 0.37. These additional results shows that the order in which we repair FDs can indeed
make a large difference in the repair quality. However, the sequence based on estimated reliability leads to the best possible
repair quality. This is true for the Eudract data set and also for the Hospital data set, where we have one partition class with 2
attributes. Also in the latter case, it is confirmed that the chosen order of FDs is the best one, although the difference in quality
is less pronounced.

5.4 Scalability
Run time comparison In this section, we investigate the run time efficiency and scalability of Swipe. First, we measure the
mean run time over five runs of Swipe and Llunatic on the different data sets and report the mean execution times (in seconds).
We do not report other scalability parameters like CPU usage or main memory consumption, although we have investigated
these parameters and came to similar conclusions. In case of Llunatic, we differentiate between the standard configuration
and the configuration that was fine-tuned for each data set (Table 3). For Swipe, we took for each dataset, the best performing
repair function. The results are reported in Table 5.

The results from Table 5 show that Swipe outperforms Llunatic on each data set in terms of execution time. This comes as
no surprise as Swipe is designed explicitly as a simplification of the multi-sequence Chase algorithm that underlies Llunatic.
Yet, we observe that the gain in execution time is considerable. Swipe is two to three orders of magnitude faster than the
fine-tuned configuration of Llunatic. When we compare to the standard Llunatic configuration, the difference reduces to one
order of magnitude. This provides us with some interesting insights. First of all, the cost manager of Llunatic does what it
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is supposed to do: restricting repair operations to forward repair only and limiting the branching factor significantly reduces
the execution time of Llunatic. However, Table 4 shows that this gain in computational efficiency also leads to lesser quality
of the repairs. In that sense, the Swipe algorithm makes more considerate choices in reducing computational cost with better
repair quality as a result.

Size of classes in P The execution time of Swipe is strongly influenced by the size of classes in P. For smaller partition
classes we usually require less revisions. To that extent, we computed the sizes of the partition classes for each of the four
data sets and came to the conclusion that over all data sets, there are 47 classes of which 45 where singletons. One class had
size 2 (Hospital) and one class had size 3 (Eudract). This observation confirms that in real-life data sets, it is reasonable to
apply the partitioning approach and to separate the repairs of different FDs.

Scalability in terms of |R| and |R| In order to gain further understanding of the scalability of Swipe, we experimented with
randomly generated data and constraints. These data and constraints are generated as explained in Section 5.1. The repair
functions are defaulted to majority voting with random tie breaking for all attributes. We generate repairs of the given dirty
data sets with Swipe and then measure the time to generate a repair in milliseconds. For a fixed number of tuples and fixed
number of attributes, we repeat the procedure 10 times and report the mean of the measured run times.
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Figure 3: Mean run time (ms) of 10 executions of Swipe in function of changing |R| (left) and |R| (right).

Figure 3 shows the obtained mean run times for a varying number of tuples (left) and a varying the number of attributes
(right). More precisely, the left panel shows the evolution of the mean run time as the number of tuples increases with powers
of 10, starting at |R| = 102 and ending at |R| = 106. This trend is shown three times: one time for a small schema (|R| = 5), one
time for a medium-sized schema (|R| = 25) and one time for a large schema (|R| = 50). These results show that the run time
of Swipe scales linearly in terms of increasing |R| for different schema sizes. Note in addition that the shift in run time from
the small schema (5 attributes) to the large schema (50 attributes) is two orders of magnitude, suggesting quadratic behavior
in terms of |R|. This is confirmed in the right panel, that shows the evolution of the mean run time as the number of attributes
increases with 5, starting at |R| = 5 and ending at |R| = 50. This trend is again shown three times: one time for a small relation
(|R| = 103), one time for a medium-sized relation (|R| = 104) and one time for a large relation (|R| = 106). These results show
that Swipe scales quadratic in terms of increasing |R| for different relation sizes. In addition, for an increase in |R| with one
order of magnitude, we observe shifts of one order of magnitude in run time, confirming the linear behaviour in terms of |R|.
These results show that Swipe is very efficient in repairing large relations when the number of attributes is relatively small.
For medium-sized schemata and number of FDs, Swipe can still repair relations relatively fast, especially if we compare to
other state-of-the art repair methods.

6 Conclusion
In this paper, we have introduced the Swipe algorithm to repair violations of functional dependencies (FDs). This algorithm is
a degenerate variant of the Chase-based approach towards FD repairing. It hinges on two key principles. The first principle is
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to use a partition of attributes that is forward repairable. We have provided an algorithm that, for a given set of FDs, constructs
the most refined partition that meets this requirement of forward repairability. The second principle is that of priority repairing,
which fixes the order in which FDs are treated. We have shown a simple heuristic to build such a priority model based on the
estimated reliability of attributes. From a theoretical point of view, we have shown that Swipe is ensured to terminate and that
there are easy to meet conditions under which unary FDs are revision-free. Empirical results show that Swipe provides an
excellent trade-off between repair quality and computational efficiency. Future improvements of Swipe can focus on applying
the principles developed here, to more expressive constraints like conditional functional dependencies.
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A Proofs
Proof 1 (Proof of Proposition 1) If P satisfies the condition from Definition 1, we can assign, for each Ci ∈ P with partial
repair R∗i−1 and for each ϕ ∈ Φ[Ri] \ Φ[Ri−1], equal values to RHS (ϕ) in order to satisfy ϕ.

Proof 2 (Proof of Theorem 1) We show first that P allows sequential forward repairability for Φ (i) and then that P cannot
be refined without losing this property (ii).

(i) If P is induced by P+ for a given set Φ, then consider an arbitrary class Ci from P and any FD ϕ ∈ Φ[Ri] \ Φ[Ri−1].
If RHS (ϕ) < Ci, then P cannot be induced by P+ because it would violate either Eq. (3) or Eq. (4). It follows that we must
have RHS (ϕ) ∈ Ci and thus P⇝F Φ.

(ii) Suppose there is a refinement P′ of P for which P′ ⇝F Φ. This would imply that there is a class from P that can be
split into two disjoint subclasses without breaking forward repairability. In turn, this would imply that there is an equivalence
class from ≡P+ that can be split into two subclasses. Let us denote the equivalence relation in which this split is done by ≡P′ .
Now, if ≡P′ still contains P then P+ cannot be the transitive closure of P and we have a contradiction. Alternatively, if ≡P′

does not contain P, then there is at least one (b, a) ∈ P that is not accounted for and P′ is not forward repairable. In both
cases, we obtain a conclusion that is in contradiction with the premise and it follows no refinement of P is forward repairable.

Proof 3 (Proof of Theorem 2) We first prove that Algorithm 3 terminates (i) and then that after termination we have obtained
a partial repair R∗i (ii).

(i) To see that priorityRepair
(
R∗i−1,Φi,Ci

)
terminates, note that each time an FD ϕ is considered, either DSF (RHS (ϕ))

does not change or its number of classes decreases. If for all a ∈ Ci, DSF (a) does not change anymore, the algorithm
terminates. Else, we must reach a point in which each DSF (a) has only one class. In that case, for each a ∈ Ci, each tuple in
R∗i−1 gets the same value for a. It follows that in this case, there are no more violations, from which it follows that all DSF (a)
remain unchanged and the algorithm stops.

(ii) Each time an FD X → a is polled from the stack, the fix step updates DSF (a) and potentially changes R∗i−1 in attribute
a. In the revision step that follows, any FD ϕ′ ∈ Φi that is not on the stack, was polled and repaired before and there are
three options. First, if a < LHS (ϕ′) and a , RHS (ϕ′), then clearly this FD is still satisfied. Second, if a = RHS (ϕ′), then
because DSF (a) changes only by merging classes, any two tuples with the same value for LHS (ϕ′) are still in the same class
in DSF (a) and thus will also have the same value after fixing X → a. Hence, ϕ′ remains satisfied. Third, if a ∈ LHS (ϕ′), we
put ϕ′ back on the stack for revision. It follows that after application of fix

(
R∗i−1, X → a,DSF (a)

)
, any FD from Φi not on the

stack is currently satisfied by R∗i−1. At the same time, at termination time, the stack is empty and thus all FDs are satisfied.

Proof 4 (Proof of Proposition 2) For an FD a′ → a during a revision step, we can make a sequence of observations:

1. If a′ < Ci then we have ∀ϕ ∈ Φi : RHS (ϕ) , a′ and consequently a′ → a is never considered during any revision step.
We therefore assume that a′ ∈ Ci.

2. a′ → a is considered in a revision step only if it is not an element of S. This means it was fixed already and thus that
any two tuples with equal values for a′ are in the same class of DSF (a).

3. a′ → a is considered in a revision step if the preceding fix step involves an FD X → a′ and is therefore of the form
fix
(
R∗i−1, X → a′,DSF (a′)

)
. In the remainder of this proof, we denote the partial repair before this fix step as R∗before

and after this fix step as R∗after. Clearly, R∗after |= X → a′.

4. From (1) and (2) we have that X → a′ mentioned in (3) is not a pilot FD. Thus, FDs are polled from the stack in order
induced by ≻.

5. The fix step in (3) is preceded by a poll of X → a′, so (2) implies a ≻ a′.

6. From (2) and (5) we have that R∗before |= a′ → a. In addition, transitivity of FDs implies R∗before |= X → a.
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Suppose now R∗after fails a′ → a, then there must exist two rows r1 ∈ R∗before and r2 ∈ R∗before that are transformed into
r∗1 ∈ R∗after and r∗2 ∈ R∗after, respectively, for which we have

r∗1[a′] = r∗2[a′] ∧ r∗1[a] , r∗2[a].

In addition, we know that:
r∗1[a′] , r1[a′] ∨ r2[a′] , r∗2[a′]

because otherwise r1[a′] = r∗1[a′] = r∗2[a′] = r2[a′] from which R∗before |= a′ → a that r∗1[a] = r∗2[a] and this contradicts our
construction of r1 and r2. We can then distinguish between two cases.

1 If r∗1[X] = r∗2[X] then we have that R∗after ̸|= X → a and because a′ < X, we have R∗before[X] = R∗after[X]. As such, it
follows that R∗before ̸|= X → a, which contradicts with (6).

2 If r∗1[X] , r∗2[X] then because ρa′ is preservative, there must exist rows r3 ∈ R∗before and r4 ∈ R∗before such that on one
hand:

r1[X] = r3[X] ∧ r∗1[a′] = r∗3[a′] = r3[a′]

and on the other hand
r2[X] = r4[X] ∧ r∗2[a′] = r∗4[a′] = r4[a′].

That is, r1 and r2 received their values for a′ from respectively r3 and r4 and this is only possible if r1 and r3 have the same
value for X and r2 and r4 have the same value for X. Since we assumed r∗1[a′] = r∗2[a′], it follows that r3[a′] = r4[a′] and
because R∗before |= a′ → a we must also have r3[a] = r4[a]. Finally, since R∗before |= X → a, we also find that r1[a] = r3[a] and
r2[a] = r4[a] by which we find that r1[a] = r2[a]. Again, this contradicts our construction of r1 and r2.
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