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Abstract

Emergent behavior in active systems is a complex byproduct of local, often pairwise,
interactions. One such interaction is self-avoidance, which experimentally can arise as
a response to self-generated environmental signals; such experiments have inspired
non-Markovian mathematical models. In previous work, we set out to find “hallmarks
of self-avoidant memory” in a particle model for environmentally responsive swimming
droplets. In our analysis, we found that transient self-trapping was a spatial hallmark
of the particle’s self-avoidant memory response. The self-trapping results from the
combined effects of behaviors at multiple scales: random reorientations, which occur
on the diffusion scale, and the self-avoidant memory response, which occurs on the
ballistic (and longer) timescales. In this work, we use the path curvature as it encodes
the self-trapping response to estimate an “effective memory lifetime” by analyzing the
decay of its time-delayed mutual information and subsequently determining the
longevity of significant nonlinear correlations. This effective memory lifetime (EML) is
longer in systems where the curvature is a product of both self-avoidance and random
reorientations as compared to systems without self-avoidance.

Introduction

Active systems are comprised of one or many individual living or nonliving units that
harness energy to produce mechanical work used for locomotion. In nature, such
systems span from the microscale to the macroscale. On the microscale, bacterial
colonies have been observed to respond to environmental cues, such as local chemical
gradients [1–3], gravity [4, 5], and sources of light [6–8]. Shoaling [9–11],
swarming [12–14], flocking [15, 16], and herding [17] are all examples of emergent
behavior in macroscale living systems which have been studied extensively. These
behaviors are believed to serve evolutionary purposes such as protection from
predators [10, 17] and more efficient foraging [17]. Many inventive nonliving systems
take inspiration from these biological active systems; when such systems exist at the
microscale, we refer to them as active particles that are self-propelled and are often
subject to random fluctuations. Such self-propelled particles include (but are not
limited to) autophoretic swimming droplets [18–22], chemically propelled
droplets [23–26], and even light sensitive particles [27–30]. (For a comprehensive
review of micro-scale active systems and current research developments, see
Refs. [31–33].) Non-microscopic systems of autonomous robots or hexbugs have also
been studied [34–36].
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Mathematical models of such biological and synthetic active systems are often
agent-based. A frequently used model for an individual agent is an active Brownian
particle (ABP) that prescribes a constant velocity in a slowly diffusing direction
(see [37] for a review of active Brownian type models). Interaction rules between
agents, including themselves, can be specifically prescribed (i.e., agent
realignment [38]) or they can arise from the evolution of some modeled physical
process (i.e. chemical gradient sensing [39]). In addition, agents can be subject to
random forces, such as thermal fluctuations or random reorientations. In our work [40]
we studied a theoretical model of microscale swimming particles that is physically
inspired by experimental droplets that “swim” in a surfactant bath due to interactions
with self-created chemical gradients. Dissolution of these droplets creates changing
local concentration gradients that then create heterogeneity in the surface tension,
inducing microcurrents called Marangoni flows. These microcurrents propel the
droplets over short distances in a ballistic fashion while local flow instabilities cause
spontaneous direction changes [18–22]. Because these particles swim fast relative to
the speed at which diffusion erases their self-created chemical gradients, they avoid
each other’s and their own past locations. We use the term self-avoidant to refer to
this chemorepulsive behavior of a single particle.

To mimic this behavior, our simulated particles navigate the changing chemical
environment by descending their self-created chemical gradients towards regions of
lowest chemical density. (For a more thorough explanation of this model and its
dynamics, see [40].) The changing chemical environment c(y, t) evolves under the
diffusion equation

∂tc(y, t) = µ∆c(y, t) + µφ exp

[

−|y −Y(t)|2
2

]

, y ∈ Ω, t ≥ 0. (1a)

with diffusion coefficient µ. Rather than explicitly accounting for the particle
boundary, we model the space “occupied” by our particle using a Gaussian scaled by
µφ for the source term. We evolve the noisy particle’s position Y(t) by the
overdamped Langevin equation

dY(t) = −ν

(
∫

Ω

exp

[

−|y −Y(t)|2
2

]

∇yc(y, t)dy

)

dt+
√
ǫdB(t). (1b)

The deterministic integral term scaled by strength ν calculates the overall effect of the
chemical gradient on the particle; as in Eq. (1a) the point particle’s spatial footprint is
modeled by a scaled Gaussian. We note here that the negativity of this integral term
mathematically produces the gradient descent that induces self-avoidance. Positivity
of this term would make the particle self-attracting, a case that was studied
in [39, 41, 42]. The noise is modeled with a Wiener process, B(t) scaled by ǫ.

By solving the diffusion PDE (1a) and explicitly calculating the gradient term in
Eq. (1b), our model is reduced to the SDE

dY =
π

2
µνφ

∫ t

0

exp

[

−|Y(t)−Y(s)|2
4(1 + µ(t− s))

]

Y(t) −Y(s)

(1 + µ(t− s))2
dsdt+

√
ǫdB. (2)

for the path dynamics. In this form, the non-Markovian aspect of the model is more
apparent, since the deterministic component integrates the location of the particle
over all past times up to the current time t. Additionally, this form highlights the role
of the diffusion coefficient µ in influencing the memory of the model as µ appears in
the memory kernel. An important observation from our previous work [40] was the
inability to independently tune the memory, µ, and the dynamic regime of the model.
Larger µ, corresponding to faster diffusion, leads to a more quickly decaying kernel,
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thereby diminishing the effect of past history on the future evolution of the particle.
The self-created gradient then becomes too small and ballistic swimming is lost,
resulting in (non-active) Brownian motion. By decreasing µ to add more memory, the
droplet’s source strength is also diminished, similarly killing the ballistic swimming
and resulting in Brownian motion. Therefore there is an intermediate regime of µ
values that permits both ballistic swimming and random reorientations that allow for
self-interactions and thereby the self-trapping effect of memory.

The previous study of our model in [40] showed what we think to be the first
instance of transient self-trapping in a self-avoidant model. Self-trapping begins with
random reorientations that initiate interactions with the particle’s past history. The
particle’s self-avoidant memory then causes its trajectory to temporarily spiral in on
itself in an effort to avoid visiting the past path locations [see Fig. 1(A)]. For a
self-attracting particle, self-trapping has been seen experimentally before [43, 44]; only
recently has trapping of chemo-repulsive particles been shown experimentally [45].

This counter-intuitive behavior for a self-avoidant particle produces path segments
of extremely high curvature and comparatively dense path data. These signatures of
trapping in the path data do not show up in existing metrics that completely
characterize ABP-like motion, namely the mean square displacement (MSD) and the
orientation decorrelation timescale τ . For the first example, the MSD curve of the
self-avoidant particles exhibits the 3 classic displacement regimes (diffusion at small
timescales, transition to ballistic at intermediate timescales, and then to enhanced
diffusion at long time scales) and is well fit by the theoretical curve for active Brownian
particles (ABP). The temporal averaging of the MSD does not permit distinction
between the self-avoidant particles that transiently switch between two regimes,
self-trapping and free motion, and an ABP system with appropriate parameters.

Another insufficient existing statistic correlated to curvature for active particles is
the orientation decorrelation timescale τ , which measures the rate at which a particle
becomes decorrelated with, or “forgets”, its past movement direction. In the ABP
model, the value of τ can be determined directly from the model equations as the
rotational noise strength is explicitly specified; i.e. if the rotational diffusion of ABP is
given by dθ = τ−1/2dBθ, then the instantaneous velocity vector correlation function
(VCF) takes the form e−

t
2τ . In contrast, for systems like ours where τ cannot be

determined analytically, it can only be estimated empirically by fitting the VCF with
an exponential.

As with the MSD, we have found τ to be limited in its explanatory power over the
curvature of paths in our self-avoidant model. The decorrelation timescale τ is
dominated by random reorientations in the ballistic direction over the longer-time
deterministic effects of the self-avoidant memory on the path curvature. To reinforce
this point, in Fig. 1, we compare ABP paths generated with τ fitted from the VCF of
the self-avoidant model, and velocity V chosen to match the self-avoidant paths. (The
velocity V can be calculated analytically as a function of the parameters µ, ν, and φ

for the self-avoidant model [40].) Despite identical generating parameters (V and τ) in
addition to closely matching VCF curves, we observe noticeable differences in the
trajectories, particularly the curvature. In fact, self-trapping (and the resulting
curvature) is a mesoscale emergent effect of self-avoidant memory that arises
organically as the system evolves and creates qualitative changes in the curvature over
longer timescales than a random reorientation. Therefore, it is unsurprising that a
single reorientation timescale that captures the decay of linear correlations between
consecutive orientations does not capture the effects of a self-avoidant memory
response.

For alternative ways of detecting the extent to which knowledge of the past history
influences the future behavior of the system, one might consider information theory,
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which studies the communication of information in the presence of uncertainty. In
particular, it provides tools to identify and quantify causal relationships between
signals. Transfer entropy is one such tool that is favored for isolating directional
interactions in coupled systems [46–50]; other information theoretic approaches include
conditional mutual information [51], partial mutual information [52], causation
entropy [53] (and the related optimal causation entropy [54]), momentary information
transfer [55], and Granger causality [56]. (Reviews include [57]). For the purpose of
detecting directional interactions in coupled systems, transfer entropy-based methods
eliminate the influence of the target variable’s past history (by conditioning on it) to
isolate the additional influence of the source variable. In contrast, we aim to
illuminate the non-Markovian cumulative influence of the past history of a single
particle on itself. Therefore, we adapt the mutual information, which quantifies the
“distance from independence” between two random variables (in our case, a variable
with its own past history) to capture this self-interaction between the present and past.
Since the high-curvature regions of self-trapping are an emergent spatial hallmark of
self-avoidant memory, we use the temporal structure of the time-lagged path curvature
mutual information to reveal the presence of past-history effects on the self-avoidant
particles when compared to Markovian ABPs.

Our paper is structured as follows. We begin in Methods by summarizing a method
for calculating the relative straightness of path data. Following, we review the basics
of mutual information and our adapted sampling method for minimizing inherent
correlations in continuous time series data. In Effective Memory Lifetime, we present
self time-delayed mutual information at various delay times, arriving at a single
statistic associated with the presence of self-trapping and the overall memory level in
the system. We end the paper with conclusions.

Methods

The curvature due to self-trapping in our model is a response generated by the
self-avoidant memory. To detect this memory, we quantify the correlations in the
time-evolving curvature as the trajectory switches between high-curvature
self-trapping and straighter, active Brownian-like states. We begin by computing the
path curvature time series at the appropriate spatial-temporal scale and then compute
the time-delayed self-mutual information of this series over various lag times. This
requires adapting the estimation of mutual information to time series data to filter out
dynamic correlations (or autodependencies) inherent in time series data.

Straightness Index

Inspired by [58], we compute a straightness index (SI) that estimates the curvature of
path data as the ratio of beeline distance to arc length. This index allows for two
relevant timescales, g and w, to be specified to estimate the straightness. First, the
path data is smoothed by downsampling with frequency g to eliminate the effects of
random noise and highlight the more deterministic path features. Following, a moving
window of size w is applied to the smoothed path data. Within this window, the
beeline distance from the window start time to the window end time is computed and
divided by the arc length of the path segment. SI values close to 1 indicate a similar
ratio of beeline distance to arclength, indicating straight motion and therefore low
curvature. Conversely, a low ratio of beeline distance to arclength will produce
straightness values near zero and indicative of high curvature. A schematic of the SI
calculation using dummy path data is shown in Fig. 2).
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Fig 1. (A) Five independent self-avoidant paths for comparison to (B) five
independent active Brownian particle paths with matching velocity V and reorientation
timescale τ derived from fitting the velocity correlation function shown in (C). Despite
nearly identical VCFs, the paths are qualitatively different.
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Fig 2. Illustration of the straightness index computation for sample noisy data
(dashed gray path). The arclength is estimated using distances at the granularity size
(g = 5 in this example – blue segments) while the beeline distance is estimated at the
moving window size (w = 25 in this example – red segments). The SI for each moving
window is the ratio of its beeline to its arclength distances.

Inspection of the trajectories in Fig. 1 shows that the self-trapping occurs on an
intermediate spatial scale, therefore, we tune the SI to the mesoscale at which
self-trapping occurs to capture the temporally changing path curvature. We choose g

to smooth out small-timescale diffusion and w on the order of V , which is the ballistic
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timescale. We construct a time-series of SI values which functions as a time-evolving
order parameter for the curvature generated by path data. By considering individual
trajectories we find that the SI captures the observed curvature well, as it varies
throughout the experiment. In Fig. 4 we illustrate the resultant SI time series data of
three selected paths that are generated with the same model parameters, but express
obviously different path features. The SI data (middle column) is color-coordinated to
match the relevant path segment (left column). Path C becomes self-trapped near the
end of the experimental timeframe and this is reflected in the SI as repeated excursions
toward values close to zero. Contrast this with path A, whose only excursion to zero
at approximately t = 20s is short-lived and is reflected in the path data as a small
bend with no spiral-like pattern. Recall it is structure or correlations in SI that we
care about to detect memory, not just the existence of variable curvature.

Time Delayed Self Mutual Information

In the previous section, we presented a direct way of quantifying curvature with the SI,
but further work is required to directly connect the curvature to the self-avoidant
memory. Rather than the decay of linear correlations of the orientation that the VCF
provides, we analyze the temporal structure of nonlinear correlations by estimating
the time-delayed self mutual information of the straightness time series data. Mutual
information was first introduced in [59] to assess the strength of nonlinear correlations
between two random variables. Given X ∼ pX(x) and Y ∼ pY (y) with supports X and
Y, respectively:

MI(X ;Y ) =

∫

X

∫

Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dxdy. (3)

MI(X ;Y ) is formally the Kullback-Liebler divergence between the product of the
marginal distributions, pX(x) · pY (y) and their joint distribution, pX,Y (x, y).
Intuitively, we can interpret the mutual information as characterizing a “distance from
independence” since the integral is formally zero in the case where X and Y satisfy
pX,Y (x, y) = pX(x)pY (y) (completely independent) and is infinite in the case where
pX(x) = pY (y) (completely dependent); it however is not a distance in the
mathematical sense. Mutual information of O(1) between samples is typically
interpreted as a strong signal.

We note that, although transfer entropy is a more common metric used for the
analysis of correlations between time series data [60], mutual information is the
preferred metric for our study since it has fewer limitations, both computationally and
with regard to assumptions. Transfer entropy captures directional information flow,
which is the information gain in one signal when knowledge of a second signal is added.
Here, since we have only one signal, mutual information between a single variable in
its current state with its own past states is a more natural choice. Secondly, transfer
entropy (also known as conditional mutual information) is computationally undesirable
since estimation requires conditioning on all variable past states up to a chosen time
delay. (Such conditioning requires estimation of a high-dimensional joint distribution.)
Finally, since our particles have non-Markovian memory extending back to t = 0, we
would be required to condition all the way back to t = 0 or choose an arbitrary cutoff.

To estimate the mutual information between random variables X and Y , we use
the k-nearest neighbors algorithm described by [61], in which the authors develop an
unbiased statistical estimator that takes in bivariate data of the form Z = {(X,Y )}
and assumes that each sample, (Xn, Yn), for n = 1, 2, . . .N , is an independent
realization from a stationary distribution. Since we aim to show that the curvature of
self-avoidant paths is a response to the interactions produced by self-avoidant memory
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and is therefore time-dependent, we compute the time-delayed self mutual information
of the straightness index, MI(S(t);S(t+ T )). Accordingly, the independent samples of
the bivariate data Z becomes samples at current times {ti} and at future times
{ti + T }, denoted as {(S(t1), S(t1 + T )), (S(t2), S(t2 + T )), . . . , (S(tN ), S(tN + T ))}.
We see no evidence refuting the requirement of stationarity; the ensemble mean and
variance do not change significantly in time (data not shown). We discuss needed
adaptations to maximize independence between these time samples next.

One remaining issue with applying mutual information to time series data is the
introduction of correlations simply because the data is a representation of a
continuous stochastic process; there are inherent autodependencies between samples
that are close in time. In contrast with how MI has been applied to time series in the
literature [62,63], we utilize a technique that one of the authors developed in [64]. It is
designed to suppress the effects of these dynamical correlations in the calculation of
mutual information of time series data, allowing the detection of the desired
self-interaction-induced correlations. This technique enforces an average separation
window, W , (distinct from the moving window w used to calculate the SI) between
consecutive sample times ti and ti+1. We look for the smallest W for which the
mutual information of the independently generated ensemble, for which only
dynamical correlations are present, is approximately zero. The non-zero MI seen in
Figure 3 can only be attributed to dynamical correlations and not true
history-dependent correlations.

The size of this window, which we call W can be chosen as the timescale beyond
which the time-delayed ensemble mutual information at any given point dips below a
significance threshold (perhaps zero). This window W acts as the timescale of an
effective noise filter, where the noise here is the nonzero mutual information of
dynamical correlations within time-series data, which we want to exclude. An
illustration of this window size calculation for an ensemble of 96 paths is shown in
Fig. 3. We see that a window size of W = 4 is sufficient to filter out mutual
information of dynamical correlations for the illustrative ensemble of paths.
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Fig 3. Estimation of nonlinear dynamical correlations in the mutual information
between independently generated straightness indices across an ensemble to determine
a sufficient separation window W for use on a single time series to suppress these
dynamical correlations. After some acclimation time ta, we calculate the
ensemble-sampled mutual information MI(S(ta);S(ta + T )), where S(ta) and
S(ta + T ) are the set of all straightness index values of each independently generated
path at time ta and ta + T . (We choose ta = 15s.) We select W = T satisfying
MI(S(ta);S(ta + T )) ≈ 0 as the appropriate separation window size for future use in
time-sampled mutual information computations.

We proceed to compute the mutual information of the straightness index for a
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single path as a function of the time delay T , MI(Sj(t), Sj(t+ T )) We implement the
method from [64] for suppressing dynamical correlations by randomly sampling S(t) at
times {ti} = t0, t1, . . . , tf , satisfying 〈ti+1 − ti〉i ≈ W . For the same set of model
parameters, we generate three paths, A, B, and C, depicted in the first column of
Fig. 4. For each path, we calculate the time-series of the straightness index SQ(t),
Q ∈ {A,B,C} shown in the second column. Each resultant time-delayed self mutual
information curve is illustrated in the third column of Fig. 4, where
MI(SA(t);SA(t+ T ), MI(SB(t);SB(t+ T ), and MI(SC(t);SC(t+ T ) are shown as
functions of the time delay T for several values of the separation window W .
Confirming our choice of W = 4 as the dynamical correlation filtering timescale, we
see that the curves associated with W < 4 appear not to decay to zero, indicating that
the dynamical correlations are still present. In the following section, we discuss a
framework for interpreting the structure of these mutual information decay curves
through the lens of the self-avoidant memory response.

Effective Memory Lifetime

The first observation that we make about Fig. 4 is that the level of self-trapping in the
paths, which is the self-avoidant memory expression, influences the delay time T at
which the mutual information becomes “insignificant”. Path A, which does not
become self-trapped, has mutual information that becomes insignificant the soonest,
at approximately T ≈ 2, after which it fluctuates near zero. In contrast, nonzero
mutual information of path C, which is self-trapped for an extended period of time (as
shown in a prolonged excursion of SC(t) toward zero), persists well beyond T ≈ 2.
Future states of the model depend on the entire spatiotemporal past history, therefore,
we expect that the theoretical mutual information will never reach zero. However, the
past influence decays in time thereby localizing the self-trapping in both space and
time; we hypothesize that a finite time delay to insignificance is a good representation
of the effective memory lifetime (EML). To definitively compare this timescale (EML)
across parameters and models, we compute the first crossing of the mutual
information decay curve with a chosen small, but nonzero threshold that is above the
inherent fluctuations of the statistical estimator.

In Fig. 5, we illustrate how the EML can distinguish the effect of the parameter µ,
which influences the expression of the self-avoidant memory through its appearance in
the exponential kernel of Eq. 2. (The velocity V in the model is held constant by using
the appropriate ν value for each µ.) Each curve in Fig. 5 (A) is the average of the
mutual information decay curves of 96 individual paths generated with a particular
value of µ indicated by the colorbar. As µ increases, the memory strength decreases
and the corresponding mutual information decay curves become progressively lower,
thus becoming insignificant sooner and having smaller EML values.

For the five threshold values chosen in Fig. 5 (A), we compute the EML as a
function of µ which are plotted in Fig. 5 (B) (solid lines). As µ increases (and the
memory response wanes), the EML decreases irrespective of the chosen threshold
value. For active Brownian particles (no self-avoidant memory) with matching τ and
V , we repeat this process (dotted lines in Fig. 5 (B)). Irrespective of threshold value,
the ABP EML are lower than those of the self-avoidant model when there is
substantial self-avoidant memory (small µ values). As the self-avoidant memory
becomes weaker at larger values of µ the EML curves converge, suggesting that the
self-avoidant memory response is indistinguishable from an active Brownian particle.

We explore alternative ways to control the memory by introducing a numerical
solution designed to tune the effective memory; we implement this by restricting the
bounds of the integral term in Eq. (2). The integral term represents the particle
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Fig 4. First column: Three 60s long paths from the same generating parameters
(µ = 0.01 and V = 6) that yield varying levels of self-avoidant memory expression.
Second column: Corresponding straightness index time series S(t) for each of the three
paths. Third column: The mutual information decay curves corresponding to window
sizes W = 1, 2, 4. As expected, the curves only appear to decay convincingly to zero in
the case that W = 4.

mathematically “looking over all past times” to determine its next location. By
increasing the lower bound from zero to max(0, t−M) with M ≥ 0, we can artificially
restrict the amount of past history to affect the particle motion, and therefore reduce
the effective memory. This restricted-memory particle model is given by

dY =
π

2
µνφ

[

∫ t

max(0,t−M)

(

e
−

|Y(t)−Y(s)|2

4(1+µ(t−s))
Y(t) −Y(s)

(1 + µ(t− s))2

)

ds

]

dt+
√
ǫdB. (4)

(Since the combined model in Eq. 2 is a non-Markovian process in which the state
(position) at time t+ δt depends on all past states via the integral term,
implementation of effective memory timescale M is merely limiting the number of past
states that the particle has access to from [0, t] to [max(0, t−M), t].)

In Fig. 6, we explore the effects of implementing the adapted model on the
swimming velocity V and the EML. As we discuss in the introduction, the parameter
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Fig 5. (A) The average mutual information as a function of delay time decreases as
the value of µ increases and the self-avoidant memory response is suppressed. As these
curves decrease in value, they cross significance thresholds (horizontal straight lines) at
earlier times. (B) For each significance threshold, the effective memory lifetime (first
crossing time) of self-avoidant paths (solid lines) is recorded as a function of µ and
compared to ABP effective memory lifetimes (dashed lines) with matching V and τ .

µ affects both the memory and velocity of the particles, with intermediate µ values
allowing for both ballistic motion and random reorientations that are required
conditions for self-trapping to arise. We see a similar interdependence of the
parameter M on both memory and velocity. In Fig. 6 we depict the analytical
transition to non-zero velocity as a function of the effective memory window M (we
numerically search for a velocity V so that a solution of Eq. (4) with ǫ = 0 is
Y (t) = V t). With the right y-axis of this same plot, we plot the EML derived from the
mutual information decay curve. We see that the apparent transition from EML
values near zero to a noisy but seemingly stable EML occurs at approximately the
same critical M as the nonzero velocity transition. The exception is that the µ = 10
EML does not stabilize. In this case, with more rapid diffusion, the transitional M is
larger since more past history is needed to generate a gradient strong enough to propel
the particle ballistically. However, once the ballistic transition has occurred, the
particle velocity V = 6 outpaces the gradient buildup necessary to induce
self-interaction. This is shown by the EML trend back down toward zero. We interpret
this to mean that the parameter combination V = 6 and µ = 10 will not yield
self-trapping. These observations further confirm that the swimming and the
self-trapping memory response are intrinsically tied.

The fact that this transition between diffusion-dominated and ballistic-dominated
motion is sharp removes the option of slowly tuning the effective memory response by
changing M . Below the critical transition value of M , the diffusion-dominated
dynamics do not display the self-trapping memory response. By the time the effective
velocity V nearly matches the original-model velocity (M order 1), the memory
response has also reached its apparent full value as the path dynamics become
indistinguishable as M continues to increase.

Conclusion

We have shown how to detect memory signatures of self-avoidant model particles using
the path curvature derived from trajectory data. The path curvature is measured by a
multi-scale straightness index that can be tuned to reliably capture the spatial scale of
self-trapping which is an emergent response of the self-avoidant memory. Using
mutual information, we quantify nonlinear correlations in the temporal structure of
the path curvature, arriving at an effective memory lifetime to capture the persistence
of significant self-mutual information.
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Fig 6. The velocity V (dashed lines, left axis) of the truncated model Eq. (4) is plotted
together with the EML values (solid lines, right axis) as a function of the model
effective memory window, M (larger M includes more past history in the integral).
Transition to ballistic behavior and to stable EML values occur at similar effective
memory times M for high and intermediate memory-inducing values of µ.

One challenge that arises when computing the mutual information from time series
data, especially data derived from a continuous stochastic process, is the presence of
ambient dynamical correlations. To suppress the influence of these ambient dynamical
correlations on the reported mutual information, we implement an adapted sampling
scheme that enforces an average separation window between consecutive samples. This
window is chosen to be larger than the decay timescale of the dynamical correlations.
An advantage of working with model-generated data over experimental data is that we
can create arbitrarily long trajectories to implement this constraint while maintaining
a reasonable sample size. Additionally, long trajectories and many replicates also
increase the likelihood of observing the transient self-trapping, since it is an emergent
effect of the self-avoidant memory and is not guaranteed to occur. It may be possible
to experimentally circumvent this need for long trajectories by sampling from pairwise
interactions of multiple particles evolving simultaneously. (Note that dynamical
correlations still need to be suppressed in this case.) Future work includes exploring
this possibility for model particles in a periodic box that restricts the domain and
therefore promotes more particle interactions on shorter timescales that may be more
similar to the lifetime of experimental particles.

As the diffusion coefficient µ increases (thus decreasing the memory response with
fixed velocity), we show that the average mutual information is lowered across all
delay times and results in shorter effective memory lifetimes. Furthermore, we show
that the EML of particles with curvature derived from self-avoidance and random
reorientations (our model) outlast the EML of particles with curvature derived only
from random reorientations (ABP with identical velocity and velocity decorrelation
timescale τ). Together, these results demonstrate that the EML derived from
time-delayed self-mutual information is capturing the presence of self-avoidant
memory effects in trajectory data.

Further exploration of the model parameter space confirmed our first-principles
arguments that the ballistic component and the self-avoidant memory response are
intrinsically tied together by the diffusion coefficient µ. Because of this coupling, the
memory response is not independently tunable, even if we artificially restrict the
length of past history the particle accesses to be at most M non-dimensional time
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units. In fact, we found a transitional M beyond which model behavior changed from
non-ballistic to ballistic that coincided with the stabilization of the EML. This further
supports the entanglement of velocity and memory: the particle must move
ballistically to see the self-trapping memory response and the self-avoidant memory
propels the particle ballistically.
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