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Abstract

We show that cosystolic expansion of sheaves on posets can be derived from local expansion
conditions of the sheaf and the poset. When the poset at hand is a cell complex — typically
a high dimensional expander — a sheaf may be thought of as generalizing coefficient groups
used for defining homology and cohomology, by letting the coefficient group vary along the
cell complex. Previous works, e.g. , , established local criteria for cosystolic
expansion only for simplicial complexes and with respect to constant coefficients. Our main
technical contribution is providing a criterion that is more general in two ways: it applies to
posets and sheaves, respectively.

The importance of working with sheaves on posets (rather than constant coefficients and
simplicial complexes) stems from applications to locally testable codes (LTCs). It has been ob-
served ] that cosystolic expansion is related to property testing in the context of simplicial
complexes and constant coefficients, but unfortunately, this special case does not give rise to
interesting LTCs. We observe that this relation also exists in the much more general setting
of sheaves on posets. As the language of sheaves is more expressive, it allows us to put this
relation to use. Specifically, we apply our criterion for cosystolic expansion in two ways.

The first application: We show the existence of good 2-query LTCs. These codes are actually
related to the good ¢g-query LTCs of ﬂDELiZﬂ] and ﬂBKZﬂ], being the formers’ so-called line codes,
but we get them from a new, more illuminating perspective. By realizing these codes as cycle
codes of sheaves over posets, we can derive their good properties directly from our criterion for
cosystolic expansion. The local expansion conditions that our criterion requires unfold to the
conditions on the “small codes” in [DELT22], [PK22], and hence give a conceptual explanation
to why conditions such as agreement testability are required.

The second application: We show that local testability of a lifted code could be derived solely
from local conditions, namely from agreement expansion properties of the local “small” codes
which define it. In the work ], it was shown that one can obtain local testability of
lifted codes from a mixture of local and global conditions, namely from local testability of the
local codes and global agreement expansion of an auxiliary 3-layer system called a multilayered
agreement sampler. Our result achieves the same but using genuinely local conditions and a
simpler 3-layer structure. It is derived neatly from our local criterion for cosystolic expansion,
by interpreting the situation in the language of sheaves on posets.

This is a preliminary version.
There may be mild typos and inconsistencies. The final version will appear soon.
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1 Overview

1.1 General

We prove a local criterion for cosystolic expansion of sheaves on finite partially ordered sets, called
posets for short. This extends the reach of known similar criteria established in [KKL16], [EK16]
(see also [EK24]), [KM21], [KM22], [DD23] which (in our terminology) apply only to constant
sheaves on simplicial complexes.

Criteria for establishing cosystolic expansion are motivated by applications to locally testable
codes (LTCs). The relation between cosystolic expansion and property testing was first observed in
[KL14], in the context of constant sheaves on simplicial complexes, and implicitly for general sheaves
on posets in [PK22]. We use the expressive language of sheaves over posets and our criterion for
cosystolic expansion of sheaves over posets to get good 2-query locally testable codes (while prior
works provided good locally testable codes that use many queries) and to get a genuinely local
criterion for testability of lifted codes (while prior works used a non-trivial mixture of local and
global conditions to derive testability of lifted codes).

Our main result may also be seen a unifying mechanism through which one can recover many
known results about cosystolic expansion and testability. For example, it recovers in part the main
results of [KO21] and [DLV24].

1.2 Posets

A poset is a finite set X endowed with a transitive anti-reflexive relation <. For x,y € X, we write
x < y to denote that z < y or x = y. The posets that we consider in this work will always be
equipped with a dimension function (also called a rank function) dim : X — Z which is required
to satisfy dimz < dimy whenever x < y and dimx + 1 = dimy if in addition no elements of X lie
strictly between x and y. See §4.7] for further details.

Our main example of a poset will be the poset of faces of a regular cell comple together with
the dimension function assigning every face its usual dimension. (There is also a single empty face
of dimension —1.) This includes simplicial complexes and cube complexes. Another example of a
poset with a dimension function is the affine Grassmannian.

Following the notation for simplicial complexes, given a poset X, we write X (i) for the elements
of X of dimension ¢ and call such elements i-faces of X. A poset X is pure of dimension d if it
is nonempty and each of its faces is contained in a d-face. It is called a d-poset if it moreover has
a a unique (—1)-face, denoted ()x, which is a face of every other face in X. Examples of d-posets
include pure d-dimensional simplicial and cubical complexes, and the poset of affine spaces in F"™ (F
is a finite field) of dimension d or less plus the empty set. The degree of a d-poset X is the largest
possible number of faces containing a 0-face.

All our posets will carry a weight function and an orientation, which we suppress in this overview
for the sake of simplicity. For details, see §4.2] and §4.61

1.3 Sheaves

Broadly speaking, a sheaf is a layer of linear-algebra data put on top of a poset. When the poset
comes from a geometric source, a sheaf on it may also be viewed as a generalization of the group of
coefficients that is used in the definition of homology and cohomology. We shall survey the history
of sheaves after we present them. For simplicity, we only consider here sheaves of Fo-vector spaces
— called Fo-sheaves later in the paper — and call them sheaves for brevity.

'Also called a regular CW complex.



A sheaf F on a poset X consists of the following data:

(1) an Fe-vector space F(z) for every face x € X;

(2) an Fa-linear map resyf<_x : F(x) = F(y) for every z,y € X with x < y;
subject to the requirement res?, —y oresf . = rest,  whenever z < y < 2B The maps reS'yF ., are

called restriction maps; the superscript F will be dropped when it is clear from context.

By reversing the direction of the restriction maps one gets the notion of a cosheaf (called a local
system in some works). A cosheaf on X is essentially the same thing as a sheaf on the opposite
poset of X.

Here is a simple example of a sheaf on X: Take an Fy-vector space V' and define F(z) =V and
resz':_x = idy for all x and y. This sheaf is denoted Vx. Sheaves of this form (up to isomorphism)
are called constant.

If X is a 1-poset, then one can get a sheaf F on X by setting F(fx) = 0 and resx]i_w =
for every x € X — {x}, and choosing the remaining spaces F(z) and restrictions map res;_m
arbitrarily. The condition res?, —y oresi_x = res?, , holds automatically for x < y < z, because we
must have z = 0x.

Further examples will be given later in this work.

Brief History and Related Notions. In topology and algebraic geometry, sheaves are defined
over topological spaces, and this is the common definition in the literature. They were studied since
the 1950s and their definition is more involved, e.g., see [Ive86], [MLM94, Chapter II].

The sheaves defined in the paper may be seen as discrete, elementary versions of sheaves on
topological spaces. When X is the poset of a cell complex, they are known as cellular sheaves.
They were first considered by Shepard |She85], and their theory was further developed by Curry
[Curld], who also considered cosheaves. A more concise treatment (over regular cell complexes)
appears in [HG19]. The definition of sheaves on posets given here is a natural generalization of
(cellular) sheaves on cell complexes, and was briefly considered in [Curl4, §4.2.2].

We remark that despite the differences between sheaves on posets and sheaves on topological
spaces, the former is actually a special case of the latter [Curld, §4.2].

The special case of sheaves on graphs was considered independently in several other works, e.g.,
the local systems of [JL97, §2]. The sheaves on graphs considered by Friedman [Fril5] are cosheaves
in our notation.

1.4 Sheaf Cohomology.

Let X be a cell complex and let ¢ € Z. Recall that the space of i-cochains on X (with coefficients
in Fy) is C' = CY(X,Fy) := IE“2X(Z). One then defines the coboundary maps d; : C* — C*1 by

(dif)(y) = > fl@) VfeCl yeX(i+1), (1.1)

z€y(i)

where here, we wrote y(i) for the set of i-faces of the face y. It is well-known that d; o d;—; = 0,
and so Z' = Z(X,Fs) := kerd; contains B' = BY(X,Fy) := imd;_1. The spaces Z°, B’ and the
quotient H!(X,Fy) := Z'/B® are the Fy-spaces of i-cocycles, i-coboundaries and i-th cohomology
of X, respectively. They are all well-studied.

2In this case, it is convenient to define res?, , = id 7 (4) so that resiy o res‘;;x = res?,_, holds whenever z < y < z.



In the same manner, with every sheaf F on a (graded, oriented) poset X, we can associate [Fa-
spaces of cochains, cocycles, coboundaries and cohomology: First, set C* = C*(X, F) = [l.c x@) & ().
That is, elements f € C* are collections {f(z)},ex(;) with f(x) € F(x) for every € X (i). The
i-th coboundary map is defined as in (I.T]), but using the restriction maps of F

dif)(y) = Y resyca f(x)€F(y) VfeC yeX(i+1). (1.2)

z€y(i)

The spaces Z' = Z(X, F), B* = BY(X,F) and H(X, F) are then defined to be ker d;, imd;_; and
ker d;/im d;_1, respectively.

Observe that if F is the constant sheaf (Fs)x, then C*(X, F) is just C*(X,F3) and the cobound-
ary maps agree.

1.5 Locally Testable Codes From Sheaves on Posets

Our interest in sheaves on posets and their cohomology is motivated by the fact that they give rise
to locally testable codes (LTCs).

Locally Testable Codes. Let X be a finite alphabet and let C' C X" be a code with block length
n. We write §(C) and r(C) for the relative distance and rate of C, respectively. As usual, when
C C X" ranges across a family {C; C X" },50, we say that C is good if its relative distance and
rate are bounded away from 0.

Recall that a tester for C' C X" is a randomized algorithm T which, given access to a word
f € X", can decide with high probability whether it is close to a codeword or not by querying just
a few (i.e. O(1)) of its letters. Formally, a g-query tester T' may probe at most ¢ letters from the
input f, and must accept all words f € C. The tester T" has soundness pu (u > 0) if for every
fexn,

Pr(T rejects f) > p - dist(f,C).

Here, dist(-, -) is the normalized Hamming distance in 3". A locally testable code (LTC) is a family
of codes-with-testers with block length tending to co such that all the testers have the same query
size ¢ and the same positive soundness p. See [Golll] for a survey.

The question of whether there exists good LTCs was open until it was recently answered on
the positive by Dinur, Evra, Livne, Lubotzky and Mozes [DEL*22] and Panteleev and Kalachev
[PK22] (independently); see also [LZ22]. The many works on the subject predating this result are
surveyed in [DELT22, §1.2].

Cocycle Codes and Cosystolic Expansion. Let F be a sheaf on a poset X and let i € Z.
Suppose further that there exists an Fo-vector space ¥ such that F(z) = ¥ for every x € X(i).
Then C* = C*(X, F) = X, and so we may view Z° = Z/(X,F) as a code inside %), We call
7' the i-cocycle code of (X, F). The i-cocycle code Z* C ¥X() also has a natural tester: Given
f e 2X0 choose y € X (i + 1) uniformly at random, probe f(z) for every z € y(i) and accept f
if and only if d; f(y) = Ysey() 168y f(z) = 0 (cf. (L2)). The query size of the this tester is the
largest number of i-faces that an (i + 1)-face of X can have. For example, when i = 0 and X is a
regular cell complex, the natural tester probes only 2 letters.

3When X is not a cell complex or Fs is replaced with a field of characteristic not 2, one needs to introduce signs
into this formula, see §5.21

“Caution: At this level of generality, one can have H*(X, F) # 0 for 4 < 0. Also, for a general poset, {H*(X, —)}i>0
are in general not the right derived functions of H*(X, —).



Write || - || for the ]qormalized Hamming norm on C* = £X0@ or ¢! = [Tyex(i+1) F(y). Then
the natural tester of Z* has soundness p > 0 if and only if

[dif|l > pdist(f, 2")  VfeC" (1.3)

This condition may also be regarded as an expansion condition for i-cochains, and indeed, the
i-cosystolic expansion of F, denoted
cse; (X, F)

is defined to be the supremum of the set of x> 0 for which (L3) holdsf Note that this makes
sense even without requiring that F(z) = ¥ for every z € X (7).
Observe further that the relative distance of Z is the largest § > 0 such that

Ifl =6  vfez {0}

Again, this may be viewed as condition on the expansion of i-cochains. For a general sheaf F on
X, we define the i-cocycle distance of F to bed

ced; (X, F) = min{||f||| f € Z" — B'}.

The reason why we let f range on Z° — B% and not on Z¢ — {0} is because B’ typically contains
vectors of small support (e.g. the coboundary of a small (i — 1)-cochain). However, when B' = 0,
we have §(Z%) = ced; (X, F).

Following [KKL16], |[EK24] and similar sources, we say that (X,F) is an (u,d)-cosystolic ex-
pander in dimension 7 if cse; (X, F) > pu and ced; (X, F) > 0.

To conclude, provided that B* = 0, the i-cocycle code Z' = ZH(X,F) C »X) g locally testable
and has linear distance if and only if (X, F) is an (u,0)-cosystolic expansion in dimension i for
w, 6 > 0.

Remark 1.1. Cosheaves on posets similary give rise to cycle codes, and their distance and testa-
bility are governed by the systolic expanion and cycle distance of the cosheaf at hand. This is
completely dual to the case of sheaves. For example, the famous expander codes of [SS96] may be
realized as 1-cycle codes on graphs [Mes18].

Coboundary Expansion Coboundary expansion is a stronger version of cosystolic expansion
that will be needed to state our main result. Given a sheaf F on X, its i-coboundary expansion,
denoted

cbe; (X, F),

is the supremum of the set of u > 0 such that
ldif|| > pdist(f, B)  VfeC".

In the context of i-cocycle codes, cbe;(X, F) is the soundness of the natural tester of Z*, but when
used a tester for the smaller code B.

®Actually, the definition of cosystolic expansion involves the weight function on X, so csei (X, F) and the soundness
of the tester of Z; are the same only up to a constant. See Lemma [6.2]
6Again, the actual definition of ccd;(X, F) involves the weights on X.



Brief History of Coboundary and Cosystolic Expansion. Coboundary expansion origi-
nated in the works of Linial-Meshulam |[LMO06] and Meshulam—-Wallach [MWQ09] on the cohomol-
ogy of random simplicial complexes, and the work of Gromov |Grol(] on the minimal amount of
overlapping forced by mapping a simplicial complex to R™. These works did not mention sheaves
explicitly, and in our terminology, only considered the case of constant sheaves on simplicial com-
plexes. Within this restricted setting, cosystolic expansion was developed in [DKW18§], [KKL16],
[EK16] as a relaxed version of coboundary expansion meant to extend the reach of Gromov’s meth-
ods. The first connections between cosystolic expansion and property testing were observed and
studied in [KL14].

1.6 A Criterion For Cosystolic Expansion of Sheaves

Our main result is a criterion for bounding the i-cosystolic expansion and i-cocycle distance of a
sheaf by means of mostly-local expansion conditions.
To state it, we need four more pieces of notation. Let F be a sheaf on a d-poset X.

Lower lrregularity. For integers —1 < i < j < k < d, let oy (resp. Fln;lﬁ) denote the maximum
(resp. minimum) possible number of j-faces lying between an i-face and a k-face that are incident.
The ratio L; j 1 (X) = FZIE?]?/F;EE is the (4, j, k)-lower irregularity of X. The maximum of L; ; 1(X)
over all i, 7,k is is called the lower irreqularity of X and denoted L(X). For example, simplicial

complexes and cube complexes have the lowest possible irregularity, namely 1.

Links. Let z € X. The link of X at z is X, := {r € X : x > z} together with partial order
inherited from X and the dimension function dim, given by dim,(z) = dimz — dimz — 1. Note
that Xy,  is just X. The sheaf F restricts to a sheaf 7, on X, defined by F.(x) = F(z) and

res’z s forallz,y € X.

vz — ISy o

No-Intersection Graph. Let i, j, k be integers with —1 < 4,5 < k. The (4, j, k)-no-intersection graph
of X, denoted NIG"*(X), is a graph with vertex set X (i) U X(j) (the vertex set is just X (i) if
i = j), where for every triple (:E,y,zl_z)] € X(i)x X(j)x X (k) with z # y, z,y < z and inf{z,y} = 0x,
one adds an edge between x and y

For example, if X is a regular cell complex, then NIGO’O’l(X ) is just the underlying graph of
X, denoted Gr(X). Also, if X is a cube complex, then NIGY12?(X) is the graph whose vertices are
the edges of X and in which two edges (viewed as vertices of the graph) are connected when they
are the opposite sides of a square in X.

Skeleton Expanders. Let «, 5 > 0. A weighted graph (G,w) is called an («a, 8)-skeleton expander if
for every set of vertices A C G(0), we have w(E(A)) < aw(A) + Bw(A)2.
For example, if G is a regular graph, w assigns every vertex (resp. edge) the weight m (resp.

ﬁ) and the second largest normalized eigenvalue of G is A, then G is a (A, 1)-skeleton expander

(Proposition 2.2]).

Given i,j,k € Z as above and z € X with £ := dimz < 4, it will be convenient to write
NIGL#(X) for the graph NIGI—¢~1J—¢=LA=t=1(X ) Our main result states the following:

Theorem 1.2 (Simplified; see Theorem Bl). For every k € N, F € N, L € [1,00) and B € Ry

there are constants K, K' € (0,1] such that the following hold: Let X be a d-poset (d > k+2) such

that L(X) < L and every (k + 2)-face of X has at most F-subfaces, let F be a sheaf on X and let
€ (0,1]. Suppose that:

"The implicit weight function on X induces a weight function on the no-intersection graph; see Section [



(1a) cbeg_dim2—1(Xz, Fz) > € for every z € X(0)U--- U X (k);
(1b) cbeg_dim (X, Fy) > € for every z € X(0)U--- U X (k+1);

(2) NIGYH(X) is a ((Ks)Zkii,B)—skeleton expander for every z € X(—1)U---U X (k) and i,j,t
with dimz <i<j<t<k+2.

Then csey(F) > K'(K2)?"*~1 and cedy(F) > K'(K2)?"' -1,

We encourage the reader to think of F', L, B and ¢ as constant, and of X and F as varying. In
typical applications of Theorem [[.2], as the degree of X grows, F', L, B and e will remain constant
while the skeleton expansion of the NIGL/¢(X) will tend to (0,c) for some constant ¢ > 0. Thus,
once the degree of X is large enough (but constant), all three conditions (1a), (1b) and (2) will be
satisfied.

A few remarks are now in order.

First, if sheaf F from the theorem also satisfies F(x) = 0 for all z € X(k — 1) (so that B¥ = 0)
and F(z) = X for all x € X (k), then the theorem says that (up to scaling caused by non-uniform
weights) the k-cocycle code Z¥(X, F) C C* = £X(®) has relative distance (2" ~1) and its natural
tester has soundness @(€2k+2_1). Moreover, in this case Z* has a linear-time decoding algorithm
able to correct words that are @(62k+2_1)-close to Z*; see Corollary

Second, assumption (2) in the theorem can often be relaxed; it is in general not-necessary to
bound the skeleton expansion of all the no-intersection graphs NIGi’j’t(X ). Here are three such
notable examples:

« When X is a simplicial complex, we only need (2) to hold for the graphs NIGL*"*1(X) with
dim z =i — 1, i.e., the underlying graph of every X, with z € X(-1)U--- U X (k).

« When X is a cube complex, it is enough that (2) holds for every NIGL*T1(X) = Gr(X,) as
in the simplicial case and also for the graphs NIGY12(X), ... NIGKHLA+LEF2(X)  The graph
NIGi’i’i+1(X ) is obtained from X by taking the i-cubes as vertices and connecting two i-cubes
by an edge whenever they are the opposite sides of an (i + 1)-cube.

« When k = 0, we need to consider in (2) only the graphs NIG*%!(X) = Gr(X), NIGH12(X)
and NIGL12(X) for every v € X(0).

In the general case, the graphs that we need to consider in (2) are specified by an intersection
profile for the poset X — a novel notion that we introduce in Section [7

Third, assumptions (1a), (1b) and assumption (2) in the case z # (Jx are local in the sense that
they care only about the structure of X, and F, for ) # z € X and not about the global structure
of X and F. Thus, Theorem may be informally summarized as: If

o F, is a good coboundary expander for every z # ) (“F has good local coboundary expansion”),
o NIGY/(X) is a good skeleton expander for all z # ), i, j, t (“X is locally expanding”) and
o NIG"/Y(X) is a good skeleton expander for all 4, j, t (“X is globally expanding”),

then F is a good cosystolic expander in dimension & (a global condition). For special X, we can
make Theorem into a purely local criterion for cosystolic expansion. For example, if X is a
simplicial complex, then by our previous remark, the only global expansion condition that X needs
to satisfy is that Gr(X) is good skeleton expander, and this can be deduced from expansion of



the proper links of X by Oppenheim’s Trickling Down Theorem [OpplH, Thm. 1.4]. The Trickling
Down Theorem was extended to some non-simplicial posets in [KT23], so with more work, there
may likely be a purely local criteria for cosystolic expansion for sheaves on such posets.

Finally, we actually prove a more flexible and technical version of Theorem [[L2]— Theorem
In the special case of 0-cosystolic expansion, this stronger version admits a neat and accessible
formulation which we find useful to state here explicitly.

Theorem 1.3 (Criterion for 0-Cosystolic Expansion; see Theorem [RI0). For every F € N and
L € [1,00), there are constants E, E', E", E" > 0 such that the following hold: Let X be a d-poselﬁ
(d > 2) with L(X) < L and such that every 2-face of X contains at most F subfaces, and let F be
a sheaf on X. Let €, ap, Bo, -1, B-1, ), B € Ry and suppose that:

(1a) cbe_1(X,,F.) > ¢ for every z € X(0) U X(1);

(1b) cbeg(Xy, Fy) > € for every v € X(0);

(2a) NIG9Y(X,) is an (oo, Bo)-skeleton expander for all v € X (0);
(2b) NIG®O1(X) ds an (a_1, B_1)-skeleton expander;

(2¢) NIGYL2(X) is an (|, By))-skeleton expander.

Suppose further that
a_1 < Ee

and one can find h_1, ho, by € (0,1] satisfying the inequality

a_1+ f_1h_
(a0 + Boho) + (ay + Byhy) + % < Fe.

Then cedo (X, F) > % and cseo(X, F) > #ﬁrh*l When X is a simplicial (resp. cube)
- o hu Ry,
1

complex, we can take E = E" =1, E' = 5 (resp. E' = %) and B" = %

The constants E, E', E”, E" are explicit and may be found in Table [l Theorem [[.3] is more
general than Theorem [[.2, because it can be applied with £y, 8-1, 3| arbitrarily large.

Relation to Other Works. Local criteria for establishing cosystolic expansion of constant
sheaves on simplicial complezes appeared in [KKL16] (dim X < 3, F = (F2)x), [EK16] (F = (F2)x,
see also [EK24]), [KM21] (any constant sheaf), [DD23] (same). Our Theorem is an improve-
ment of these results in two ways. First, it applies to general posets, and second, it applies to all
sheaves. It further improves [KKL16]|, [EK16], [KM21] by providing a lower bound on the cosys-
tolic expansion which is independent of the dimension and the degree of X. On the other hand, in
the simplicial case, [DD23] gives a better lower bound on the k-cosystolic expansion and [KM22,
Thm. 7] establishes a better lower bound on the k-cocycle distance in the case F = (F3)x; both
bounds are ©(¥+1). The reason for this difference seems to stem from the fact that the arguments
in [KM22], [DD23] make critical use of the fact that the sheaf is constant and the poset is simplicial.
A new feature of our result that did not appear in previous works on cosystolic expansion is the
use of no-intersection graphs, which turned out to be necessary in treating the non-simplicial case.

8Recall that all our posets carry a weight function and an orientation and those should be taken into account; see

§4.21 §4.6l and Definition [7.3}
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No-intersection graphs were already studied in [KO21] in the context of amplified testability, but
not as a way to get cosystolic expansion.

A local criterion for establishing cosystolic expansion of general sheaves on simplicial complexes
first appeared in an earlier work of the authors [FK23b, §8] now superseded by this work.

The main result of [DLV24] gives sufficient conditions for certain (non-constant) sheaves on
certain cube complexes to have good cosystolic and systolic expansion. It is likely that the cosystolic
part of this result follows from our Theorem [[.2], possibly with different constants. Indeed, the two-
way robustness requirement in [DLV24)] is essentially the same as saying that the proper links of the
sheaved cube complex at hand are good coboundary and boundary expanders, and therefore satisfy
assumptions (la) and (1b) of Theorem [[.2] and the expansion conditions in [DLV24] imply the
necessary expansion condition (2) in Theorem when X is a cube complex |[DLV24, Claim 5.11,
Lemma 5.12].

Our main theorem is also related to the main result of [KO21] (see also [KO22]). There, the
authors consider codes modelled over 2-layer erpanding systems, and show that these codes are
locally testable if the underlying system satisfies some global and local expansion conditions. In
our language, the 2-layer system is a 2-poset X, and the code modelled over it, while not strictly
being a sheaf, is very similar to an F-sheaf 7 on X in which F(z) = F for all x € X and all
the restriction maps are isomorphisms. The conditions under which [KO21, Thm. 1.17] applies
resemble assumptions (1a)—(2c) of Theorem [[.3] and suggest that conditions of this flavor may be
necessary in general. In fact, the codes modelled on 2-layer systems of [KO21] are examples of
constraint systems on a poset — a variation on the definition of a sheaf to which our main result
still applies, see —, and so our Theorem recovers the testability part of [KO21, Thm. 1.17].
On the other hand, [KO21] establishes a stronger kind of testability called amplified local testability.

Finally, we note that Kaufman and Tessler [KT23] extended Garland’s Method and Oppen-
heim’s Trickling Down Theorem, which are examples of local criteria for other types of expansion,
from simplicial complexes to general posets.

About The Proof. The proof of Theorem is loosely based on the fat machinery method of
[KKL16], [EK24], called heavy machinery here. Broadly speaking, the idea is to first reduce the
problem into showing that a locally minimal k-cochain f € C* := C*(X,F) with small support
must expand under dj, : C¥ — C**1. Being locally minimal means that for every z € X of dimension
i > 0, the restriction f, := f|x_ k—i—1) € Crk=i=1(X,, F,) satisfies ||f.|| = dist(f., B¥"""1(X., F.)).
Thus, if we assume that cbeg_;—1(X,, F,) > ¢, then we would know that ||di_;—1f:|| > €|/ f:||. One
would like to take advantage of this to show that ||dyf]| is at least proportional to ||f]|, but in
general, dip_;_1f, and (dif), may differ. The heavy machinery is a method of keeping track of
faces z such that dx_;_1f, = (dif)., ultimately showing that the contribution of faces for which
this equality fails is negligible.

We follow this general strategy, but introduce many new ingredients. For example, we use
information from no-intersection graphs (that are not underlying hypergraphs of links), which is
necessary to make the argument work for general posets, and introduce intersection profiles to keep
track of the types of no-intersection graphs that we need. We also introduce terminal faces and use
them to make the delicate summation process over the faces z above more efficient and streamlined.
Furthermore, following ideas from [KO21] and |[DD23], we replace locally minimal cochains with
a variation — mock q-locally minimal cochains —, which allows us to make the lower bound on
cser (X, F) independent of the dimension and the degree of X. Instead, the bound depends on the
lower regularity of X (in all dimensions); this dependence was transparent in works concerning
with simplicial and cube complexes, because they have lower irregularity 1.
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1.7 First Application: Good 2-Query LTCs

As an application of Theorem and its finer version Theorem [[.3] we give an example of good 2-
query LTCs arising from sheaves on square complexes. These codes are in fact the line codes of the
of good LTCs of [DEL*22]. By interpreting these codes as 0-cocycle codes of sheaves, we can apply
Theorem [L.3] to neatly deduce that they form a 2-query LTC. This offers a new perspective on the
LTCs [DEL*22], showing that their testability may be seen as a consequence of cosystolic expansion.
It also shows that the agreement testability requirement appearing in [DEL'22 Theorem 4.5] is
actually a manifestation of coboundary expansion. (We remark that while the good LTCs of
[DEL*22] are related to the good LTCs of [PK22], we do not know how to directly relate our LTCs
to those of [PK22].)

We shall first describe our good 2-query LTCs, and after that explain their relation to the LTCs
of [DEL*22].

The Example. We take our base poset X to be a left-right Cayley complex. Let G be a finite
group and let A, B C G be two sets of generators for GG such that A= A"!, B=B"!1 1¢ AUB
and no element of A is a conjugate of an element of B. Recall that X = Cay(A, G, B) is a square
complex with faces determined as follows:

X(0)={{g} g € G},
o X(1)={{g,a9}|9 € G,a€ A} U{{g,bg}|g € G, b€ B},
o X(2) ={{g,a9,9b,agb}|g € G,a € A, b€ B}.

(We also have X(—1) = {0}.) Our assumptions imply that for every {g} € X(0) and e € X(1)
containing {g}, there is a unique z € AU B such that e = {g,zg} if x € A and e = {g, 92} if z € B.
A similar claim applies to edges and squares.

Let C4 C F4 and Cp C F¥ be linear codes. It will be convenient to view 4 @ FZ as the space
Max g (F2) of matrices with rows indexed by A and columns index by B. Given a m € M4y p(F2),
we write 7,(m) for the a-th row of m and ¢,(m) for the b-th column of m. The tensor code
Cap®Cp C F? ® FP = Muxp(F2) may now be view as the space of A x B-matrices m with
rqo(m) € Cp and cp(m) € Cy4 for all a € A and b € B.

We define a sheaf F on X = Cay(A4, G, B) as follows:

« F(0) =
F({g}) = Ca®r Cp,
e F({g,09}) = Cp,
F({g,9b}) = Ca,
F({g,ag, gb,agb}) =
* TeS{gag}{g} =Ta: Ca®Cp — Cp,
* 1e8(ggh}e{g) = b Ca®Cp = Ca,
* T€S{g ag.gbaght{g.ag} - Cp — F is projection on the b-component,

* T€S{g ag,gbaghl{g,gb} : Ca — F is projection on the a-component,
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where here, g € G, a € A, b € B. It is straightforward to check that this is well-defined. Observe
further that if we put ¥ = C4 ® Cp, then F(v) = X for every v € X(0). We may therefore form
the 0-cocycle code Z° = Z%(X, F) C C%(X, F) = xX(0) = x¢,

Upon unfolding the definition, one sees that the natural 2-query tester of Z° works as follows:
Given f € X% it chooses an edge {g,h} € X(1) and probes f({g}) and f({h}). If h = ag for some
a € A, then f is accepted if and only if r,(f(g)) = ro-1(f(h)), and if h = gb for some b € B, then
f is accepted if and only if ¢,(f(g)) = cp-1(f(h)).

We use Theorem [[L3] to give sufficient conditions on Z°(X, F) to be locally testable and have
linear distance. To phrase them, recall [DELT22, Definition 2.8] that the tensor code Cy ® Cp C
Maxp(F2) is said to be k-agreement testable if for all m; € Cy ® Fg and mo € F? ® Cp, there is
m € C7 ® Cp such that

. #{a€ A :ro(mae) #ra(m)} n #{be€ B : cy(m1) # cp(m)}
2|A| 2|B
< #{(a, b) cAx B : (ml)a,b 75 (mg)mb}
- [AllB] '

Informally, this means that if m; and my agree on nearly all entries, there is m € C4 ® Cp which
agrees with m; and mgy on nearly all columns and rows, respectively. See [DELT22] for more
information and examples.

Theorem 1.4. For every ¢ > 0 there are (small) real constants A, p,00,m > 0 such that the
following hold: Let G, A, B,X,F and Z° C X be as above and suppose the following conditions
are met:

(1d') 6(Ca) > ¢,
(10') 6(Cp) > ¢,
(1d) Ca @ Cp is e-agreement testable,

(2') the Cayley graphs Cay(A,G) and Cay(G, B) are \-expanders, i.e., the second largest eigen-
value of their normalized adjacency operator is at most \.

Then 6(Z°) > &y and the natural 2-query tester of Zy has soundness Moreover, r(Z°) >

TATHBTF

% and Z° admits a linear-time decoding algorithm for words that are n-close to Zj.

We derive Theorem [[4] by applying Theorem [[.3] to the X and F we constructed. The full
details are given in Section [0 Briefly, conditions (1a’) and (1b’) are equivalent to saying that
cse_1(Xe, Fe) > € for every e € X(1), and condition (1c’) is equivalent to having cseq(X., Fe) > €.
[ With a little more work, one further derives from (1a’) and (1b') that cse_;(F,) > ¢, so (1a)—
(1¢') imply conditions (1a) and (1b) of Theorem [[3 One can further show that (2') implies that
Cr(X) = NIG®%1(X) is a (), 1)-skeleton expander and NIGYH2(X) is a (2),4(|A| + | B|))-skeleton
expander. Moreover, Gr(X,) is a (0, 1)-skeleton expander for every v € X(0), being a complete
bipartite graph. Now, one can readily check that the inequalities in Theorem are solvable if A
is small enough and deduce Theorem [T.41

It was observed in [DEL"22| that there is € > 0 and ny € N such that whenever |A|,|B| > no,
there exist codes C4 C F4 and Cp C FZ satisfying conditions (1a’)—(1¢’) and also 7(C4),r(Cg) > 2.
Let A be the constant obtained by applying Theorem [[. 4] to that . It is further known that there is

9Checking that this follows readily from the definitions is a recommended exercise.
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ny > ng for which there are infinitely many examples (G;, A;, B;)ien of G, A, B as above such that
|A;| = |Bi| = n1 and both Cay(A;, G;) and Cay(G;, B;) are A-expanders. By applying Theorem [I.4]
to the family (G;, 4;, B;)ien and suitable codes C4,Cp C F3', we obtain a family of good 2-query
LTCs.

Relation Between Lifted Codes and Line Codes. To better describe the relation between
our 2-query LTCs and the LTCs of [DEL22], we need to a briefly digress and discuss the relation
between lifted codes and their so-called line codes. See Section Bl for an extensive discussion.

Recall that a lifted code or a Tanner code C' C ¥™ is determined by a family of subsets S of
[n] :={1,...,n} covering [n] and, for every s € S, a code Cs C ¥*. The lifted code that the family
{Cs}ses determines is

C=C({Cs}ses) ={f X" : f|ls€ Cs for all s € S}.

When all the C; are the same code D C ¥™ (or, more generally, whenever |Cs| = |D] for all s € 5),
we may further associate with C' a code L C D® with alphabet D known as its line code; it is
defined by

L= {f = (fs)ses € D% : fs|sﬁs’ = f5’|sﬁs’ for all 873/ € S}

There is a bijection f +— (f|s)ses : C — L, so both C' and L have proportional rates, and under
mild assumptions, 6(C') and §(L) are also proportional (Proposition [3.6]).

The presentation of C' as a lifted code C = C({Cs}ses) gives rise to a natural tester: Given
f X" choose s € S uniformly at random and accept f if and only if f|s € Cs. This tester usually
has poor soundness, which is why LTCs are considered difficult to construct. However, we show
in Theorem B.I0 that if the line code L of a lifted code C' (varying in a family) is 2-query locally
testable, then same holds for the original code C with its natural tester. Also, if L has a linear-time
decoding algorithm, then the same holds for C' (Proposition [3.7)).

Relation to [DEL"22]. Let G, A, B,X,C4 and Cp be as before. For g € G, we write s(g) for
the set of squares containing the O-face {g} of X. There is a bijection from A x B to s(g) given
by sending (a,b) to {g,ag, gb,agb}, and we use it to identify Fg(g) with F2*B = & @ F¥. Now
let C(A, G, B) denote the lifted code C' C Fg(@), determined by the sets {s(v) |v € X(0)} and the

codes
Cs(v) =Cy®CpC F‘; @ FB = F;(U).

We endow C(A, G, B) with its natural |A x B|-query tester. In [DEL™22], it was shown that codes
C(A, G, B) form an LTC if conditions (1a’)—(2") of Theorem [L4 hold (with different contants) and
Ca and C'p have sufficiently large rate.

It is straightforward to see that code Z°(X,F) considered in Theorem [[4] is the line code of
C(A, G, B). Thus, our earlier discussion implies that we can derive the fact that C(A,G, B) is a
good LTC from the fact that Z(X,F) is a good LTC.

In fact, the fact that the line code of C'(A, G, B) is locally testable is already proved implicity
in [DEL"22], and the testability of C(A, G, B) is derived from it (look at Algorithm 1 in [DEL*22],
which is also a correction algorithm for the line code of C'(A,G,B)). Therefore, a variant of
Theorem [[.4] is already implicit in [DEL*22]. Our discussion here is meant to highlight the role of
the line code Z°(X, F) in the proof that C(A, G, B) is locally testable, the fact that the testability
of Z9(X, F) is a consequence of F being a good cosystolic expander in dimension 0, and that this
can be shown using our main theorem.
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1.8 Second Application: A Local Criterion for Local Testablity of 2-Layer Lifted
Codes

In [DDHRZ20], the authors give a criterion for a lifted code with additional structure to be locally
testable. When working in X", the system of sets used to define the lifted code is required to be
embedded in an auxiliary 3-layer system of subsets of [n] = {1,...,n}, which is required to satisfy
some expansion conditions and a global condition on agreement testability.

We apply Theorem to give a simpler, purely local criterion for establishing the local testa-
bility of a lifted code. The “small” codes defining our lifted code are required to be lifted codes
themselves; we call this 2-layered structure, defined below, a 2-layer lifted code. A third layer is
needed to apply our criterion, but not to define the code; it is required in order to be able to talk
about agreement testability for the “small” lifted codes defining our global code.

Agreement Testability. The notion of agreement expansion was first considered in [DK17] and
studied further in [DD19]. Informally, an agreement expander consists of a collection of subsets
S of [n] such that for any finite set ¥ and any ensemble of functions {fs : s — X}scg such that
Islsns' = fs|lsnsr for almost all s,s" € S, there is g : [n] — 3 such that g|s = fs for almost all s € S.
Here, we will consider a more refined version of this notion where each f, is required to be in a
code Cs C ¥% and g comes from C = C'({Cs}ses). In the special case of tensor codes, realized as
lifted codes (Example 2.6)), this already appeared in [DEL"22, Dfn. 2.8] under the name agreement
testability, which we also use here. We give here a simplified version of the definition and refer to
§2. 4 for the general definition.

Let S be a collection of subsets of [n] and let C' = C({Cs}ses) € X" be a lifted code. Suppose
further that we are given a collection T' of 2-element subsets of S such that s s’ # @ for every
{s,s'} € T. The agreement testability of the lifted code C' w.r.t. T' measures how far is an ensemble
of local views {fs € Cs}ses such that fs|sns = fo|sns for almost all {s, s’} € T from being induced
by a single global g € C. Formally, we say that C' = C({Cs}ses) is k-agreement testable w.r.t. T if
for every (fs)ses € [1seq Cs, there is g € C such that

K - #{5 €5 : g|s = fs} < #{{578/} €T : fs|sﬂs’ 7& fs’|sﬁs’}
5] - T '

Two-Layer Lifted Codes. Again, for the sake of simplicity, we give a special case of the general
definition, which can be found in §I0.11

Let n € Nand let ¥ be a finite alphabet. A 2-layer lifted code inside X" is a triple (S, T, {Cjs g }5,5)
consisting of:

o a collection S of subsets of [n];
e a collection T' of two-element subsets of S;
o acode C, o C X% for every {s,s'} € T;
such that:
(1) S covers [n],
(2) for every s € S, the collection Sg:={sNs €S : se€ S and {s,s'} € T} covers s, and

(3) sns #0 for every {s,s'} € T.
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We then associate with (S,T,{C; ¢ }s ) a local lifted code
Cs = C({CS,S’}S’ESS) - 3¢
for every s € S, and a global lifted code

C= O({OS}SES) = O({Os,s’}{s,s’}ET) cxm

The natural tester of C is its natural tester when realized as a lifted code using the codes {Cs}ses.

Local Testability of Two-Layer Lifted Codes. Let (S,T,{C;s}ss) by a two-layer lifted
code in X". Our local criterion for local testability of the lifted code C' = C({Cs}ses) requires an
additional layer of subsets of [n]. Specifically, suppose that we are further given a collection U of
3-element subsets of S such that:

(1) {s,s'},{s,s"},{s,s"} € T for every {s,s,s"} € U;
(2) sns'Ns” £ for every {s,s',s"} € U;
(3) for every {s,s'} € T, the sets of the form s N s’ N s” with {s,s',s"} € U cover sN 5.

In particular, the union of 7', U and {{s}|s € S} U {0} forms a 2-dimensional simplicial complex
denoted X.

Given s € S, let S;:={sNs €S : se S and {s,s'} € T} as before, and let T, denote the set
of pairs {s N s’,s N s"} where {s,s',s"} € U. We say that the system (S,T,U) is lower regular if
for every i € [n], the number of s € S (resp. {s,s'} € T, {s,s',s"} € U) with i € S (resp. i € sN¢/,
i€ snNs Ns”)is independent of i. We say that (S,T,U) is upper regular if for every s € S (resp.
{s,s'} € T, {s,s',s"} € U), the number #s (resp. #(sN '), #(sN s’ N ")) is independent of s
(resp. {s,s'}, {s,s',5"}).

Theorem 1.5 (Simplified; see Theorem [I0.I0). There are constants K, K' > 0 such that the
following hold: Let (S,T,{Cs s }ss) be a two-layer lifted code whose alphabet ¥ is an Fy-vector
space and such that every Cs o is a subspace of 505" Let U and X be as above. Suppose that
(S, T,U) is both lower and upper reqular and satisfies:

(0) For every s,s' € S and i € sN s, there are sg,$1,...,8m € S such that s = sg, s’ = sy,
{s0,81},- s {Sm-1,8m} €T and i € so N -+ N Sp,.

Let € > 0 and suppose in addition that:

(1a) 6(Cs.s) > € for every {s,s'} € T;

(1b) the lifted code Cy = C({Cs.s'})scs,) is e-agreement testable w.r.t. the set T;
(2) Gr(X,) is a (spectral) Ke?-expander for every v € X(0).

Then the natural tester of the lifted code C = C({Cs}ses) € X" has soundness K'e®. Moreover,
writing D = maxgeg |s|, we have §(C) > %5 and C admits a linear-time decoding algorithm for

words that are Kgg -close to C.
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Observe that assumptions (1a)—(2) are all local in the sense that they care only about the
local structure of X and about the small codes s and C . We actually prove a more general
variant of this theorem where no regularity assumptions are necessary and (S, T, U) may be replaced
with a general three-layered system of subsets of [n] organized into a pure 2-dimensional regular
cell complex; see §I0.21 and Theorem 0.8l In this more general setting, one needs to require
that the underlying graph of X and its (1, 1,2)-no-intersection graph are sufficiently good skeleton
expanders.

In order to prove Theorem [[.5], we define a sheaf F on X as follows:

o« F

* res{s,S’}e{s}(f) = flsns's
° I‘eS{S,s’7s/’}<—{s,s’}(f) = f‘sﬂs’ﬂs”-

Condition (0) of Theorem [LF] implies that the 0-cocycle code Z° = Z9(X, F) is precisely the line
code of the lifted code C = C({Cs}scs). Thus, as noted earlier in §I.7] in order to prove that C
is locally testable w.r.t. its natural tester, it is enough to show that Z° is locally testable. To that
end, we apply Theorem or Theorem [[.3l The prerequisites of those theorems can be derived
from conditions (1a)—(2) and Oppenheim’s Trickling Down Theorem [Oppl5, Thm. 4.1], thanks to
the fact that X is simplicial and (S, T,U) is upper and lower regular.

Comparison with [DDHRZ20] As we noted earlier, [DDHRZ2(] also provides a criterion for
a lifted code to be locally testable. Both the main result of [DDHRZ20] and our Theorem
assume that a three-layered system of subsets of [n] is provided, but otherwise, they differ both
in the setting and the assumptions. To state these dlﬁerences, let S,T,U be as above and put
T={sns|s,s’ €T}and U ={sns'Ns"|{s,s,s"} e U

In [DDHRZ20], one starts from small codes C,, C X" for every u € U using which one constructs
bigger lifted codes C; € Xt and C, € X% for every t € T and s € S. The main result of [DDHRZ20]
may now be loosely summarized as saying that C' = C({Cy},c7) € X" is locally testable when the
following conditions are met: (1) each lifted code C; C X! on the layer T has linear distance, (2)
each lifted code Cs C ¥° on the layer S is locally testable w.r.t. its natural tester, (3) the incidence
graph of (T,U) satisfies an expansion condition, and (4) the pair (S,T) satisfies an agreement
expansion condition (for §-ensembles). Note that conditions (3) and (4) concern with the global
structure of the collections S,T,U. By contrast, our criterion for local testability (Theorem [LH)
starts with “bigger” small codes C; C X! on the layer T and replaces requirements (2),(3),(4)
with two local requirements which may loosely be summarized as saying that for every s € S, the
incidence graph of the t € T and v € U contained in s is a good expander, and the lifted code
Cy =C({Cy|t € T,t C s}) C X° is agreement testable.

That said, Theorem [LHlapplies only when the sets .S, T,U may be organized into a 2-dimensional
simplicial complex and satisfy some regularity assumptions. In addition, it requires that the al-
phabet X is an Fy-vector space and the small codes C; o are Fa-linear. No such requirements are

19In [DDHRZ2(], the collections S, T, U, [n] are denoted S, K, T,V .
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imposed in [DDHRZ20]. As we noted earlier, our approach gives a more general version of Theo-
rem [[L5] applying to more general 3-layer collections of subsets of [n]. It requires some additional
global expansion assumptions, but no global agreement testablity as in [DDHRZ20].

1.9 Conclusion

By using the relation between lifted codes and their line codes, we can translate questions about
local testability to statements about cosystolic expansion of sheaves. Our main theorem (Theo-
rem [[.2]) serves as a powerful tool to establish the desired cosystolic expansion.

1.10 Structure of This Paper

The remainder of this paper is structured as follows: Section [2]is preliminary and recalls relevant
facts about expander graphs and error correcting codes, setting some notation along the way.
Section [B] concerns with line codes of lifted codes; in this section, we relate the rate, distance,
testability and decodability of a lifted code and its line code. In Section Ml we recall posets and
introduce additional structure on them that will be needed for this work, e.g., weight functions and
orientation. Sheaves on posets and their cohomology are then discussed in Section [Bl The subject
matter of Section [6]is cocycle codes of sheaves and their relation to cosystolic expansion. Section [1
concerns with no-intersection (hyper)graphs and their skeleton expansion, and introduces the notion
of an intersection profile. We then give simplified versions of our main result in Section 8 The
results of Section Blare applied in Section @ to give examples of good 2-query LTCs, and in Section 10
to give a local criterion for a two-layer lifted code to be locally testable. In Section [I1], we formulate
our main result in its general form (Theorem [[T:2]) and derive the simpler versions of Section [§ from
it. The remaining Sections[I2]and [[3are dedicated to proving the main result — Section [[2lreduces
it to a result about the expansion of (mock) locally minimal cochains (Theorem [[2.8]), which is then
proved in Section I3l

2 Preliminaries

We begin by recalling relevant definitions and facts concerning expander graphs, locally testable
codes, lifted codes and agreement testability.

General Conventions

The set of natural numbers N does not include 0. A ring means a commutative (unital, associative)
ring, and a module means a left module. The group of invertible elements in a ring R is denoted
R*.

A cell complex means a CW complex, or more precisely, its underlying partially ordered set,
which we assume to include a unique empty cell.

2.1 Expander Graphs

Throughout this paper, graphs are finite and allowed to have double edges, but no loops. A simple
graph is a graph with no double edges and a pure graph is a nonempty graph in which every vertex
belongs to some edge.

Given a graph G, we let G(0) denote its set of vertices and G(1) denote it set of edges. We also
use G to denote the set G(0)UG(1). We write v < e to indicate that v is a vertex of the edge e. The
the set of (two) vertices of an edge e € G(1) is denoted €(0), and the set of edges having v € G(1)
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as a vertex is denoted G(1),. We will sometimes abuse the notation and write e = {u,v} to say
that e connects the vertices u and v, even though there may be other edges with that property.

A weight function on a graph G is a function w : G(0) U G(1) — R4; we call (G,w) a weighted
graph and, given A C G, write w(A) = > ,c4w(a). We make no assumptions on w. However,
we will say that w is normalized if w(G(0)) = w(G(1)) = 1 and proper if we moreover have
w(v) = %ZeeG(l)v w(e) for every v € G(0) (which forces G to be pure). A normalized weight
function defines probability measures on G(0) and G(1). It is normalized precisely when the
probability of sampling a vertex v according to w is equal to the probability of getting v by
choosing an edge according to w and then choosing one of its vertices uniformly at random.

Example 2.1. Let G be a graph.
(i) The uniform weight function wy,; : G — Ry assigns every v € G(0) the weight m and

every e € G(1) the weight ﬁ It is defined when G has at least one vertex and one edge, and is

normalized.
(ii) Suppose that G is pure. The natural weight function of G is wpa : G — Ry defined by
1 G|

Wnat(€) = m and Wnat (V) 2G)]

for all e € G(1) and v € G(0). This weight function is proper.

The uniform weight function is not proper in general. When G is a regular graph (i.e. every
vertex belongs to the same number of edges), the natural and uniform weight functions of G
coincide.

All graphs (and also hypergraphs) in this work will carry a weight function, which by default
will be the natural weight function.

Suppose henceforth that (G, w) is a properly weighted graph. The proofs of the following facts
can be found in [FK23d, §2C], for instance.

Let CY(G,R) denote the space of functions f : G(0) — R, and let C(G,R) denote its subspace
of functions satisfying > ,cq (o) f(v) = 0. As usual, the weighted adjacency operator of (G,w) is

A= Agw: C°G,R) — C°G,R) given by

w(e)
2w(v)

(AHw) = >

e€G(0)y

fle—v) Vv € G(0),

where e — v denotes the vertex of e which is different from v. For example, if G is k-regular and w
is its natural weight function, then A is just the usual vertex adjacency operator scaled by %
The operator A : C%(G,R) — CY9(G,R) is diagonalizable. The constant function lg(o) is an
eigenfunction of 4 with eigenvalue 1 and all other eigenvalues lie in the interval [—1,1]. The
subspace C2(G, R) is invariant under A and, given A\ € [—1,1], we call (G,w) a \-expander if all
eigenvalues of A on C(G,R) lie in the interval [—1, \].
We will need the following special case of the Expander Mixing Lemma for weighted graphs.

Proposition 2.2 ([FK23a, Theorem 3.2(ii)]). Let (G, w) be a properly weighted graph, let A C G(0)
and let E(A) denote the set of edges e € G(0) with e(0) C A. If (G,w) is a A\-expander, then

)
w(E(A)) < w(A)? + \w(A).

Weighted graphs satisfying the condition w(E(A4)) < w(A)? 4+ Aw(A) for every A C G(0)
are known as A-skeleton expanders. Thus, every A-expander weighted graph is also a A-skeleton
expander.
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2.2 Conventions about Codes

Let ¥ be a finite alphabet and n € N. In this work, an error correcting code, or a code for short,
with alphabet ¥ and block length n is a nonempty subset C' C X™. We also say that C is a code
inside ™. As usual, the normalized Hamming distance function on X" is denoted dist and is given
by dist(f,g) = % <#{1 € {1,...,n} : fi # ¢;}. When X is an abelian group, the normalized
Hamming norm of f € X" is ||f|| = L #{i € {1,...,n} : f; # 0}, so that dist(f,g) = || f — g|. The
relative distance of the code CoX™ is

5(C) = —A(C) = max{dist(f.9) | f.9 € C, [ # 9}

and its rate is

7(C) = logsn| [C].

The distance of f is n-06(C). Given n € [0,1] and f € X" We say that f is n-close to C if
dist(f,C') < n and n-far from C if dist(f,C') > n is smaller than 7.

We will often think of C' C X" as being part of a family of codes {C; C X"}, with block
length tending to oo, and (abusing the notation) sometimes ascribe properties of the entire family
{C; € ¥M}ien to C. In this case, we will say that C' (or the family {C; C X" },cn) is good if there
are p,0 > 0 such that each r(C;) > p and 6(C;) > 6 for all i. When the latter holds, we also say
that C has linear distance (as a function of the block length n).

Let n € [0,1]. A decoding algorithm for words that are n-close to C' is an algorithm which takes
as input some f € X" with dist(f,C) < n and outputs some f’ € C with dist(f, f’) < n; this f’
is unique when n < %5 (C). The time complexity of a decoding algorithm will always be measure
w.r.t. the block length n; ideally, it should be linear.

Remark 2.3 (Codes with Varying Alphabets). We can relax the definition of an error correcting
code by considering words in which each letter comes from a different alphabet, i.e., the i-th letter
of a word would come from an alphabet ¥; depending on the position i. A code would then be a
nonempty subset C' of [[7*; ¥;. All the notions just defined extend verbatim to such generalized
codes.

The notation of a locally testable code (LTC) was recalled in §I.5

2.3 Lifted Codes

Let ¥ be a finite alphabet and n € N. Recall that a lifted code, or a Tanner code, is determined
by specifying a collection S of subsets of [n] := {1,...,n} with [n] = U,egs and a code Cs C ¥*
for every s € S. Typically, all the sets in S will have the same size k = O(1) (as n grows) and
every i € [n] will be contained in D = O(1) sets from S; the number of sets in S will therefore be

%n = O(n). However, these extra assumptions are not necessary. The lifted code defined by the

{OS}SES is
C=C{Cs}ses) :={9geX": glseCsforal seS}Cx"

The codes {C;}ses are often called the small codes defining C.
The description of C' C X" as a lifted code also gives rise to a natural tester: Given g € X",
choose s € S uniformly at random, probe g(i) for every i € s, and accept g if and only if g|s € Cs.
By replacing [n] with an arbitrary set M, we can study lifted codes inside ¥, rather than X"
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2.4 Agreement Testability

Informally, an agreement expander consists of a collection S of subsets of [n] such that for any
finite set ¥ and any ensemble of functions {fs : s — X}seg such that fs|sns = fo|sns’ for almost all
s,s" € S, there is g : [n] — X such that g|s = fs for almost all s € S; see [DK17] and [DD19]. For
this work, we need to consider a refinement of this notion where each f; is required to be in a code
Cs C X% and the globally defined function g : [n] — Xis required to be in the associated lifted code
C = C({Cs}ses) € X™. This notion already appeared in [DELT22, Dfn. 2.8] in the special case
of tensor codes, realized as lifted codes as in Example below, and under the name agreement
testability, which use as well.

The formal definition of agreement testability requires us to state which pairs (s,s') € S x S
are considered and in what probability. It is convenient to encode this information in a normalized
weighted graph whose vertices are in bijection with S and whose edges are labelled by subsets of

[n].

Definition 2.4 (Agreement Tester). Let C' = C({Cs}ses) € X" be a lifted code as in §2.3. An
agreement tester for the lifted code C' consists of a normalized weighted graph (G,w) and a function
¢: G — P([n]) assigning every vertexr and edge a subset of [n] such that the following hold:

(1) ¢ restricts to a bijection between G(0) and S;
(2) for every edge e € G(1) and u € e(0), we have ¢(e) C l(u).

In this case, we also say that ({Cs}ses, G,w, L) is an agreement tester. This agreement tester is
said to have soundness > 0 if for every ensemble (fs)ses € [lseg Cs, there is g € C such that

kow({v € G(0) 1 glyw) # fow}) S w{e={u,v} € G(1) : fowlee) # Fow)lee)H)-
We will also say that ({Cs}ses) is k-agreement testable w.r.t. the labelled weighted graph (G,w,?).

Example 2.5. Any lifted code {Cs}scs can be naively enriched into an agreement tester as follows.
Construct G by taking the vertex set to be S, and then connect a pair s, s’ € S by an edge if sNs’ # 0,
or if s N s’ has some desired cardinality. The labelling ¢ then maps every s € G(0) to itself and
every edge {s,s'} to sNs’. The weight function w can be taken to be the uniform one, for instance.

Example 2.6 (Agreement Testability of Tensor Codes). Let F be a finite field. Let ¢ C Flml
and Cy C F[2l be linear codes. The tensor code Cy ® Cs (all tensors are over F) is the code
C C My, xny(F) = FlmIx[2] consisting of the matrices m € My, xn, (F) such that every row of
m lies in Cy and every column of m lies in C;. In [DELT22, Definition 2.8], the tensor code
C = C; ® Cy C Flmlx[n2l ig gaid to be a k-agreement testabl if for every choice of codewords
{f; € Ci}jens) and {f] € Ca}icn,), there is a matrix m € C such that

L. | il fiAnm)}  #5€lnal 2 f; # ¢(m)} - A0, J) € [na] X [na] = fij # fa}

2711 2712 ning

(Here, rj(m) is the i-th row of m and c¢;(m) is the j-column of m.) Informally, this means that if
the matrix whose rows are the {f/}; and the matrix whose columns are the {f;}; agree in almost
all entries, then some matrix in C7 ® Cy agrees almost everywhere with both of these matrices.
We can recover k-agreement testablity for C' = C1 ® C5 as a special case of Definition 241 First
we realize C' = C} ® Cy C FIMIx[2l a5 g lifted code by taking S = {s1,...,8p,, 8], , Sny }» Where

" Actually, what we define here is 5-agreement testability in the setting of [DEL" 22, Definition 2.8].
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si = {i} x [n2) and &} = [m] x {j}, and putting Cs, = {(f;)(i)efi}xna) | f € Co} S FUIx[2]
and C’S; = {(f)ajpemxyy | f € C1} € Fln]x{5} for all 4 and j. Now choose the graph G to be
the complete biparatite graph on {si,..., sy, } and {s],---, s} endowed with its natural weight
function. The labelling £ maps every vertex to itself, and every edge {s;, s’} to s;Ns} = {(,5)}. It
is routine (and a recommend exercise for newcomers) to check that ({Cs}ses, G,¥) has soundness
k if and only if Cy ® C9 is k-agreement testable.

3 Lifted Codes and Their Line Codes

In this section, we recall the construction of the (so-called) line code of a lifted code. We then
establish relations between the rate, distance, testability and decodability of these codes. The
results of this section will be important to the applications our main result.

Let C' C X" be a lifted code determined by small codes {Cs}scs (§2.3). Suppose moreover that
all the small codes C have the same cardinality o and choose a set ¥/ of that cardinality. The line
code of C = C({Cs}ses) is a code L = L({Cs}ses) € X'° with alphabet ¥/ constructed as follows:
For every s € S, choose a bijection Cs = ¥'. We use these bijections to freely identify [],cqCs
with /9. We then define L C ¥’ to be the code consisting of the (words in ¥’ corresponding to)
ensembles f = (fs)ses € [lseg Cs satisfying fs|sns = fs|sns for all s,s" € S. That is,

L= L({Cs}SGS) = {(fs)sES € H Cs - fs|sﬂs’ = fs’|sﬂs’ for all 875/ € S}
seS

Since the sets in S cover [n] = {1,...,n}, we have a bijection C' — L given by g — (gls)ses-

Remark 3.1. By allowing codes with a varying alphabet, see Remark 2.3, we may define the line
code of C'({Cs}ses) even when the Cy have varying cardinalities — simply let 3 = C and define
L as a subset of [[,cg 3. With the exception of Proposition [3.6](i), the results of this section can
be adapted in a straightforward manner to this more general setting.

Example 3.2 (Line Codes of Reed—Miiller Codes). Let F be a finite field of cardinality ¢ and
characteristic p and let 0 < d < n. Let V,, denote an n-dimension F-vector space, e.g., F". Recall
that the Reed-Miiller code of degree-d functions on V;, is the set C = RM(n, d, ¢) C F"» for functions
g : V,, = T having degree at most d. It is known [KR06, Thm. 2] that when d < ¢(1 — %) —1,a
function ¢ : V;; — [ has degree d or less if and only if its restriction to every 1-dimensional affine
subspace of V,, — called a line for short — is also of degree d or less. Assuming this holds, we
can describe RM(n, d, q) as a lifted code C'({Cs}ses): Let S be the set of lines in V,,, and for every
s € 5, let Cs be the Reed—Miiller code of degree-d functions on the line s. By identifying each line
s in V,, with V4 2 F, we can identify each Cy with the Reed—Miiller code RM(1,d,q). Thus, the
line code L of RM(n,d, q), realized as a lifted code as just explained, has alphabet ¥’ = RM(1, d, q)
and it consists of the ensembles (fs)ses € RM(1,d, q)° such that fg|sne = fo|sns for any two lines
s,s" in V;,. This example is the reason why L({Cs}ses) is called a line code in general.

Notation 3.3. For the remainder of this section, fix a lifted code C' = C({Cs}ses) C X" with
block length n and alphabet .. Suppose moreover that each C is identified with another alphabet
Y/, and let L = L({Cs}ses) € ¥'° be the the associated line code. We will make repeated use of
the following quantities associated to the family S C P([n]):

o kmin = mingeg ’3’7

o kmax = maXses |8|7
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o Duin = minep, #{s € S : i € s},
o Diax = MaX;ey #1{s €5 : i € s}.

Thus, every s € S contains between ki, and kp.x elements, and every i € [n] is contained in at
least Dpyin and at most Dyax sets from S. We encourage the reader think of knin, kmax, Dmin, Pmax
as being ©(1) as n grows. This implies that |S| = O(n), as the following lemma shows.

Lemma 3.4. With notation as above, ?minn <9 < l,zm‘”‘n.

max min

Proof. The right inequality holds because kmin|S| < #{(i,s) € [n] X S : i € s} < nDpax. The left
inequality is shown similarly. O

The following lemma will be used repeatedly.

Lemma 3.5. With notation as in Notation[33, let gg € C' correspond to fo = (gols)ses € L. Let
geC,put Sy ={s €S : gls € Cs} and define f € [[,c5Cs by letting fs = gls if g|s € Cs and
otherwise choosing fs € Cs arbitrarily. Then

Dminkmin
Dmax kmax

Proof. Write A={i € [n] : g; # 9o}, B={s€ S : g|s # gols} and I = {(i,s) € Ax B : i € s}.

Every i € A has between Dy, and Dyax preimages under the first projection pr; : I — A, so

Dj,ax‘[ | < 4] < ﬁ]l |. Every s € B has between 1 and kpyax preimages under the second

Dmax kmax

Dmin dlSt(g7 90)

. S, .
dist(g, go) — % < dist(f, fo) <

projection pry : I — B, so ﬁm < |B| < |I|. Together, both inequalities imply that

D,
== |A| < |B| < DiaxlAl.

kmax

Observe that if fs # fo s, then we must have g|s # go|s (otherwise g|s € Cs and then f; = g|s =
90|s = fO,s)- Thus,

diSt(f, fO) _ #{3 €S ‘S.‘fs 7é fO,s} < % <

Dmax’A‘ . Dnaxkmax
—Dm‘“n Din

max

dlSt(g7 90)7

where in the second inequality we used Lemma B4l Next, observe that if g|s # go|s and s ¢ S,
then fs # fos. (Indeed, g|s = fs because s ¢ Sgy so fs = gls # gols = fO,s-) Thus,

D .

: #{3 €S fs 7’é fO s} ‘B’ _ ’Sg’ kmm|A| ‘Sg’ Diinkmin . ‘Sg’
dist = 22 > > fmax _ Zg9l  Tminmin qiqt _ Hal
1S (f> fO) ‘S‘ = ’S’ = D:::(n ’S’ Dmakaax 1S (9,90) ’S’
This proves the lemma. O

The following proposition relates the rate and distance of C' and L; this is fairly standard.

Proposition 3.6. Using Notation [3.3, we have:

(’l) T(C) — 'YlOg‘E,IT(L)7 where = ‘SI c [Dmin Dmax]_

Tog [] € T Fomnin

(i1) Do 0(L) < 6(0) < Buspuass(L).

kaax
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Proof. (i) Recall that we have a bijection g — (g|s)ses : C — L. Thus,

log | L] log |C] log |X|
r(L) = o= - = —r(O).
[STlog [ ~ ynlog [/ ~ ylog Y]

That v € [D min jimax] follows from Lemma 3.4
(ii) Let f, f’ € L and let g, ¢’ be the corresponding codewords in C. Applying Lemma [3.5] with
our g and go = ¢’ (note that S, = 0) gives

Dminkmin . . Dmakaax .
m dlSt(g, g,) S dlSt(f, f/) S ﬁ dlSt(g, g,)

This implies readily that ¢6(L) <4(0) < %’1“72'“&"5@). O

kmax min/vmin

The next proposition says that if the line code L has a decoding algorithm, then C also has a
decoding algorithm of a similar complexity. We do not know whether the converse holds in general,
but a partial converse will be given in Theorem BIIJii) below.

Proposition 3.7. With notation as in Notation [33, let n € [0, 36(L)] and suppose that the line
code L has a decoding algorithm for words that are n-close to L. Then C has a decoding algorithm
for words that are DD¢77 close to C. Provided that kmax = O(1) (as a function of n), its time

complexity is O(n + \S\) plus the time complexity of the decoding algorithm for L.

Proof. Consider the following algorithm, which takes g € X" and outputs ¢’ € C.
(1) For every s € S: If g|s € Cs, set fs = g|s; otherwise, let fs be some element of Cs.
(2) Apply the decoding algorithm of L to f = (fs)ses € [Ise5 Cs- Let f’ be the output.
(3) The ensemble f' = (fl)scs € L determines an element ¢’ € C. Output ¢'.

We claim that this algorithm has the required properties.

The time complexity is clearly the one stated in the proposition.

Suppose now that the input g of the algorithm satisfies dist(g,C) < Diﬁn and choose
go € C such that dist(g, go) = dist(g,C). We need to show that the output ¢’ of the algorithm is
go. Let fg € L correspond to ¢gg. By Lemma, [3.5]

Dpaxk
dlSt(fa fO) < —e e dlSt(gv 90) <n.
Dmin
Thus, applying the decoding algorithm of L to f returns fy. Consequently f’ = fy and the algorithm
outputs gg, as required. O

We now turn to consider the testability of the line code L by a 2-query tester. To that end, let
G be a graph equipped with a labelling ¢ : G — P([n]) such that ¢ restrict to a bijection G(0) — S
and £(v) D £(e) for every e € G(1) with vertex v.

Example 3.8. We can take G to be the intersection graph of S: The vertex set of G is S and
8,8 € S = G(0) are connected an edge precisely when sNs’ # (. The labelling ¢ : G — P([n]) then
maps every s € G(0) to itself and every edge {s,s'} to sNs'.

Having fixed a labelled graph (G, ) as above, we define a 2-query tester Ty, for L C Y5 as
follows: Given f = (fs)ses € X%, choose an edge e = {u,v} in G uniformly at random, probe o
and f((v)a and accept f if and only if fﬁ(u)|€(e) = fﬁ(v) |€(e)'
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Remark 3.9. Give G the uniform weight function wyy;. Then ({Cs}ses, G, Wyni, £) is an agreement
tester (§2.4]) and it has soundness p > 0 if and only if the tester Tz, for the code L C Y5 has
soundness p. This continues to hold if we give G any normalized weight function w which is uniform
on G(0), provided that in T, we choose e € G(1) according to w (rather than uniformly).

We now show that if the tester T ¢ of L has soundness p, then the natural tester of the lifted
code C' = C({Cs})ses has soundness Q(u). We will apply this key observation to some particular
lifted codes and their line codes later on.

Theorem 3.10. Keep Notation[3.3, let (G, ) be a labelled graph as above, and suppose that every

vertex in G belongs to at least dmin and at most dynax edges. If the tester T, for L C Y% has

k 1 DI I
soundness (1 (u > 0), then the natural tester of C' has soundness pounpmin u+2dmaxd

1
Proof. We give G the uniform weight function w := wyy,; and identify G(0) with S via ¢.
Let g€ X" and Sy = {s € S : g|s € Cs}. The probability that the natural tester of C rejects g

is %, so we need to show that

@ > kmianin ) 1%
|S| o kmaxDmax ,U+2dmaxd !

min

- dist(g, C). (3.1)
Define f as in Lemma B35 choose fy € L such that dist(f, fo) = dist(f, L) and let g9 € C be

the codeword corresponding to fo. By Lemma B3l we have

Dmakaax(‘s ’
Dmmkmln ‘S‘

|55

+d15t(f fO)) M( ’S’

Dmmkmm + dlSt(f’ )) (32)

dist(g, go) <

Next, observe that the probability that Tz ¢ rejects f is at most

|G s| max . dmax@
(U G(1)s) Z IG(1)] Z Ldwin|S|  dmin |S]°

s€Sy s€Sy s€Sy 2

(Recall that we identified G(0) with S and that G(1)s is the set of edges having s as a vertex.)
Since T has soundness y, it follows that

2dmax @

dist(f, L) < .
(f ) Ndmin ’S’

Plugging this into (B2) gives

DmaX max 2 max
dist(g. €) < dist(g.go) < ek (g | Ha, |5

Rearranging gives the desired conclusion (31]). O

We finish this section with giving a converse to Theorem B.I0l when G is the intersection graph
of S, as well as a partial converse to Proposition 3.7 This will not be needed in the sequel. We do
not know if there is a converse to Theorem B.I0l which holds in general.

Theorem 3.11. Keep Notation[Z3, let (G,{) be the intersection graph of the set S (Example [3.8)
and let dyax (Tesp. dmin) denote the maximal (resp. minimal) degree of a vertex in G. Suppose
further that the natural tester of the lifted code C has a soundness > 0. Then:
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) DminKmi
i) The tester Ty for L C X' has soundness minFminft )
() G’Z f o dmaxD?naxk?nax(M""Dmilanaxk?max)

(7i) If C has a decoding algorithm for words that are n-close to C' (n > 0), then L has a decoding
algorithm for words that are n'-close to L, where

_ -1
77/ — min dmianinkmin:u . 2dr2naXDr2naxkr2nax (,u + Dmilanaxk:maX) +1 5(L) )
2d2. D2 k2 ’ Ayin DminFmin it

max max’"max

Its time complexity is O(|G(1)| + n) plus the time complexity of the decoding algorithm of C.

Proof. Again, we identify G(0) with S via the labelling ¢. We also write E = G(1).
(i) Let f € [[,e5Cs, and let Ef ={e ={s,5'} € E : fslsns = fs'|sns'}- We need to show that

|Ef| > Dminkmin:u'
‘E’ N dmaLxD2 k2 (,u + Dg—lilanakaax)

max’"'max

dist(f, L).

Let Sp = Ucer, €(0) (€(0) is the set of vertices of e). Then

1S¢l o 20E¢] _ 2| |Ey ||

- dmax N
S|~ 1S S| 1Bl B

Next, put M = J,cg, s (so that M C [n]). Then

% < kmax|sf| — k |Sf|@ < dmaxl]zmakaax |Ef|

n - n - maxm n — in |E|7

where in the second inequality we used Lemma 3.4

Let ¢ € [n] — M and suppose that s,s" € S satisfy ¢ € s Ns’. Then {s,s'} € E — Ef (here we
need G to be the intersection graph of ), and thus (fs); = (fs):. This allows us to define g € X"
as follows: For i € [n] — M, choose some s € S with i € s and define g; = (fs);; this is independent
of s by what we just showed. For i € M, choose g; € 3 arbitrarily.

Let Sy ={s €S : g|s ¢ Cs}. Observe that every s € S with s N M = () satisfies s ¢ S, because
gls = fs € Cs. Otherwise stated, S; C {s € S : sN M # 0}. Thus,

|Sg| _ Dmax|M] M| n Amax D2 sk ax |1 E]
S — Dmax S max’'"max (3‘3)
‘S‘ ‘S‘ n ’S’ Dminkmin ’E‘

(we used Lemma [3.4] again). The number % is also the probability that the natural tester of C'

rejects g. Thus, there exists gy € C such that

dlSt(g 90) < M_l . @ < dmaXDrznan?nax |Ef| )
’ B |S| - Dminkmin,u |E|

Let fy € L denote the codeword corresponding to gg.
Define f' € ¥'9 by letting f! = gls if g|s € Cs, and choosing f. arbitrarily otherwise. By
Lemma [3.5],

Diaxkmax dmaXDEﬂaxkg’lax |Ef|

Diaxk
o (F ) < ZmaxFmax . < :
dist(f’, fo) < dist(g, 9o) < fDmin - Dminkmin | E|

Dmin
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Note also that if s € S satisfies s N M = (), then g|; = fs € Cs, so fs = f.. This means that
{seS: fs £ fl}C{seS:snM+# 0}, and together with (B3], we get

Dmax|M| < dmaxD2 k2 |Ef|

. n < max Vmax )
dlSt(f’ f ) o |S| o Dminkmin |E|
It follows that
dumax D2, K2 Dinackma - | Bl
. ) < di < di / . / < Ymax ‘max Vmax (q max max f ]
dlSt(fv ) = dlSt(fv fO) = dlSt(f> f ) + dlSt(f 7f0) = Dmmkmin ( + NDmin ) |E|

Rearranging gives the desired conclusion.
(ii) Consider the following algorithm taking f € [[,cg Cs and outputing fo € L:

(1) Define E¢, M, g as in the proof of (i).

(2) Apply the decoding algorithm of C' to g; let go denote the output.
eturn the codeword fy € L corresponding to go.

3) R he cod dfoel d

It clearly has the time complexity claimed in the theorem. It remains to show that it decodes f if
dist(f, L) < n/.

Let fi € L such that dist(f, f1) = dist(f,L) < . Let T = {s € S : fs # fis}. Then
|T| < 7'|S]. Note that any e € {s,s'} € E with s,s' ¢ T does not lie in Ef because fq|sns =
f1,slsns' = fi,s'|sns’ = fo'|sns’- It follows that every e € Ey has a vertex in 7. Thus,

|Ef| < |T|dmax :d @@ 2dmax7’]l
|E| B |E| maX|E| |S| dmin

As shown in the proof of (i),

Amax D2 k2 | By 2d%, D2

k2 /
max Vmax max’maxFmax’] <

Dminkmin,u ‘E’ dmianinkminN =1

dist(g, go) <

This means that the decoding algorithm of C' will work for g and return gy. We also observed in
the proof of (i) that

diSt(f fo) < dmangnan'?nax(,u + Dn_’lilanakaax) ‘Ef‘
7 N l)mink’min,u |E|

202 0 D2, k2 o (1 + Dt Dinaxckimax)
max-— max''max min -~ maxviax < 5 L) — /'
= dmianinkminN = ( ) K
Thus, dist(fo, f1) <7 4+ 6(L) —n' = §(L), so fo = f1, and the algorithm returns f;. O

4 Graded Partially Ordered Sets

Recall that a partially ordered set, or a poset for short, is a set P equipped with a transitive anti-
reflexive relation <. We then write a < b to denote that a < b or a = b, and a < b to denote that
a < b and there no ¢ € X with a < ¢ < b. Every subset of a poset X will also be viewed as a poset
by giving it the partial order inherited from X. If not indicated otherwise, all posets are finite.

27



4.1 Graded Posets

Definition 4.1 (Graded Poset). A graded poset is a poset X together with a dimension functz'o
dim = dimy : X — Z such that x < y implies dimx < dimy and x <y implies dimz + 1 = dimy
for all x,y € x93 m this case, we write

X)) ={x e X|dimz =i}
for all i € Z and define the dimension of X to be dim X :=sup{i € Z : X (i) # 0}.

Beware that a subset of a graded poset is not a graded poset in general.
Motivated by examples of geometric nature, we call the elements of X (i) the i-faces of X. Given
a face x € X, a subface of x is a y € X satisfying y < x. We further write

a(i) ={y € X(i) : y < a}

and call elements of x(i) i-faces of . The set of faces y € X having = as a face is denoted
X, :={y € X : y>x}. More generally, for every A C X, we write

Ay ={a€A:a>uzx}

In particular, X (i), is the set of i-faces of X having = as a subface. Finally, we write X (<i) for
the graded subposet |;<; X ().

Example 4.2. (i) Finite simplicial complexes and cube complexes are naturally graded posets.
Their dimension function assigns every face its geometric dimension with the convention that the
empty face has dimension —1.

(ii) Generalizing (i), the (closed) faces of a regular cell complex (also called a regular CW
complex) form a graded poset w.r.t. inclusion of faces; see [ABO8, Apx. A.2] for the definition.
We follow the convention that a cell complex must includes a unique empty face of dimension
—1. The posets of regular cell complexes can be characterized combinatorially [Bj684, Prp. 3.1],
so henceforth, a regular cell complex, we will mean the poset of faces of a regular cell complex
(including the empty face).

(iii) Let F be a finite field and n,d € N. Let AGg,(FF) denote all affine subspaces of F" of
dimension d or less together with the set (). Then AGg,,(F) together with the containment relation
is a poset known as the affine Grassmannian of d-spaces in F". It can be made into a graded
poset by setting the dimension of V' € AGgy,(F) to be its ordinary F-dimension if V' # () and —1
otherwise.

Example 4.3 (Viewing Hypergraphs as Graded Posets). A (finite) hypergraph X (possibly with
multiple hyperedges) is nothing but a graded poset X concentrated in degrees 0 and 1, i.e., a poset
such that X (i) = 0 for all 4 # 0, 1. Indeed, think of the O-faces are the vertices of X, the 1-faces as
the hyperedges of X and the relation < as the incidence relation between vertices and hyperedges.
In particular, we shall freely view graphs are graded posets concentrated in degrees 0 and 1

12Als0 called a rank function.

13Some texts impose additional assumptions, e.g., the requirement that X admits an element )x (necessarily
unique) satisfying dim@x = —1 and @x < z for every x € X. This forces dimz > 0 for every z € X — {fx }.

1 According to our conventions, simple graphs and 1-dimensional simplicial complexes are not exactly the same
thing, the difference being that a 1-dimensionsal simplicial complex must include an empty face of dimension —1
while a graph cannot include such a face.
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Example 4.4 (Opposite Graded Poset). Let X be a graded poset. The opposite graded poset
of X is the set X°P = {z°P |z € X} endowed with the relation z°P? < y°? <= y < z and the
dimension function dim(z°?) = — dim x.

Definition 4.5 (Pure Graded Poset, d-Poset). Let d € NU{0}. A graded poset X is said to be
pure of dimension d if its nonempty and every face of x is a subface of a d-face; it is said to be
pure if it is pure for some d € NU{0}. We say that X is a d-poset if it is pure of dimension d and
in addition, there is an element Ox € X satisfying dim0x = —1 and Ox <z for all z € X.

When X is a d-poset, the face ()x is unique. We call it the empty face of X and denote it by ()
when X is clear from the context.

The posets in Example are examples d-posets when they are pure. A graph G is pure in the
sense of §2.T]if and only if it is a pure poset of dimension 1 (but it is never a 1-poset; Example [.3]).

If X is a d-poset, then every subset A C X has a lower bound. Let L be the set of lower bounds
of A. As usual, an infimum of A is a maximal member L. The set of infima of A is denoted

Inf A.

This set is often a singleton, e.g., when X is a regular cell complex.

4.2 Weighted Posets

Definition 4.6 (Weighted Poset). A weighted poset is a pair (X,w) where X is a poset and
w: X — Ry. In this case, for any A C X, we let w(A) =3 ,caw(a). We say that w or (X,w) is
normalized if w(X(i)) =1 for all i € Z with X (i) # 0.

Definition 4.7 (Properly Weighted Poset). A properly weighted poset is a weighted graded poset
(X,w) such that

(1) X is pure of dimension d for some (necessarily unique) d > 0,

(2) w(X(d)) =1, and

3

(3) w(z) =X yex(@)yy>e % foralli € Z and x € X ().
In this case, we also say that w is a proper weight function on X.

It follows readily from the definition that if X is a properly weighted poset of dimension d and
x is an i-face of X, then w(x) is the probability of getting = by choosing a d-face y of X at random
according to w| x(d) and then choose an i-face of y uniformly at random. Thus, a properly weighted
poset is also normalized.

Following Example [43], a (properly) weighted hypergraph means a (properly) weighted graded
poset (X, w) concentrated in degrees 0 and 1. In the case of graphs, this agrees with the notion of
a properly weighted graph from §2.11

Example 4.8. (i) Let X be a pure poset of dimension d. The natural weight function on X is the
weight function wyat : X — R4 defined by

) =

yeX(d)y>x |y(Z

The natural weight function is always proper.
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(ii) Let X be an poset. The uniform weight function on X is weight function wyy; : X — Ry

defined by .

~ X))

The uniform weight function is normalized, but not always proper.

wuni(x)

4.3 Links
Definition 4.9 (Link in Graded Poset). Let X be a graded poset and let z € X. The link of X at

z 18

X,={zxe X : x>z}
viewed as a subposet of X, and endowed with the dimension function given by dimx, (z) = dimx x —
dimy z — 1.

We will abbreviate dimy, to dim, when there is no risk of confusion.

Example 4.10. Let X be a simplicial complex and let z € X. The link of X in z is usually defined
to be the poset X, :={y € X : yUz € X and y Nz = 0} which is also a simplicial complex; see
[ABO&, Dfn. A.19], for instance. While our X, is different from X, in general, we have a graded
poset isomorphism X, — X, given by y — y U 2, so X, may be though of the usual link of X at z.

When the graded poset X is pure of dimension d and z is an i-face of X, the link X, is a graded
(d — dim z — 1)-poset with ()x, = 2. Moreover, every proper weight function w : X — R, induces
a proper weight function on w, : X, — R defined by

For details about the ratio between w and w,, see Lemma .17 below.

When X is a d-poset, a proper link of X means a link X, with z # ()x. For a proper link X,
we have dim X, < dim X, whereas Xy, = X.

4.4 Face Counting Constants and Lower-Regular Posets

Throughout, let X be a graded poset.

Given integers i < j < k, we let F/%(X) (resp. ZHJHE(X )) denote the maximal (resp. minimal)
possible number of j-faces living between an i-face and a k-face that are incident in X. Formally,
if there exist € X (i) and z € X (k) with 2 < z, define

(X)) =max{#{y € X(j) : e <y <z}|z e X(i), z€ X(k), v < z},
PR(X) =min{#{y € X(j) : s <y <z}|w € X(i), z € X(k), x < z}.

Otherwise, set F5% = anj“ﬁ = 0. When X is a d-poset and i = —1, the number F7%(X) (resp.

FZ“;IE(X )) is the maximal (resp. minimal) possible number of j-faces contained in a k-face of X,

and we abbreviate
FRX(X) = FU5p(X)  and  FRN(X) = U7 (X).

Once X is clear from the context, we will drop it from the notation, writing just % and ZH]“E
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Lemma 4.11. Let X be a graded poset. Suppose that i < j < k < { are integers. Then

max pmax -, min yrmin

min 7rmin max Fpmax
< E7k7£ and i7j7£ j7k7z - i7k7£ imj’k.

i7j7£ j7k7£ - ivjyk
Proof. Let u € X (i) and z € X (¢) be incident; if there are no such u and z then both sides of both
inequalities evaluate to 0. Write [u, z](j) for the set of j-faces of X lying between u and z. Then

HESVESD DD DER LD DI DI S S avre

z€[u,z](j) y€(z,z] (k) y€[u,2](k) z€lu,y](4)
This proves the first inequality. The second inequality is shown similarly. O

Definition 4.12 (Lower-Regular Graded Poset). A graded poset X is called lower-regular if for
all integers i < j < k, we have F™¥ = F™  [n this case, we write F; ;i for both quantities (and

Z"j7k - i7j7k.
Fjj = F_y )1

Lower-regular graded posets are both common and better behaved than general graded posets.
For such posets, the inequalities of Lemma [Tl become an equality: F; ; ¢F ke = FipoFijk

Example 4.13. Simplicial complexes, cube complexes and the affine Grassmannian AGg,,(F) are
lower regular graded posets. For a simplicial complex of dimension d, we have F; ;. = (';:ZZ) if
—1<i<j<k<dand F; ;=0 otherwise.

Definition 4.14 (Lower-Irregularity of a d-Poset). Let X be a d-poset and let —1 <i < j <k <d
be integers. The the (i, j, k)-lower reqularity of X is

F-ma]i‘(X)
L-7 k= L',',k(X) — bR
T F(X)

and we abbreviate L_y jj to Lj; . The lower-irreqularity of X is

L(X) = L; j 1(X).

max
—1<i<j<k<d
Note that L; j (X) is well-defined because the assumption that X is a d-poset guarantees that
FZ“;IE > 1. The reason is that every face of X contains in ) x (of dimension —1) and is contained some
d-face, so every pair of incident faces in X is a part of a chain of faces ) = x_1 < xg <21 < -+ < 24
with dim xz, = £ for all /.
The lower-irregularity of X measures how far X is from being lower-regular. We always have

L(X) > 1 and equality holds if and only if X is lower-regular.

We now consider properly weighted d-posets (X, w). The following fundamental lemmas use
the constants er;a];c and FZH;E to relate the weights of subsets of X and its links. They will be
used repeatedly later on. Note that the inequalities in the lemmas become equalities when X is
lower-regular.

Lemma 4.15. Let (X,w) a properly weighted d-poset, let —1 <i < j <d and let z € X(i). Then

FRab _ w(X():) _ FaE
Fj%ax a w(z) a F;fgn

5 Caution: This condition is stronger then the lower regularity considered in [KT23].
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Proof. We have

WG = 3w = 2 ) \y()y 2 2 %)\

yEX(d), 2EX(j)m<z<y ly(7)

2€X(J)2 2€X(5) yeX(d)o
C oy L) g RIER wl) RINRN
T exw. WOl T L. Bt @) Ft '
This gives the right inequality. The left inequality is similar. O

Lemma 4.16. Let (X,w) a weighted d-poset, let —1 < i < j <d and let ) # A C X(j). Then

ZzeX( yw (AZ)

min ? ma
Rt s =@ — =ha

Proof. We have

2w = ), D w@ =) ) w@) <) Fjuw) = Fiw(A).

z€X (i) z€X (i) TEA, r€A z€x(4) €A

This gives the right inequality. The left inequality is similar. O

Lemma 4.17. Let (X,w) a properly weighted d-poset, let —1 < i < j < d, let z € X (i) and let
x € X(j),. Then

X(d -1 F;yndln < ’LUZ(.Z') < X(d -1 E]%ax
WD oy = ey = DD P

Proof. We have

max

N w(y) wly)  Fjd
wila) = 2 WX (D)0 wa(X(d)z)me lv(7)]

yeX(d)e yEX (d) i,5,d
Fnzlax w y Fnzlax
=w(X(d):)" S D O w(X(d)2) " - i w(@).
This gives the right inequality. The left inequality is similar. U

Corollary 4.18. Let (X,w) a properly weighted d-poset, let —1 <1i < d and let z € X(i). Then
w(X()) _ o w(X(d).)

max — ( ) S min
i,d ’FLd

Proof. Apply Lemma [£17] with = z and observe that w,(z) = 1 and FZHZIE = =1 O

Corollary 4.19. Let (X, w) be a properly weighted lower-reqular d-poset and let 0 < j < d. Then
(X(gj),wlw(gj)) s a properly weighted lower reqular j-poset. In particular, for every —1 <i < j
and x € X (i), we have
wly
w(zr) = Z o] wly)
vexC, @
Proof. Let i € {—1,...,j} and = € X (). By Lemma [LI5] and the lower-regularity of X, we have
w(z) = P w(X(j)z). By Lemma [£11] the right hand size equals % = 2 yex()s r”%)‘, S0

F; %7, dF i,d
we proved the equality in the corollary. All other assertions are now straightforward. O

Remark 4.20. Corollary A.19 implies that if (X, w) is a properly weighted lower-regular poset,
then w is a standard weight function in the sense of [KT23].
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4.5 Degree and Upper-Regular Posets

Again, let X be a graded poset. Given integers i < j such that X has an i-face incident to a
j-face, the maximal (resp. minimal) (i, j)-degree of X is largest (respect. smallest) possible number
of j-faces containing an i-face in X. The maximal (i, j)-degree and minimal (i, j)-degree of X are
denoted

DP*(X) and  DP™MX),

respectively. If no i-face in X is incident to a j-face, we set D’#*(X) = Dlm’jin(X ) =0. When X is

clear from the context, we shall simply write D and Dlmd-in.

Definition 4.21 (Upper-Regular Graded Poset). A graded poset X is called upper regular if
DP™(X) = D™(X) for all integers i < j.

Definition 4.22 (Upper-Irregularity of a d-Poset). Let X be a d-poset. For integers —1 < i < j < d,
then (i, 7)-upper irreqularity of X 1is

Dmax

Uij = Uij(X) = =2
Dy
The upper-irregularity of X is
UX)=_max_ Us;(X).

As with lower-regularity, the upper irregularity of a d-poset X measure how far it is from
being upper-regular — we have U(X) > 1 and equality holds and if and only X is upper-regular.
Unfortunately, upper regular d-posets are not so common for d > 2.

Example 4.23. (i) A graph (viewed as a poset) is upper-regular if and only if it is a regular graph
in the usual sense, i.e., there is k£ € N such that every vertex belongs to exactly k edges.

(ii) The explicit Ramanujan complexes of |[LSVO05] (see also [Li04]) are famous examples of
simplicial complexes that are high dimensional expanders. They are upper-regular in dimension 2
but are not upper-regular in dimensions 3 and above.

(iii) The double Cayley complex Cay(A, G, B) associated to a group G and two symmetric
generating sets A, B C G — see §L.7 or §9.011 — is a square complexes that is upper-regular if and
only if |A| = |B|. Its upper-irregularity is max{%, %}.

Proposition 4.24. Let X be a d-poset, let w be the natural weight function of X and let —1 < i < d.
Then for every x, ' € X (i), we have w(x) < U; 4L; qw(z’).

Proof. We have

w(y) 1 1 1 Dmax | pmin
wie)= > p = > 3 S min — max Uind Lid-
Jex, WAL 1X@] S WOl ~ X @] F X (d)] B
3 s / > 1 D?,l(;n .
Similarly, w(z") > X (@] P and the proposition follows. n

4.6 Orientation

Recall that, given a poset X, we write z <y to denote that x < y and there is no z € X with
x < z < y. Recall also that rings are assumed to be commutative and R* denotes the group of
invertible elements in a ring R.
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Definition 4.25 (Oriented Poset). Let X be a graded poset. Let R be a commutative ring, e.g. Z.
An R-orientation on X is a function

(x,y)—=ly:x]: {(z,y) e X x X : x <y} - R”
such that whenever x,z € X satisfy © < z and dimz = dim x + 2, we have

Y [zeylly:a]l=0

yr<y<z
in R. An R-oriented poset is a graded poset X endowed with an R-orientation [:].

We will often be agnostic about which R-orientation is chosen and only care that an R-
orientation exists. In this case, we will say that our poset is R-orientable. If X admits a Z-
orientation [:], then X admits an R-orientation for any commutative ring R defined by (y,x) — [y :
a:]lR.

Example 4.26 (Regular Cell Complexes are Z-Orientable). Every regular cell complex X admits
a Z-orientation, and therefore an R-orientation for every commutative ring R, such that [v: (] =1
for every v € X(0). In particular, simplicial complexes and cube complexes are R-orientable.

In more detail, let X be a topological realization of X. Then every x € X with dimx > 0
corresponds to a topological embedding j, : D™ — X of an n-dimensional disc in X. Choose an
orientation for every cell j, : D" — X (i.e., a generator of a, € m,(D",0D™) = 7). Then, given
nonempty faces x,y with = <y, take [y : x] be 1 if the orientations of the discs of y and z agree
and —1 otherwise. When z is empty, just set [y : z] = 1.

In practice, choosing an orientation for the faces of X means choosing a sign (4 or —) for every
vertex v € X(0), a direction for every edge e € X (1) (i.e. labelling one its vertices with a + and the
other with a —), a spin for every 2-dimensional x € X(2) (i.e. a direction for every edge of z such
that two edges sharing a vertex give opposite signs to that vertex), and so on. In general, choosing
an orientation to an i-face x (¢ > 0) amounts to choosing an orientation for every (i — 1)-face of
x such that every two (i — 1)-faces which share an (i — 2)-face restrict to opposite orientations on
that face.

Example 4.27. (i) Let F be a finite field with ¢ elements and let X = AGg,,(F,;) (Example d2(ii)).
Then X admits a Z/(q + 1)Z-orientation given by [y : ] = 1 for every z,y € X with z < y.
This is an orientation because for every x,z € X with < z and dimz = dimx + 2, we have
g+1|#{lye X 1o <y<z}, 80> plziylly: ol =30y 1 =0in Z/(g+ 1)Z. On the
other hand, parity considerations show that AGg,(F;) has no (Z/27Z)-orientation when ¢ is even,
and hence no Z-orientation.

(ii) A linear graded poset with at least 3 elements has no R-orientation for every nonzero
commutative ring R.

Example 4.28. Let X be a graded poset and [:]x and R-orientation on X. Let z € X. Then the
restriction of [:]x to the link X, is an orientation of X,. We will always give X, the orientation it
inherits from from X.

5 Sheaves on Partially Ordered Sets

Sheaves on (certain) cell complexes, also called cellular sheaves were first considered by Shepard
[She85]. The theory was further developed by Curry [Curl4], who also considered the dual notion
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of cellular cosheaves. A more concise treatment appears in [HG19] (for regular cell complexes). The
definition of sheaves on cell complexes extends naturally to general posets; this is briefly considered
in [Curld, §4.2.2] and [PK22]. We recall it here, and then define sheaf cohomology when the
underlying poset is graded and oriented.

Recall our standing assumption that rings are commutative and all modules are left modules.
Throughout, R is a ring.

5.1 Sheaves on Posets

Definition 5.1 (Sheaf on a Poset). Let R be a ring, e.g., Z or a field F, and let X be a poset. An
R-sheaf F on X consists of:

o an R-module F(z) for every x € X;
e an R-linear map reS'yF(_x : F(x) = F(y) for every z,y € X with x < y;

such that whenever x < y < z, we have

F F F (5.1)

resy, , ores,, , =Tes, ..

In this case, we also define res’, , = idz(y), so that (B10) also holds when x <y < z.

One can similarly define sheaves of abelian groups, but they are the same thing as Z-sheaves.

The maps resyﬁ_x are called the restriction maps of F. We will write resi':_x( f) as resy 5 (f) or
just f|, when there there is no risk of confusion. One can similarly define cosheaves by reversing
the direction of the restriction maps. We spell out the definition explicitly.

Definition 5.2 (Cosheaf on a Poset). Let R be a ring and let X be a poset. An R-cosheaf G on X
consists of:

e an R-module G(x) for every x € X;
e an R-linear map res%_y :G(y) = G(x) for every x,y € X with x < y;
such that whenever r < y < z, we have

resg<_y o resi_z =res?, . (5.2)

In this case, we also define resd, , = idz(y), so that (52) also holds when x <y < 2.

The maps res:%_y are the corestriction maps of G. A cosheaf on X is essentially the same thing

as a sheaf on the opposite poset X°P (Example d4]). It is beneficial to differ between these two
notions because there are times where one needs to consider sheaves and cosheaves on the same
poset X.

Example 5.3. Let M be an R-module. The constant R-sheaf on X associated to M is defined
by setting F(x) = M for every M and res;_m = idps for every x < y. One can similarly define a
constant cosheaf associated to M.

More sophisticated examples will be considered later.
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5.2 Sheaf Cohomology

Suppose that X is an R-oriented graded poset, where R is a commutative ring. In this case, one
can associate cohomology groups to R-sheaves on X and homology groups to R-cosheaves on X as
follows.

Let F be an R-sheaf on X. For every i € Z, define

C'=C"X,F)= ][] Fl=)
xeX (1)

We call C* the space of i-cochains on X with coefficients in F, and given an i-cochain f € C* =
[L:ex () F(z), we write the z-component of f as f(z). As usual, the i-th coboundary map d; : C* —
C**1 is determined by

(dif)(y) = Z ly : x] IeSy«zx f(z)

zey(i)

for all f € C* and y € X (i + 1). The subscript  in d; f will often be clear from the context, so we
shall sometimes just write df. It is a recommended standard exercise to check that d;+1 o d; = 0.
Thus, we get a cochain complex of R-modules

C*=CX,F) == O Sh oo %00 B0y ).
Its R-modules of i-boundaries and i-cocycles are
B'=BYX,F):=imd;_; and Z'=Z'X,F):=kerd,.

Clearly, B' C Z'. The quotient module Z*/B® is known as H'(X, F) and called the i-th cohomology
group of X with coefficients in F, but this will not be needed in the sequel.

Remark 5.4. Beware that at this level of generality, H (X, ) may be nonzero for negative values
of i. (To experts, we also caution that {H(X, —)};>0 are may not be the right derived functors of
HO(X,—), even when X (i) = () for all i < 0.) In addition, the isomorphism classes of Z¢, B* and
H'(X, F) may depend on the R-orientation of X. However, when X is a regular cell complex and
F(0) = 0, everything behaves as expected: H'(X,F) = 0 for i < 0 and, as we shall see in §5.4]
changing the R-orientation has no effect on the isomorphism class of C*. (Moreover, {H*(X, —)}i>0
are indeed the right derived functors of H’(X, —), but that will not be needed here.)

The homology groups of a cosheaf G on X are defined similarly, but with the following differences.
One replaces d; : ' — C* with the i-th boundary map 0; : C* — C~! defined by

0 f)(y) = Z resy. o f(1),

2€X (1)y
and we get a chain complex:
'%0_1&00&01&02%“'

The i-boundaries and i-cycles are B; = B;(X,F) := im 0,41 and Z; = Z;(X,F) := ker 9; and the
i-th homology is H!(X, F) = Z;/B;[14

161f X is allowed to be infinite, then one should also replace C* = HmEX(i) F(z) with the R-module of i-chains
Ci=Ci(X,F) = ®x6X(i) F(z). Otherwise, the summation in the definition of 9; is not always well-defined.
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Remark 5.5. Let G be a cosheaf on graded poset X. Define a sheaf G°P? on X°P (Example 4]
by setting G°P(z°P) = G(z) and resggﬁkxop = res:%_y (x < y). We call G°P the opposite sheaf of the
cosheaf G. Clearly, C*(X,G) = C~¢(X°P,G°P) = and 829 = dﬁ‘f’. Thus, cosheaf homology may be
realized as sheaf cohomology of the opposite sheaf.

Example 5.6. Let F be an R-sheaf on an R-oriented hypergraph X (viewed as poset; Example[4.3]).
Then C° = CY(X,F) = [Toex(o) F(v), and after unfolding the definitions, one finds that 79 is the
set of f = (f(v))vex(0) € [lvex (o) F(v) such that for every hyperedge e € X (1),

Z [e : v]resey f(v) = 0.

vee(0)

5.3 Restricting Sheaves to The Links

Definition 5.7 (Sheaf Restricted to a Link). Let F be an R-sheaf on a graded poset X and let
z € X. The restriction of F to X, is the R-sheaf F, obtained by restricting F to X,. That is,

F:(z) = F(x) and reS'ny_x = resz':_m forall x,y € X, with x <y.

Suppose now that X is an R-oriented graded poset and F is an R-sheaf on X. For every z € X
and ¢ € Z, we define maps

f f. :C{X,F) = cdm==L(x  F,),
f/ — f/z :Ci_dimz_l(Xz,]:Z) N Ci(X, ]:),

by
f(2) = f(a") Vo' € X,
f?(x) = { g/(x) i,i:;l Ve X.

That is, f. is the restriction of f to X,, and f’* is obtained by extending f’ from X, to X by
setting it to be 0 on i-faces not in X,.
A straightforward computation (and a recommended exercise) gives the following lemma.

Lemma 5.8. Let F be an R-sheaf on an R-oriented graded poset X, let z € X and let i € Z. Write
d, for the coboundary map of F,. Then, for every f € Ci=dimz=1(X_F,)

(d=f)* = d(f?).

5.4 Independence of The Orientation for Regular Cell Complexes

Let X be an R-oriented graded poset and let F be an R-sheaf on X. We noted earlier that the
definition of the cochain complex C*(X,F) depends on the R-orientation of X. We now show
that when X is a regular cell complex (e.g. a simplicial complex or a cube complex) this choice
has essentially no effect. We shall first need two lemmas. Given x € X, an x-flag is a sequence
f=(x_1,20,21,...,2;) of faces in X such that ) =z_; <z < - <2y = .

Lemma 5.9. Let X be a regular cell complex and let v € X. Then, for any two x-flags f and f’,
there is a sequence of x-flags f = fo, f1,.--, fn = f' in which every two consecutive x-flags differ
by at most one term.
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Proof. This is well-known, but we sketch the proof for the sake of completeness. Given z-flags
f and f’, we write f ~ f’ to denote that there is a sequence of z-flags as in the lemma. The

proof is by induction on ¢ := dimz. The cases i = —1 and i = 0 are clear, so assume that
i > 0 and write f := (x_1,20,...,2;) and f' = (2" 4,z(,...,2;). Suppose that z;_; and x}_,
share an (i — 2)-face y, and choose a y-flag (y—1,...,9i—2). Then, by the induction hypothesis,
(-1, @im2, @im1) ~ (Y=1, -+, Yi2, Tim1) and (Y—1,...,Yi—2, ;1) ~ (z'1,...,2,_;). This means

that f ~ (y_1,...,¥i—2,%i—1,@;) and f' ~ (y_1,...,Yi—2,2,_1,x;), so f ~ f’. In general, since the
topological realization of X, = {y € X : y < z} is a sphere, we can find a sequence z;_1 =

2020 =2l | of (i —1)-faces of X such that z2(*~1) and 2(*) share an (i — 2) face for every k.
By choosing a flag f(*) = (--- ,z(k),m) for every 0 < k < ¢ and using what we have shown, we see
that f ~ fO) ~ oo fEED o O

Lemma 5.10. Let X be a reqular cell complex, let [] and (:) be two R-orientations on X and let
r € X. Choose an z-flag f = (v_1,...,2;) and define ¢, = [[eplmi : wio1) H(zi ¢ 2i-1) € R*.
Then c; does not depend on the choice of f.

Proof. Thanks to Lemma [.9, it is enough to show that ¢, does not change if we replace z;
(—1 < j < i) with a different face azg lying between z;_1 and z,11. Indeed, since X is a regular
cell complex, z; and &/, are the only faces between z;_; and 1, which means that [z;41 : z;][z; :
xj 1]+ [ s 2f][x s wjq] = 0, or rather, [z41 @ x][x; 0 2j1] = [ 2 2][2 - xj-1]. Similarly,

(Tj41 s @) () 0 2j-1) = — ()41 2 25) (2 : x5-1), and it follows that

(i1 s 2] Najpr o)y 1] ey s xim) = (241 :$3]_1(xj+1 e :Ej_l]_l(l‘;- STj_1).
As a result, ¢, does not change when we replace x; with x; O

Proposition 5.11. Let X be a regular cell complex, let F be an R-sheaf on X, let [:] and (:) be two
R-orientations on X. Denote by C* and C'® the cochain complexes associated to X and F using the
orientations [:] and (:), respectively. (The i-coboundary map of C'® is denoted d}.) For everyz € X,
define ¢, € R* as in Lemma [5.10, and for every i € Z, define T; = [Leexq) czidr() : Cct— C",
that is, Ti(f) = (cof(x))zexqu)- Then T = (Ti)icz, defines an isomorphism of cochain complexes
from C® to C'*, i.e., each T; is an R-module isomorphism and the following diagram commutes.

d_1 d d
c1 Cy 0 & !
l/Tl lTo lTl

!
o1 - C! dy C! 4
0 1

In particular, the map T; induces isomorphisms Z* — Z'"* and B' — B'', where Z! and B! denote
the i-cocycles and i-cochains of C'®.

Proof. Tt is clear that T; is bijective. It remains to check that T;y; o d; = d} o T; for every i > —1.
Let f€ Ol = [L.ex@) F(z). Then for every y € X (i + 1),

(Tiadif)(y) = ¢y D Iy alresyes f@) = Y (y:2)resycalcaf(2)) = (dTif)(y),

xey(i) x€y(i)
where the second equality holds because c,[y : z] = (z : y)cs. O

An analogue of Proposition [5.1T1] holds for cosheaves. We omit the details.
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5.5 Aside: Constraint Systems

Our discussion of sheaf cohomology and our main results (Theorem [IT.2] and its simpler versions
in Section [) actually apply to a slightly more general structure which we call a constraint system.
Let R be a commutative ring. An R-constraint system S on a graded poset X consists of

o an R-module S(z) for every x € X and

S
Yy

e an R-homomorphism r :S(x) = S(y) for every z,y € X with z <y

such that for every x,z € X with dim z = dim x 4 2, we have

S S —
D Ty Oy =0.
Yx<y<z

Note that, unlike the case of sheaves, 75, is only defined when x <1y. Also, it need not be the

Yy

case that rz‘%_y or;_x = 7S, .. One can dually define R-constraint cosystems on X by reversing the

S . we omit the details.

direction of the maps ry,_,;

Given an R-constraint system on S on X, we let C* = C*(X,S) = [[,ex(;) S(x) and define a
coboundary map d’ : C* — O+ exactly as we did for sheaves, but without the invoking the factor
[y : x]. This gives rise to a cochain complex and a cohomology theory of R-constraint systems, and
the proof of our main result applies verbatim in this context. Note, however, that X is not required
to have an R-orientation as in the case of sheaves.

Examples of constraint systems include the codes modeled over 2-layer systems of [KO21]; they
can be realized as constraint systems on 2-posets. In addition based chain complexes of [PK22] can
realized as the chain complexes of constraint cosystems on graded posets.

Every R-sheaf F on an R-oriented poset X gives rise to an R-constraint system S on X by
setting S(x) = F(x) and r?i_x =y : 2] resz':_m when x < y. In this case, C'(X, F) = C*(X,S) and
dif = df, so F and S give the same modules of cocycles and coboundaries. By constant, not all
R-constraint systems are induced from sheaves and orientations in this manner. (Indeed, X may
not be R-orientable.)

We use sheaves and not constraint systems in this work because the theory of sheaves is more
developed and more intuitive, and all the examples of constraint systems that are of interest to us

naturally arise from sheaves.

6 Locally Testable Codes from Sheaves and Cosheaves

In this section, we explain in detail how sheaves on graded posets give rise to error correcting
codes. These codes come equipped with a natural tester, the soundness of which is governed by
the cosystolic expansion of the sheaf at hand. The entire discussion dualizes to cosheaves thanks
to Remark

Throughout, R is a (commutative) ring, e.g. a finite field, and X is an R-oriented graded poset.

6.1 Cocycle Codes

Let F be an R-sheaf on X and let i € Z be an integer such that X (i) and X (i + 1) are nonempty.
Suppose further that there is an R-module ¥ such that F(x) = 3 for every z € X(i). Then
Ct = CYX,F) = %0 and so we may view Z' = Z'(X, F) as a code inside C* = XX, it is called
the i-cocycle code of (X, F). The constraints defining Z° inside C% = ¥X0) give rise to a natural
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tester for this code: Given f € XX choose y € X (1+1) uniformly at random, read f(x) for every
x € y(i), and accept f if and only if df (y) = > aey(i) T6Sy—a flx)=0.

Let wyni : X — R, denote the uniform weight function (Example @8(ii)). Given f,g € C7, let
supp f = {x € X(j) : f(z) #0in F(x)} and define

||f||uni = wuni(SUPp f) and diStuni(f> g) = ||f - gHuni-

For j = 14, these are just the normalized Hamming norm and distance in C* = ©X(®)_ Now, by
definition, the natural tester of Z C ©X( has soundness > y if and only if

deHuni > NdiStuni(fa ZZ) Vf € CZ (61)
and the distance of Z! C X ig at least 4 if and only if
[ flluni >0 Vf ez —{0}. (6.2)

Usually, B = im(d;_1) contains short vectors, so we can expect the distance of Z! to be large only
if B =0.

Conditions (6.1 and (2] may be seen as conditions on the expansion of the i-th coboundary
map d; : C* — C**! and indeed, upon changing the weight function wyy; and replacing Z* — {0}
with Z% — B?, we recover the definition of a (u, 0)-cosystolic expander in dimension i, which we now
discuss in detail.

6.2 Cosystolic Expansion

Suppose henceforth that w : X — Ry be a normalized weight function; typically, we would like
w to be proper. Given an R-sheaf 7 on X and f,g € CX,F), set ||f|lw = w(supp(f)) and
disty (f, 9) = || f — gllw- We will drop the subscript w when it is clear from the context.

Definition 6.1 (Cosystolic Expansion of Sheaves). Let (X,w) and F be as above and let i € Z.
The i-cosystolic expansion of F (w.r.t. w), denoted cse;(X,w,F) is the supremum of the set of
e € [0,00) such that

df |l > € diste(f, Z%) Vfe

The i-cocycle distance of F (w.r.t. w) is
ced; (X, w, F) := inf{|| f|lw | f € Z° = B'}.

Given ,6 > 0, we say that (X, w,F) is an (e,d)-cosystolic expander in dimension i if cse;(F) > ¢
and ccd;(F) > 0.

When X is a d-poset, the i-cosystolic expansion of F and i-cocycle distance of F are defined
to be cse;(F) := csei(X, wpat, F) and ccd;(F) := ccd(X, wpat, F), where wyay is the natural weight
function of X.

Suppose that there is a finite R-module ¥ such that F(z) = ¥ for all z € X ( ). Then
cse; (X, wuni, F) is precisely the soundness of the natural tester of the cocycle code Z! = Z*(X, F)
CHX,F) = ¥X®  and provided that B (X,F) = 0 (e.g., if F(y) = 0 for all y € X(i — 1
ced; (X, wyni, F) = 0(Z°).

Unfortunately, we cannot use these observations directly because our results about cosystolic
expansion and cocycle distance will only apply when w is proper, and that is often not the case for
Wyni- Nevertheless, when our weight function w : X — R, is not too far from being uniform, we
can effectively relate cse;(X,w, F) and ced; (X, w, F) to the soundness and distance of Z* € ¥X®)
by means of the following lemma.

N £

);
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Lemma 6.2. Let F, X, i and X be as in §6.1 and let w : X — Ry be a normalized weight function.
Assume further that there are M, M’ € [1,00) such that w(z) < Mw(y) for every z,y € X (i) and
w(z) < M'w(y) for every x,y € X(i +1). Then:

i) If B* = 0, then the relative distance of Z' C YXO s at least L ced; (X, w, F).
M

i) The soundness of the natural tester of Z* C ¥X() is at least —~ cse; (X, w, F).
MM

Moreover, if we would modify the natural tester to choose an (i+1)-face according to the distribution
W x(i+1), then its soundness would be at least ﬁ cse; (F).

Proof. We first observe that M lwy,w(z) < w(z) < Mwgpiw(z) for every € X (i), and thus
M7 Flluni < £ llw < M| f]luni for all f € C* = CH(X,F). To see the right inequality, observe that

X(@)w(z) = D wx)< > Muw(y) =M = M|X(i)|wyni(z).
yEX(4) yEX ()

The left inequality is shown similarly. In the same way, M'~!||glluni < |lgllw < M’||g|luni for all
g € C*1. We now prove (i) and (ii).

(i) Let 0 # f € Z'. Then f € Z' — B because B = 0, and thus, ||f|lui > M| f|| >
M~ ced; (X, w, F).

(ii) For every f € C%, we have

j i (X, w,
i Fllans > MV difll > M~ eser(X,w, F) disty (£, 27) > S0 )

> > vip - distuni(f, zh.

A similar computation shows that ||d; f |l > 77 cse;(F) distuni(f, Z7) and this gives the last assertion

of the lemma. O

6.3 Coboundary Expansion

We will also need to consider a stronger variant of cosystolic expansion, called coboundary expansion.

Definition 6.3 (Coboundary Expansion of Sheaves). With notation as in Definition [6.1], the i-
coboundary expansion of F (w.r.t. w), denoted cbe;(X,w,F) is the smallest € € [0,00) such that

df |l = e disty (f, B(X, F)).

We say that (X, w,F) is an e-cosystolic expander in dimension i if cbe;(X,w,F) > €.
When X is a d-poset, the i-coboundary expansion of F is cbe;(F) := cbe;(X, wyat, F), where
Wnat 48 the natural weight function of X.

If cbe; (X, w,F) > 0, then we must have Z! = B?, or rather, H (X, F) = 0. In the context of
§6.11 the i-coboundary expansion may be thought of as measuring the soundness of the natural
tester of Z° C XX but for the code B* C ¥X@) (which usually has poor distance if B # 0).

Coboundary expansion of d-posets in dimensions —1 and 0 appears in some of our main results,
so it is worthwhile to unfold the definition in these cases. This can be informally summarized as
follows:

¢ Coboundary expansion in dimension —1 is similar to the relative distance of a code.

o Coboundary expansion in dimension 0 is similar to agreement testability (§2.4)).
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Example 6.4 (Coboundary Expansion in Dimension —1). Let (X, w) be a normalized weighted
R-oriented d-poset (d > 0) and let F be an R-sheaf on X. Then C~! = C~Y(X,F) = F()) and
d-y : F0) = C° = [lyex(o) F(v) is given by df = ([v : O]res,g(f))vex(0)- Moreover, we have
dist(f, B~!) =1 for every f € C~! — B~! = F()) — {0}. This means that

B 0 ker d_1 75 0
cbe_1 (X, F) = { inf{||g||g € B — {0}} kerd_; =0.
Since ||([v : 0] reSm—@(f))vEX(O)H — H(resm—@(f))veX(O)H’ we can disregard the orientation and get
that 7
B 0 ker d_1 75 0
e )= { min{llgfl|g € (imd-1) = {0}} kerd—, =0.

where, d_; : F(0) — [Toex (o) F(v) is given by d_,f = (resy—p(f))vex(0)- In particular, if d_q is
injective, w is the uniform weight function and there is an R-module ¥ such that F(v) = X for
every v € X(0), then cbe_1 (X, F) is the relative distance of the code im(d_1) inside [ e x (o) F(v) =
»X©0),

Example 6.5 (Coboundary Expansion in Dimension 0). Let X be a regular cell complex and let
w : X — R4 be a normalized weight function. We choose a Z-orientation on X such that [v: )] =1
for every v € X(0); see Example This implies that every edge e € X (1) has a unique vertex
u with [e : u] = 1 and a unique vertex v with [e : v] = —1; denote the former by e and the latter
by e”.

Let F be an R-sheaf on X. Then for every f € C%(X,F) = [Toex(o) F(v), we have df =
(reSece+ fleT) —resee— f(e7))eex(1). This means that cbeg(F) is the smallest x > 0 such that

w({e € X(1) : res,e v f(€¥) # resec o f(e7)}) = ndisty(f, BY).

This is reminiscent of the soundness of an agreement tester (§2.4]), and in fact, agreement testability
may be realized as the 0-coboundary of a sheaf.

Indeed, let ({Cs}ses, G,w,f) be an agreement tester for a lifted code C = C({Cs}ses) C E™.
Suppose moreover that 3 is an abelian group and every Cs is a subgroup of ¥%. Let X be the
1-dimensional simplicial complex obtained from G by adding a single face of dimension —1. We
extend w from G to X by setting w(fx) = 1 and endow X with a Z-orientation as above. Define
a Z-sheaf F on X by setting

« F(0)=C:=C({C}) € X,

o F(v) = Cys for all v € X(0),

o Fle) C X for all e € X(1),

o res, g C — Cyy) is given by f > fly, for all v € X(0),

o resecy : Co) — e is given by f floe) for all e € X(1) and v € €(0).

Since B(X,F) = C, our earlier observations imply readily that ({C;}ses, G,w,¥) has soundness
k if and only if cbey(X,w,F) > k.
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6.4 Independence of The Orientation

We continue to use the notation of §6.21 Recall that Z! = Z*(X, F) and B* = B*(X, F) depends on
the implicit R-orientation we gave X, so a priori, cse;(X,w,F), ccd;(X,w,F) and cbe;(X,w, F)
depend on that choice as well. However, when X is a regular cell complex, Proposition B.I1]
shows that the effect of changing the R-orientation on Z* and B’ is just a coordinate-dependent
scaling, which does not effect the norm || - ||, on C%. As a result, in this special case, cse;(X,w, F),
ced; (X, w, F) and cbe;(X, F) do not depend on the R-orientation of X. We record this observation:

Proposition 6.6. Let (X, w) be a normalized weighted regular cell complex and let F be an R-sheaf
on X. Then cse;(X,w,F), ccd;j(X,w,F) and cbe;(X,w,F) do not depend on the R-orientation
chosen for X.

6.5 Dual Notions for Cosheaves

Let (X, w) be a normalized weighted R-oriented graded poset and let G be an R-cosheaf on X such
that G(z) = X for every x € X (i). Here, ¥ is some R-module and X (¢) # (). Then we may consider
Z; = Z;j(X,G) as a code inside C; = $X®: such codes are called i-cycle codes. As with cocycle
codes, the code Z; C X has a natural tester: Given f € C, choose y € X (i — 1) uniformly at
random, read f(z) for every x € X(i), and accept f if 0; f(y) = 0.

For a general cosheaf G, the i-systolic expansion and i-cycle distance of (X,w,G), denoted
se;(X,w,G) and cd;(X,w,G), respectively, are defined exactly as their counterparts in §6.2 by
replacing d;, Z¢, B® with 0;, Z;, B;. In the setting of the last paragraph, an analogue of Lemma [6.2]
holds and may be used to relate cd; (X, w, G) and se;(X,w, G) to the distance of Z* C X0 and the
soundness of its natural tester. This may also be derived directly from our discussion of cocycle
codes using Remark

7 No-Intersection Hypergraphs, Skeleton Expansion, Intersection
Profiles

7.1 No-Intersection Hypergraphs

Recall that a weighted hypergraph means a weighted poset (X, w) such that X is concentrated in
degrees 0 and 1 (Example [£3)). We define the underlying hypergraph of a graded poset X to be
the subposet Gr(X) := X (0) U X(1). For example, when X is regular cell complex, Gr(X) is the
underlying graph of X in the usual sense. The weighted hypergraph underlying a weighted graded

poset is
Gr(X,w) := (X(0) UX(1),w|x©oux))-

Definition 7.1 (Related Weighted Hypergraph). A related weighted hypergraph is a triple (X, w, ~
) consisting of a weighted hypergraph (X,w) and a binary relation ~ on the set of vertices X (0),
subject to the requirement that uw ~ v implies that u,v € e(0) for some hyperedge in e € X (1).

We shall make every graph G into a related hypergraph by setting u ~ v if and only if there is
an edge e € G(1) with e = {u,v}.
Our main example of a related weighted hypergraph is the following:

Definition 7.2 (No-Intersection Related Hypergraph of a Poset). Let (X,w) be a normalized
weighted d-poset and let i,j,k € {0,...,d} with i,j < k. The (;’,'j, k)-no-intersection hypergraph
of (X,w) is a related weighted hypergraph NTH"F(X w) = (NIHZ’]7k(X),wNIHi,j,k(X)7 ~) defined as
follows:
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o the vertices of NIHW*(X) are X (i) U X (j) (if i = j, the vertex set is just X (i));

o the hyperedges of NIH"F(X) are X (k);

o the vertices of a hyperedge z € X (k) are the x € X (i) U X (j) with x < z.
We give NIHi’j’k(X) the weight function w; ;. = Wi b (x) determined as follows:

o for a hyperedge z € X (k), set w; () = w(x);

o for a vertez x € X (i) U X(j), set w; jr(z) = w(z) if i = j and w; ;,(x) = tw(x) if i # j.
Finally, we endow the vertices of NIHi’j’k(X) with a binary relation ~:

o forxz,y € NIHYK(X)(0), let & ~ y if (1) there is z € X (k) with z,y < z, (2) Inf{z,y} = {Dx}
in X and (3) (dimz,dimy) € {(i,7), (4,7)}.

Since (X,w) is normalized, NTH"/ ok (X, w) is normalized as well. If (X, w) is properly weighted,
X is lower-regular and i = j, then NIH**(X, w) is also properly weighted (Corollary ELI9), but
this is false in general.

We will also consider the following simplified version of the no-intersection hypergraph. Recall
that graphs are allowed to have multiple edges, but no loops.

Definition 7.3 (No-Intersection Graph of a Poset). Let (X, w) be a normalized weighted d-poset
and {et i,5,k €{0,... ,d} with i,j < k. The (i, j, k)-no-intersection graph of X is a weighted graph
NIGHF (X, w) = (NIGZJ’k(X),'UJNIGi,j,k(X)) defined as follows:

o the vertices of NIGH*(X) are X (i) U X (j) (if i = j, the vertex set is just X (i));

o the edges of NIGH*(X) are pairs (z,{x,y}) such that z € X (k), z € X(i), y € X(j), = # v,
Inf{z,y} = {0x} and z,y < z;

o the vertices of the edge (z,{xz,y}) are x and y.
We endow NIGi’j’k(X) with the weight function w; ;. = WGk (x) determined as follows:
° fOT’ an edge (27 {‘Tay}) S G(l)) set wi,j,k(za {.’L’,y}) = w(z);

o for a vertex x € G(0) = X (i) U X(j), set w;j(x) = w(z) if i = j and w; () = Jw(x) if
i#j.
Recall that we also view NIG#Hk (X,w) as a related hypergraph by setting u ~ v if there is
e € NIGH*(X)(1) with e = {u, v}. N
Note that while the total weight of the vertices in NIG#":* (X) is 1, the total weight of the edges

may exceed 1. Thus, in contrast to NIH*¥( X, w), the graph NIG*** (X, w) may not be normalized.
The no-intersection graph and the no-intersection hypergraph are related by surjective map

ox : NIGWH(X) — NIHWF(X)

given by the identity on O-faces and by (z,{x,y}) — z on 1-faces. It preserves the poset relation
and the face weights, and also respects the relation ~ on the vertices.

44



Example 7.4. Let (X,w) be a normalized weighted d-poset. Then NTH®%!(X w) = Gr(X,w).
Moreover precisely, NTH®%! (X, w) is the underlying weighted hypergraph of (X, w) together with
the binary relation ~ on X (0) determined by u ~ v if and only if u # v and X (1), N X (1), # 0.

Suppose further that X is a simplicial complex. Then px : NIG*%(X) — NIH®%!(X) is an
isomorphism of weighted related hypergraphs, meaning in particular that NIHO’O’l(X ) is a graph
and NIG®%1(X) = Gr(X).

Example 7.5. Let X be a pure simplicial complex of dimension d. and let i, 5,k € {0,...,d} with
i,j < k. The nature of H := NIH***(X) and G := NIG**(X) depends on whether i +j = k — 1,
i+j>k—1lori+j<k-—1.

When i + j = k — 1, the map ¢x : NIGH*(X) — NIH**(X) is bijective on vertices and
%(lzill)—to—l on (hyper)edges. It further maps ~¢ bijectively onto ~p. One may therefore think of
H as the related hypergraph obtained from the graph G by gluing, for every z € X (k), the edges
of the form (z,{z,y}) to each other.

When i+ j > k — 1, the graph G has no edges, because an i-face and a j-face of a given k-face
must have nonempty intersection. On the other hand, H has hyperedges, but the relation ~ on its
vertices is the empty relation.

Finally, if i +j < k— 1, then neighboring vertices in G will usually be connected by many edges,
because an (i + j — 1)-face may be contained in many k-faces. The same phenomenon occurs for
H, and the relation ~ on H(0) becomes complicated to describe.

7.2 Skeleton Expansion

Skeleton expansion was considered for properly weighted graphs in [EK16], [KMI18] and similar
sources. We now generalize this concept to related weighted hypergraphs.

Definition 7.6 (Skeleton Expansion). Let (X, w,~) be a related weighted hypergraph and let o, B €
[0,00). Given A C X(0), define

Ey(A) ={e € X(1) : there are distinct u,v € A s.t. u<e, v<e andu~ v}
We say that (X, w,~) is an («, 3)-skeleton expander if for every A C X(0), we have
w(E(A)) < aw(A) + fw(A)2

Note that if X is a graph viewed as a related hypergraph, then F5(A) is just the set of edges
having both their vertices in A, commonly denoted as F(A).

In [EK16], [KMI18] and related sources, a properly weighted graph (X,w) was called an -
skeleton expander if w(E(A)) < aw(A) + w(A)? for every A C X (0). This is equivalent to X
being an («, 1)-skeleton expander in our sense. We introduced the additional constant § to better
accommodate improperly (even non-normalized) weight functions and non-connected graphs.

Example 7.7. (i) Let (X,w) be a properly weighted graph, and let A be the second largest
eigenvalue of the normalized adjacency operator of (X,w) (§2.I). By Proposition 22, (X, w) is a
(A, 1)-skeleton expander.

(ii) Let (X, w,~) be a weighted related hypergraph. If X has no hyperedges, or ~ is the empty
relation, then (X,w,~) is a (0,0)-skeleton expander. Thus, if X is a weighted pure simplicial
complex of dimension d and i, j,k € {0,...,d} satisfy 0 < 4,5 < k and ¢ + j > k — 1, then both
NIH®*(X) and NIGH*(X) are (0,0)-skeleton expanders (cf. Example [75).

(iii) Let G be a pure graph and let G, (n > 1) be a graph consisting of n disjoint copies of
G. Give G and G, their natural weight functions. Since G, is not connected, the second largest
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eigenvalue of its weighted adjacency operator is 1, and so Proposition only tells us that G,
is a (1, 1)-skeleton expander. However, if G is an (a, 3)-skeleton expander, then G, is an (a, nf3)-
skeleton expander. Indeed, given A C G, (0), let A; be the intersection of A with the i-th copy of
G in G,,. Then

wG, () = 3w, (F(A4) = S we(B(4) < 1 Slawa(4) + fuc(4)
1=1 i=1 i=1

n

< awg, (A) + g(z wa(4:))? = awg, (A) + nfwg, (A)%
i=1

Let (X,w) be a normalized weighted d-poset. We will ultimately be interested in the skeleton
expansion of related weighted hypergraphs of the form NIH®/ ’k(X ,w), but very little is known about
it. The following lemma tells us that it is enough to bound the skeleton expansion of the graph
NIG#"*(X), which is much more manageable. In fact, this is the reason why we need to consider
NIG**(X) in this work. We expect that in general the skeleton expansion of NIH**(X) will not
be much smaller (in both parameters) than that of NIG"*(X).

Lemma 7.8. Let (X, w) be a normalized weighted d-poset and let 7,k € {0,...,d} with i,5 < k.
If NIGH* (X, w) is an (o, B)-skeleton expander, then NIH®F(X w) is an («, 3)-skeleton expander.

Proof. Let A be a set of vertices in H := NIH™*(X). We may also view A as a set of vertices
in G := NIG"*(X). One readily checks that ¢x(Eg(A)) = Fa(A), and hence wy(FEa(A)) <
wa(Eg(A)) < aw(A) + pw(A)?2. O

7.3 Intersection Profiles

Notation 7.9. Let (X,w) be a properly weighted d-poset, let z € X and let 4,5,k € {0,...,d}
with b:=dimz <i,j < k. We let

NIHS K (X w) = NIH o+ LI—o k=l ) ),
Here, w, is the proper weight function induced by w on X, (§43)).

In our main result, we would need to consider the skeleton expansion of related weighted hyper-
graphs of the form NIHi’j’k (X, w) for various values of i, j,k and b = dim z. For a particular X, it
will often be enough to consider a subset of the legal quadruples (k,1,7,b). In order to keep track
of the quadruples which are needed, we introduce the notion of an intersection profile.

Let £ > 0 be an integer. Broadly speaking, a k-intersection profile for a d-poset X is encodes
the dimensions of some quadruples of faces (z,z,y,u) such that z,y lie between z and u and
u € Inf{z,y}. The axioms guarantee that all the quadruples (z,z,y,u) with dimz = k + 1 and
dimz = dimy = k£ must be included, and also that quadruples obtained by taking infima of faces
that were previously encountered are also included. The formal definition is as follows.

Definition 7.10 (Abstract Intersection Profile). Let k € NU{0}. An abstract k-intersection profile
P consists of a set of integer quadruples (t,£,r, b withk+1>t>0>r>b>—1, also denoted
P, and a set of pairs of integers (i,j) with k+1 > i > j > —1, denoted Ad(P), such that the
following conditions are met:

(1) for every (t,£,r,b) € P, we have (t,£),(t,r),(¢,b), (r,b) € Ad(P);

YThe letters t, ¢,r,b allude to the words top, left, right and bottom.
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(2) if t > € >r > —1 are integers such that (t,r), (t,f) € Ad(P), then P contains a quadruple of
the form (t,0,r,*);

(8) if t > € >r > —1 are integers such that (t,£),(t,r) € Ad(P), then (¢,1) € Ad(P)E
(4) (k+1,k) € Ad(P).
We call Ad(P) the set of P-admissible pairs.

The set of admissible pairs of an intersection profile P is often uniquely determined from its
underlying set of integer quadruples. In such cases, we shall sometimes not specify Ad(P) explicitly.

Definition 7.11 (Intersection Profile). Let X be a d-poset, let k € NU{0} and let P be an abstract
k-intersection profile. Two faces x,y € X are said to be P-admissible if x > y and (dimz,dimy) €
Ad(P). We say that P is a k-intersection profile if for every x,y,z € X such that (z,y) and (x, z)
are P-admissible with dimy > dimz, either x > y > z, or (dimz,dimy,dim z,dimu) € P for
every u € Inf{y, z}.

Example 7.12. Let d,k > 0 be integers. Every d-poset X has a unique minimal k-intersection
profile P which may be constructed iteratively as follows:

o Start with P = and Ad(P) = {(k + 1,k)}.
e For every integer ¢ running down from k + 1 to 0, perform:

— For every z € X (i) and every y,z < x with (dimz,dimy), (dim z,dim z) € Ad(P) and
dim y > dim z, perform:
« If £ >y > 2, add (dimy,dim z) to Ad(P).
* Otherwise, for every u € Inf{y, z}, add (dimy, dimu), (dim z,dimu) to Ad(P) and
(dim z, dim y, dim z,dim u) to P.

At the end of this process, P and Ad(P) will determine a k-intersection profile for X. (Then name
intersection profile comes from the repeated use of intersections (Inf) in this construction.)

Example 7.13 (Intersection Profile for Simplicial Complexes). The abstract k-intersection profile

PE = {(i+ 1,400 — 1) ]i €{0,...,k}}

is a k-intersection profile for any pure simplicial complex X; the Pg)-admissible pairs are Ad(Pg)) =

{(k,k—1),(k—1,k—=2),...,(0,—1)}. Indeed, that PXC) is an abstract k-intersection follows directly
from the definition. Furthermore, if x,y,z € X are distinct faces such that (z,y) and (z,z) are
Pg)—admissible, then —1 < dimy = dim z = dimz — 1. Since X is simplicial, inf{y, z} =y Nz and
indeed (dim z,dimy, dim z,dim(y N 2z)) = (dimz,dimz — 1,dimz — 1,dimz — 2) € PXC).

Given (t,4,7,b) € PXC) and z € X(b), we must have t = b+2 and £ = = b+ 1, so NTH,4" (X) =
NIH®%1(X.,) is just the underlying graph of X.

18The rationale behind this requirement is that we would have liked the illegal quadruple (t,€,r,7) to be P. Since
we are not allowed to include it, we compensate for that by requiring that (¢,r) is in Ad(P).
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Example 7.14 (Intersection Profile for Cube Complexes). The abstract k-intersection profile
PE = PE Ui+ 1,40, -1) i € {1,...,k}}

is a k-intersection profile for any pure cube complex X; its set of admissible pairs is {(i,i — 1) |7 €
{k+1,...,0}}U{(i,—1)|i € {k+1,...,1}}. Tosee this, let x,y, 2 € X be faces as in Definition [.T1]
and write ¢ = dimz. Then we must have —1 < dimy = dimz = dimz — 1. Since X is a
cube complex, the faces y and z must be (i — 1)-faces of the i-dimensional cube z, so if they are
distinct, their intersection is either an (i — 2)-dimensional cube, or the empty face. In both cases,
(dim z, dim y, dim z, dim(y N 2)) € P&k).

As in the last example, given z € X of the dimension 4, the hypergraph NIH:FLiHLi+2(X)
(corresponding to (i + 2,7+ 1,i +1,i) € Pé,k)) is just Gr(X,). On the other hand, NIG%’Hl(X)
(corresponding to (i+1,4,4,—1) € Pék)) is the graph obtained by taking the i-cubes in X as vertices
and adding one edge between a pair of i-cubes x,y for every (i+ 1)-cube having = and y as opposite
sides.

Example 7.15. (i) P := {(1,0,0,—1)} is a O-intersection profile for every poset X. In fact, P(©)
is the only abstract O-intersection profile.

(i) P = {(2,1,1,0),(2,1,1,-1),(1,0,0,—1)} is a l-intersection profile for every poset X. It
coincides with PDI .

(iii) Let P]SQX denote the set of all quadruples of integers (t,¢,r,b) with k+1>t>¢>r >b>
—1. Then Pr(fgx is a k-intersection profile for any d-poset. It is also the largest possible abstract
k-intersection profile. In fact, the slightly smaller abstract k-intersection profile

Py = Pk U{(k + 1k, ki) | € {=1,... b = 1}}

(with the convention 771(11;2 = @) is also a k-intersection profile for every d-poset X, and is the

smallest one having this property.

8 Main Result: Simple Versions

Our main result is a criterion for establishing cosystolic expansion of a sheaf on a poset. The most
general form of this criterion — Theorem — is technical, and so we find it instructive to first
give in this section several special cases which are simpler and easier to apply; they will be proved
in Section [[Il In fact, these special cases suffice for the applications considered in this paper, and
likely for other potential applications.

Theorem 8.1. Let Be R, F e N, L € [1,00) and k € {0}UN. Then there exist (small) constants
K, K' € (0,1] such that the following hold: Let R be a commutative ring, let d > k+2, let (X, w) be
a properly weighted R-oriented d-poset of lower irreqularity at most L and such that Firfjl-ax(X ) < F
forall =1 <i < j < k+2, let P be a k-intersection profile for X and let P’ be a (k+1)-intersection
profile for X. Let F be an R-sheaf on X, let € € (0,1] and suppose that:

(1a) cbeg_dgimu—1(Xu, Wy, Fyu) > € for everyu € X(0)U---U X (k);
(1b) cbeg—_dim u(Xu, Wy, Fu) > € for every u € X(0) U---U X (k +1);

(2) for every (t,£,7,b) € PUP and u € X(b), the related weighted hypergraph NTH.™(X)

(Notation[7.9) is a ((K€)2k+17min{l’r},B(Ks)QHZimm{“}_2k+17b)-skeleton expander.
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Then

2k+2_1 2k+1_1

cse (X, w, F) > K'(Ke)

Moreover, if f € CF = CF(X, F) satisfies dist(f, Z*) < K'(Ke)
below to f with ¢ = (Ke)2"™" returns f' € Z% such that dist(f, f') < K'~'(Ke)

and cedy (X, w, F) > K'(Ke)

2k+2

~1 then applying Algorithm[82
2" dist(f, Z%).

Algorithm 8.2 (Correction Algorithm). Let (X, w),F,d,k be as in Theorem 81l The input to
the algorithm is some f € C* (X,F) and a real parameter ¢ > 0. The algorithm outputs another
k-cocycle f' € C*(X,F), computed as follows:

(1) Set fo= fandi=0.
(2) Do:

(a) Look for u € X(0)U---U X (k) and g € CF~dimu=1(X F ) such that ||df; + d(¢*)| <
ldfill = q - w(w)
(b) If no such u and g exist, return f;. Otherwise, set f;11 = f; + ¢* and increase i by 1.

A few remarks are in order.

Remark 8.3. Concerning Theorem BTt

(i) The smaller the reduced parts of intersection profiles P and P’ are, the more lax condition
(2) is. Thus, one should choose the intersection profiles to be as small as possible. Using smaller
intersection profiles also improves the constants K and K’ by making them larger.

(ii) In applications of Theorem Bl F', L, k and ¢ typically remain constant as X and F vary,
whereas the skeleton expansion of NTHY™(X) tends to (0,c¢) with some ¢ € R, as the degree of
X grows. Thus, once the degree of X is large enough (but constant) and B is chosen to be large
enough in advance, conditions (1a), (1b) and (2) will hold and the theorem could be applied.

(iii) Assumptions (1a) and (1b) of Theorem [81] are local in the sense that they care only about
the structure of X, and F, for ) # z € X and not about the global structure of X and F. The
reason why condition (2) is not local in this sense is that it includes the requirement that NIH®™(X)
is an ((Ke)2™", B(K€)2k+27min{e’r}_2k+2)—skeleton expander whenever (—1,¢,7,t) € PUP’. As we
shall see shortly, this non-local requirement can be replaced with a local condition when X is a
simplicial complex.

(iv) In the special case where X is a simplicial complex and F is a constant sheaf, criteria for
cosystolic expansion appeared in |[KKL16] (dim X < 3, F = (Fa)x), [EK17] (F = (F2)x), [KM21],
[DD23]. In addition, the result [KO21, Thm. 1.17] can be interpreted in our language as a criterion
for 0-cosystolic expansion of 2-posets equipped with a special kind of a constraint system (see §o.5).
We surveyed these works in detail and compared them to Theorem BTl in §I.6l

Remark 8.4. Concerning Algorithm [8.2] if one fixes some M > 1 and requires that w(z) < Mw(y)
and |F(z)] < M for all z,y € X(0)U--- U X(k), and D;,(X) < M for all i € {0,...,k}, then
the time complexity of Algorithm is linear in |X (k)| (the constant depends on F, M); see
Proposition below. To do the search in (a) in constant time on average, one has to keep a set
of the possible faces u which may satisfy ||df; + d(g")| < ||dfi|ll — ¢ - w(u) and update it during the
search and every time (b) is performed. For details, see Algorithm [A]in the appendix.

As an immediate corollary of Theorem [B] and Lemma [6.2] we get the following criterion for
showing that a cocycle code is locally testable and has linear distance.

9For the definition of ¢g*, see §5.31
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Corollary 8.5. With notation as in Theorem [81], suppose further that:
. BF=BK(X,F) =0,
e there is an R-module ¥ such that F(z) =X for every x € X (k) and

o there are M, M’ € Ry such that w(z) < Mw(y) for all z,y € X (k) and w(z') < M'w(y’) for
all ',y € X(k+1).

Then the cycle code
zF = 78X, F) c X

satisfies 6(Z%) > ﬁK’(K&)ﬁH_l and its natural tester has soundness WK’(K€)2H2_1. More-

over, Algorithm[8.2 with g = (Ke)zk+1 is a decoding algorithm for Z* that works for words that are
K™2(Ke )2’“Jr2 1 &
VMK (KFFT -close to Z%.
By Proposition 224], when w is the natural weight function of X, we can take M = Ly, 4(X)U}, 4(X)
and M/ = Lk+17d(X)Uk+1’d(X).

Proof. The only thing that needs proof is the claim about the decoding, and this follows from the
next lemma (after recalling that K < 1). O

Lemma 8.6. Let X be an R-oriented d-poset, let F be an R-sheaf on X, let k € Z and let

M € [1,00). Suppose that X(k) # 0, B¥ = B¥(X,F) = 0, and for every z,y € X(k), we have

F(z) =X andw(z) < Mw(y). Assume further that there are A, B > 0 and an algorithm which takes

f € Ck =CkX,F) with dist(f, ZF) < A and returns f' € Z* such that dist(f, f') < Bdist(f, Z%).

Then this algorithm is also a decodmg algorithm for the k-cocycle code Z% C £XO) which can decode
1

words that are 7 mln{% Al-close to ZF.

Proof. Write n = ; mm{% A}, and let f € C* be n-close to Z;,. Then there is fq such that
distuni(f, fo) < 1. As in the proof of Lemma [6.2] we have dist(f, fo) < M distuni(f, fo) < Mn < A.
Thus, applying the algorithm to f yields f’ € Z* with dist(f, ') < Bdist(f, Z¥) < Bdist(f, fo) =
BMp. Thus, dist(fy, f/) < dist(fo, f) 4+ dist(f, ') < Mn+ BMn < ccdy (X, F). Since B* = 0, this

means that f’ = fg, so we have shown that the algorithm decoded f. O

We proceed with specializing Theorem [B1] to simplicial complexes and cube complexes. In the
former case, it simplifies into the following theorem.

Theorem 8.7 (Cosystolic Expansion for Simplicial Complexes). Let k € N. Then there exist
(small) constants K, K' € (0,1] such that the following hold: Let R be a commutative ring, let
(X, w) be a properly weighted pure d-dimensional simplicial complex with d > k + 2, let F be an
R-sheaf on X and let € € (0,1]. Suppose that:

(1a) cbeg_gimu—1(Fu) > € for everyu € X(0)U---U X (k);
(1b) cbeg_dimu(Fu) > € for everyu € X(0)U---U X (k+1);

k—dim u
)2

(2) for every u € X(—1)U---U X(k), the underlying graph of (X, w,) is an ((Ke
skeleton expander.

71)_
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Then

2k+2_1 2k+1_1

cse(F) > K'(Ke) and cedp(F) > K'(Ke)

Moreover, if f € CF = CF(X, F) satisfies dist(f, Z*) < K’(K€)2k+2_l, then applying Algorithm [5.2
to f with the parameter ¢ = (Ke)2" returns f' € Z' such that dist(f, f') < K~ (Ke)~2""" dist(f, Z%).

Proof. This follows from Theorem B by taking B =1, L = 1, F = ( kt2 ), P = PXC) and

[(k+2)/2]
P = PXCH) (notation as in Example [[.13]). Indeed, X is always R-oriented and lower regular (i.e.
L(X)=1),and F; j(X) < ([(klj-g)Q/ﬂ) = Fforall -1<i<j<k+2. O

2k:+1

Remark 8.8. The only non-local assumption in Theorem B is that X(<1) is a ((K¢e)* ,1)-
skeleton expander (take uw = () in (2)). This assumption can be replaced by a stronger local
condition thanks to Oppenheim’s Trickling Down Theorem |Oppl5, Theorem 1.4]. Specifically, we
can fix some 0 < ¢ < d — 2 and (2) with requiring that the underlying graph of (X,,w,) is a A-
2t (Indeed,

by Oppenheim’s Theorem, this would guarantee that X (< 1) is a (K 6)2k+1—expander and hence a
((Ke)?*", 1)-skeleton expander.)

expander (see §2.1)) every z € X (¢), where )\ is small enough so that % < (Ke)

For cube complexes, Theorem [B.1] specializes to the following theorem.

Theorem 8.9 (Cosystolic Expansion for Cube Complexes). Let k € N and B € Ry.. Then there
exist (small) constants K, K' € (0,1] such that the following hold: Let R be a commutative ring, let
(X, w) be a properly weighted pure d-dimensional cube complex with d > k +2, let F be an R-sheaf
on X and let € € (0,1]. Suppose that conditions (1a)-(2) of Theorem [87 hold and in addition,

(2') foreveryi € {1,... k+1}, the weighted related hypergraph NIH">T1(X) is an ((Ke)?", B(Ke)=2")-
skeleton expander.

Then the conclusions of Theorem [8 hold verbatim.

By Lemma [C8, the theorem also holds if we replace the hypergraph NIHi’i’iH(X ) with the
graph NIG»1(X),

Proof. Let F; ; be the number of i-faces a j-dimensional cube has. The theorem follows by applying
Theorem Bl with F' = max{Fyjt2,..., Fyrso}, L =1, P = Pék) and P’ = Pl(jk) (notation as in
Example [7.14]). O

We now restrict our attention to 0-cocycle codes. In this special case, the general form of our
criterion for cosystolic expansion (Theorem [[T.2]) simplifies into the following result.

Theorem 8.10 (Criterion for 0-Cosystolic Expansion). For every F € N and L € [1,00), there
are (small) real constants E,E' E" ,E" D, D', D" > 0 such that the following hold: Let R be
a ring, let (X,w) be a properly weighted R-oriented d-poset (d > 2) such that L(X) < L and
FsX(X), FI'™(X) < F, and let F be an R-sheaf on X. Let 6,6’,@0,60,oz_l,ﬁ_l,ozH,BH > 0 and
suppose that:

(1a) cbe_1(F,) > € for every v € X(0);
(1b) cbe_1(Fe) > &' for every e € X(1);

(1c) cbeg(Fy) > €' for every v € X(0);
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(2a) X,(<1) is an (o, Bo)-skeleton expander for all v € X(0);
(2b) X(<1) is an (a_1,B—1)-skeleton expander.
(2c) NIHYY2(X) (see §7) is an (|, By|)-skeleton expander.

Suppose further that
a_1 < Ee

and one can find h_1, ho, hy| € (0,1] satisfying the following inequality:

_ _1h_
(ao + ,Boho) + (OéH + ’BHhH) + %ﬁoll < E'e.
Then
El/ E,”(EE _a—l)
cseg( X, w, F) > —— and cedo(X,w, F) > ————=.
0( ) h01h11+hHl 0( ) ﬁ—l

Moreover, if f € CY = CY(X, F) satisfies dist(f, Z°) < #ﬂh*“ then applying Algorithm[8.2 to
o Ml

[ with the parameter ¢ = D'hqy returns f' € Z' such that dist(f, f') < D+ho dist(f, Z°).
Explicit values of E,E',E",E",D, D', D" to which this applies are listed in Table [, both in
general, and under some assumptions X.

Assumption on X E E' E" E" D D’ D"
None LS [T Bp 5 [T Bp 2 [ L3 [ L P T [ I P2 [ T3
Lower regular 1 iF‘2 éF‘l 1 F1! %F—l %F—2

T T T T T
Cube complex 1 5 5 1 5 1 :
Square complex 1 he 5 1 5 : I
X(<2)isanm-gon | L™ | L1 LB L3 L L2 SL10
complex

Table 1: Values for the constants of Theorem R.I01

Remark 8.11. Applying Theorem Bl with & = 0 and the intersection profiles P(0) and PM) of
Example gives a similar, but less flexible result. Indeed, Theorem B can be applied even
when the parameters 8_; and | are arbitrarily large. This extra generality will be needed in some
of the applications.

Corollary 8.12. With notation as in Theorem [810, suppose further that F(Dx) = 0, that there

is an R-module ¥ such that F(v) = X for every v € X(0) and that there are M, M’ € [1,00) such

that w(v) < Mw(v') for all v,v" € X(0) and w(e) < M'w(e’) for all e,e’ € X(1). Then the 0-

cocycle code Z° = Z0(X, F) C 2XO) satisfies 6(2°) > E]f/[_;:l and its natural tester has soundness
E”

MM (hg *hy ' +hih)

. D D" (Ee—a_1) 0
are min{ RIS ETEUE M671(h071+D”))} close to Z°.

Moreover, Algorithm [83 with ¢ = D'hg is a decoding algorithm for words that

Again, when w is the natural weight function of X, we can take M = Lo Uy 4 and M’ = Ly 4U; 4,
by Proposition [4.24]
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Proof. This follows from Theorem BI0, Lemma and Lemma O

In addition to the above results, our method also gives a criterion for guaranteeing that the
k-cocycle distance is large. In its most general form, this is Corollary [2.9] appearing later in the
text. For O-cocycles it simplifies into the following theorem, which we prove in §I2.21

Theorem 8.13. For every F € N and L € [1,00), there are real constants E, E" > 0 (the same
constants as in Table [1l) such that the following hold: Let R be a ring, let (X,w) be a properly
weighted d-poset (d > 1) such that L(X) < L and every 1-face of X contains at most F 0-faces.
Let e,a, 8 > 0 such that

a < Eg,

and suppose that

(1) cbe_1(Fy,) > € for every v € X(0) and

(2) the underlying graph of (X, w) is an («, B)-skeleton expander.
Then ccdo(X,w, F) > W

9 2-Query LTCs from Sheaves on Square Complexes

In this section we apply Theorem R0l to certain sheaves on double Cayley complexes in order to
construct good 2-query LTCs. Our LTCs turn out to be the line codes of the good LTCs constructed
in [DELT22], so we can recover the properties of the latter (with slightly different constants) using
the relations between a lifted code and its line code established in Section [Bl This offers a new
perspective on the good LTCs of [DELT22|, showing how they can be neatly derived from our
criterion for 0-cocystolic expansion.

9.1 The Poset

The poset which we will use is a double Cayley complex — a special kind of square complex
constructed as follows: Let G be a finite group and let A and B be two symmetric sets of generates
to G such that

gag t#b Vae Abe B,geG. (9.1)

The double Cayley complex of G, A, B is the square complex X = Cay(A, G, B) constructed as
follows:

e X(0)={{g}|g € G} (so G is the set of vertices of X),
« X(1) ={{g,a9}lg € G,ac AyU{{g,bg}|g € G, b€ B},
o X(2)={{g,a9,9b,agb}|g € G,a € A, be B}.

We also set X (—1) = {0} and endow X with the inclusion relation. Condition (@) guarantees that
this is indeed a square complex. Moreover, it implies that if e € X (1) and {g} (g € G) is a vertex
of e, then either e = {g,ag} with unique a € A, or e = {g, gb} with unique b € B. Furthermore,
if e = {g,ag9} (g € G, a € A) is an edge contained in a square s, then there is a unique b € B
such that s = {g,ag,gb,agb}. Likewise, if e = {g, gb}, then there is a unique a € A such that
s = {g,ag, gb, agb}.

Since X is a square complex, and in particular a regular cell complex, there is a Z-orientation
[:] on X such that [v: @] =1 for every v € X(0); see Example We fix such a Z-orientation on
X; it induces an R-orientation on X for every commutative ring R.
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9.2 The Sheaf

Let G, A, B, X = Cay(A, G, B) be as above. Fix a finite field F, and let C4 C F4 and let Cp C F5B
be linear codes with alphabet F.

It will be convenient to view F4 @ FP (all tensor products are taken over F) as the space of
matrices with rows indexed by A and columns index by B, denoted My p(F). (Explicitly, for
uw € FA and v € FB, the tensor u ® v corresponds to (uqUp)acapen € Maxp(F).) With this
interpretation, the subspace Cy ® Cp is

{M € Maxp(F) : ro(M) € Cp and ¢, € Cy for all a € A, b € B},

where, as before, r,(—) and ¢,(—) mean taking the a-th row and b-th column, respectively.
We define an F-sheaf 7 on X as follows. For every g € G, a € A, b € B, set

« F(0) =0,

* T€S{gag}{g} = Ta ®id : Cy @ Cp — Cp,

o TeS{g b} {g} = b : Ca ®F Cp — Cy,

* T€S{g ag,gbaghl{gag} : OB — F sends v to vy,

* T€S{g ag,gbaghl{g,gb} : Ca — F sends u to ug,

* T€S{g ag.gbaght{g} : CA ® Cp — F sends m (an A x B-matrix) to mgp.
Lemma 9.1. With notation as above, F is a well-defined sheaf on X.

Proof. Recall that condition @I guarantees that that for every v = {¢g} € X (0) and e € X (1), either
e = {g,ag} for a unique a, or e = {gb, g} for a unique b. This shows that the restriction map res/, ,
is well-defined. Similarly, all the restriction maps are well-defined. Since F(@)) = 0, it remains to
check that if s € X(2), e € s(1) and v € e(0), then resg,,, = ress, ¢ orese.,. Writing g = {g} with
g € G, suppose that e = {g,ag} for a € A. Then there is b € B such that s = {g, ag, gb, agb} and
for every m € Cy ® Cp, we have resgresec(m) = (rqe(m))y = mgp = resg .y, as required. The
case e = {g,bg} with b € B is handled similarly. O

9.3 The Code and Its Tester

Keeping the previous notation, put ¥ = C4 ® Cp and observe that F(v) = X for every v € X (0).
We may therefore form the 0-cocycle code

70 = 7°(X, F) c xX0) = x¢

Recall that we chose the F-orientation on X in such a manner that [v : @] = 1 for every v € X(0).
This implies that for every edge e € X (1) with vertices u and v, we have [e : v] = —[e : u]. As a
result, Z9 consists of the words f = (f(g))gec € 2¢ = (Ca ® Cp)“ which satisfy

res(g agy{g} J (9) = TeS{gagy{gy flag)  and  resgypye g3 F(9) = res(g gbye(gvy f(9D)
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for all a € A, b € B. Since {g,ag} = {ag,a " (ag)} and {g, gb} = {gb,gb(b=1)}, this is equivalent
to

ra(f(9)) = 7a-1(flag))  and  1(f(g)) = r-1(f(gD),

respectively. This can be further restated as saying that f(g)ap = f(ag),-1p and f(g)ap =
f(gb)gp—1 for all a € A, b € B, g € G. We conclude that 7% may be viewed as the space of
ensembles of matrices (mgy),eq € 2 such that

(mg)a,b = (mag)afl’b = (mgb)mbfl VYae A,be B,g € G. (9.2)

From the above description, we see that the natural tester of Z° operates as follows: Given
f={f(9)}sec € ¢ C Maxp(F)Y, choose g € G and z € AU B uniformly at random. When
x € A, accept f if and only if r,(f(g)) = rp-1(f(xg)) and when = € B, accept f if and only if

r2(f(9)) = o1 (f(97)).

Now that we have described the code Z° C EG, we bound its rate from below.

Proposition 9.2. Let G, A, B, X,Cy4,Cp, F be as above, and write r4 = r(C4) and rg = r(Cp).
Then r(Z°(X, F)) > draro=3,

Ararp

Proof. By replacing g, a,b with agb,a™",b~! in (@2), we see that Z is the subspace of X defined
by the constraints

(mg)thb = (mtlg)afl,b = (mgb)a,b*1 = (magb)afl,bfl' (93)

forallg € G,a € A, b € B. One readily checks that (0.3]) depends only on the square {g, ag, gb, agb}
and not on g, a,b. Thus, Z is defined by 3| X (2)| = w linear constraints inside <. It follows
that

3
drarg’’

3|G 1Al Bl
4

3|G1| Al B|

dimZOZdimEG— 1

= |G||A||B|rars — = dim %Y(1 -

and the proposition follows. O

9.4 Interpretation of Local Expansion Conditions

Our goal is not to apply Theorem BI0 to X = Cay(A, G, B) and the sheaf F we constructed. To
that end, we now unfold the conditions (1la)—(2c) of that theorem and interpret them (for (X, F)
in terms of the codes C'4 and Cp and the one-sided Cayley graphs Cay(A, G) and Cay(G, B).

We begin with restating (1a). Recall that §(C4) denotes the distance of the code Cjy.

Lemma 9.3. With notation as §9.2, let g € G, a € A and b € B. Then
(i) cbe_1(Figagy) = 9(Cp),
(ii) cbe_1(Fig,gpy) = 6(Ca),

(iii) che_1(Fiyy) = 4(5(Ca) + 8(Cip)).

Proof. (i) Write e = {g,ag}. Every 2-face in X containing e is of the form s, := {g, ag, gb, agb} for
a unique b € B. Recall that F({g,ag}) = Cp, and for every b € B, F(sp) = F and res;, ,. Cp = F
is projection onto the b-component. This means that the map f +— (resg,—e(f))ren @ F(e) —
[Toe F(sp) is just the inclusion map Cp — FB. The natural weight function on the 0-poset X, is
uniform on X, (0) (Example L)), so, as noted in Example [4.8, cbe_1(Fygqgy) = 6(CB).
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(ii) This is similar to (i).

(iii) Write v = {g}. There are |A| + |B| edges containing v, namely, {e, := {g,ag}}sca and
{ey :== {9, gb} }re, and one readily checks that w,(e,) = ﬁ and wy(ep) = ﬁ for all a € A and
be B. Let f € F(v)—{0} =C4®@Cp—{0}, and let Ag={a € A : rese,r f #0} and By = {b €
B : rese, f # 0}. By Example[6.4}, we need to show that w, (4o U By) > 1(6(C4) +6(Cp)), and
that equality is attained for some choice of f.

Recall that we view f as a matrix in M« p(F) with r(f) € Cp and ¢,(f) € C4 for all a € A,
be B. Then Ay = {a € A : ro(f) # 0} and By = {b € B : ¢(f) # 0}. Since f # 0, there are
ap € A and by € B such that f,,p, # 0. This means that r,,(f) € Cp — {0}, so at least §(Cp)|B]|
entries in the ag-th row of f are nonzero. As a result, |By| > §(Cp)|B|. Similarly, |Ag| > 6(C4)|A]
and it follows that w, (A49UBy) = wy,(Ag)+we(Bo) > 2(5(Cp)+6(Ca)). To see that equality can be
attained, choose f4 € Cya, fp € Cp with ||fa]l = 0(C4) and ||fB|| = 6(Cp), and take f = f4 ® fp
(i.e., the matrix (fa(a)fB(D))acapeB)- O

We proceed with (1b).

Lemma 9.4. With notation as above, let g € G and k € [0,00). Then cbeg(Fiqy) > & if and only
if Ca ® Cp is k-agreement testable (Example [2.6]).

Proof. By Proposition [6.6], changing the F-orientation of X4y is harmless. We therefore choose a
Z-orientation on X, such that [v : {g}] = 1 for every v € X4 (0); this is possible by Example £26l

Observe that Xy, may be identified with the complete bipartite graph on A and B — simply
map the vertices {g, ga} and {g,bg} to a and b, respectively, and the edge {g, ag, gb, agh} to the dege
{a,b} (a € A, b € B). It is now routine to check using Examples and that cbeg(Fig) > K
if and only if Cy ® Cp is k-agreement testable. O

Condition (2a) of Theorem [8.I0] holds automatically for X with B = 1.
Lemma 9.5. With notation as above, for every g € X, the graph Xy, is a (0,1)-skeleton expander.

Proof. The graph Xy, is the complete bipartite graph on the sets {{g,ag}|a € A} and {{g, gb}|b €
B}. Tt is well-known that such a graph is a 0-expander, so the lemma follows from Proposition
O

In order to secure (2b) and (2c), we need to require that the Cayley graphs Cay(A,G) and
Cay(G, B) are A-expanders (§2.1]).

Lemma 9.6. With notation as above, suppose that both Cay(A, G) and Cay(G, B) are \-expanders.
Then:

1. X(<1) is a A-expander and a (X, 1)-skeleton expander.
2. NIGM2(X) is a (2), 4max{|A|, |B|})-skeleton expander.

Proof. (i) Let A, A4, and Ap denote the weighted adjacency operators of X(<1), Cay(4,G) and
Cay(G, B), respectively. One readily checks that AsAp = ApA4 and A = %(AA + Ap). The
former means that A4 and Ap can be simultaneously diagonalized. Thus, every eigenvalue p of A
on C(X(< 1),R) is of the form 3(pa + pp) where pa, up are eigenvalues of As, Ap. As both
A, b € [—1, A], we conclude that p < A.

(ii) Observe that G := NIG12(@) is the disjoint union of two subgraphs: G4 and G. The
vertex set of G4 is {{g,ag}|a € A, g € G} and the vertex set of G is {{g,ag}|a € A,g € G}. We
will prove (ii) in two steps.
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Step 1. We claim that G 4, endowed with its natural weight function, is a (A, | A|)-skeleton expander.
Likewise, Gp is a (A, |B|)-skeleton expander.
To see this, let G’; be the graph with vertex set {(g,ag)|g € G,a € A} and edges

{{(g,a9),(gb,agb)}|g € G,a € A,b € B}.

The map p : G’y — G4 sending (g,ag) to {g,ag} and {(g,ag), (gb,agb)} to {g,ag, gb,agb} is
a 2-covering of G4. On the other hand, the graph G’; is the disjoint union of |A| copies of
Cay(G, B). By Example [.7(i) and (iii), Cay(G, B) is a (A, 1)-skeleton expander and hence Gy is a
(A, |A|)-skeleton expander. Since for every U C G 4(0), we have p~!(Eg, (U)) = Eg, (p~1(U)) and
wer, (p~Y(U)) = wg, (U), it follows that G 4 is also a (A, |A])-skeleton expander, as claimed.

Step 2. Write H for the hypergraph NIHM'2(X) and let wy be its weight function. Let w4 and
wp denote the natural weight functions of G4 and Gp, respectively.

The graph G4 is |B|-regular, so wa(e) = ﬁ(o) = m and wa(s) = GAl(l) = IAHéHGI for every
e € G4(0) and s € G4(1). On the other hand, by unfolding the definition of wg, one finds that
wg(e) = W = fwa(e) and wy(s) = IAHéHGl = wa(s). Now, by Step 1, for every U C G4(0)
with wg(U) = «, we have

wi (Ba(U)) = wa(Eg, (U)) < [Alwa(U)? + Mwa(U) = 4|Alwg (U)? + 22wy (U) = 4|A|a? + 2)a.
Similarly, for every V' C Gp(0) with wg(V) = B, we have
wa(Ea(V)) < 4B|B% + 2A8.

Finally, let Z C H(0) with wy(Z) =7, and put U = Z N G4(0) and V = Z N Gp(0). Then,
with a and (8 as before, we have

w (B2 (Z)) = wu(Ex(U) U E2(V)) < wu(E2(U)) + wi (E2(V))
< 4(|Ala? + |B|B?) + 2\ (e + B) < 4max{|A],|B|}¥* + 2\,

which is what we want. O

9.5 Constructing 2-Query LTCs

We finally plug all our previous observations to Corollary [BI2]to get the following theorem, which
implies Theorem [[.4] from the introduction.

Theorem 9.7. Let G, A, B, X,F,Cy,Cp,F be as in §91 and let € € (0,1]. Suppose that the
following conditions are met:

(1d') 6(Ca) > ¢,
(10') 6(Cp) > ¢,
(1d) Ca @ Cp is e-agreement testable,

(2 ) the Cayley graphs Cay(A,G) and Cay(G, B) are %—eajpandem.

o7



View Z° = Z°(X, F) as a code inside C°(X,F) = XY (where ¥ = C4 ® Cp). Then

79

§(2%) > = r(2°) > 4r(Ca)r(Cp) — 3

4T(CA)T(CB) ’

and the natural 2-query tester of Z° has soundness

1
128 max{ {5, {531} [100e 3 + max{|A|, | B|}e~1]

128(100 —3 +max{

Moreover, setting n = 1 AT Algorithm [82 with q = m is a correction
algorithm for words that are n-close to éo.

When viewed as functions of ¢, |A| and | B|, the order of magnitude of the distance and soundness
of Z°, as well as the required expansion of Cay(A,G) and Cay(B, (), is the best we can get by
using Corollary However, we did not attempt to optimize the constants. We also remark that
as | X(0)| = |G| grows, |A| and |B| must be Q(e~%) for (2') to hold, because by the Alon—Boppana

Theorem \(Cay(A,G)) > 2 |‘AA‘|_1 —o(1), and likewise for Cay(G, B).

Proof. The claim about the rate is Lemma Let A = %. Assumptions (1a’)—(2'), the lemmas
in §9.4]and Lemma [7.§ imply that assumptions (1a) and (1b) of Theorem [RI0 hold, and in addition,

e X,(<1)is an (0, 1)-skeleton expander for all v € X(0),
e X(<1)isa (A, 1)-skeleton expander,

o NIH“M2(X) is a (2, 4max{|A|, |B|})-skeleton expander.

Observe also that w(u) = w(v) for every u,v € X(0) and w(e) < max{%, %}w(e’) for every

e, €/ € X(1). We may therefore apply Corollary (with the constants E, E’,... taken from the

last row of Table[[, M =1 and M’ = max{%, %}) for any hg,h—1,h) € Ry such that

ho + 2\ + dmax{|A|, |B|}hy + Atlh‘l < %
0

(Note that the requirement A < Ee = € holds automatically.) Our theorem is obtained by choosing
h():\/X,hlz)\anth:m. |

In order to get a good 2-query LTC from Theorem [0.7] it remains to show that it can be applied
to an infinite family of G, A, B, C4, Cp satisfying assumptions (1a’)—(2’). The existence of a suitable
family has been shown in [DEL*22 §5-6], but we recall some details for the sake of completeness.
Specifically, we will show the following.

Theorem 9.8. For every r > 0 and finite field ¥, there are m € N and € > 0 for which there exist:
(i) a sequence of groups {G}tien with |Gi| — oo,

(it) symmetric generating subsets A;, B; C G; (for every i € N) satisfying (O1), |A;| = |B;| = m,
and such that Cay(A;, G;) and Cay(G;, B;) are %—eajpandem,

(iii) a linear code Coy C F™ such that r(Cy) > r, 6(Co) > € and the tensor code Cy @ Cy is
e-agreement testable.
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Thus, if r > % and JF; is the sheaf on X; := Cay(A4;,G;, B;) constructed in §9.2] (with A;, B;, G;
in place of A, B,G) by choosing C4, = Cp, = Cp, then Theorem tells us that the family

{Zi(Xi, Fi) € (Co @ Cp)% }iso

is a 2-query LTC with alphabet ¥ = Cy ® C.
Theorem is obtained by combining two results.

Lemma 9.9 (|[DEL*22, Lem .5.1]). For every 0 < r < 1 and finite field F, there are 8y, ko > 0 and
do € N such that for any D € N divisible by dy, there exists a linear code Cy C FP with r(Cpy) > r,
d(Co) > 6o and such that Cy @ Cy is ko-agreement testable.

The proof in [DELT22] consists of showing that a random LDPC code will satisfy all the
requirements (for suitable 0y, ko) with positive probability as the length of the code grows. It is
written under the assumption that F = Fo, but works for every finite field F.

Lemma 9.10 ([DEL*22, Lem .5.2]). Let dy € N, let ¢ be an odd prime number with ¢ > d3, and
let D = d L%J. Then for every i € N, there is an explicit group G; of size O(q>) admitting
two symmetric generating sets A;, B; of size D which satisfy Q1)) and such that Cay(A;, G;) and
Cay(G;, B;) are 4D~ Y2 -expanders.

This is shown using known constructions of Ramanujan graphs.

Proof of Theorem[3.8. Recall that we are given 0 < r < 1 and a finite field F. Let dg, kg and dg
be as in Lemma 0.9 and put ¢ = min{dp, k9}. Choose a prime number ¢ sufficiently large so that
qo > d? and 4D71/2 < 65130, where D is as in Lemma Having fixed such a ¢, let G;, A;, B; be
the family promised by that lemma. Take m = D. Since m is divisible by dy, Lemma supplies
us with a code Cy C F™ such that r(Cp) > r, 6(Cy) > ¢ and Cy ® Cj is e-agreement testable. This

is exactly what we want. O

9.6 Realization as a Line Code

Let G,A,B,X,F,Cy,Cp, F,%X = C4y ® Cp be as in §0.11, §9.21 We finish this section by showing
that Z0(X, F) C X% is in fact the line code of a linear lifted code C(A,G,B) C F¢ that was
constructed in [DEL'22] (in the case F = Fy). The main result of [op. cit.] states that under
conditions resembling those of Theorem [I.7, C'(A, G, B) C F¢ is a good LTC. We shall recover this
result (with slightly different parameters) by applying the results of Section Bl to the lifted code of
C(A,G,B) C FX() and its line code Z°(X, F) C X,

The code C(A, G, B) € FX®) is constructed as follows. For every {g} € X(0), there is a bijection
¢g: AX B — X(2)q4y given by ¢,(a,b) = {g,ag, gb,agb}. We use this bijection to identify FX@)a
with FAXB = M4, p(F) and let Cy be the subspace of FX@)ay corresponding to C'4 ® Cp under
this identification; formally, once viewing every f € C4 ® Cp as a function f : A x B — F, we have

Cy={fop,"|feCa®Cg}.

The code C = C(A,G,B) C FX®? is the lifted code determined by the small codes {C, C
FX®11} e P4 That s,

C(A,G,B)={f:X(2) = F : flxgy, €Cyflorall geG}.

Since every small code Cy is canonically identified with ¥ = C4 ® Cp, we may form the line code
L =L({Cy}sec) C X of C(A,G,B) (§3). As we now show, this code is precisely Z°(X, F).

20 According to the conventions of §23] we should have denoted Cy as Cx (2 e
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Lemma 9.11. With notation as above, the line code of C(A,G,B) = C({Cy}sec) C FX? s
709X, F) C x¢.

Proof. The elements of the line code L of C(A, G, B) are the ensembles f = (f;)gec € (Ca®Cp)Y
which satisfy the following condition for all g,h € G:

(%) fgo 90;1 agrees with fj, o 90;1 on X(Z){g} N X(Z){h}.

Let g,h € G. If X(2)f53 N X(2)(ny = 0 or g = h, then condition (x) holds. Otherwise, there are
unique ag € A and by € B such that h € {agg, gbo, aogbo}. Suppose that h = agg. Then X (2)5 N

X(Q){h} = {{gv ang, gb7 aogb} | be B} Since ‘:Dg(QOa b) = {97 a097gb7 a(]gb} = {h7 aalhv hb7 a(;lhb} =
onlag*,b), condition (x) is equivalent to having

Tao(fg) = Tagl(faog)- (9.4)
Likewise, when h = gbg, condition (*) is equivalent to

e (Fy) = eyt (). (9.5)
Finally, if g = aggbo, then X (2)¢1 N X(2)ny = {{a09, gbo, aogbo}} and condition (x) becomes

(fg)flmbo = (faogbo)a(;l’bfl .

0

However, this already follows from (3.4]) and (@.5)) (for all g € G), because they imply that (fg)aq,6, =
(faog)aal 7b0 = (fa()gbo)aalgbal .
By comparing (3.4)) and (@.5) with the description of Z°(X, F) in §9.3, we see that L = Z°(X, F).

O

Corollary 9.12. Let G, A, B, X,F,C4,Cp be as in §9.1 and §9.2, and let C = C(A,G,B) C
FX®) be the lifted code constructed above. Let ¢ € (0,1], and suppose that conditions (1d')-(2) of
Theorem [9.7 hold. Then

6(C) > 79¢

> somanEy (O 24r(Car(Cr) =3,

and the natural tester of C has soundness
1

256 max { |}, {31 }[100e=3 + max{| A|, | B[}e '] + 1

Moreover, provided that |Al, ]B\ |F| are fized, C has a linear-time decoding algorithm able to correct
words that are To8[AT[B](T00:= 3+max{\A| B )-close to C'.

Proof. Write L = Z°(X,F); this is the line code of C' by Lemma Theorem provides
us with lower bounds on 6(L), r(L) and the soundness p of the natural 2-query tester of L, as
well as a decoding algorithm. The lower bounds on §(C) and r(C') are now obtained by applying
Proposition B0} in our case Dpin = Dmax = 4 and kpin = kmax = |A||B|. Next, we apply
Theorem B.IT] using the graph X (< 1) and the labelling ¢ mapping a face x to X (2 )m, namely, the

set of squares containing x. It implies that the natural tester of C' has soundness 5 +u ﬁ (in
our case dpin = dmax = |A| + |B|). Finally, the claim about the decoding algorithm follows from
Proposition B71 O
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By applying Corollary to the family {Gj;, A;, Bi}ieny from Theorem (with F = Fq),
we recover the good locally testable lifted codes of [DELT22]. Our bounds on the rate, distance,
soundness and decoding are slightly different, though.

Remark 9.13. The proof that C(A, G, B) C FX?) is locally testable under assumptions (1a’)—(2")
of Theorem [0.71in [DEL™22] implicitly establishes the local testability of the line code Z°(X, F) C
(C4 ® Cp)Y and then deduces from it the local testability of C'(A, G, B). Specifically, observe that
[DELT22, Algorithm 1] is essentially our Algorithm restricted to the X and F constructed from
G, A, B. Our proof of Corollary illuminates that aspect of the proof as well as the hidden role
of cosystolic expansion of sheaves.

Remark 9.14. In [DEL122, §4.1], the authors give lower bounds on the rate of C'(4, G, B) C FX()
that are slightly better than those of Corollary Using them together with Proposition B.6(i)
gives lower bounds on the rate of Z°(X, F) C £ that are better than those given in Lemma [.21

Remark 9.15. By Theorem B.I1], we can also reverse the argument in the proof of Corollary
and use the fact that C(A,G, B) C FX @) is locally testable and admits a linear-time decoding
algorithm to deduce that Z°(X, F) C £¢ admits a 2-query tester making it into an a good LTC with
a linear-time decoding algorithm. Note, however, that the alluded 2-query tester is not the natural
tester of Z%(X, F). Rather, it is the tester defined in Section [3] corresponding to the intersection
graph of the sets {X(2)(,y |g € G} (Example B). Explicitly, given f € Z°(X,F), this tester
chooses uniformly at random a pair of vertices {g}, {h} € X(0) that are contained in a common
square and checks whether f(g) € Maxp(F) = FX®a) agrees with f(h) € Maxp(F) = FXZx)
on X;(2)(yy N X(2)gpy- This is different from the natural tester of Z%(X, F) because {g} and {h}
may be the opposite vertices of the a square in X;.

The parameters of the code Z%(X,F) C X¢ that we would get by applying Theorem B to
the LTC C(A, G, B) C FX?) (say, using [DEL*22]) would be much worse than those promised by
Theorem

10 Local Testability of Two-Layer Lifted Codes

In this section, we apply Theorem 810 to give a local criterion for a lifted code to be locally testable
w.r.t. to its natural tester. This requires the lifted code to have some auxiliary extra structure. In
particular, the local codes forming our lifted codes should be lifted codes themselves.

10.1 Two-Layer Lifted Codes

Recall that a lifted code C' C ¥" is determined by small codes {Cs C ¥%}scg, where S C P([n]).
We would like to consider lifted codes in which each small code Cy C ¥° is itself a lifted code. This
structure can be neatly encoded using a 1-poset labelled by subsets of [n].

Definition 10.1 (Two-Layer Lifted Code). Let ¥ be a finite alphabet and let n € N. A two-layer
lifted code inside 3" consists of a triple (X, £,{Ce}ecx (1)), where

e X is a l-poset,
o {: X — P([n]) is a function assigning every face of X a subset of [n],
o C, is a code inside XX for every e € X (1),

and such that the following conditions hold:
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(1) e( ) yEX y>x (y) fO’I” all z € X(O) U X(_l);
(2) £(0) = [n].
In this case, for every x € X (0) U X (—1), we assign a lifted code C C X!®) defined by

Cx:C({C }EEX )—{fGZ f‘@(e € Ce fOT’(leGGX( )}

The code Cy C X" will also be denoted as C := C(X,{,{Ce}ecx)). It can can also be realized as
a lifted code w.r.t. the “bigger” small codes {Cy }yex (0)-

Definition 10.2 (Natural Tester of a Two-Layer Lifted Code). Let C = C(X,{,{Cec}cex(1)) € X"
be a two-layer lifted code. The natural tester of C is its natural tester when realized as a lifted
code w.r.t. the small codes {Cy}yex (o) Erplicitly, given f € X", the natural tester picks v € X(0)
uniformly at random, probes f; for every i € £(v), and accepts f if and only if f|g(v) € C,.

10.2 Subset-Labelled d-Posets

The notion of a 1-poset labelled by subsets of [n] extends naturally to d-posets.

Definition 10.3 (S-Subset Labelled d-Poset). Let S be a finite set and let X be a d-poset. An
S-subset labelling on X is a function £ : X — P(S) such that

(1) U(z) = Uyex.ysz {(y) for all v € X with dimx < d and

(2) £(0) =
In this case, we call (X,0) an S-subset labelled d-poset.

Example 10.4. (i) Let n € N, let V' be a collection of subsets of [n] covering [n] and let X be a
d-poset with X (0) = V. Define a labelling ¢ : X — P([n]) by sending 0} to [n] and every other x
to Nyea(o) v is an [n]-subset labelling on X. If X is big enough such that for every z € X with
dimz < d the sets {Nyey) v |y € X(dima + 1);} cover Nyep) v, then £ X — P([n]) is an
[n]-subset labelling of X. This generalizes the setting of §I.8] which is essentially the case where
X is a pure 2-dimensional simplicial complex.

(ii) Let d < d’ be natural numbers, let X’ be a d’-poset and set S = X'(d'). Put X = X'(< d)
and define ¢ : X — P([n]) by ¢(z) = Y (d),. Then ¢ is an S-subset labelled d-poset.

An S-subset labelling on a d-poset X induces a normalized weight function wy : X — R, given
by wy(z) = £ > jct() #{yex(dhﬁ w77y L he number wy(x) is also the probability of getting = by

choosing j € S uniformly at random and then choosing a face y € X (dim x) with j € ¢(y) uniformly
at random.

Given integers —1 < i < j < d, we define the (i, j)-lower regularity and i-upper irregularity of
the S-subset labelling ¢ to be

maX,escex() #{Y € X(J)z : s € L(y)}
mlnsES xeX (i #{y S X(]) tSsE g(y)}

max{#L(z) |z € X (i)}
min{#/(x) |z € X(1)}’

Li;(0) := and U;(0) :=

respectively. The i-th degree of £ is

Di(t) = e #L().
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Example 10.5. In the setting of Example[L2l(ii), w, : X — Ry is just the restriction of the natural
Weight function of X’ to X. Moreover, le(f) = Li,j,d’(X,)a Ul(f) = Ui,d’ (X,) and Dl(f) = Di,d’ (X,)

Remark 10.6. If X is lower regular and ¢ is lower regular in the sense that L, ;(¢) = 1 for all
—1 <i < j <d, then wy is a proper weight function on X. This follows from Corollary 19 and
the following observation.

An S-subset labelling £ on a d-poset X may be used to extend X into a (d+1)-poset Y := XIS,
where the elements of S are viewed as (d + 1)-faces and for x € X and s € S, we have =z < s if
and only if s € ¢(z). The weight function wy : X — R, is then just the restriction of the natural
weight function of Y to X. Moreover, L; ;(¢), U;(¢) and D;(¢) are just L; jq+1(Y), U a+1(Y) and
D; 4+1(Y), respectively.

Example 10.7. Keep the setting of Example [[0.4)(ii) and suppose further that d = d + 1. Then
then poset X LI S associated to the S-subset labelling ¢ coincides with X”.

We finally note that if (X, ¢) is an S-subset labelled d-poset and z € X is of dimension 7, then
the pair (X,,/|x,) is an £(z)-subset labelled (d —i — 1)-poset. We shall abbreviate ¢|x, to ¢,. If
we let Y = X U .S as above, then wy, coincides with the natural weight function of Y, because this
poset is just X, U 4(z).

10.3 A Criterion for a 2-Layer Lifted Code to be Locally Testable

Let C = C(X,{,{Ce}eexa)) € X" be a two layer lifted code. The following theorem gives a
criterion for C' to be locally testable when (X, ¢) is the [n]-subset labeled 1-poset underlying a
[n]-subset labelled pure 2-dimensional regular cell complex.

Theorem 10.8. Let F € N and L € [1,00). Then there exist constants S,S', 8", Ty,...,T5 > 0
(all are inverse-polynomial in F and L) such that the following hold2Y Let n € N and let (X,0) be
an [n]-subset labelled pure 2-dimensional regular cell complex (see §10.2) such that

(0a) Fi5(X) < F for alli € {0,1};
(0b) L;;(¢) < L for all integers —1 <i < j < 2;

(Oc) for all u,v € X(0) and j € £(u) NL(v), there is a path of edges from u to v such that j € {(e)
for every edge e along the path.

Let R be a commutative ring, let X be an R-module, and for every e € X(1), let C, C »e)
be a code which also an R-submodule. Then (X(<1),£,{C¢}cex(1)) s a 2-layer lifted code. Let
a0, Bo, -1, -1, ), B > 0 and suppose that

(1a) 0(Ce) > € for all e € X(1),
(1b) for everyv € X(0), the quartet ({Ce}eex (1), Xo(< 1), 4] x, (<1), We,) s an e-agreement tester
(2a) (Xy(<1),wy,) is an (o, Bo)-skeleton expander for all v € X(0);

(2b) (X(<L1),wy) is an (a_1,B-1)-skeleton expander;

2'We encourage the reader to think of F' and L (and thus of S, S’,T1,...,Ts) as being constant or ©(1) as this is
usually what happens in practice.

22Note that X, is a graph by our assumption that X is a 2-dimensional regular cell complex. The weight function
we, : Xo — Ry is given explicitly by we, ()

_ 1 Z 1
T #L(v) i€l(z) #{yeX(dimz), :1€l(y)}"
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(2c) NIHM2 (X wy) (see §7) is an (o, B)|)-skeleton expander.

Suppose further that
a_180 + S/ao < Se (10.1)

and one can find h_1, ho, hy| € (0,1] satisfying the following inequality

(a0 + Boho) + (o + Byyhy)) + < S (10.2)

Then the two-layer lifted code C' = C(X(< 1),4,{Ce}eex(1)) € X" satisfies

> 1 ) Tl(SE - S/Oé() - 04_1,80)
Uo(€)Do(¢) B-1

5(C)

and its natural tester has soundness

1 T,
Uo(OUr(0) T3 + hothyt 4yt

Moreover, C' C X" has a linear-time decoding algorithm (the constant depends on Dy({), |X|, F, L,
hgo) able to correct words that are n-close to C, where

1 min {T4(SE - S/ao - 04_1,30) T5 }
(£) '

= Us(0)Do B_ihg] “h Thi T by

We prove Theorem [I0.8 in the next subsection.

Example 10.9. Similarly to Example [0.4(ii), let X’ be a d’-poset (d' > 2) with X’ = [n], and
define ¢ : X — P([n]) by £(z) = X'(d),. Then X := X’(< 2) and ¢|x satisfy conditions (0a)—(0c) of
Theorem 0.8 with L = L(X') and F' = max{Fg’5*(X"), Fg*7*(X")}. Moreover, the weight functions
wy and wy, (v € X(0)) coincide with the natural weight functions of X’ and X/, respectively. We
can now choose an R-module ¥ and R-submodules C, C %4 for every e € X (1) and attempt to
apply Theorem [T0.8l

When the regular cell complex X from Theorem [[0.8]is a simplicial complex and the labelling ¢
is lower regular in the sense of Remark [[0.6[(ii), we can use Theorem [I0.8 together with Oppenheim’s
Trickling Down Theorem |[Oppl§] to get the following local criterion for showing that a two layered
lifted code is locally testable.

Theorem 10.10. There are constants K, K' > 0 such that the following hold. Let X be a pure
2-dimensional simplicial complex, let n € N and let ¢ : X — P([n]) be an [n]-subset labeling
satisfying condition (Oc) of Theorem and such that L; ;(€) = 1 for all =1 < i < j < 2. Let
(X(£1),6,{Cc}eexq)) is a 2-layer lifted code with alphabet ¥ as in Theorem [II.8. Let € € (0,1]
and suppose that:

(1a) 0(Ce) > € for every e € X(1);
(1b) for every v € X(0), the quartet ({Ce}teex(1),, Xo(< 1), £l x, (<1), We,) is an e-agreement tester;

(2a) (X,(< 1),wy,) is a Ke2-spectral expander.
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Then the natural tester of the two-layer lifted code C = C(X(< 1),4,{Ce}cex(1)) € X" has sound-

ness T(gé%(@' Moreover, §(C) > ngo(@ and there is a linear-time decoding algorithm for words

: n 1
in X" that are WK’E?’—fur from C.

Proof. Suppose for time being that K and K’ were specified and K < % Their values will be given
later on.

Since X is simplicial, F;5™(X) = 3 for all i« € {0,1}. Moreover, NIHY2(X) has now edges,
so it is a (0,0)-skeleton expander. Since both X and ¢ are lower regular, w, is a proper (Re-
mark [[0.6(ii)) and wy, coincides with (wy), and is therefore also proper (Corollary [19). Now, by
(2a), (X, (< 1),wy,) is a (Ke?,1)-skeleton expander, and by Oppenheim’s Trickling Down Theorem
[Oppl1g], (X, wy) is a %—Spectral expander, and hence a (2Ke?,1)-skeleton expander provided
K <1

Let S,S",T1,...,T5, E' be the constants guaranteed by Theorem [I0.8 when F = 3 and L = 1.
We choose K to be small enough to satisfy (2 + S )K < %l and 4VK < E'.

We claim that we may apply Theorem [[0.8to our (X, ¢) and 2-layered lifted code with (g, By) =
(Ke? 1), (a_1,B-1) = (2Ke?%,1), (o, 8)) = (0,0), ho = VEKe, h_y = Ke? and h; = 1. Note that
conditions (0a)—(2c) of Theorem 0.8 hold by the last paragraph, or by our assumptions, so it
remains to check the inequalities (I0.I]) and (I0.2]). Indeed, by our choice of K,

a_1fo+Sag =2+ 8)Ke? < (2+ 8)Ke < S'e
and

a_1+ B-1h_1 9 Ke? + Ke?
rreetel g Ked4 —— ' =
i e+ VKe + T

Note also that Se — S’ag — a_18y > %E.
Now, Theorem 0.8l tells that natural tester of the code C' C ¥™ has soundness

(ao—i—,@oho)—i—(an +,3||h||)+ §4\/EE<E,€.

1 T
Uo(0)?U1(0) Ty '+ K—15—341"

Moreover, 6(C) > W <17 - %516 and C has a linear-time decoding algorithm able to correct

works that are n-far from C with n = o (Z)on 0 min{ %ﬁ%};, K,l‘g;"% +1}. From this, one sees that
there is a constant K’ > 0 for which the assertions of the theorem hold. O

10.4 Proof of Theorem [10.8

We prove Theorem [0.8 by realizing the line code of C' = C({Cy }yex(0)) as the O-cocycle code of
a sheaf on X, applying Theorem B0 to that sheaf, and then deducing the good properties of C
using the results of Section Bl This will be done a series of lemmas. A byproduct of this approach
is that the line code of C' = C({Cy}yex(0)) is also locally testable and has linear distance; this is
Lemma [I0.141

Throughout, we will use the following general notation: Let n € N and let (X,¢) be an [n]-
subset labelled pure 2-dimensional regular cell complex. Let R be a ring and let ¥ be an R-module.
For every e € X(1), let C. C X¥¢) be a submodule, and let C, = C({Ce}eexq),) C > for all
v € X(0). Recall that C':= C(X, £, {Ce}ccx(1)) also equals C({Cy}vex(0))-

As in §I02] let Y = X U [n] be the 3-poset associated to (X,¢). We denote the natural
weight function of Y by w. Recall that wy, = w|x and wy, = w, for all v € X(0). In addition,
Fi5X(Y) = F{5(X) for all i € {0,1} and condition (0b) of Theorem [[0.§] is equivalent to saying
that L; j3(Y) < Lforall -1 <i<j<3. As L ;1(Y) < Fln;a];‘(Y) for all 7 < j <k, it follows that
if conditions (0a) and (0b) of Theorem [I0.8 hold, then L(Y') < max{L, F'}.
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Since X = Y (< 2) is a regular cell complex, it admits a Z-orientation with [v : )] = 1 for every
v € X(0) (Example A26]). We fix such an orientation once and for all. Note, however, that this
orientation may not extends to Y. (Admittedly, Y is introduced only for the sake of the weights.)
Define a sheaf F on Y as follows:

e F(v)=C, C X for all v € Y(0);
)=

o Fle)=C, C 2 forall e € Y(1);
o Flz) =3 for all z € Y(2);
o F(y) =0 for every other face, i.e., y € Y(—=1) UY(3);

. reSy<—x : .F(x) — J:(y) is given by resy<_x(f) = f’é(y) whenever 0 S dimz < dlmy S 9 (recall
that f € B and thus fly,) € B‘@);

e Tesy. . is the zero map in all other cases.

Lemma 10.11. Assume that condition (0Oc) of Theorem[I0.8 holds. Then Z°(Y,F) is the line code
of the lifted code C' := C({Cy}vex(0)) € X"

Proof. Observe that CO(Y,F) = [Toex@) F(v) = HveX(o)C . Let f = (fo)vex) € C°(X,F).
Since we chose the Z-orientation on X (< 2) such that [v : ] = 1 for all v € X(0), every e €
X (1) admits exactly one vertex v with [e : v] = 1 and the other vertex u satisfies [e : u] = —1.
Consequently, the condition (df)(e) = 0 is equivalent to having resq. f(u) = resey, f(v). As a
result, Z°(X, F) consists of the set of f = (fo)vex() € [vex (o) Cv such that fulge) = folee) for
every e = {u,v} € X(1). This means that Z°(X,F) contains the line code L of C. It remains to
show that L O Z°(X, F).

Suppose that f € Z°(X,F). In order to show that f € L, we need to show that for every
u,v € X(0) with £(u) N €(v) # 0, we have fulywnew) = folownew)- Let i € L(u) N L(v). By
condition (0d) of Theorem [I0.8], there is a path of edges eq,...,e, € X(0) from u to v such that

i € l(e;) for every j € {1,...,r}. Write e; = {uj_1,u;} so that v = up and v = w,. Our
assumption that f € ZO(X, F) implies that fu; ,|gec;) = fu;lee,), and in particular fu, ;= fu;-
Thus, fuZ fuoi = -+ = fupi = fvi- As this holds for all i € ¢(u) N ¢(v), we conclude that
fulenew) = Folew)new)- 0

Lemma 10.12. With notation as above, let e € X (1). Then cbe_1(Ye, Fe) > 0(Ce).

Proof. Let f € F(e) —1 and let A = {x € Y(2)¢ : resyee f # 0}. The ||df|| = we(A) and || f| = 1.
We therefore need to show that we(A) > 6(Ce). In what follows, x ranges over Y (2). and j ranges
over Y (3). = ¢(e). We have

1
we(A) = x;f%;);ﬁowe(éﬂ) = xf%;ﬁéo “z;x e)l{y € X(2)e:e <y <j}
| _iete) : [ £0)
]%0xe§<] ||{y€X( ) 2€<y<j}| - |£(e)| 25(06). O

Lemma 10.13. With notation as above, let v € Y (0), let a,, B, > 0 and let F' € N. Suppose that
Yy(< 1) is an (a, B)-skeleton expander, §(C.) > € for every e € Y(1)y, and F{5™(Y,) < F for all
i € {0,1}. Then there are constants Q,Q’ > 0, depending only on F, such that

Q' (Qe — Oéo)‘

cbe_1(Yy, Fy) >
Bo
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The constants Q and Q' are E and E" from Table [ once taking X =Y,. In particular, we can
take Q@ = Q' =1 when Y is lower reqular.

Proof. Let F, be the sheaf on Y, obtained from F, by changing F,(v) = C, to 0. Then for
every e € Y (1),, we have cbe_1(F.) = cbe_1(F.) > &, where the inequality is By Lemma
Applying Theorem BI3] to (Y, F,,) now tells us that cseq(F,) > W It is therefore enough
to show that cbe_1(F,) > cseo(F). Indeed, let f € C~1(Y,,F,) — {0}. Since {(v) = Ueev (1), £(€),
there is some e € X (1), such that rese., f = flye) # 0. As df(e) = £resec, f, it follows that
df € Z°(Y,, F,) — {0} = 2°(Y,, F)) — B°(Y,, Fy), and so ||df|| > cseq(F,)) = cseo(F,)|If], as
claimed. O

Lemma 10.14. Keep the notation above, let F € N and L € [1,00), and let E,E'E" E",
D,D',D", Q,Q" be as in Table 1 and Lemma [I013 (recall that these constants depend only on
F and L). Suppose that F;5*(X) < F for every i € {0,1} , that L(Y') < L and that assumptions
(1a)-(2¢c) of Theorem [IO.8 hold for some ao, Bo, a—1,B-1, ), B > 0. Suppose further that

a_1P0+ EQ oy < EQQ'e

and there are ho,h—1,h) € (0,1] such that

- _1h_
(040 + 60}10) + (OéH + ﬁHhH) + %’ill < F'e.
Then
i " Io oo
CSGO(Y,.F) 2 % and CCdO(Y, f) Z E (EQQ 3 EQ (&%) a—lﬁo).
ho "hi™ + Ny, B

Moreover, if f € C° = C°(Y, F) satisfies dist(f, Z°) < Wiwﬂ’ then applying Algorithm [8.2 to
0 1 [

f with the parameter ¢ = D'hg returns f' € Z° such that dist(f, f') < ﬁ dist(f, Z).

Proof. We show this by applying Theorem RI0] to (Y,F). (Note that Y may not admit an R-
orientation, but X = Y (< 2) has one and that is enough.) Condition (1b) of Theorem [BI0I
holds with ¢ = ¢ by Lemma [I0.12] condition (1c¢) of Theorem B0 holds by condition (1b) of
Theorem [I0.8 and condition (1a) of Theorem B0 holds with ¢ = W by Lemma [[0.I3] Our
assumption that a_18y) + EQ'ag < EQQ'e implies readily that a_; < E - W. As all other

(Qe—ayp)

assumptions of Theorem [B.I0 clearly hold, we may apply it (with & R and ¢ in place of £ and

¢’) and derive all the assertions of the lemma. O

In what follows, we shall view Z°(Y,F) as a code with coordinate-dependent alphabet inside
[Loev) Co = CO(Y,F). Tt can be regarded as an honest code when all the C, have the same
cardinality, in which case they can all be identified with some alphabet ¥’. The following lemma
says that Z9(Y, F) C [[,e x(0) Cv 1s locally testable and has linear distance under the assumptions
of Theorem [T0.8]

Lemma 10.15. Keep the notation and assumptions as in Lemma[I0.17. Then the code Z°(Y,F) C
[Toex (o) Cv satisfies

1 ' E///(EQQ/ _ EQ/OéO _ a—lﬁO)
Uo(€)Lo(£) B

5(ZO(Y:-7:)) > = dp
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and its natural tester has soundness

1 E//

1 DU (O Lo(O L1 () hg Thy T + T

Moreover, Algorithm [82 with the parameter ¢ = D'hg is a decoding algorithm for Z°(Y,F) C ¥"
which can fix words that are no-close to Z°(Y, F), where

B_1(1+ D"=1hgh) R

I {E"'(EQQ'€—EQ'a0—a—1ﬁ0) D }
o(€) I

Proof. By Proposition £.24], for every i € {0,1} and z,y € X (i), we have w(x) < U;o(Y)L;o(Y) -
w(y) = U;(0)L;(¢) - w(y). The assertion about the relative distance and soundness is therefore
a consequence of Lemma [[0.I4] and Lemma (with M = Up(£)Lo(¢) and M’ = Ui(£)L1(¥)).
Moreover, Lemma (with M = Uy(£)Lo(¥)) tells us that Algorithm with the parameter
q = D'hg can decode words which are ng-close to Z°(X, F). O

We finally prove Theorem [I0.8]

Proof of Theorem [I0.8. In short, this follows from Lemma I0.IT] Lemma and the results in
Section [3l All that remains is checking the claims about the constants.

We use the notation of the Theorem [0.8land construct Y and F above using X, R, ¥, {Ce }eex(1)
given in the theorem. We write U; := U;(¢) = U;3(Y) and L; := L_1,;(¢) = L;3(Y). Recall
that assumptions (0a) and (0b) imply that L(Y) < max{L,F}. We will specify the constants
S,8’, 8", Ty,...,Ts at the end.

Let E,E', ..., b0, 1o, n0 be as in Lemma when applied with max{L, F'} in place of L. We
take S = EQQ', S’ = EQ" and S” = E’. The assumptions of Theorem [I0.8] now imply that we
may apply Lemma with with the same (X, ), and {C,}cex(1). Thus, §(Z°(Y,F)) > b, the
natural tester of Z°(Y, F) has soundness p and there is a decoding algorithm for words that are 7-
close to Z°(Y, F) with time complexity O(|Y(0)|) = O(n). Here, the constant in the O(n) depends
on Dy, F, L, max{#C,|v € Y(0)} and hy (see Remark [84] and Proposition £24]). However,
max{#C, |v € Y(0)} < |x|Po®),

Let us realize C' := C(Y(< 1),4,{Cc}cey)) as the lifted code C({Cy}uey ) S X" By
Lemma [[0.IT], the line code of C is Z°(Y, F) C [I,ex(0) Cv- Now, by Proposition (with Dpax =
F&;X(Y% Din = (%in(y% kmax = DO(@):

5 (Y) 1 E"(EQQ — EQap— a_1f)
oC) > J > .
()2 Fs(MDo® ™ = Toby 25,

Furthermore, by Proposition 3.7, C has a linear-time decoding algorithms that can decode words
that are n-close to C for

Ry 1 [ E(BQQ — EQag — asifh) D
n= F&]gaXDO(E)nO = UO-DOL% 5_1(1 +D//—1hal) ’halhl_l +hﬁ1
1 JE"(EQQc - EQ'ag — a_1f) D
Z UnD min 2 7n—1 -1 Y rorp—17—1 -1 .
0o L2(1 4 D"1)B-1hg L2(hg byt + Ryt
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max

F, 4
Finally, by Theorem B0 (in our setting dmex = —%1o < F and % = Up(¢)~!) the natural tester

min — Fg"
of C has soundness
LR e o111 1
Uo(f) FE(Y) po+2F =~ UpLo 1+2Fuyt  UoLo L+ 2FE"" UoUs LoLy (hg *hy* + hyt)
1 1
~ UoLo UpUy + 2UgUr FE"LoLy (hg "hy* + hyt)
1 $2F1E"L3

> .
T UgUL 52F 1B L2 + by 'hy ' + byt

One can now read from these assertions the required values for S,S5’, 8", T},...,Ts. O

11 Main Result: Technical Version

The remainder of this paper is dedicated to proving Theorems B1] and [RI0. We shall derive both
theorems from a single, more general theorem, which we state in this section and prove in the
following sections.

11.1 Notation

Let X be d-poset, let k € {0,...,d — 2} and let P be an k-intersection profile for X (Section [T).
We shall associate with X, k,P a constant Up and Laurent polynomials T}, ...,T_1,S5, 3 in the
variables {z,},ep, making repeated use of the subface counting constants Ff;‘g and F}7%F defined
in §441

The constant Up € N is defined as follows: Given x € X, let V(x) denote the set of subsets
Aof {y € X : y < a} with 2 € A and the property that for every a € A, there are faces
x =ay>--->a = ain A such that (dima;_1,dima;) is P-admissible for all s € {1,...,¢}. For
such an A, let M(A) denote the set of minimal elements in A, and set

U(z) = Arggé)!M(A)\-

Finally, set
Up =Up(X) = U(x).
P =Up(X) e (z)
Next, let R[z3" | p € P] be the ring of Laurent polynomials with real coefficients in the variables
{z,}pep. We define Laurent polynomials Ty, Ty—1,...,T-1 € R[z£"|p € P] (depending on P and
X) inductively by the formula

. 1 i=k,
i = -1 / S
ZpeP:hgtp:i z, CpTg(p) —I—CPTT(p)} i=k—-1,k—2,...,—1,
where
_ I 0 e
C(t,Z,r,i) - Felfgn Fir?ei,rcliFiI,IZiin F;f\;n Fzr,nrlr:inr?dm an C(tl,?”,i) - C(t,r,f,i).
eI
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Suppose further that we are given vectors a = {a,},ep and 8 = {B,},ep in RP. We then define
Sa,8 € R[:E;tl |p € P] by

rr]lgaxl p Fmax maé( rréaé( max Fmac)l( max

. t,k+ 2t 7 7,7, 2,7

Sa,ﬁ - Z 9 Fmin  pmin len ¢t Fmin T; (ap + /BP‘TP)’
p=(t,L,ri)EP k+1,d" t,d 4,d rd

Example 11.1. We will see later in the proof of Lemma [[T.4{(i) below that if X is lower regular,

then c, = ¢, = % for every p € P. This can also be seen directly using Lemma 171

Suppose moreover that X is a pure d-dimensional simplicial complex and P is the k-intersection
profile from Example[TT5(i). Then P = {(i+1,7,4,i—1)[i € {0,...,k}} and F/3'} = F% = (f:;.).
Abbreviating ;41 ;1) t0 Zi—1, it is straightforward to check that

1

Ti(wpot,. .o og) = ———.
LTiTiy1 " Tp—1

More bounds on the coefficients of the T; and S, g, as well as explicit computations for small £,
will be given in §IT.3] below.

11.2 Main Theorem

Let R be a commutative ring, let (X, w) be a properly weighed R-oriented d-poset, let k € {0,...,d—
2}, let P be a k-intersection profile for X and let P’ be a (k + 1)-profile for X.

Let {ei}ig, {ei}io, @ = {ao}er, B = {Boler, o’ = {a)}ep, B = {B,}pep be lists of
non-negative real numbers. Let Up and Ty, ...,T-1, 545 € Rz} i |p € P| as in §IT.T1 We define

define Ups and T} ,...,T",S), g € R[ +1 |,0 € P'] similarly by replacing P and k with P’ and
k -+ 1, respectively. Fmally, let

min 1min

~ . F’Zk—l—ldde . 0 k

£ = min W2|ZG{,,} s
i,k,d” k+1,d

Fn’llcl—I;QdFk-i-rlld

~ . 7 /

€:m1n{mi 6{0 k+1}}
i,k+1,d" k+2,d

and let JT——
C:m{T\e {0,...,k}}.
Frd
Theorem 11.2. With notation as above, let F be an R-sheaf on X such that:
(1a) cbek_dimu—1(Xu, Wy, Fu) = Edimu for every u € X(0)U--- U X (k);
(1b) cbeg_dimu(Xu, Wy, Fu) = €himu for everyu e X(0)U--- U X(k+1);
(2a) NTHS™Y(X) is an (aep, Bp)-skeleton expander for every p = (t,¢,r,b) € P and u € X(b);

l,rit . _ 2
(2b) NIH,""(X) is an (o, B,)-skeleton expander for every p = (t,£,r,b) € P’ and u € X(b)

23This condition may overlap with condition (2a) when P NP’ # ().
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Suppose that there exist h = {h,},ep € (0,1]7, W' ={h/} ,epr € (0,1]" and q € [0,1] such that

p:=¢E—UpSyp(h) >0 and (11.1)
Hllﬁl-rll-Q dFk-i-rlld
p/ = E - UPI % B/ - qz max Fmax {l]—;,(h ) > O' (11'2)
par NS
Then

cseg (X, F) > min {Til(h’)_l, %} and cedp (X, F) > T (k)L

min

Moreover, if f € C*(X,F) satisfies dist(f, Z*(X, F)) < % (W)Y, then applying Algo-

rithm 8 A to f and q returns f' € Z¥(X,F) such that dist(f, f') < C% dist(f, Z*(X, F)).

Remark 11.3. The assumption that X is R-oriented in Theorem can be relaxed to assuming
that there is an R-orientation on the subposet X (k) U X (k+ 1)U X (k + 2).

The remainder of this section is dedicated to deriving Theorems Bl and B0l from Theorem [IT.2]
Theorem [IT.2] itself will be proved in the next two sections.

11.3 Bounds on Constants

We first prove some lemmas which bound the constants and the coefficients of the Laurent poly-
nomials defined in §IT.1] and §IT.21 in terms of the lower irregularity of X and the constants Fe

(see §4.4)).

Lemma 11.4. With notation as in §11.1, write F = max{Fi‘E»aX| —1<i<j<k+1} and
L =L(X). Then for every p = (t,{,r,i) € P, we have:

LyaL;oLigalia

1
: 6
(Z) C(t,é,r,z 1 1= <zL°
Lﬁszéd+erLzrd 2
rr];axl d rr(liax maé( Frr]lgaxl Frrzax 1
n tv + ) t7 ivtv 2 ty + 7 5 2
(ZZ) 9 fmin fmin = Lt,k+1,de+1,dLi,t,st7dW < §L F
k+1,d't,d id
mameax (F )
0,d I4
(ZZZ) - lefn < LZ 4, dLZ d ppmin me < L2F2
In addition, for every —1 <1i <k, we have:
min min min max
(iv) < 1 Fieta < Fivtabd < Fis IF
>~ > Ligd N )
LSF = LiaLig1,alkaLlikaleri,a S~ FRRSFRY, Fyin

max rimax

min F‘kad i,d max 3
(v) 1< FR" < — i < Ligalialgaliy < L°F.
kyd

Proof. By Lemma [Z.1T] whenever 0 < ¢ < j < d, we have

mm min Fmin min
Fmax max — max fmax —
i,d T i,j,d iy T Jd
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Making repeated use of these inequalities and the definition of L; jx, we now prove each of (i)—(v)
in turn.

Fm;xF.meax lmén .mein
i, 5
— LyalLieLi p,d prasprmse Fi g™
N — i,4,d < i,0,d” i,d ’
C(t,@,r,l) - len Fszl?ime N len FlrrirerLllen —= L—lLZ—l}d -min‘i‘L_lLi_?}d irrlliin
max Fmax Fmax Fmax b
i,4,d i,7r,d r,d
LyqL; ZLMdLid
— 1
LigLifa+LigLi )y
This proves (i).
max max Fmax max max
t,k+1, dF it,d t,k—i—l,dF’i,t,d
9 pmin min - 9 F'min t,d
k+1,d" t,d k+1,d
max min max Fmin max
NG max Fitad Fid Eid
~ rmin max ~ t,k+1 meFmax min ~t.d
k+1,d" tk+1 ]
min  rimin min Fmin fmax - pimax
_ Ttk+1ld7td I I it,d" 1,d I I tk+15 4.t I
~ Tmax pmax Lk+1ld k+1dFmax max 4t,dHt,d 9 frmin t,d
k+1,d" t,k+1 it i,d
Frr]lgaxlFmax
tk+
< Ly kt1,aLlks1,aLlit,alt,ali,a 5 fmin
i,d
This proves (ii).
max fmax min 7rmin max\2 max\2
F;',Z,d 1,0 i,4,d" 1,d I ( 7,4 ) <L.,.L ( ] )
min Fmax max —~1,¢,d.d min_ — i,0dHed min
£,d il i,d i,d
This proves (iii). Next,
min min mln mln min min max max max
i,k+1,d" k,d F F Fk—l—ldF F Fk+1 ) Fi,k+1
max Fmax Fmameax max Jmax min pmin | — Hid Fmin
ik, d” k+1,d i,k,d k+1,d" i,k+1 “ i,k T id i
On the other hand,
min min max max
ikt1,dl kd iki1,dl kd 1
i Lk Td e J?J‘ﬁ‘fd Liks1,alralinalrtrd
ax ;ymax fmax max mm min
BT FE aEa Fla E 1
E%‘%me ,?jr“fd Z-]’“};_‘il EH,?X DX L k1,dlk,aLi k. dLky1,4
min
1 ik+1
max :

= LiqL; gv1,alk,aLli k,alk+1,4

This proves (iv). Finally, for (v), note that

[fmax prmax min 7min
Fmin< i,k,d” i,d i,k,d" i,d L. L: oL, Fhax < 1. L: L, ,Fmax
] ];nén Fmax ma?x vk, di,dk,d i > ik, did Mk dE ik -
This completes the proof. O

Lemma 11.5. With notation as in §I1.1, Up < Zfzo ik
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In practice, Up is smaller than 3% F

Proof. Let © € X(k+ 1) and let A € V(z) (see §ITI). We need to show that M(A), the set
of minimal elements in A, contains at most Ef o FIi elements. If z € M(A), then we must
have A = {z} and claim holds. If ) € M(A), then we must have M(A) = {0}, and again the
lemma claim holds. When both z and () are not in M(A), we have M(A) C U ,z(i) and thus

IM(A)] < YF, AR O

Lemma 11.6. With notation as in §I1.17, let F' = max{F;;* [ =1 <i <j < k+1} and L = L(X).
Let u € (0,1] and A, B € Ry, and for every p = (t,4,1,b) € P, let

2k b__gk—min{¢,r} . ok—min{¢,r} . ok+1—min{€,r} _ok—b
hy, = , a, = Au , B, = Bu .

Then:

(i) For every i € {—1,...,k}, there is a real constant Q; > 0 depending only on k such that
T(h) < QiLG(k—i)ul—Tk*’.

ii) There is a real constant P > 0 depending only on k such that S, 5(h) < PLS*+tTF4(A + B)u.
7ﬁ

mln in k—1

Fm

k+1,d" k,d _9ok . . .

(iii) E Zm:XlFmaX Ti(h) <( E Q)L Ful=2" with Qo, ..., Qu_1 as in (i).
i=0 zkd k+1,d i=0

Proof. 1f P’ is a k-intersection profile for X containing P, then replacing P by P’ cannot decrease
the left hand sides of the inequalities in (i), (ii) and (iii). We may therefore replace P with the
maximal k-intersection profile of Example This ensures that the constants @Q; and P that we
shall define depend only on k and not on P. (However, a smaller P allows for smaller constants Q;
and P.)

(i) Define the Q; inductively for i = k,k — 1,...,—1 by setting Q = 1 and

1
Qi=3 S (Qup) + Qi)
pEP:hgt(p)=i

for ¢ < k. The desired inequality now follows by decreasing induction on 7. Indeed, the case i = k
is clear since Ty(h) = 1. Assuming the inequality was verified for all i € {k,k — 1,...,5 + 1},
Lemma [IT.4(i) tells us that

L= Y @) + T )

pEP:hgt p=j
LG ok—min{€(p),r(p)} _ok—Jj 6(k—¢ 1—2k—£(p) 6(k— 1—2k—7(p)
<Y (Qep LoDy QLT )
pEP:hgt p=j
LS . k—min{£(p),r(p)} _ok—j k—min{f(p),r(p)}
6(k—j—1), 2 (P} k=512 p)r(p
<2 (Qup+ Q)TN
pEP:hgt p=j

_ QjLﬁ(k—j)ul—T“*j.
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(ii) Take P = %ZpEP(QZ(p) + Qr(p)). By (i) and Lemma [TT4{ii)—(iii),

1
Sap(h) = > SLF* (LAF*Ty(h) + L*F*T,(h)) (o + Byhy)
p=(t,L,r,i)€
1 - —r
< Z ST (Q£L6(k—5)u1—2k ¢ + QrLﬁ(k—r)u1—2k )
p:(t,&r,i)67g
. (Au2k:7min{l,r} + Bu2k+17min{€,7'}_2k7b+2k7b_2k:7min{l,r})

1 c—min{l,r c—min{{,r
< Z = [ Bk+T pd Q0+ Qy) (A+B)u1_2k {6} fok—min{t,r}
p:(t,&r,i)67g

= PL*+7F4(A + B)u.
(iii) By (i) and Lemma IT.4(iv),

k—1 rmin F];n&n

F! k-1 . o k .
S e Ty(h) < > LF - QLU0 < (3 Qo) L Pt
i=0 " i,k,d” k+1,d i=0 i=0

Lemma 11.7. With notation as in §I1.17), suppose that k = 0 and P = {(1,0,0,—1)} (c¢f. Exam-
ple [I10(ii)). We abbreviate the variable T(1,00,~1) to x—1 and similarly for other variables. Then,
for every a_1,8-1 € Ry, we have:

L,
T—l(x—l) = l‘L’l and Saﬂ(a:_l) = LidLO,d(a—l + ,8_1%_1).
Proof. By direct computation. O

Lemma 11.8. With notation as in §I1.1}, suppose thatk =1 and P = {(2,1,1,0),(2,1,1,—-1),(1,0,0,—1)}
(cf. Example [Z13(iii)). We abbreviate the variables (2 11,0y, (1,0,0,-1)> T(2,1,1,1) t0 To,T—1,T)| Te-
spectively, and similarly for other variables indexed by p € P. Suppose that h,a, 5 € ]RK and let

L =L(X). Then:

. 6
(i) To(h) < ﬁ_OJ

. 12 6
(i) Toa(h) < b + £2,

F(Tzax (F(Tlax)Q

(iii) Sa,p(h) < L (a0 + Boho) + L(ay) + ) + LIS ppyxa=ttiiha

Proof. For (i), note that Ty(h) = 6(2’}1761’0) and c(31,1,0) < L® by Lemma IT4(i). To see (i), we use
(i) and Lemma IT4(i) to get
~cao0-nToh) | ceia,-nTi(h) L2 LS

T-1(h) = + < + .
1(h) hoy h hoh—_1 ' hj
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Finally, by the definition of S, g, parts (i) and (ii), and Lemma IT.4(ii)(iii), we have

max fmax max 2
F2,2 F0,2 2 (FO,l )

Sep(h) = L*Lag g - (ao + Boho) T (R)

mr R
Fmax inax (Finax)2
4 2,2 1,2 72 1,1
+ L Laza— g L g - (g + By )Ta ()
-1,d -1,d
B FIYE ()
+ L7 ’leirzl = . L2 legriz “(a—1 + B-1h_1)To(h)
Fg (Fy™)? a_1+ B_1h_1
< L0 = (a + foho) + LO(ay + Byhor) + LB F> —————.
(Fo,d ) ho
This proves (iii). O

11.4 Proofs of Theorems [8.1] and [8.10i
We now use Theorem to prove Theorems [B.1] and .10l

Proof of Theorem [81] assuming Theorem [I1.2. We use the notation of Theorem[R.l Recall that we
aregiven BE€ R, F € N, L € [1,00) and k € {0}UN. Recall also that (X, w) is a properly weighted
R-oriented d-poset (d > k +2) with L(X) < L and F/5*(X) < F whenever —1 <i < j <k + 2.
In addition P is a k-intersection profile for X, P’ is a (k + 1)-intersection profile for X and F is an
R-sheaf on X.

We will apply Lemma both to k, P and k + 1, P’. The constants provided by the lemma
in the latter case will be denoted @} {,...,Q"; and P’

Let K > 0 be a constant depending on B, F, L, k to be specified later. Let € > 0 and set

/
gi=¢g;=¢

for every i € {0,...,k} and j € {0,...,k + 1}. For every p = (¢,¢,r,b) € P and p' = (t',¢',r', V) €
P’, define

2k+17min{ll,7“/}

ok—min{¢,r}

a, = (Ke) : oy = (Ke) ,
k+1—min{¢,r} _ok—b k+2—min{€/ ,r'} _ok+1—b

6PZB(K€)2 +1—min{¢,r} 2 ’ 6;,:B(K6)2 +2—min{¢",r"} 2+1 :

k—b__ok—min{f,r k+1—b' _ok+1—min{e/ r’
hp _ (K€)2 _9gk—min{ 7}’ hlp, _ (K6)2 + 9k+1—min{¢’,r }

In addition, let
k
q=(Ke)*.

In order to prove Theorem [R1] it is enough to show that K can chosen in such a way that that
Ke <1 and the inequalities (IT.T) and (IT.2)) of Theorem hold. Indeed, suppose that assump-
tions (0)—(2) of Theorem B hold. Then conditions (1a)-(2b) of Theorem with the &, €}, o,
and 3, defined above hold for (X,w, F). Provided that (ITI]) and (IT2]) also hold, all the conclu-
sions of Theorem are true. Now, by applying Lemma [IT.6/i) with u = Ke € (0, 1] (both for k,
P and k+1, P'), we see that T_1(h) < Q_y L*6(Ke)=2"" and T/ (1) < Q' LOF+12(Ke)1-2"",

min

F
In addition, by Lemma [IT.4(v), we have C' < L3F and L3F~! < e < 1. Combining this
k,k+1,d” k,d
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with the conclusions of Theorem [IT.2], we get that

C
> min{(Q",) 'L~ "2 QL F~'}(Ke)

Ql_lLGk—HZ ) IL3F

2k+2_1

csex (X, w, F) > min {Til(h’)—l 2} > min{(Kg)zl ! QKe)” }

and

_ Ke)2t-1
CCdk(X,w,f) > T_l(h) 1 > (Ql)w

Furthermore, applying Algorithm with the parameter ¢ = (K €)2k+1 to any f € C* with

Fmin
. 3 _ k2 _ k+l,d _
dist(f, 2") < L7 F~HQL L)~ (Ke)? VS e T (B) 7
ket 1,dl k.d

results in f € Z* with

max max
C Feyiafd

L kA gist(f, 24X, F)) < (LPF)?(Ke)™2" dist(f, Z5(X, F)).
q Fita

dist(f, f') <

From this one readily sees that there is K/ > 0, depending only on F, L, B, k, for which the
assertions of Theorem [BI] about (X, w, F) hold. Explicitly,

K/ — min {(Ql_l)_lL_Gk_l2, L_gF_l, (Q_l)_lL_Gk_G, (Ql_l)_lL_Gk_15F_1, L_GF_2} ,

so provided that k is fixed, K’ = Q(L=8k~15F=2),

We now show the existence of the constant K > 0. Note first that we can secure Ke < 1 by
choosing K < 1, because ¢ < 1. Next, observe that Lemma [[T.4(iv) implies that & > ﬁa and
likewise for &. Consider the inequality (ILI). By Lemma (with u = Ke <1 and A =1) and
Lemma [IT.5] we have

p=¢E—UpSaps(h) k+1)F-PL*"F4(1 + B)Ke

> L _ (
~ LS°F

so we can guarantee that p > 0 by taking K < P~ (k+1)"'L=%~12F=6(1 4 B)~!. Next, consider
(IT2). By the same lemmas applied with k& + 1 and P’, we get

k min Fmin

- F;, k+2,d" k+1,d
p =& —UpSyg(h')—a)_ Tmax . omax 111 (1)
ik+1,df k+2.d

1=0
k
> % — (k+2)F - PLO"BFY1 4 B)Ke — (Ke)*' (Y Q) LT F(Ke)' 2"
=0
€ k
55— |+ 2F - PLYTERY 14 B) + LR 3 Q)| Ke,

=0

and again, we can guarantee that p’ > 0 by taking K < 74=[(k+2)PL*+ 18 F5(14B)+ LS 7F Sk QL
In particular, once k is fixed, K = Q(L~%~18F=6(1 4 B)~!) works. This completes the proof. [
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Proof of Theorem [810 assuming Theorem [I1.2. Recall that we are given an R-oriented properly
weighted d-poset (X, w) of lower irregularity at most L and such that S < F whenever —1 <
1 < j < <2 We need to show that there are constants £, E', E”, E", D D', D" > 0, depending
only L and F, for which the conclusions of Theorem B0 hold.

To that end, consider the 1-intersection profile P; of Example [[I5(iii) and define

max max max max max
K — Foralsy™ Frialoy <15 Fox 1 < I5F
= max Fmin Fmin ) Fmin Fmin — max Fmin ) Fmin —
0,2,d4'1,d 1,2,d4'1.,d 0,2 1,2

Fm X max
N = Up, max {LﬁM L13FmaX} < 2FLS max{F* L7}

(me)
Fmax
— 7702 7
V=L W < L'F.
FIIlaX FIIlaX
The inequalities hold by Lemma [IT.4(iv) and Lemma[IT35l Also let C' = % = Lo < L (this

is the same as in Theorem with £ = 0). We will show that Theorem IS_,___IIII holds for our X with
any positive E, E', E" E", D, D', D" satisfying

p<p T E<IL 301
— Féflla,)a(lFOI?;X — ~0,d~1,d

< r F< ok

o< T 1 B < mm{i ;}
= X pmex AV 0K = L2 2VKC

" -3
EV < Loy

len .
Since prmmfmes > 73 Fmax (Lemma [IT.4[v)), we can choose values for these constants which depend
0,1,d” 0,d

only on L and F.
Let F be an R-sheaf on X such that conditions (1a)—(2c) of Theorem BI0 hold, a1 < Ee, and
there are and hg, h—1, 1y > 0 satisfying

a1t Paha g (11.3)

(a0 + Boho) + (ay + By hy)) + ; <
0

Let Kk = 0, and let P and P’ be the intersection profiles Py and P; of Example Now
define Ty, T-1, 11, Ty, T'1, Sap, S&’,B’ as in §IT.2l Note that P = {(1,0,0,—1)} and P’ =
{(2,1,1,0),(2,1,1,-1),(1,0,0,—1)}. We abbreviate the variables x(31,1,0), ¥(1,0,0,—1) and Z(21,1,-1)
used in the definition of Ty, T1, etc. to xg, x—1 and x|, respectively. Similarly, we view o/ :=
(a0, a—1,ay), B" := (Bo,B-1, ) and b’ := (hg,h_1,hy) from Theorem 10l as vectors in R”'. We
also view the numbers a_; and S_; as a vectors «, 3 € R”. Choose some 7 € [%, 1), and set

Fe —a_ h
Be—aa ho

h:=v 5, 1= 50K

We view h as a vector in R”. Finally, set g9 = ¢ and ¢} = ¢} = &', where ¢ and &’ are those given
in Theorem .10

We will prove Theorem B.I0l by applying Theorem IT.2to (X, w, F) and the parameters we chose.
Assumptions (1a)-(2b) of Theorem are precisely assumptions (1la)—(2c) of Theorem 10, so it
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len len

remains to verify the inequalities (ILI]) and (IT.2). By LemmalT4l(iv), & % e > L1F e

and by Lemma [IT.5, Up < Fgi™. Now, by Lemma 1.7l and our assumption o < FEe,

Ee — a_q

p =& UpSaslh) 2 LB — L, Loalas + Aoy =5

)
= L' F"e — ET LT (0o +v(EBe — ay))

=E'L” 4me(E€ —a_1 —v(Fe —a_q))

= E 'L (1 — ) (Be — a—q) > 0.

Next, in order to prove (IL2), note that K was chosen so that & > %l Now, by the definition of
N, Lemma [[T.8], Lemma [IT.4(iv) and (IT.3]), we have

min min

~ F02d 1,d
p/ — E/ — U'P/Sé/’ﬂ/(h/) — q#E{)Té(}l/)

Foratsd™
6/ a_q + 6—1]1—1 Fmax L6
2N ((ao + Boho) + (o + By hy)) + h—o) —qLog Foopo ot
e ’YhO max LG
> 5 _NE -
=K ¢ T oy o me o
6/ 6/ ,7 , 6/
> — L =(1=-~)— 0.
T T Ly

This completes the verification of the assumptions of Theorem
Therefore, the assertions of Theorem hold for our (X,w,F). Thanks to Lemmas [[T.§
and [[I.7] this means that

. 1 q . 1 Yho
cser (X, F) > min ,— ¢ > min
= {ﬂ4w>0} {me&h +h>2VK0}
 min { 1~ } 1 . E
L2 2VKC S hg'hZy + byt = hg'hZi+ b
_ h Fe—a_4
cedy(X, F) > T 1(h) ' = — > By ————.
(X7 2T = g .
Moreover, for every f € C° with dist(f,Z%) < e lhﬂl)Jth ) < Fmai;max 1(W)~L, applying
Algorithm B2 to f with the parameter being D'hy < 2“{?})( q results in f' € Z* such that
dist(f, f/) < (;% dist(f, ZF) < D"~'hg!dist(f, Z*). By Letting v approach 1, we obtain

the required bounds
We finish with explaining the values listed in Table [II For the values in the first row of the
table, we simply substitute K = L°F, N = 2F*L13 V = L7F and C = L in the upper bounds for

min

D,D'D/) E,E',E",E" and replace ﬁ and L;C:ll with the smaller quantities 3317 and L1,
respectively. T

Suppose now that X is lower regular. Then L =1, Fg'f™ < Fg™ = Fgly in and Foif < B =
me. From this it follows that K < 1, N < Up, maX{F5n2aX,an2aX} < 2F2. Substituting K =1,

mln

FY
N =2F?,V = F, C =1 and noting that T Fmax = Fm glves the second row of the table.

0,1
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Finally, assume that X (< 2) is an m-gon complex. Then

Feex 1 2 1 2L°
K < L% max , - :L5max{—,—}:—
F&g“ me m’' m m

Fmax Fmax 22
N = Up, max {L6% Ll?’FmaX} < mmax {L6T:;—2,L13m} = LB3m?
yo s Lm
2
We get the last row of the table by substituting the right hand sides in the upper bounds for
D,D'D) E,E',E",E" as well as replacing C' with L and Fmax Fmax with L3Fmax = ﬁ The third
(resp. fourth) row then follow by taking m = 3 (resp. m = 4) and L=1. O

12 Proof of Theorem

Throughout this section, R is a commutative ring, (X, w) is a properly weighted R-oriented d-poset
and F is an R-sheaf on X. When there is no risk of confusion, we shall write C* = Z¥(X, F),
ZF = ZF(X,F) and B* = B¥(X, F).

12.1 Mock Locally Minimal Cochains

Definition 12.1 (Mock Locally ¢-Minimal Cochain). Let ¢ € [0,1] be as before and let k €
{0,...,d}. Givenu € X with i := dimu < k, a k-cochain f € C*(X,F) is called mock g-locally
minimal at u if for all b € B¥""1(X,, F,), we have

A< 1S + 0% + ¢ - w(w).

We say that f is mock g-locally minimal if it is mock q-locally minimal at every face u with 0 <
dimu < k. A mock locally minimal cochain is a mock 0-locally minimal cochain.

Remark 12.2. (i) Following [EK17] and other sources, it is natural to call a k-cochain f € C*(X, F)
g-locally minimal at u € X (7) if
1 full < [1fu+bll+4q

for every b € B*~""1(X,,, F,,). When X is lower-regular, this is equivalent to f being mock ¢’-locally
minimal at u for ¢ = %q (use Lemma [17] and Corollary AI8]). In general, however, there
is no relation between beiﬁg g-locally minimal being mock g-locally minimal; this is why we use
the word “mock” in Definition 2.1l It will be important to use mock locally g-minimal cochains,
rather than g-minimal cochains, in the proof of Proposition below.

(ii) Every f € C*(X,F) is mock (0-)locally minimal at every u € X (k), because B~ (X, F,) =
0. Consequently, every 0-cochain is mock locally minimal.

(iii) One can introduce a coefficient depending on dim u before the factor gw(u) in Definition 211
This has no effect beyond altering the constants in Theorem [B] and its more technical versions.
We did not attempt to look for coefficients that would give better constants.

Algorithm 12.3 (Algorithm for Making a Cochain Mock ¢-Locally Minimal). Let k € {—1,...,d—
1}. The algorithm takes as input h € C**1(X, F) and some ¢ € [0,1] and outputs g € C*(X) such
that h + dg is mock g¢-locally minimal. The procedure is as follows:
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(1) Set go =0 € C*¥(X,F) and i = 0.
(2) While h; := h + dg; is not mock g-locally minimal:

(a) Choose some u € |J¥_, X (i) such that h; is not mock g-locally minimal at u.
(b) Find some g, € C*1(X,, F,) such that h; + dg/* is mock g-locally minimal at u.
(c) Set giy1 = ¢i + ¢gi* and increase i by 1

(3) Return g;.

Remark 12.4. If, in Algorithm [[2:3, we would take h = df for f € C*¥ and return f + g; instead
of g;, then we would get Algorithm B2

Proposition 12.5. Let k € {—1,...,d — 1}, h € C**Y(X,F) and q € [0,1]. Suppose that Algo-
rithm [I2:3 is applied to h and q and let g be its output (assuming it stops). Then:

(i) The algorithm stops. If ¢ > 0 and there is M € R such that w(x) < Mw(y) for all z,y €
X(1)U---UX(k), then the loop[(2) is executed at most Mq~ | X (k)| - [|h| times.

(i) h + dg is mock q-locally minimal and ||h + dg|| < |||

(i) g < max { “SEEE 5 € {0, k.
Proof. Let u; denote the face u chosen at the i-th iteration of the loop and let r; = dim u;.

(i) By the definition of mock g-local minimality, we have ||h;11]| < ||h;| — qw(u;). In particular,
|hill > ||hiz1] for all i. Since X is a finite, || - || : C**1(X, F) — R attains only finitely many values
and so the algorithm must stop.

Suppose now that ¢ > 0and w(z) < Mw(y) for all z,y € X(1)U---U X (k). There is some z €
X0 with () < gy Then | < Il =) < =M o(e) < Nl — M= X(R)|
By iterating this, we see that [|h;|| < ||h| — )|M Since ||hi|| > 0, this means that the loop

is executed at most Mq~'|X (k)| - ||h|| tlmes

(ii) The first claim is immediate from the stopping condition of the loop . The second claim
follows from our earlier observation that ||k + dg;|| = ||hil| > [|hi+1]| = ||h + dgi+1|| whenever both
sides are defined.

(iii) Let n be the value of i when the algorithm stops. Recall that ||h;||— ||hi+1]| > qw(u;). Using
this, the definition of g/ and Lemma we see that

max 7 max max 7 max
m Fm k,d* r;,d Frikd ri,d —1
i1 < w(X (W) < —prutus) < Rt a™ (Il = Preval).

This means that

max max

; Sridedl'rid
lgll < Z lgi | < Z Trkd “Hlhigall = 1Rl

FEp
Fikad fffx . -1
< max ¢ —op—— 1 € {0,... .k} p g7 (lholl = [1hnll)
k,d
and (iii) follows because hy = h. O
Corollary 12.6. Let k > {0,...,d—1} and h € C*(X,F). Then there exists g € C*~1(X, F) such
that h + dg is mock locally minimal and ||h + dg| < ||h]|.

Proof. Apply Algorithm [[2.3] to h with ¢ = 0. The algorithm stops by [2Z5i) and its output is the
required g. O
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12.2 Reduction to Expansion of Small Locally Minimal Cochains

Let € [0,1]. We call a cochain f € C¥(X,F) y-small if || f|| < v. Given a subset S C C*(X, F)
and 8 € [0,00), we say that F -expands S (or cochains in S) if ||df| > B f]|| for every f € S. It
turns out that if 7 expands small mock locally minimal k-cochains and (k + 1)-cochains, then F
has good cosystolic expansion in dimension k:

Proposition 12.7. Let X, F, d be as in the beginning of the section, let k € {0,...,d — 2} and

max F_IIlaX

C = max{w li € {0,... ,k}} Let 5,8 € [0,00), 7,7,q € [0,1], and suppose that

Flfrl,‘ciin
(1) F B-expands y-small mock locally minimal k-cochains, and
(2) F B'-expands ~'-small q-mock locally minimal (k + 1)-cochains.

Then
cedp (X, F) >~ and cser (X, F) > min{y/, %

The assertion about ccdy(X,F) holds even without assuming (2). Moreover, if f € CrH(X,F)
satisfies dist(f, ZF(X, F)) < ﬁ’y’, then Algorithm[12.3, applied to to h := df and q returns
e Lab

i
g € CH(X, F) such that f+g € Z*(X, F) and dist(f, f+g) = ||g|| < %% dist(f, Z*(X, F)).
+1,
Proof. Let f € Z* and suppose that ||f|| < 7. By Corollary I28] there is g € B*~! such that f+4dg
is mock locally minimal and || f +dg|| < || f]| < . By assumption (1), 0 = ||d(f +dg)|| > S| f + dg||-
Thus f + dg = 0 and in particular, f € B*.

Next, let f € C*. We need to show that |df|| > min{y’, Cq}dist(f, Z*). If ||df|| > 4/, then
this holds automatically, so assume ||df|| < /. By applying Proposition with h = df and the
parameter g, we see that there is g € C* such that df + dg is mock g-locally minimal, ||df 4 dg|| <
ldf|| <" and |lg]| < Cq~||df||. By assumption (2), 0 = ||d(df +dg)|| > B'||df +dg]|, so df +dg = 0.
This means that f + g € Z*. As a result, dist(f, Z¥) < |lg|| < Cq~'||df||. By rearranging, we get
[df || > & dist(f, Z*%) > min{Z,~'} dist(f, Z*).

Fmi

To finish, suppose that f € C* satisfies dist(f, Z¥) < ﬁ’y/. Choose some ¢’ € Z* which
NSRS
minimizes ||f — ¢'||. By Lemma [£15]
ldfll=ld(f =g < D wX(k+1),) <

xesupp(f—g’)

Ftatid” Eriated . 5
< 7Fm’in : w(supp(f - g/)) = 7Frr;in : dlSt(f, A )
k+1,d k+1,d

Thus, ||df|| <+'. Let g be the output of Algorithm IZ3applied to df. Then, as in the last paragraph,
FIIlaX FIIlaX
it follows that f + g € Z¥ and dist(f, f + g) = ||g]| < Cq~H||df|| < & EELibd dist(f, Z%). O

o min
q o g

Using Proposition 2.7, we can reduce Theorem [[T.2] into proving the following theorem. Recall
that, given a k-intersection profile P for X, and lists o = {a,},ep, {Bp}pep of non-negative real
numbers, we defined in §IT.1] Laurent polynomials

T, Ti-1,- -, T-1, 80,5 € R[z" | p € P

and a natural number Up € N.
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Theorem 12.8. Let R be a commutative ring, let (X, w) be a properly weighted R-oriented d-poset,
let F be an R-sheaf on X, let k € {0,...,d — 1}, and let P be a k-intersection profile for X. Let
{ei}h ), a= {ap}pep, B={Bp}pep be lists of non-negative real numbers. Put

min min

~ . F’Zk—i-ldde . 0 k

£ = min Wi|le{,..., }
i,k,d” k+1,d

and suppose that exist h = {h,},ep € (0,1]7 and q € [0,1] such that

mln

F

max max

= Fonat e d
Suppose further that the following conditions are met:

(1) (Xu, Wy, Fy) S an Edimy-coboundary expander in dimension k — dimu — 1 for every u €
XO0)U---UX(k);

(2) NIHS"(X) is an (a,, B,)-skeleton expander for every p = (t,£,7,b) € P™ and u € X (b).

Then F p-expands T_1(h)~'-small mock q-locally minimal k-cochains. That is, for every mock
q-locally minimal f € C*(X,F) with ||f|| < T_1(h)~', we have ||df| > p||f]|-

Proof of Theorem [I1.2 assuming Theorem [IZ.8. We use the notation of Theorem By Propo-
sition I2Z.7 and Remark [[24] it is enough to show that F (a) p-expands T_; (h)-small mock locally
minimal k-cochains and (b) p’-expands 7" (h)-small mock g-locally minimal (k + 1)-cochains. To
that end, we apply Theorem 2.8 twice: once for X, F, k, P, «, 3, h with ¢ being 0, and again for
X, F,k+1,P &, [, 1 with ¢ from Theorem [IT.2] This gives (a) and (b), respectively. O

We will prove Theorem [I2.8] in the next section. Before turning to that, we note that Theo-
rem [I2.8] also gives a criterion for bounding the cocycle distance from below:

Corollary 12.9. Keep the notation of Theorem[IZ.8. Suppose that assumptions (1) and (2) of that
theorem hold and there is h = {h,},ep in (0,1]7 such that & > UpSa (h). Then ccdy(X,w,F) >
T_l(h)_l.

Proof. By Theorem 28], applied with ¢ = 0, the sheaf F expands 7"_1(h)~!-small mock locally
minimal k-cochains. The lower bound on ccdy (X, F) now follows from Proposition [2.7 O

We use Corollary I2.9] to prove Theorem R3] from earlier.

Proof of Theorem [813. In short, this is just unfolding Corollary in the case where kK = 0 and
P is PO from Example [ZI5(i).

Recall that we are given an R-sheaf on a properly weighted d-poset (X, w). It is further given
that assumptions (1) and (2) of Theorem T2.8 hold for k£ = 0, €1 =€, a(1,0,0,—1) = @ B(1,0,0,-1) = B-
We choose the constants E and E" as in the proof of Theorem RBI0 (given in §IT.2)), i.e.,

R —1 -3
E - LO,dL].,dL ; E”/ - LO,d'

27
Then, as in the proof of Theorem [RI0, we have p > 0. By Lemma [IT.7} 71 (h) = E,l,, . We may
therefore apply Corollary 02,9 and assert that ccdyg (X, F) > E"h = E"~ Ea & As this holds for

all v € [3,1), we are done. O

Let v € [3,1) and h = ’yEaﬁ_", and let p be as in Theorem [2Z8 (with ¥ = 0 and P = P©).
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13 Proof of Theorem [12.8

Throughout, R is a commutative ring, (X, w) is a properly weighted R-oriented d-poset and F is
an R-sheaf on X. If not indicated otherwise, k € {0,...,d — 1} and P is a k-intersection profile
for X. In fact, the assumption that X is R-oriented may be relaxed to assuming that the subposet
X(k—-1)UX(k)UX(k+1) is R-oriented.

Recall that given A C X and z € X, we write A, for {r € A : z > z}.

13.1 Heavy Faces

For this section, we fix k € {0,...,d — 1}, a k-cochain f € C*(X, F), a k-intersection profile P for
X, and choose real numbers h € (h,),ecp,,, in the interval (0, 1].

Following [EK17], for every ¢« € {—1,...,k}, we define a set of i-faces A; = A;(f,h,P) by
decreasing induction on 7 as follows:

o Ay =supp(f).
o Assuming A;;1,..., A were defined, define A; to be the set of face u € X (i) such that for
some p = (t,£,r,b) € P with b =i, we have
wy(Agz) +w.(Arz) > 2h,. (13.1)
(When r = ¢, this simplifies to w,(As ;) > hy.)

Elements of A_; U---U Ay will be called (f, h, P)-heavy, or just heavy for short. Informally, a face
is heavy if it is in supp(f), or it is contained in relatively many heavy faces of larger dimension.

Recall from §IT.T] that we defined Laurent polynomials Ty, ..., T 1 € R[mfl | p € P] inductively
by setting 7, = 1 and

— -1 /
Ti= 3w [eTup + 4T

pEP:hgt p=i
where

Fmameax

_ i P
c(t,Z,r,i) - len Fmeuziann len Fm”:iF[r:im an c(t,é,r,i) - c(t,T’,Z,’i)’
Fmax ZF*mauzc + Fmax Z;;mai
i,4,d i,r,d

We now show that the weight of the (f, h, P)-heavy i-faces, w(A4;), is at most proportional to || f||.

Lemma 13.1. Let h and f be as above and suppose —1 < i < k. Then

w(A4;) < (W) £
Proof. Let z be a heavy i-face and let p = (¢,4,7,i) € P. By Lemmas 17| and 15, we have

oy = (w02 (X (0)) + wa(X (1)) = by s DL TRy B o)
o=ty = holXta] | T Fs
> h ’X(d) ’ len . eréll&l mln %n er;lg mln‘| (Z)
N G T A ’
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whereas on the other hand,

[ X(d)| |Fea™ B
z i0,d ird
Together, we get
r max [rmax
£,d d
1 F_nziré w(AZ,Z) Fr_mirtli w(A’f‘,Z)
w(Z) S hp_ Fmin Fmin F*lr,n;n Fmin Fmin Fmin + Fmin Fmin F?r,r:;n Fmin Fmin Fmin
£,d i0,d” i,d + r,d i,r,d” i,d £,d i0,d” i,d + r,d i,r,d” i,d
| il Fod” Fomd  Tod Fira Yol Fird  Fod
M /
S p
- hﬁ Fmaxw(AévZ) + Fmaxw(AT,Z) .
L~ 4,0 i,r
We now prove the lemma by decreasing induction on ¢. The case ¢ = k is clear because

w(Ag) = w(supp f) = Tk(h)|| f||. Suppose now that i < k and the lemma was established for larger
values of i. Then by what we have shown and Lemma [£.T16]

/

_ & c
o) = X ) € 35" |l + gt

ZEAi ZeAi sz(p) ’i,T(p)
| e c
< Dy l s ©(Adp),2) + m—@w(Ar(m,z)]
zeX (i) i,4(p) i,r(p)
< hp_l(pr(Ag) + cyw(Ar)) = Ti(h). O

13.2 Exceptional Faces

We continue to assume that k € {0,...,d—1}, f € C¥(X,F), P is a k-intersection profile P for X,
and h = (h,),ep € (0,1]7.

Let p = (t,¢,7,b) € P. By a p-square (in X ), we mean a quadruple (z,y, z,u) in X of respective
dimensions (t,¢,r,b) such that y,z < x and u € Inf{y, z}. A p-square (z,y, z,u) is called (f, h, P)-
exceptional, or just exceptional for short, if y and z are heavy, but v is not. A (k+1)-face s € X (k+1)
is called (f,h,P)-exceptional if there is an exceptional square (x,y,z,u) with < s. The set of
exceptional (k + 1)-face will be denoted by

T ="T(f,h,P).

Non-exceptional faces s € X (k + 1) — T have the property that if (z,y,z,u) is a p-square (p € P)
with < s, and if y and z are heavy, then w is also heavy.
We will show that the weight of exceptional (k+1)-faces is at most proportional to || f||, provided
that the non-intersection hypergraphs of the links of X are good skeleton expanders (Section [T]).
Recall that given a, 8 € [0,00)”, we defined S, 5 € R[mfl | p € P] by
3 phrralid Fiva | Fira Fir™ N Era s

Sa,p = T: | (o + Bpzp).

p=(t,L,ri)eP

Lemma 13.2. With notation as before, let a, B, h € [0,00)". Suppose that for every p = (t,£,r,b) €
P and u € X(b), the non-intersecting hypergraph NTHY™(X) (see Notation [T9) is an (v, B,)-
skeleton expander. Then

w(Y) < Sas(R)If]-
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Proof. We first note that a (k4 1)-face s € X (k+ 1) is exceptional if and only if there is p € P and
an exceptional p-square (x,y, z,u) with z < s. The “if” part is clear. For the converse, the fact
that s is exceptional means that there is p = (¢,4,7,b) € P (but maybe p ¢ P) and an exceptional
p-square (x,y, z,u) such that x < s. Since y and z are heavy and u is not, we have u # y, z, which
means that b < £,7 and £,r < t. If £ > r, then p € P, and otherwise, p' := (t,7,£,b) € P and
(x,2,y,u) is an exceptional p’-square with x < s. This proves our claim.

Fix some p = (¢,¢,r,i1) € P and u € X (i) — A;. Since u is not heavy, we have
Wy (Agu) + wu(Ary) < 2h,.

We claim that

Wy (F2(Apy UAr)) < a,

wu(Aé,u) + wu(Ar,u) wu(Aé,u) + wu(Ar,u) 2

+ Bp .
2 2

Indeed, if ¢ = r, then this holds because Ay, = A, and H := NIH;"(X) is an («,, 3,)-skeleton

expander, and if £ # r, then wy (Ar, UA, ) = %(’wz(A&u) +wy(A;,,)) while wH(EQ(Ag,u UA,,)) =

wu(E2(Ag,u UA, ), and again we reach the same conclude using the skeleton expansion of H. Since

w(Agy) + wy(Ary) < 2h,, the inequality implies that

< %mp + Bohy) (wa(Aga) + wa(Ara)),

and by applying Lemma [£.17 to both sides, we get that

Wy (E?(Agu U A )

1 Fnzaji anbax FHZlaX
Z7 ) ) T7
w(E(Apus Ara)) < 5(ap+ Bohp) s ( o (o) + Fminw(Anu)) .
t,d i0,d i,r,d

Let us abbreviate Ea(A, U A, ) to E(u, p). Then E(u, p) is precisely the set of faces z € X (t)
for which there exists an exceptional p-square of the form (:17, %, %, u). As a result,

w(Y) < > > w(X(k+1),). (13.2)
p=(t.6;3)EP weX (i)~ A; 2€E (u,p)
Let p = (t,£,r,i) € P! By Lemma and our upper bound on w(E(u, p)), we have

max max
F;t k+1 dFt d

S OY ey Y DR,

wEX (1)—A; z€E(u,p) weX (i)—A; z€E(u,p) k+1,d
et attd”
= > g w(E(wp)
ueX(i)—A k+1,d
| Fs a P PO (PR Fr
= Z 5(04[) + 6php) Fmin Fmin Fmin ZU(A&U) + Fmin ’LU( T “)
ueX (i) k+1,d t,d 1,0,d i,r,d

By Lemma [£T6] the end result is at most

max max max max max max max
F alvd  Fiva (FidaFil A Fa By A
+ ————w(4,)

T ’LU( g) -
min min min min
Fk—l—l,dF;t,d Fé,d Fr,d

(ap + Bohy)

and by Lemma [I37], this is bounded from above by

B, PR (FREpme g
(ap + 6php) 72F]£nir11 ;Ftng;’ ’ Z’Féngz; Tﬁ(h) + %T (h) Hf”
+ b b b T7
Plugging this into (I3:2) gives the lemma. O
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13.3 Ladders and Terminal Faces

We continue to use the notation of §I3.21
Recall from Definition [[.TT] that P is associated with a set of P-admissible pairs Ad(calP). We
will call a pair of faces (z,y) € X x X P-admissible if x > y and (dimz,dimy) is P-admissible.

Given z,y € X, a (P-)ladder from x to y is a sequence of faces x = xyg > x1 > -+ > 2, = ¥y
such that (z;_1,x;) is P-admissible or z;_; = z; for all i € {1,...,n}. We say that the ladder
x=x9>x1 > >xy =yis ((f,h,P)-)heavy if the faces xy,...,z, are heavy or have dimension

k+1. If there exists a heavy ladder from z to y, we also say that = ((f, h, P)-)descends to y. A face
x € X is called ((f, h, P)-)terminal if it is heavy or (k + 1)-dimensional and it does not descend to
any of its proper subfaces.

It turns out that a non-exceptional (k + 1)-face descends to exactly one terminal face.

Lemma 13.3. With notation as above, let v € X(k + 1) — Y. Then there is exactly one terminal
face u descended from x. Furthermore, any face y descended from x descends to u.

Proof. The second statement follows from the first because y descends to some terminal face v’
which is descended from x and must therefore coincide with u. We turn to prove the first statement.
Since x descends to itself, it descends to some terminal subface, call it u. Suppose that x
descends to another terminal face v. We need to prove that u =wv. Let x =29 > --- > x5 = u and
T =1yo > >y = v bea heavy ladders from z to u and v, respectively.
We claim that there exist faces u; ; for all i € {0,1,...,s}, j € {0,1,...,t} such that:

(i) ui0 = x; and ug ; = y; for all 4, j;

(ii) for every i > 1, we have w;—1; > u; j, and if w;—1 j > w; j, then (u;—1 j,u; ;) is P-admissible;
(iii) for every j > 1, we have w;j—1 > u; j, and if u; j_1 > w; ;, then (u; j—1,u; ;) is P-admissible;
(iv) u;; is heavy for all i, j.

Indeed, if i« = 0 or j = 0, the we define u; ; as in (i); conditions (ii)—(iv) hold in this case because
Tg > -+ > xg and yg > --- > y; are heavy ladders. We construct the remaining wu; ; by induction
on i+ j: Assuming x := w;_1j_1, ¥ := u;;j—1 and z := u;_1; were defined in such a manner that
(ii)—(iv) hold, choose u; ; to be some member b of Inf{y, z}. We need to show that (ii)-(iv) continue
to hold. To that end, we split into cases.

If b ¢ {y,z}, then we must have = ¢ {y, z}. By the induction hypothesis, (z,y) and (z, z) are
both P-admissible. Since P is a k-intersection profile for X, there is p € P such that (z,y, z,b) or
(x,2,y,b) is a p-square. This, means that (u; j—1,u;; = (y,b) and (u;—1,;,u; ;) = (2,b) are both
P-admissible, proving (ii) and (iii). Moreover, since y and z are heavy and z is not exceptional, b
is also heavy.

Suppose next that b = y and b # z. Then (ii) and (iv) hold and x > z > y = b. If one of the
last two inequalities is an equality, then (iii) holds by the induction hypothesis. Otherwise, (x, z)
and (z,y) are both P-admissible, hence (z,y) = (u; j—1,u;;) must also be P-admissible and again
(iif) holds.

The case where b = z and b # y is handled similarly. In the remaining case where b = z = y,
(ii)—(iv) follow readily from the induction hypothesis. This completes the proof of our claim.

To finish observe that u = us0 > us1 > -+ > ugy is a heavy ladder. Since u is terminal, we
must have ug; = u. Similarly, u,; = v, and we conclude that u = v. O
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Our next goal is to relate the weight of the (k + 1)-faces descending to a given terminal face u
with the weight of the k-faces (i.e., faces in supp f) which descend to u. To that end, we shall need
the following general lemma:

Lemma 13.4. Let F be a sheaf on a d-poset X, let f,g € CK(X,F) (0<k <d), let q € [0,1] and
let u e X. Suppose that g(z) € {f(x),0} for every x € X (k). If f is mock q-locally minimal at u,
then so is g.
NP k—i—1 _ BT X (d)u]
Proof. Write i = dimwu and let b € B (X, Fu). Also let Q = Pt ot (X ()] 4 We need to
i,k,d” i,d

prove that ||g|| < |lg+b“||+ Q. Our assumption on g means that || f|| = ||g||+||f —¢||. Furthermore,
since f is mock g-locally minimal at u, we have || f]| < || f + b*| + Q. Together, we get that

lg+ 521 = (£ +5%) — (F = )l 2 1 + b1l = 1 — gl = 1+ I~ 1) + gl = llg] — Q. which is
what we want. O

We continue using the general notation introduced so far: X is an R-oriented d-poset, F is an
R-sheaf, f € C*(X,F), etc.

Lemma 13.5. With X, F,P,k, f, T be as before and let uw € X be a terminal face of dimension
i €{0,...,k}. Define

D(u) :={z € X(k) : x descends to u},
D'(u) :={z € X(k+1) : x descends to u}.

Suppose also that f is mock q-locally minimal at u and (X, wy, Fy) is an e-CBE in dimension
k—i—1(¢>0). Then

Ry B Ry g F

Z7 b 9 Z7 N s

[max prmax w(D(u)) < w(D'(u) N [supp(df) U Y]) + ¢ ruax frmax w(u)
ikd L brl.d ikd L kl,d

Proof. Define g € C*(X, F) by

f(x) @€ D(u)
9(5”):{ 0  x¢ D).

Lemma [[34tells us that g is mock g-locally minimal at u, because f is. In addition, ||g|| = w(D(u)).
Step 1. We claim that supp(dg) C D'(u) N (Y U supp(df)).

Let x € supp(dg). Then there is y € x(k) with y € suppg. By the definition of g, the face y
descends to u, so x € D'(u). It remains to show that € T U supp(df). Suppose that = ¢ T. We
need to show that x € supp(df). Let y € x(k) Nsupp(f). Then y is heavy and so = descends to y.
By Lemma 133 and our assumption that = is not exceptional, y descends to w. This means that
g(y) = f(y). Since g(y) = 0 whenever f(y) = 0, we conclude that g and f agree on every y € x(k),
so df () = dg(x) # 0, or rather, x € supp(df).

Step 2. By Step 1, we have

w(supp(dg)) < w(D'(u) N [supp(df) U T]).
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On the other hand, by our assumption that (X,,F,) is an e-CBE in dimension k¥ — dimwu — 1,
Lemma [£.17] and our earlier observation that ¢ is mock g-locally minimal at u we have:

E 'Hllci-rﬁl d
w(supp(dg)) > w(X (d)u) Fimwa(supp(dgu))
k+1,d
E 'Hllci-rﬁl d
> w(X(d)y) }?max’ e dist(gy, B(Xu, Fu))
k+1,d
Pt i
> w(X(d)y) }’max’ X(d),) ™ Tomar Aist(g, B(Xu, Fu)")
k+1,d ik,d
o PR
v,k+
> —m a9l — quw(u))
B a Fika
_Bhated lgll - Likralia w(w)
Fieati¥ta Fied eyt
Combining this with the last inequality and rearranging gives the lemma. O

13.4 Completion of The Proof

We will derive Theorem [IZ.§ from the following key lemma. We continue to assume that f €
C*(X,F), P is a k-intersection profile, h € (0,1]7, T is as in §I3.2] and T}, Sa 3, Up are as in
§I1.11

Lemma 13.6. With notation as before, let g, ...,e > 0 and q € [0,1]. Suppose that:
(1) f is mock q-locally minimal;

(2) for everyi € {0,...,k} and u € X (i), (Xu,Fu) is an g;-coboundary expander in dimension
k—i—1;

(3) 0 is not (f,h,P)-heavy;

and put
i P
~ . i, s s .
€:m1n{W€i|Z S {0,,k}}
ikdd k41,d
Then
k=1 pmin F
~ Z7 ) )
ELF1 < lldo Il + Upw(X) +q Y —2EEAZEL )
i=0 T i,k,d" k+1,d
. Fi o Fed
Proof. We abbreviate ¢; := ~rimax jomax i+
i,k,d” k+1,d

Let u denote a terminal face with dimu < k. Then u # (), because ) is not heavy, and thus f
is g-locally minimal at u. Therefore, by Lemma [T3.5]
Frpin Fmin
a1 (D () < (D () O fsupp(df) U T]) + e ()

imu,k,d” k+1,d

= w(D'(u) N [supp(df) — Y]) + w(D'(u) N T) + Cdimuw(u).
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When dim u = k, this moreover holds with ¢ = 0, because f is 0-locally minimal at every u € X (k).
By summing over all terminal faces u of dimension & or less, we get

dlmuk+1dde <
ZE“ T i, w(D(w) < (13.3)
> w(D'@nlupp(df) = T + w10+ 3 geamato(a).
“ w:dimu<k

We shall prove the lemma by bounding from about or below the four sums appearing in this
inequality.
First, we have

e M a 8 (D) > 65, w(D(w) = &)

dim u,k,d k+1 d

because every face in supp f descends to some terminal face u with dimu < k. Next,

> w(D'(u) N [supp(df) — Y]) < [|do f|

because every non-exceptional (k + 1)-face descends to a unique terminal subface (Lemma [I3.3]).
On the other hand, if y € T, then y can descend to at most Up terminal faces, see §I1.11 so

Zw D'(w)NY) < Up|T|.

Finally, since every terminal face of dimension < k is heavy and nonempty, we have

k—1
> qeaimuw(u) < g ciw(Ay)
=0

w:dim u<k
Plugging these inequalities into (I3.3]) gives the lemma. O

Proof of Theorem [1Z.8. Recall that we are given h € (0,1]” such that

| F, PR
— = ? + . .
p=¢&- - qz max prmax Zﬂ(h) >0
=0 Likdlk+i,d

and ¢ is as in Lemma Furthermore, f € C¥(X,F) is mock g-locally minimal and 71 (h)~!-

min mln
i,k+1,d F .
hax Fmax 7
Fz k, dFk 1,d

By Lemma [0, w(A_1) < T_1(h)||f|| < 1. Since X has only one —1-face and its weight is 1,
the face ) is not heavy. Now, Lemma [I3.6] tells us that

small. Again, write ¢; :=

k
ldf | > Ellfll = Upw(T) =g ciw(Ay)
1=0

By Lemmas [I3.1] and [I3.2], this means that

k
ldf | = ElfIl = UpSasWIfll —a)_ eiTi(h) = pl ] -
1=0
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A Correction Algorithm

The following is a time-efficient variant of Algorithm B2]

Algorithm A.1. Let (X,w),F,d,k be as in Theorem Bl The input to the algorithm is some
f € C¥(X,F) and a real number ¢ > 0. The algorithm outputs another k-cocycle f € C*(X,F),
computed as follows:

1) fl f

2) L < empty queue

(
(2)
(3) B <« boolean array indexed by X(0)U--- U X (k)
(4) For each z € X(0)U---U X (k):
(4a) L.push(z)
(4b) B[z] <~ True // zisin L
(5) While L is not empty:
(5a) z + L.pop()
(5b) Blz] < False // z is not in L
(5¢) Search for u € X(0) U---U X (k) and g € Ck-dimu=l(x F) with |df’ —d(g%)| <
ldf | = q - w(w).
(5d) If such w and g were found:
i f <« f =g~
ii. For every 2z’ € X(0) satisfying inf{z, 2’} = 0 and B[2/| = False:
A. L.push(z’)
B. B[] + True // 2/ isin L

(6) Return f’.

Bibliography

[ABO8] Peter Abramenko and Kenneth S. Brown. Buildings, volume 248 of Graduate Texts
in Mathematics. Springer, New York, 2008. Theory and applications.

[Bj684] A. Bjorner. Posets, regular CW complexes and Bruhat order. Furopean J. Combin.,
5(1):7-16, 1984.

[Curl4] Justin Michael Curry. Sheaves, cosheaves and applications. ProQuest LLC, Ann Arbor,
MI, 2014. Thesis (Ph.D.)-University of Pennsylvania.

[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science, pages
1495-1524. IEEE Comput. Soc. Press, Los Alamitos, CA, [2019] ©2019.

[DD23] Yotam Dikstein and Irit Dinur. Coboundary and cosystolic expansion without depen-
dence on dimension or degree, 2023.

90



[DDHRZ20]

[DEL*+22]

[DK17]

[DKW18]

[DLV24]

[EK16]

[EK17]

[EK24]

[FK23a]

[FK23b]

[Fril5]

[Goll1]

[Grol0]

[HG19]

[IveS6]

Yotam Dikstein, Irit Dinur, Prahladh Harsha, and Noga Ron-Zewi. Locally testable
codes via high-dimensional expanders. 2020.

Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally
testable codes with constant rate, distance, and locality. In STOC ’22—Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 357-374.
ACM, New York, [2022] ©2022.

Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders.
In 58th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2017,
pages 974-985. IEEE Computer Soc., Los Alamitos, CA, 2017.

Dominic Dotterrer, Tali Kaufman, and Uli Wagner. On expansion and topological
overlap. Geom. Dedicata, 195:307-317, 2018.

Irit Dinur, Ting-Chun Lin, and Thomas Vidick. Expansion of higher-dimensional
cubical complexes with application to quantum locally testable codes. 2024.

Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimension.
In STOC’16— Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, pages 36—48. ACM, New York, 2016.

Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimen-
sion. 2017. Summary appeared in STOC’16—Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing.

Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimension.
J. Amer. Math. Soc., 37(1):39-68, 2024. Summary appeared in STOC’16—Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing.

Uriya A. First and Tali Kaufman. The cheeger inequality and coboundary expansion:
Beyond constant coefficients. 2023.

Uriya A. First and Tali Kaufman. On good 2-query locally testable codes from sheaves
on high dimensional expanders. 2023.

Joel Friedman. Sheaves on graphs, their homological invariants, and a proof of the
Hanna Neumann conjecture: with an appendix by Warren Dicks. Mem. Amer. Math.
Soc., 233(1100):xii+106, 2015. With an appendix by Warren Dicks.

Oded Goldreich. Short locally testable codes and proofs. In Studies in complexity and
cryptography, volume 6650 of Lecture Notes in Comput. Sci., pages 333-372. Springer,
Heidelberg, 2011.

Mikhail Gromov. Singularities, expanders and topology of maps. Part 2: From com-
binatorics to topology via algebraic isoperimetry. Geom. Funct. Anal., 20(2):416-526,
2010.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. J.
Appl. Comput. Topol., 3(4):315-358, 2019.

Birger Iversen. Cohomology of sheaves. Universitext. Springer-Verlag, Berlin, 1986.

91



[JLO7]

[KKL16]

[KL14]

[KM18]

[KM21]

[KM22]

[KO21]

[KO22]

[KRO6]

[KT23]

[Li04]
[LMOG6]

[LSV05]

[LZ22]

Bruce W. Jordan and Ron Livné. Ramanujan local systems on graphs. 7Topology,
36(5):1007-1024, 1997.

Tali Kaufman, David Kazhdan, and Alexander Lubotzky. Isoperimetric inequalities for
Ramanujan complexes and topological expanders. Geom. Funct. Anal., 26(1):250-287,
2016.

Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property
testing. In ITCS’1/—Proceedings of the 2014 Conference on Innovations in Theoreti-
cal Computer Science, pages 501-506. ACM, New York, 2014.

Tali Kaufman and David Mass. Cosystolic expanders over any abelian group. FElec-
tronic Colloguium on Computational Complexity (ECCC), 25:134, 2018.

Tali Kaufman and David Mass. Unique-neighbor-like expansion and group-
independent cosystolic expansion. In 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of
LIPIcs, pages 56:1-56:17, 2021.

Tali Kaufman and David Mass. Double Balanced Sets in High Dimensional Expanders.
In Amit Chakrabarti and Chaitanya Swamy, editors, Approzimation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2022), volume 245 of Leibniz International Proceedings in Informatics (LIPIcs), pages
3:1-3:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fir Infor-
matik.

Tali Kaufman and Izhar Oppenheim. High dimensional expansion implies amplified
local testability. 2021.

Tali Kaufman and Izhar Oppenheim. High Dimensional Expansion Implies Ampli-
fied Local Testability. In Amit Chakrabarti and Chaitanya Swamy, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022), volume 245 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 5:1-5:10, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-
Zentrum fir Informatik.

Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J.
Comput., 36(3):779-802, 2006.

Tali Kaufman and Ran J. Tessler. Garland’s technique for posets and high dimen-
sional Grassmannian expanders. In 14th Innovations in Theoretical Computer Science
Conference, volume 251 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 78, 22.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023.

W.-C. W. Li. Ramanujan hypergraphs. Geom. Funct. Anal., 14(2):380-399, 2004.

Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes.
Combinatorica, 26(4):475-487, 2006.

Alexander Lubotzky, Beth S~amuels, and Uzi Vishne. Explicit constructions of Ra-
manujan complexes of type Ag. European J. Combin., 26(6):965-993, 2005.

Anthony Leverrier and Gilles Zémor. Quantum tanner codes. 2022.

92



[Mes18]

[MLM94]

[MWO09]

[Opp15]

[Opp18]

[PK22]

[She85]

[SS96]

Roy Meshulam. Graph codes and local systems, 2018.

Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic. Universitext.
Springer-Verlag, New York, 1994. A first introduction to topos theory, Corrected
reprint of the 1992 edition.

R. Meshulam and N. Wallach. Homological connectivity of random k-dimensional
complexes. Random Structures Algorithms, 34(3):408-417, 2009.

Izhar Oppenheim. Vanishing of cohomology and property (T) for groups acting on
weighted simplicial complexes. Groups Geom. Dyn., 9(1):67-101, 2015.

Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders
Part I: Descent of spectral gaps. Discrete Comput. Geom., 59(2):293-330, 2018.

Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally
testable classical LDPC codes. In STOC ’22—Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 375-388. ACM, New York, [2022]
©2022.

Allen Dudley Shepard. A Cellular Description of The Derived Ccategory of a Stratified
Space. ProQuest LLC, Ann Arbor, MI, 1985. Thesis (Ph.D.)-Brown University.

Michael Sipser and Daniel A. Spielman. Expander codes. volume 42, pages 1710-1722.
1996. Codes and complexity.

93



	Overview
	General
	Posets
	Sheaves
	Sheaf Cohomology.
	Locally Testable Codes From Sheaves on Posets
	A Criterion For Cosystolic Expansion of Sheaves
	First Application: Good 2-Query LTCs
	Second Application: A Local Criterion for Local Testablity of 2-Layer Lifted Codes
	Conclusion
	Structure of This Paper

	Preliminaries
	Expander Graphs
	Conventions about Codes
	Lifted Codes
	Agreement Testability

	Lifted Codes and Their Line Codes
	Graded Partially Ordered Sets
	Graded Posets
	Weighted Posets
	Links
	Face Counting Constants and Lower-Regular Posets
	Degree and Upper-Regular Posets
	Orientation

	Sheaves on Partially Ordered Sets
	Sheaves on Posets
	Sheaf Cohomology
	Restricting Sheaves to The Links
	Independence of The Orientation for Regular Cell Complexes
	Aside: Constraint Systems

	Locally Testable Codes from Sheaves and Cosheaves
	Cocycle Codes
	Cosystolic Expansion
	Coboundary Expansion
	Independence of The Orientation
	Dual Notions for Cosheaves

	No-Intersection Hypergraphs, Skeleton Expansion, Intersection Profiles
	No-Intersection Hypergraphs
	Skeleton Expansion
	Intersection Profiles

	Main Result: Simple Versions
	2-Query LTCs from Sheaves on Square Complexes
	The Poset
	The Sheaf
	The Code and Its Tester
	Interpretation of Local Expansion Conditions
	Constructing 2-Query LTCs
	Realization as a Line Code

	Local Testability of Two-Layer Lifted Codes
	Two-Layer Lifted Codes
	Subset-Labelled d-Posets
	A Criterion for a 2-Layer Lifted Code to be Locally Testable
	Proof of Theorem 10.8

	Main Result: Technical Version
	Notation
	Main Theorem
	Bounds on Constants
	Proofs of Theorems 8.1 and 8.10

	Proof of Theorem 11.2
	Mock Locally Minimal Cochains
	Reduction to Expansion of Small Locally Minimal Cochains

	Proof of Theorem 12.8
	Heavy Faces
	Exceptional Faces
	Ladders and Terminal Faces
	Completion of The Proof

	Correction Algorithm
	Bibliography

