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Abstract

In this paper, we present and study a new instance-level
retrieval task: PointCloud-Text Matching (PTM), which
aims to find the exact cross-modal instance that matches
a given point-cloud query or text query. PTM could be ap-
plied to various scenarios, such as indoor/urban-canyon lo-
calization and scene retrieval. However, there exists no suit-
able and targeted dataset for PTM in practice. Therefore,
we construct three new PTM benchmark datasets, namely
3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the
data is challenging and with noisy correspondence due to
the sparsity, noise, or disorder of point clouds and the am-
biguity, vagueness, or incompleteness of texts, which make
existing cross-modal matching methods ineffective for PTM.
To tackle these challenges, we propose a PTM baseline,
named Robust PointCloud-Text Matching method (RoMa).
RoMa consists of two modules: a Dual Attention Perception
module (DAP) and a Robust Negative Contrastive Learn-
ing module (RNCL). Specifically, DAP leverages token-level
and feature-level attention to adaptively focus on useful
local and global features, and aggregate them into com-
mon representations, thereby reducing the adverse impact
of noise and ambiguity. To handle noisy correspondence,
RNCL divides negative pairs, which are much less error-
prone than positive pairs, into clean and noisy subsets,
and assigns them forward and reverse optimization direc-
tions respectively, thus enhancing robustness against noisy
correspondence. We conduct extensive experiments on our
benchmarks and demonstrate the superiority of our RoMa.

1. Introduction
Point clouds are a popular representation of the 3D geom-
etry of a scene, which has important applications in com-
puter vision, robotics, and augmented reality. For example,
point clouds can be used for autonomous driving [11, 29],
object detection [44], and localization [40]. However, as
the volume of point-cloud data grows rapidly, it is ur-
gent to have techniques that enable users to effectively
and accurately find the exact matching instance/scene from
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Figure 1. Overview for PointCloud-Text Matching (PTM). (a) and
(b) show the schematic illustrations of class-level PointCloud-Text
Retrieval (PTR), and instance-level PTR (i.e., PTM), respectively.
(c) illustrates the challenges faced by PTM.

large-scale point-cloud scans, especially using natural lan-
guage queries, named PointCloud-Text Matching (PTM).
The instance-level alignment is challenging and realistic
as it reflects the need for precise and relevant informa-
tion to build alignment between point clouds and texts in
real-world applications, which has potential applications
in indoor/urban-canyon localization, scene retrieval, and
more.

However, existing methods lack pertinence and strug-
gle to tackle PTM. On one hand, current PointCloud-Text
Retrieval (PTR) methods [22, 38] can only focus on estab-
lishing a category-level correspondence between 3D point-
cloud shapes and concise annotation texts as shown in Fig-
ure 1 (a). In contrast, PTM requires to exploit the mutual in-
formation of cross-modal pairs, and achieves instance-level
alignment between point clouds and detailed descriptions
as shown in Figure 1 (b). This indicates that PTM requires
deeper capability to capture local features and instance dis-
crimination rendering those methods entirely inapplicable.
On the other hand, existing cross-modal matching works
that can build instance-level cross-modal correspondences
are only primarily oriented to text and 2D image modali-
ties. According to the granularity of the established corre-
spondences, these Image-Text Matching (ITM) works could
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be divided into two groups: coarse-grained and fine-grained
matching methods. The former [6, 17, 37] use global fea-
tures to represent the whole image and the whole text, while
the latter [15, 32, 48] use local features to capture the fine-
grained details of regions and words. Although these meth-
ods have achieved promising performance for ITM, most of
them ignore the specific properties and challenges in PTM.

To the best of our knowledge, in existing multi-modal
datasets of point clouds and texts (i.e. ScanRefer [5],
Referit3d [2], and ScanQA [3]), one description primar-
ily focuses on describing a single point-cloud object within
the corresponding scenes for visual grounding, rather than
matching all objects inside the scene in PTM. These limited
descriptions can hardly match the corresponding wide-field
point clouds, as demonstrated by the dismal matching per-
formance in existing datasets depicted in Figure 2. There-
fore, we constitute three new benchmark datasets for PTM,
i.e., 3D2T-SR, 3D2T-NR, and 3D2T-QA. These datasets
contain comprehensive descriptions covering entire scenes,
so they evaluate baselines more reliably and reasonably for
PTM, which can be observed in Figure 2. We also provide a
comprehensive evaluation protocol and several benchmark
results for PTM on the datasets as shown in Tables 2 and 3.
From the results, we observe that point cloud-text data are
more challenging than image-text data due to the sparsity,
noise, or disorder of point clouds [33]. More specifically,
these properties make it difficult to capture and integrate
local and global semantic features from both point clouds
and texts and may also lead to mismatched cross-modal
pairs, i.e. noisy correspondence [23], thus degrading the re-
trieval performance. The schematic illustration of the chal-
lenges is shown in Figure 1 (c). To be specific, the existing
coarse-grained matching methods fail to extract discrimi-
native global features from the unordered point clouds and
vague texts, and the fine-grained matching methods that rely
on well-detected object regions cannot be generalizable to
point clouds. Moreover, most existing methods are based on
well-annotated data and are susceptible to overfitting noisy
correspondence during cross-modal learning, resulting in
performance degradation. Therefore, there is a significant
gap in applying existing methods to PTM.

To tackle the aforementioned challenges, we propose a
PTM baseline, named Robust PointCloud-Text Matching
method (RoMa), to learn from point clouds and texts as
shown in Figure 5. RoMa consists of two modules: a Dual
Attention Perception module (DAP) and a Robust Negative
Contrastive Learning module (RNCL). DAP is proposed to
adaptively capture and integrate the local and global infor-
mative features to alleviate the impact of noise and ambigu-
ity in the data. More specifically, DAP conducts token-level
and feature-level attention to adaptively weigh the patches
and words to multigrainly aggregate the local and global
discriminative features into common representations, thus
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Figure 2. The PTM performance of VSE∞ [6], ESA [49],
HREM [19] and RoMa on the existing ScanRefer, Referit3d,
and ScanQA and proposed 3D2T-SR, 3D2T-NR, and 3D2T-QA.
Dark and light bar graphs show in terms of the average of
(R@1+R@5+R@10) of baselines on existing and proposed
datasets respectively. The solid line and dashed line graphs show
in terms of the average of R@1 on existing and proposed datasets.

embracing a comprehensive perception. In addition, our
RNCL is presented to adaptively divide the negative pairs
into clean and noisy subsets based on the similarity within
pairs, and then assign them with forward and reverse opti-
mization directions respectively. Different from traditional
contrastive learning, our RNCL only leverages negative
pairs rather than positive pairs to train the model since neg-
atives are much less error-prone than positive pairs, leading
to robustness against noisy correspondence. In brief, our
RNCL could utilize and focus on more reliable pairs to en-
hance the robustness.

In summary, our main novelty and contributions are as
follows:
• We investigate a new instance-level cross-modal retrieval

task, namely Point-Cloud-Text Matching (PTM), and
propose three PTM benchmark datasets, i.e., 3D2T-SR,
3D2T-NR, and 3D2T-QA, and a robust baseline RoMa to
learn from challenging multimodal data for PTM.

• We present a novel Dual Attention Perception module
(DAP) that adaptively extracts and integrates the local
and global features into common representations by using
token-level and feature-level attention, thereby achieving
a comprehensive perception of semantic features.

• To handle noisy correspondence, we devise a Robust Neg-
ative Contrastive Learning module (RNCL) that adap-
tively identifies clean and noisy negative pairs, and as-
signs them correct optimization directions accordingly,
thus preventing the model from overfitting noise.

• We conduct extensive comparison experiments on the
three proposed datasets. Our RoMa remarkably outper-
forms the existing methods without bells and whistles,



demonstrating its superiority over existing methods.

2. Related Work
2.1. Cross-modal Retrieval

Cross-modal retrieval aims to search the relevant results
across different modalities for a given query, e.g., image-
text matching [6, 15], video-text retrieval [16], 2D-3D re-
trieval [26, 31], and visible-infrared re-identification [43,
45], etc. Most of these works learn a joint common embed-
ding space by applying cross-modal constraints [4, 34, 42],
which aims to pull relevant cross-modal samples close
while pushing the irrelevant ones apart. These methods
could roughly be classified into two groups: 1) Coarse-
grained retrieval [6, 17, 19] typically learns shared sub-
spaces to build connections between global-level represen-
tations, which align images and texts in a direct manner.
2) Fine-grained retrieval [15, 28, 35] aims to model cross-
modal associations between local feature representations,
e.g., the visual-semantic associations between word tokens
and image regions. Unlike them, in this paper, we delve into
a less-touched and more challenging cross-modal scenario,
i.e., PTM, which argues for building cross-modal associa-
tions between 3D space and textual space.

2.2. 3D Vision and Language

In contrast to image and language comprehension, 3D vi-
sion and language comprehension represent a relatively
nascent frontier in research. Most existing works focus on
using language to confine individual objects, e.g., distin-
guishing objects according to phrases [1] or detecting in-
dividual objects [7]. With the introduction of the Scan-
Net [12] ScanRefer [5] and ReferIt3D [2] datasets, more
works have expanded their focus to encompass the 3D
scenes. Some existing works [18, 20, 46] have attempted
to locate objects within scenes based on linguistic descrip-
tions, completing the task of 3D visual grounding. Re-
cently, with the introduction of Scan2Cap [9], some ef-
forts [8, 24, 25, 47] focus on providing descriptions for ob-
jects about their placement. This is also known as 3D dense
captioning. More recently, a few solutions [22, 38] for
PTR have begun to emerge, which aim to establish common
discrimination for coarse category-level alignment between
point-cloud shapes and brief label texts. However, there are
still scarce methods focusing on instance-level alignment
and matching between wide-field point clouds and natural
language texts, which requires excavating more detailed and
discriminative connections within cross-modal pairs.

3. PointCloud-Text Matching
In this paper, we introduce and explore a novel 3D vi-
sion and language task, namely PointCloud-Text Match-
ing (PTM). The input cross-modal data of the task involves

the 3D point clouds and free-form description texts. The
goal of PTM is to support bi-directional retrieval between
point clouds and corresponding texts, achieving instance-
level cross-modal alignment.

However, the task presents notable discrepancies and
task-specific challenges, which can be summarized as fol-
lows:
• Perceiving local and global semantic features is hard.

Since sensor sampling characteristics and biases, point
clouds are commonly presented as a collection of sparse,
noisy, and unordered points. Compared to 2D images,
point clouds encapsulate a wealth of additional objects
and spatial properties, which results in more incomplete
and ambiguous description texts. Such complexity makes
it harder for existing models to accurately perceive local
and global semantic features from both modalities.

• Noisy correspondence. Imperfect annotations are ubiq-
uitous, even well-labeled datasets containing latent noisy
labels, as shown by the existence of over 100,000 label
issues in the ImageNet [13] and 3%-20% annotation er-
rors in the Conceptual Captions [36]. However, due to
the limitations of human perception and description of 3D
space, annotation workers are unintentionally inclined to
use vague expressions (such as ‘near’, ‘close to’, etc.) to
describe the details of the point clouds incorrectly, intro-
ducing more correspondence annotation (i.e., noisy corre-
spondences). Such noise would lead to insufficient learn-
ing or noise overfitting for existing models.

4. Benchmark Datasets
To the best of our knowledge, the descriptions in existing
multi-modal datasets of point clouds and texts (i.e., Scan-
Refer [5], Referit3d [2], and ScanQA [3]) are confined to
single objects of the entire point-cloud scene scans. Fig-
ure 4 shows they only have average lengths of fewer than
20 words and each description encompasses fewer than 2
objects, covering less than 10% objects in one scan. How-
ever, each scan typically contains 10-30 objects [12], with
many similar objects present across different scans. This in-
dicates that the short and inadequately informative descrip-
tions are prone to be ambiguous, lacking the discrimina-
tion to meet the requirements of PTM. We conduct PTM
experiments on existing datasets, and the matching results
in Figure 2 show that all performance in terms of Recall
at 1 is less than 10%, confirming the above considerations.
Therefore, we constructed three PTM datasets with com-
prehensive descriptions, namely 3D2T-SR, 3D2T-NR, and
3D2T-QA, where the point-cloud data is all based on the
ScanNet [12] point-cloud dataset and the text data derived
from the description sets associated with ScanNet, Scan-
Refer, Referit3d, and ScanQA. In the following sections,
we will elaborate on the collection and statistics of our pro-
posed datasets.
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4.1. Data Collection

We deploy a prompt + Large Language Model (LLM)
paradigm to generate wide-field descriptions of point-cloud
scans in ScanNet, based on three existing object-level de-
scription datasets. The pipeline is shown in Figure 3. More
specifically, we first randomly collect n description texts of
n spatially related objects in different neighborhoods within
the same point-cloud scan in each of the three datasets. This
ensures the generated descriptions comprehensively encap-
sulate the entirety of the point-cloud scans while maximiz-
ing their discrimination. Then, we input the text collections
into LLM with the dataset-specific manual prompt to ob-
tain the descriptions corresponding to the point-cloud scan,
respectively. Repeating the above process five times, we
obtain five descriptions corresponding to the whole point-
cloud scan. By following this process for all point clouds,
we obtain the initial version of the datasets. Finally, by
systematically assessing the discriminative accuracy, gram-
matical correctness, and coherence of every description, we
complete the dataset construction.

To enhance the applicability and intricacy of the PTM
within various scenarios, considering the linguistic style of
aforementioned text datasets, we employ different config-
urations of n and prompt settings, meticulously curating
three unique datasets with different characteristics, which
are shown as follows:
• 3D2T-SR is based on ScanRefer, in which exhaustive and

coherent text paragraphs delineate the placement details
of objects throughout the scans.

• 3D2T-NR is based on Referit3d, in which concise and in-
formative text only depicts a partial arrangement of ob-
jects within the scan.

• 3D2T-QA is based on ScanQA, in which detailed texts
emphasize the object characteristics and inter-object rela-
tionships.

Note that more construction details and data examples of
each dataset are put into our Complementary Materials due

Table 1. Statistics of the proposed datasets.

3D2T-SR 3D2T-NR 3D2T-QA

Point-cloud scan number 703 641 633
Object number 50,061 25,666 25,871
Object number/description 14.2 8 8.17
Description number 3,515 3,205 3,165
Description number/scan 5 5 5
Vocabulary size 1,843 1,507 1,287
Avg. description length 152.5 84 84.2

to space limitations.
4.2. Dataset Statistics

Table 1 shows the statistics of the three proposed bench-
marks and Figure 4 depicts the statistics comparison of
the proposed datasets with existing ones, demonstrating the
descriptions we generated are comprehensive and cover a
wider range of point clouds. This is reflected in the ob-
servation in Figure 2 that the proposed datasets achieve
100%-400% PTM performance gain compared to the exist-
ing datasets, indicating that our datasets build better cross-
modal alignment for PTM. Additionally, The specificity of
each dataset can be observed. 3D2T-SR tends to longer texts
to describe placement details with an average description
length of 152.5, which is 8.5 times longer than ScanRefer
(17.9). 3D2T-NR prefers to encapsulate rich information in
concise language. On average, each short description in-
volves 8 objects, which is 4.7 times more than Referit3d
(1.7). 3D2T-QA leans towards explaining object features
and inter-object spacial relationships, utilizing massive of
color (93.8%), material/shape terms (73.2%), and spatial
language (99.0%) descriptions.

Although we adopt meticulous verification to improve
the grammatical correctness and syntactic coherence of the
datasets, it is unavoidable to introduce a considerable por-
tion of noisy correspondence because of the unordered
point-cloud scans and vague free-form descriptions. We at-
tempt to use well-trained models and the Gaussian Mixture
Module (GMM) to estimate it. The results show that there
are 11.9%, 13.2%, and 13.8% data pairs with noisy corre-
spondences in 3D2T-SR, 3D2T-NR, and 3D2T-QA, respec-
tively. Thus, noisy correspondence is an unavoidable prob-
lem in PTM, which would cause noise overfitting, thereby
leading to performance degradation.

5. Robust Baseline: RoMa
5.1. Problem Formulation

We first define the notations for a lucid presentation. Give
a PTM dataset D = {P, T }, where P = {Xp

i }
Np

i=1 and
T = {Xt

j}
Nt
j=1 are the point-cloud and text sets respec-

tively, Np and Nt are the size of P and T , Xp
i is the i-th

point-cloud sample and Xt
j is the j-th text sample. There is



(a) Average text length

(b) Number of objects in each text

(c) Number of object categories in each text 

(d) Coverage of objects in the scene in each text

(e) Number of multi-object interactions in each text 

(f) Ratio of texts with spatial information

(g) Ratio of texts with color terms

(h) Ratio of texts with material/shape terms

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

50

100

150

4

8

12

2.5 5 7.5

15%

30%

45%

4

8

12

30%

60%

90%

30%60%90%

30%

60%

90%

ScanRefer Referit3d ScanQA

3D2T-SR 3D2T-NR 3D2T-QA

Existing datasets:

Proposed datasets:

Figure 4. Statistics comparison among existing ScanRefer [5], Referit3d [2], ScanQA [3], and proposed 3D2T-SR, 3D2T-NR, 3D2T-QA
dataset benchmarks.

pairwise correspondence between P and T , so D can also
be written as D = {(Xp

i , X
t
j), yij}

Np,Nt

i,j , yij ∈ {0, 1} in-
dicates whether Xp

i and Xt
j are matched (i.e., positive pair,

yij = 1) or unmatched (i.e., negative pair, yij = 0). How-
ever, in practice, the unmatched pairs (yij = 0) may be
mislabeled as matched ones (yij = 1), a.k.a noisy corre-
spondence.

To tackle the task-specific challenges mentioned earlier,
a robust PTM method (RoMa) is proposed to learn cross-
modal associations from point clouds and texts. The pro-
posed method involves two modules: 1) Dual Attention
Perception (DAP) is used to comprehensively perceive se-
mantic features with dual attention, and 2) Robust Negative
Contrastive Learning (RNCL) is exploited to handle noisy
correspondences. In the following sections, we will elabo-
rate on each component of RoMa.

5.2. Dual Attention Perception

We first employ modality-specific backbones (fp and ft) to
extract token-level features for the patches of point clouds
and words of textual descriptions, i.e., Zp

i = fp(X
p
i ) ∈

Rpn×dc and Zt
i = ft(X

t
i ) ∈ Rtn×dc , respectively. pn and

tn are the number of token-level features for each sample
and dc is the dimensionality of the feature space.

To tackle the challenge of capturing and integrating lo-
cal and global semantic features from point clouds and
texts in PTM, in analogy to the ¡Query-Key-Value¿ defini-
tion in Self-Attention mechanism (SA) [39], we explore a
novel dual attention manner. More specifically, the Queries
Qp

i ∈ Rpn×dc , Qt
i ∈ Rtn×dc and the Values V p

i ∈ Rpn×dc ,
V t
i ∈ Rtn×dc of two modalities are calculated from point-

cloud and word features Zp
i and Zt

i through the fully con-
nected layers gp and gt, respectively. Different from SA,
we construct general and learnable token-level and feature-
level Keys at the dataset level, which are not restricted to

combining with Queries to capture token-wise interaction
exploring self-attention within a sample. The general Keys
learn to model general patterns in the dataset at token and
feature levels and explore comprehensive attention by inte-
gration with the sample-specific Queries.

To facilitate the adaptive exploration of local semantic
features, we construct learnable token-level general Keys
K̄p and K̄t for two modalities. We use them to model the
common patterns of informative tokens (i.e., patches and
words) within each modality. Similar to SA, we obtain
token-level attention vectors by measuring the token-wise
similarity between Queries and token-level Keys, empow-
ering the model to selectively focus on local key semantic
units (e.g., foreground patches in the point clouds and key-
words in the texts) similar to the common patterns in the
two modalities, which are written as:

āpi = σt(Q
p
i K̄

p⊤), āti = σt(Q
t
iK̄

t⊤), (1)

where āpi ∈ Rpn and āti ∈ Rtn are the token-level attention
vectors, σt is token-level softmax. Based on this, we ob-
tain the token-level attention on feature matrices by stack-
ing these attention vectors as follows:

Āp
i = [āpi , · · · , ā

p
i ], Āt

i = [āti, · · · , āti], (2)

where Āp
i ∈ Rpn×dc and Āt

i ∈ Rtn×dc are the token-level
attention.

In addition, we propose feature-level attention to cap-
ture feature semantics and enhanced cross-modal repre-
sentations. Similar to token-level modeling, we introduce
learnable feature-level general Keys K̂p ∈ Rdc×dc and
K̂t ∈ Rdc×dc for two modalities, which aims to model
the interaction patterns among dc features. We construct
feature-level attention by combining Queries and feature-
level Keys in a feature-level manner to grasp global discrim-
inative features from the dimensional interrelationships in
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the feature space, such as distinctive object color, position,
orientation, spatial relationships, etc., which is written as:

Âp
i = σf (Q

p
i K̂

p⊤), Ât
i = σf (Q

t
iK̂

t⊤), (3)

where Âp
i ∈ Rpn×dc and Ât

i ∈ Rtn×dc are the feature-level
attention, σf is the feature-level softmax.

Next, we aggregate the token-level attention and the
feature-level attention into dual attention Ap

i and At
i, which

can be written as:

Ap
i = Āp

i ⊙ Âp
i , At

i = Āt
i ⊙ Ât

i, (4)

where ⊙ is the Hadamard product operator. Subsequently,
we impose dual attention upon the Values, aggregating them
for integrated representations into common space, which
are written as:

pi = L2Norm(
1

pn

pn∑
j

(Ap
ij ⊙ V p

ij)), (5)

ti = L2Norm(
1

tn

tn∑
j

(At
ij ⊙ V t

ij)), (6)

where Ap
ij and At

ij are the j-th row of dual attention Ap
i

and At
i, V

p
ij and V t

ij are the j-th row of the Values V p
i and

V t
i , and L2Norm(·) is the l2-normalization function. The

common representations pi ∈ Rdc and ti ∈ Rdc integrate
local useful semantics and global discriminative semantics,
promoting comprehensive feature perception in unordered
point clouds and ambiguous texts.

5.3. Robust Negative Contrastive Learning

Inspired by [21], we leverage the complementary con-
trastive learning paradigm to learn with more reliable neg-
ative pairs instead of positive pairs, thereby mitigating the

negative impact of mismatched pairs and achieving robust-
ness against noisy correspondences. The loss for the cross-
modal complementary learning paradigm is shown below:

L′ = L′
p→t + L′

t→p, (7)

where

L′
p→t = − 1

K

K∑
i,j

(1− yij) log (1− Sp→t
ij ), (8)

L′
t→p = − 1

K

K∑
i,j

(1− yij) log (1− St→p
ij ), (9)

and

Sp→t
ij =

exp(p⊤
i tj/τ)∑K

k exp(p⊤
i tk/τ)

, St→p
ij =

exp(t⊤i pj/τ)∑K
k exp(t⊤i pk/τ)

,

(10)
where L′

p→t

/
L′
t→p is the point-cloud-to-text/text-to-point-

cloud complementary learning loss term, Sp→t
ij

/
St→p
ij is the

similarity between the i-th point-cloud/text sample and the
j-th text/point-cloud sample, K is the batch size, τ is the
temperature parameter, and 1 − yij is the flag, making the
loss only apply to negative pairs. Minimizing Equation (7)
could reduce the similarity between the samples within neg-
ative pairs, introducing common discrimination without re-
lying on positive pairs, which are more prone to containing
some erroneous information. Because of this, the model
could alleviate the impact of noisy correspondence.

However, samples within some of the negative pairs un-
avoidably exhibit certain degrees of semantic similarity,
even though negative pairs are less prone to noise. Blindly
and monotonously amplifying the gap between two sam-
ples within negative pairs would lead to error accumula-



tion, thus impacting the formation of robust discrimina-
tion. To address this issue, we propose the Robust Neg-
ative Contrastive Loss (RNCL), which could prevent the
model from fitting these unreliable negative pairs or even
revise the wrong optimization direction. This novel loss
is non-monotonic and has a parameter-controlled inflection
point. It assesses the reliability of negative pairs based on
the similarity of the paired samples, dynamically and im-
plicitly divides negative pairs into clean and noisy subsets
based on their reliability by considering the inflection point
as a threshold, and assigns clean subsets with forward op-
timization direction but provides noisy subsets with reverse
optimization direction, which could be formulated as:

L = Lp→t + Lt→p, (11)

where

Lp→t = − 1

K

K∑
i,j

(1− yij)(1− Sp→t
ij )

1
α log (1− Sp→t

ij ),

(12)

Lt→p = − 1

K

K∑
i,j

(1− yij)(1− St→p
ij )

1
α log (1− St→p

ij ).

(13)
Note that Lp→t and Lt→p are the point-cloud-to-text and
text-to-point-cloud loss terms of our RNCL respectively,
and α is the parameter that controls the inflection point and
helps our RNCL identify and filter out unreliable negative
pairs adaptively. Our RoMa could be optimized by mini-
mizing Equation (11), which could adaptively drive the re-
liable negative pairs apart in the common space, enhancing
robustness against noisy correspondences.

6. Experiments
To evaluate our RoMa, we conduct extensive comparison
experiments on three PTM datasets, i.e., 3D2T-SR, 3D2T-
NR, and 3D2T-QA.

6.1. Experimental Settings

The implementation details of our RoMa could be found in
our Complementary Materials. The code and datasets will
be released upon paper acceptance. All reported quantita-
tive results represent the averages obtained from ten runs for
all methods. Specific details of the datasets are presented
in Section 4.

In the experiments, we compared our RoMa with 13
state-of-the-art Image-Text Matching (ITM) methods, in-
cluding VSE, VSE++ [17], VSE∞ [6], SGR [15], NCR-
SGR [23], SAF [15], RCL-SAF [21], MV-VSE [30],
NAAF [48], DIVE [27], CHAN [35], ESA [49], and
HREM [19]. In the implementations and evaluations of all
the methods, we adhere to the following settings. For data

processing, without loss of generality, we adopt the widely
used DGCNN [41] to obtain patch-level features for point
clouds and employ both Bi-GRU [10] and BERT [14] to ac-
quire word-level features for the texts. We follow [23, 28] to
compute Recall at K (R@K) as the measurement of perfor-
mance. In our experiments, we report R@1, R@5, R@10,
and their sum to evaluate the performance of the methods.

6.2. Comparison with the State-of-the-Arts

We conduct extensive PTM experiments on three datasets
to evaluate the performance of our RoMa and the baselines.
The experimental results are reported in Table 2 and Table 3.
These results could yield the following observations:
• ITM methods exhibit inadequate performance. This sub-

stantiates the presence of distinct and more formidable
challenges in PTM, indicating the difficulty of effectively
applying ITM methods in PTM.

• Some fine-grained methods (e.g., SGR and SAF) suffered
from severe performance issues in PTM, or they could
not even fit the data well. By combining these methods
with robust modules, such as NCR-SGR and RCL-SAF,
the performance could be remarkably improved. These
results indicate that there is a large amount of noisy cor-
respondences in these datasets, which leads to the perfor-
mance degradation of the non-robust methods.

• Our RoMa achieves remarkably better results than the
embedding-based coarse-grained methods (e.g., VSE∞,
ESA, etc.) and fine-grained methods (e.g., NAAF, CHAN,
etc.), which are used in ITM, demonstrating its superior
effectiveness by conquering the two challenges in PTM.

• The performance on PTM datasets is relatively low, com-
pared to the existing ITM datasets, where the state-of-the-
art performance usually exceeds 80 [19, 49], in terms of
R@1. This indicates that the PTM task still faces diffi-
culties in handling unordered point clouds, vague texts,
and noisy correspondences, and calls for more advanced
solutions.

6.3. Ablation Study

In this section, we conduct an ablation study to investi-
gate the contribution of each proposed component to PTM.
Firstly, we replace the DAP module with the GPO [17] and
ESA [49] feature extraction modules, and the Robust Neg-
ative Contrastive loss (i.e., L) adopted by RNCL with the
vanilla loss adopted by complementary contrastive learning
paradigm (i.e., L′) and Contrastive loss (i.e., Lc). In ad-
dition, we alternately replace token-level attention Ā and
feature-level attention Â to fairly verify the effectiveness
of Ā and Â under the premise of eliminating the influence
of the number of learnable parameters. All the comparisons
are conducted on 3D2T-QA with the same experimental set-
tings. The results are presented in Table 4. From the table,
we could draw the following observation: 1) RoMa with-



Table 2. Performance comparison on the three datasets in terms of R@1, R@5, R@10 and the sum of them. All the methods use Bi-GRU
as the text backbone. The highest results are shown in bold and the second highest results are underlined.

Method
3D2T-SR 3D2T-NR 3D2T-QA

Point→Text Text→Point Point→Text Text→Point Point→Text Text→Point

R@1R@5R@10R@1R@5R@10 Sum R@1R@5R@10R@1R@5R@10 Sum R@1R@5R@10R@1R@5R@10 Sum

VSE 8.2 22.0 34.8 7.7 23.7 37.6 134.0 8.5 24.6 37.7 7.4 24.3 38.1 148.6 15.5 42.3 54.9 16.9 25.6 63.1 218.3
VSE++ [17] 12.1 24.8 34.0 11.1 24.5 38.3 144.8 8.5 29.2 43.1 9.8 34.0 48.9 173.5 20.3 47.3 60.6 18.3 51.2 61.2 258.9
VSE∞ [6] 26.7 55.1 63.3 24.6 55.7 64.9 290.3 16.9 38.5 50.8 17.4 42.2 55.6 221.4 38.5 66.4 76.7 37.2 68.5 75.5 362.8
SGR [15] 1.2 6.8 13.8 0.9 7.0 13.2 42.9 0.8 3.1 6.9 1.1 3.5 6.5 21.9 1.4 9.9 14.1 2.3 8.5 16.3 52.5

NCR-SGR [23] 13.5 34.0 49.6 10.9 36.6 52.5 197.1 8.2 20.3 43.2 8.4 21.7 40.1 141.9 32.4 63.4 78.9 26.2 62.3 79.4 342.6
SAF [15] 0.7 4.3 12.2 2.1 5.5 11.7 36.5 1.1 6.2 10.0 1.4 4.0 10.3 33.0 2.8 8.5 18.3 2.1 8.8 17.2 57.7

RCL-SAF [21] 16.3 43.3 64.5 12.5 46.4 66.2 249.2 14.6 39.2 54.6 15.5 42.8 59.8 226.5 35.2 67.6 80.3 32.4 68.7 87.0 365.6
MV-VSE [30] 9.7 23.5 36.0 10.2 27.7 42.1 149.2 6.6 20.4 36.4 6.0 24.6 35.5 129.5 23.3 33.8 54.9 17.4 32.7 55.1 217.2

NAAF [48] 13.8 28.4 39.0 13.5 32.2 46.5 173.4 8.3 25.5 37.6 9.5 31.5 46.8 159.2 26.8 53.5 60.6 25.5 46.2 62.0 274.6
DIVE [27] 23.4 50.5 66.5 20.0 49.2 65.9 275.5 20.2 43.1 55.4 13.1 42.2 55.9 229.9 39.4 74.7 90.1 32.7 71.1 83.7 391.7
CHAN [35] 12.1 31.1 44.0 11.8 29.1 43.0 171.1 9.9 24.8 38.4 10.2 25.1 39.4 147.8 23.7 47.9 66.2 18.5 53.2 67.9 277.4
ESA [49] 28.4 55.9 67.9 25.3 55.3 67.7 300.5 21.2 42.3 58.5 20.2 47.5 58.8 248.5 44.7 73.1 84.2 36.2 72.7 84.8 395.7

HREM [19] 24.1 61.7 72.3 24.0 58.4 72.1 312.6 20.0 44.9 59.5 20.5 48.6 60.5 254.0 31.0 70.4 78.9 32.4 73.2 88.5 374.4

Ours 36.4 70.5 80.3 27.1 67.9 80.7 362.9 24.1 49.0 62.0 21.2 54.7 65.6 276.6 51.5 78.3 90.1 42.3 78.4 90.5 431.1

Table 3. Performance comparison on the three datasets in terms of R@1, R@5, R@10 and the sum of them. All the methods use BERT as
the text backbone. The highest results are shown in bold and the second highest results are underlined.

Method
3D2T-SR 3D2T-NR 3D2T-QA

Point→Text Text→Point Point→Text Text→Point Point→Text Text→Point

R@1R@5R@10R@1R@5R@10 Sum R@1R@5R@10R@1R@5R@10 Sum R@1R@5R@10R@1R@5R@10 Sum

VSE 17.7 34.8 50.4 15.6 44.1 54.6 217.2 14.6 36.9 46.9 12.5 38.8 54.0 203.7 31.0 66.2 73.2 24.8 66.2 81.7 343.1
VSE++ [17] 18.4 41.4 51.8 15.6 42.4 59.9 229.5 20.0 34.6 42.3 14.2 36.9 49.5 197.5 35.2 66.2 77.5 31.0 65.1 80.3 355.3
VSE∞ [6] 26.2 58.9 73.0 21.7 58.8 67.8 306.4 22.3 45.4 58.5 15.8 46.6 62.2 250.8 45.1 71.1 81.7 44.5 69.4 82.7 394.5
SGR [15] 1.2 6.8 13.8 0.9 7.0 13.2 41.9 1.2 3.5 7.5 1.5 4.0 6.8 24.5 2.8 7.0 12.7 1.7 8.7 16.6 49.5

NCR-SGR [23] 17.0 44.0 61.0 18.2 49.6 70.5 260.3 20.8 42.3 57.7 16.9 46.6 66.6 250.9 35.2 62.0 84.5 26.5 69.6 86.3 364.1
SAF [15] 2.1 5.0 10.6 2.3 5.2 10.5 35.7 0.8 7.4 12.1 1.5 6.2 10.2 38.2 3.4 9.5 21.1 2.3 9.9 19.4 65.6

RCL-SAF [21] 17.7 53.9 69.5 20.4 53.9 71.3 286.7 20.0 43.1 56.9 16.0 44.9 62.8 243.7 33.8 71.8 87.3 32.1 72.4 88.2 385.6
MV-VSE [30] 13.5 43.3 56.7 16.6 41.8 59.0 230.9 13.5 32.3 47.7 12.3 36.3 52.8 194.9 38.0 68.7 75.6 32.4 65.1 77.7 357.5

NAAF [48] 12.6 36.2 46.8 10.5 36.0 52.1 194.2 10.0 27.7 39.2 13.2 34.2 49.8 174.1 28.6 63.4 75.7 26.6 69.3 83.7 347.3
DIVE [27] 26.0 55.3 70.9 24.0 56.5 69.1 301.8 19.2 40.0 56.9 15.7 44.9 62.8 239.5 46.3 74.2 83.7 39.1 72.9 83.2 399.4
CHAN [35] 16.2 39.0 55.3 15.9 38.9 54.3 219.6 18.5 36.9 55.4 12.5 36.3 53.2 212.8 25.4 57.7 78.9 20.3 56.6 77.9 316.8
ESA [49] 34.9 66.7 75.9 27.1 61.1 74.5 340.2 23.8 43.8 55.4 19.7 48.6 62.8 251.1 45.1 73.2 83.1 36.3 74.4 86.5 398.6

HREM [19] 36.5 65.5 76.7 27.5 63.7 77.6 347.5 26.9 51.5 65.5 22.0 54.3 66.6 286.8 52.9 69.0 81.7 37.2 79.2 87.9 407.9

Ours 42.3 71.6 83.2 30.8 69.9 83.0 380.8 30.5 52.2 63.3 23.2 58.2 74.2 301.6 56.2 84.1 90.7 46.5 85.5 94.6 457.6

out any component will drop matching performance, which
indicates that each component contributes to our method.
2) The performances of adopting the L are superior to Lc

that is widely applied in well-annotated scenarios and L′.
This proves the presence of a considerable amount of noisy
correspondence in PTM and the L adopted by RNCL con-
tributes to the enhanced robustness of our RoMa. 3) DAP
without each attention will decrease matching performance,
demonstrating that each attention contributes to the compre-
hensive perception of features.

6.4. Visualization Analysis

To provide a comprehensive insight into the effectiveness
exhibited by our RoMa, we conduct visualization experi-
ments in PTM. Firstly, to shed light on the reasons behind
the superior performance of our RoMa, we illustrate a small
handful of matching results and visualize the token-level
attention throughout the point clouds and texts, as shown
in Figure 6. Due to space limitations, more PTM results are
displayed in our Complementary Materials. Additionally,
we present a performance comparison among our RoMa
and the VSE∞ [6], ESA [49], and HREM [19] through-



✓ ✓

In the room, there is an L-shaped couch 

in the center, covered by a blue blanket. 

To the left of the TV, there is a wooden 

door in the corner. The TV, a flat screen, 

sits on top of a TV stand. There are 

three doors in the room, one of which is 

a glass door. A circular tan chair is also 

present. The door to the right of the 

glass door is brown. 

In the room, a white table sits in the 

center, with two rectangular suitcases 

underneath it. On the right side of the 

dresser, there are six white doors. Near 

the foot of the bed stands a dresser. 

The blue trash bin is positioned by the 

side of the radiator. Along the back wall 

of the bed hangs a curtain. The trash 

bin itself is colored in blue. 

In the room, there is a short rectangular 

window covered with window blinds. 

The closet door in the room is white. 

Underneath the desk, there is an office 

chair. The black office chair is 

positioned to the left of the bed. Overall, 

the room has a simple layout with a 

window, two beds, a desk, a closet, and 

an office chair.

In the bathroom, there is an egg-

shaped urinal to the right, accompanied 

by a toilet to the left. Adjacent to the 

urinal is the sink, while on the left side 

of the sink is a trash bin. In the left 

corner of the room, there is another 

toilet located on the back wall. The 

bathroom stall door stands out in white. ✓ ✗

Query Result Attention Query Result Attention

Figure 6. Some retrieved examples of PTM on 3D2T-QA. For each text query, the top-1 ranked point cloud. The correctly matched
point clouds are marked with a green tick, otherwise the red cross. In addition, we visualize the text after applying attention, where darker
colors signify increased attention weights, and we present a comparison between the original point clouds and the point cloud after applying
attention. Brighter patches indicate higher attention weights.
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Figure 7. The performance of VSE∞, ESA, HREM, and our RoMa on the three datasets.

Table 4. Ablation studies for our RoMa framework and DAP mod-
ule adopted by our RoMa on the 3D2T-QA datasets. ✓ stands for
use. Ā and Â stand for using only one of them in DAP.

Feat. Extraction Loss Point→Text Text→Point

GPO ESA DAP Lc L′ L R@1 R@10 R@1 R@10 Sum

✓ 1.4 9.9 1.1 7.6 20.0
✓ 9.7 36.5 8.2 37.4 91.8

✓ ✓ 38.5 76.7 37.2 75.5 227.9
✓ ✓ 39.8 77.2 38.1 79.4 234.5
✓ ✓ 42.3 80.3 36.3 82.6 241.5

✓ ✓ 42.7 84.2 37.2 84.8 246.9
✓ ✓ 43.4 86.2 38.1 86.7 254.4
✓ ✓ 45.2 88.7 37.8 87.1 258.8

✓ ✓ 45.4 87.3 40.6 86.9 260.2
✓ ✓ 49.2 87.3 41.2 88.5 266.2

Ā ✓ 47.0 82.6 37.2 85.4 252.2
Â ✓ 50.8 89.5 37.2 90.3 267.8

✓ ✓ 51.5 90.1 42.3 90.5 274.4

out the training process, as shown in Figure 7. From the
results, we could draw the following observations: 1) Our
RoMa can achieve correct retrieved results in PTM. Even
the mismatched pair still exhibits a strong semantic corre-
lation. This is attributed to our DAP, which actually fo-

cuses on useful and discriminative patches and words. 2)
Throughout the whole learning process, it is evident that
other baselines involve performance degradation in the later
training stage, impacted by the noisy correspondence. In
contrast, our RoMa mitigates the negative impact, achiev-
ing superior and robust performance.

7. Conclusion

In this paper, we introduce a novel yet challenging task,
named PointCloud-Text Matching (PTM). To facilitate the
research on this promising task, we construct three bench-
mark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-
QA. We also propose a robust baseline, named Robust
PointCloud-Text Matching method (RoMa), which consists
of two novel modules: Dual Attention Perception module
(DAP) and Robust Negative Contrastive Learning module
(RNCL). Specifically, DAP leverages dual attention mech-
anisms to capture local and global features of point clouds
and texts. In addition, RNCL is employed to handle noisy
correspondence by distinguishing and endowing clean and
noisy negative pairs with correct optimization directions.
We conducted extensive experiments compared to 13 state-
of-the-art methods on the three datasets, demonstrating
the superiority of our RoMa in the challenging PTM task.
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