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POINTS OF BOUNDED HEIGHT ON CERTAIN SUBVARIETIES
OF TORIC VARIETIES

MARTA PIEROPAN AND DAMARIS SCHINDLER

ABSTRACT. We combine the split torsor method and the hyperbola method
for toric varieties to count rational points and Campana points of bounded
height on certain subvarieties of toric varieties.
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1. INTRODUCTION

We combine the split torsor method and the hyperbola method for toric vari-
eties to count rational points and Campana points of bounded height on certain
subvarieties of smooth split proper toric varieties. This line of research has been
initiated by Blomer and Briidern [BBIS] in the setting of diagonal hypersurfaces in
products of projective spaces. Other results in this direction include hypersurfaces
and complete intersections in products of projective spaces [Schi6], improvements
for bihomogeneous hypersurfaces for degree (2,2) and (1,2) by Browning and Hu
[BHI9] and Hu [Hu20], as well as generalisations to hypersurfaces in certain toric
varieties by Mignot [Mig15], Mig16| [Migl§].

The versions of hyperbola method used in all of these articles are rather close
to the original one [BBI18] for products of projective spaces. In our recent work
[PS24] we established a very general form of the hyperbola method for split toric
varieties, in which the height condition can also globally be given by the maximum
of several monomials. The goal of this article is to show applications of our new
hyperbola method. We develop a refined framework for the split torsor method on
split smooth proper toric varieties and show that counting results for subvarieties
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of projective spaces can be carried over to toric varieties by a direct application
of the hyperbola method [PS24]. With this we can prove new cases of Manin’s
conjecture [FMT89, BM90] on the number of rational points of bounded height on
Fano varieties for certain subvarieties in toric varieties.

The split torsor method provides a parametrisation of rational points on Fano
varieties via Cox rings [Sal98| [DP20]. The Cox ring of a smooth proper toric variety
X is a polynomial ring endowed with a grading by the Picard group of the toric
variety [Cox95]. Subvarieties of toric varieties are intersections of hypersurfaces,
which are defined by Pic(X )-homogeneous polynomials in the Cox ring of X. The
subvarieties considered in this paper are defined by homogeneous elements in the
Cox ring of the toric variety such that each polynomial involves only variables of
the same degree. With the split torsor method parametrisation the height is given
by the maximum of a set of monomials and with this in the correct shape to apply
our generalised version of the hyperbola method [PS24]. The hyperbola method
reduces the counting problem to counting functions over boxes of different shapes.
An advantage of our method is that it is already adapted to the shape of height
functions appearing. Also compared to earlier versions of the hyperbola method,
we do not need estimates for lower dimensional boxes and with this our proofs are
relatively short.

We now illustrate our approach on a number of examples. In a similar fashion, it
is possible to apply counting results such as [Bir62, [HB96, [RM18| [RM19, BHB17]
and many others, to subvarieties of toric varieties defined by elements of the Cox
ring each involving only variables of the same degree.

1.1. Results. Let X be a smooth split complete toric Q-variety with open torus
T. Let Dyq,...,Dg € Pic(X) be the pairwise distinct classes of the torus invariant
prime divisors on X. For i € {1,...,s}, let n; = dimg H°(X, D;). Let Hy, be the
height associated to a semiample torus invariant divisor L on X as in Section
Our first result concerns subvarieties of toric varieties defined by linear forms.

Theorem 1.1. Let V C X be a complete intersection of hypersurfaces H;; with
1 <i<s, 1 <1<t such that [Hij] = D; in Pic(X) for i € {1,...,s} with
t; #0. Assume that VNT # 0 and t; <n; —2 for alli € {1,...,s}. Assume that
L=—(Kx+>, Zf;l[Hzl]) is ample. For B > 0, let Ny (B) be the number of
Q-rational points on V N'T of height Hr, at most B. Then

Ny (B) = ¢B(log B)*~! + O(B(log B)"~2(log log B)*),

where b = tkPic(V), and ¢ is a positive constant, which is defined by B) with
k=b-1, Cpa given by @I), and w; = n; —t; fori € {1,...,s}.

We use this result as a toy example to show how to combine the hyperbola
method with the universal torsor method in the context of rather general smooth
split toric varieties. We now move on to results which require deeper understanding
of the underlying Diophantine problems via methods from Fourier analysis.

We start with a result that concerns subvarieties of toric varieties defined by
bihomogeneous polynomials. It is obtained combining the framework developed in
this paper with the hyperbola method [PS24] and preliminary counting results in
boxes of different side lengths from [Sch16].

Theorem 1.2. Let V C X be a smooth complete intersection of hypersurfaces
Hy,..., H; of the same degree e;D1+e2Do in Pic(X). Assume that VT # 0, that
ni—te; > 2 fori € {1,2}, and that n1+ng > dim V;*+dim V' +3-2¢1 %2 eat, where
Vi, Ve € AmTm2 gre affine varieties defined in 8. Assume that L = —([Kx] +
[Hi+- -+ Hy)) is ample. Then there is an open subset W C X such that the number
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Ny,w(B) of Q-rational points on VONW NT of height Hr, at most B satisfies
Nv,w(B) = eB(log B)"™* + O(B(log B)"~*(loglog B)*)

for B > 0, where b = rkPic(V), and c¢ is defined in 1) with k = b—1, Cypra
given by B, w; = n; —te; for i € {1,2}, and w; = n; fori € {3,...,s}. The
constant c is positive if V(Qy) # 0 for all places v of Q.

Theorems[[ Tl and [[2 are compatible with Manin’s conjecture [FMTR9], as L|y =
— Ky by adjunction. The proofs in Sections [ and [l yield an asymptotic formula
even if we drop the ampleness assumption on L.

Theorem [[2] as well as work of Mignot [Migl6, [Mig18] include the case of certain
hypersurfaces in products of projective spaces. However, in comparison to Mignot’s
work we do not require the condition that the effective cone of the toric variety is
simplicial. An example of a split toric variety with non-simplicial effective cone,
where our theorem applies, is the blow-up at a torus-invariant point of P x P2 x Y’
where n1,no are sufficiently large and Y is a split del Pezzo surface of degree 6.

Our last result concerns sets of Campana points in the sense of [PSTVA21] for
subvarieties defined by diagonal equations. We introduce the following integral
models. Let 2 be the Z-toric scheme defined by the fan of X. For i € {1,..., s},
let Z;1,...,%; n, be the torus invariant prime divisors on 2~ of class D;.

Theorem 1.3. Let V. C X be an intersection of hypersurfaces Hi,...,H; such
that H; is defined by a homogeneous diagonal polynomial in the Cox ring of X of
degree e;D; in Pic(X) and with none of the coefficients equal to zero. Let ¥ be the
closure of V. in Z'. For i € {1,...,s}, fiz integers 2 < m;1 < --- < myp,. Let
Do =21 2 jer (I = 57=) P15 Assume that V NT # 0, that na, ..., ny > 2, and

(2%

. n; 1 n;—1 1 - _
fO’f’Z S {1,...,8}, that z]Zlm—m > 3, that Zj:l W Z 1 Zf e;, = 1,
and Z;“:l Wm]) > 1 if e; > 2, where so(e;m; ;) is defined in Lemmal61l Let

L=—(Kx+%m|x+Hi+- -+ H;) be ample. For B > 0, let Ny (B) be the number
of Z-Campana points on (¥, Dm|y) that lie in T and have height Hy, at most B.
Then

Ny (B) = ¢B(log B)"™' + O(B(log B)"*(log log B)*),
where b =1k Pic(V'), and ¢ is defined in B1) with k =b—1, Cpr.a given by (GII)),
and w1, ...,ws gwen by [GI0).

The order of growth in Theorem is compatible with the Manin-type conjec-
ture for Campana points [PSTVA21], as L|y is the log anticanonical divisor of the
pair (V, Zm|v) by adjunction.

Due to the range of application of the circle method, Theorems and
require the Cox ring of the toric variety to have a large number of variables of
the same degree. This holds for toric varieties with several torus invariant prime
divisors of the same degree and for products of such toric varieties. Here are some
examples: the Cox ring of the projective space P™ has n + 1 variables of the same
degree, the Cox ring of the blow-up of the projective space P at [ < n + 1 torus
invariant points has n+1—1 variables of the same degree. Another example is given
by blow-ups of products of toric varieties each with several torus invariant prime
divisors of the same degree. Indeed, if X and Y are smooth split toric varieties and
the Cox ring of X has nx variables of the same degree dx, and the Cox ring of YV
has ny variables of the same degree dy, and P € X XY is a point where mx < nx
variables of degree dx vanish and my < ny variables of degree dy vanish, then the
Cox ring of the blow-up of X xY at P has mx variables of the same degree dx —e
and my variables of the same degree dy — e, where e is the class of the exceptional
divisor.
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The structure of this article is as follows. In Section 2l we reformulate the height
function and the multiplicative function p for M&bius inversion according to the
principle of grouping variables of the same degree. In Section [B] we combine the
new framework with the hyperbola method developed in [PS24] to obtain a gen-
eral counting tool for points of bounded height on subvarieties of toric varieties.
Theorems [LT] .2 and are proven in Sections M Bl and [@ respectively.
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project. We are grateful to the Lorentz center in Leiden for their hospitality during
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supported by the NWO grants VI.Vidi.213.019 and OCENW.XL21.XL21.011. For
the purpose of open access, a CC BY public copyright license is applied to any
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2. TORIC VARIETIES SETTING

Let ¥ be the fan of a complete smooth split toric variety X over a number
field K. We denote by {D1,...,D,} C Pic(X) the set of degrees of prime torus
invariant divisors of X. For each ¢ € {1,...,s} we denote by D;1,...,D; p, the
torus invariant divisors of degree D;, and by p; 1,..., pin, the corresponding rays
of ©. Let T := {(i,j) € N2:1<i <s,1<j<mn;}. Let Xpax be the set of
maximal cones of ¥. For each maximal cone o of X, let J, := {(i,5) € T: pi; C
o}, let T, = T\ J,, and let I, be the set of indices ¢ € {1,...,s} such that
{(,1),...,(i,n)} NIy # O

Let £ be the toric scheme defined by ¥ over Ok, and for each (i,5) € Z, let
2;,; be the closure of D; ; in 2.

Let R be the polynomial ring over Ox with variables z;; for (i,j) € Z and
endowed with the Pic(X)-grading induced by assigning degree D; to the variable
;5 for all (i, j) € Z. For every torus invariant divisor D = 377, 377, a; ;D; j on
X and every vector x = (xm»)(i jez € C?, we write

~TI1T
i=1j=1

By [Sal98, §8], 2" has a unique universal torsor 7 : # — 2, and ¥ C AgK is
the open subset whose complement is defined by x> = 0 for all maximal cones o
of ¥, where D, := Z(i,j)ela D; ; for all o € Xpax.

Let r be the rank of Pic(X). Let C be a set of ideals of Ok that form a system of
representatives for the class group of K. As in [PS24] §6. 1] we fix a basis of Pic(X),
and for every divisor D on X we write ¢/P! := []/_, % where [D] = (b1, ..., by)
with respect to the fixed basis of Pic(X). Then, as in [P1616, §2],

X(K)=2(0x) = | | = (#(0x)),
ceCr
where 7¢ : #¢ — 2 is the twist of 7 defined in [FP16, Theorem 2.7]. The fibers
of |a (o, are all isomorphic to (OF)", and #“(Ok) C OF is the subset of points
x €D jer clPisl that satisfy

> xPeclPed = ok (2.1)

0E€Xmax
Let N be the lattice of cocharacters of X. Then ¥ C N®zR. For every (i,5) € Z,
let v; ; be the unique generator of p; ; N N. For every torus invariant Q-divisor
D =373 ai;Dij of X and for every o € Yyax, let uyp € Homz(N,Q)
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be the character determined by u, p(vi;) = a;; for all (i,7) € J,, and define
D(o):=D->", 27;1 Ue,p(Vi ;) Di ;. Then D and D(o) are linearly equivalent.

2.1. Torus invariant divisors. Here we collect some properties of toric varieties
and their torus invariant divisors.

Lemma 2.1.

(i) Let 0 € Ymax-
(a) Fori € I,, there is a unique indez j; » € {1,...,n;} such that (i, ji») €
Ts. Sotl, =41, =r.
(b) Foriel,, (i,j') € T» for all j' € {1,...,n;} ~ {Jio}-
(¢) Forie{l,...,s}~ I, {(i,1),...,(4,n:)} C To.
Let D be a torus invariant Q-divisor on X. For o € Yinax, write
D(O’) = Z Zai,jﬁDi,j.
i=1 j=1
Forie{l,...,s}, let a0 = 27;1 Qi jo-

(ii) Let 0 € Ymax. Then D(o) =3 c; @ioDij -

(i1i) Leto,0’ € Xpmax. If there arei € I, and j € {1,...,n;} such that J,NTy =
TJo ~A{(E,9)}, then I, = Iy and ar o = vy o0 for all i € {1,...,s}.

(iv) Let o € Ymax and for every i € I, let j; € {1,...,n;}. Then there exists
a unique o' € Ymax such that I,o = I,, (i,5;) € Ly for i € I,, and
Qi = 4o fori € {1,...,s}.

(v) The relation o ~ o’ if and only if I, = I, defines an equivalence relation
on Ymax, and the equivalence class of o has cardinality Hielg n;.

(vi) Let J C I minimal for inclusion and such that J NZ, # O for all o €
Ymax. Let i € {1,...,s} such that {(i,1),...,(i,n;)} N T # 0. Then
{(Z.a 1)7 tr (Zvnz)} - J.

Proof. Part |(i)| follows from the fact that [D; ;] = D; for all j € {1,...,n;} and
that the set {D; : i € I} is a basis of Pic(X) by [CLS11 Theorem 4.2.8] as X is
smooth and proper.

Part follows from part |(i)| and the fact that by construction «; j, = 0 when-
ever (i,7) € J5.

For part (iii)] we observe that if o # ¢’, then J, = (J, N T )U{(i,§)} and Jpr =
(Jo NT5)U{(i, ji,o) }, where j; » is the index defined in part Thus ¢ € I, N1,
and for every index i’ € {1,...,s} with ¢’ # ¢ we have J, N {(i',1),...,(#',ny)} =
Tor V(@ 1),. .0, (7 nir)} € To N Tor. Recall that [D(o)] = 37, @irD; and
[D(0")] = > ier, @iorDi. Now the result follows as [D(o)] = [D(0")] in Pic(X)
and {D; : i € I,} is a basis of Pic(X).

For part write I, = {41,...,%,}. We construct by induction o1, ..., 0, such
that for each I € {1,...,7}, (41,74, )s---, (01, 7i,) € Loy, Iy, = I, and a0, = i
for all 4 € {1,...,s}. If (i1,Ji,) € Iy, let 01 = 0. Otherwise, (i1,5;,) € J, and
by [Sal98, Lemma 8.9] there is 01 € Ypax such that J,, N T = Jo ~ {(41,74,) }-
Since i1 € I,, by part we have I,, = I, and o; 0, = a;, for all i € {1,...,s}.
Assume that we have constructed o;—; for given I < r. If (i1, 5;,) € Zs,_,, let
o1 = oj—1. Otherwise, (i1,7;,) € Js,_, and by [Sal98, Lemma 8.9] there is 07 € Ypax
such that J,, N To_, = Ty ~ {(i1,J3,)}- Since iy € I,,_,, by part we
have Iy, = I5,_, = I, and a;4, = @i0_, = ;0 for all 4 € {1,...,s}. Since
(il’jil)’ ) (il_l’jilfl) € 1o, and Jp, = (\70171 N ‘-701) U {(il’jilaal—l)}’ where
Jiy.or_, 1s the index defined in part we conclude that (¢1,7;,), .-, (i1,74) € Lo, -
Take ¢/ = o,. The uniqueness of o’ follows from part as ¢’ is completely
determined by Z,-.
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Part|(v)|is a direct consequence of part

For part let j € {1,...,n;} such that (i,5) € J. By minimality of 7, there
exists o € Ypax such that TNZ, = {(i,5)}. Ifn; > 1,let 7/ € {1,...,n;}~{j}. By
[Sal98, Lemma 8.9] there is ¢/ € Ypax such that J,r N T, = Jo ~ {(¢,7)}. Hence,
T = (Zo ~ {3, 7)) U{(i, )} Since T N (Z, ~ {(¢,7)}) =0 and T N Ly # 0, we
conclude that (i,j') € J. O

2.2. Heights. Let L be a semiample torus invariant Q-divisor on X. Let Hj be
the height on X defined by L as in [PS24, §6.3]. For o € X,ax, write L(o) =
Doim1 2y @ieDig and @ o = 300 @i for all i € {1,...,s}. Let Qg be the
set of places of K.

Lemma 2.2. For every v € Qg and every x € % (K), we have
S

sup |1'L(U)|l/ =

sup H sup |z ;|00
0E S max 0E€Xmax

i=1 1<j<n;
Proof. Fix v € Qg and x € #(K). By Lemma [21[(ii)| we have

sup |z"7), = sup ] lwii. 100
0€¥max 0E€¥ max iel,
For every i € {1,...,s}, let j; € {1,...,n;} such that |z; [, = sup;< <y, [Tijlv-
Let 0 € Yhax. By Lemmathere is 0/ € Ymax such that I,y = 1, (4,7;) € Lo
for all i € I, and a; o = o, for all i € {1,...,s}. Then

e’ )l H |$wz|l/w, = H sup |z;,40p"7 = H sup - |zi,;[,"7 i

icl, icl, 1<5<n; 1<]<n1

Thus Hr(x) = [1,cq, SWPses,n L1 SUP1<j<p, |27 for all x € Z/(K).

2.3. Coprimality conditions. We now rewrite the coprimality condition (2.1J) in
terms of the notation introduced in this paper.

Lemma 2.3. For all x € @(ij er c[Pisl,

D, D,] D;
E x"oc” E Hz“,.. PR [

0ESmax 0E€Xmax €1

Proof. For 0 € Ynax, let Xo = {[[;cr. iy, 1 di €{1,...,ni} Vi€ {1,...,s}}. The
inclusion C is clear as xP- € X, and ¢~ [P-] = Hiel,, ¢ Pi for all 0 € Lax. For the

converse inclusion, fix 0 € X and z € X,. For every i € I,, let j; € {1,...,n;}
such that = = [[,c; @i j,. By Lemma2ZI[iv)] there is 0’ € Yax such that Ios = I,
and (i, j;) € Z,» for i € I, . Then xP+' = z. O

2.4. Mo6bius function. Let Zg be the set of nonzero ideals of Og. Let x : Zg® —
{0,1} be the characteristic function of the subset

{bGIKs: Z Hbi:OK}- (2.2)

0E€EXmax €1

For every 0 € Zx®, let xo : Zx® — {0, 1} be the characteristic function of the subset
{b €Ik’ :b; C0o; Vi € {1,,8}}
Asin [Pey95l Lemme 8.5.1] there exists a unique multiplicative function p : Zx® — Z

such that
xX=Y_ u@®x-
V€IS
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Note that if X = Pg, the function p defined above coincides with the classical
Moébius function.
Remark 2.4. Let p € Tk be a prime ideal. The function p is defined recursively by
the formula p(b) = x(b) Ebca 1(0) for every b € Zx®, and satisfies the following
properties.
(i) p(1)=x(1)=1.
(ii) If e; > 2 for some i € {1,.. s} then p(p®, ...,peS) = 0, as in that case
X(per, ..., p%) = X(pell,...,p s) for e} = e; — 1 and €] = ¢; for all | # i.
(iii) By induction one shows that u(pc,...,p%) = 0 whenever (e,...,e5) # 0
and there is 0 € Y.« such that e; = 0 for all ¢ € I, as x(p°t, ... ,pSS) =1
if and only if there is 0 € ¥, such that e; = 0 for all 4 € I,,.
(iv) Let
fr=min{tJ: JC{1,...,8},J NI, #0 Y0 € Spax} -

By property if p(pe,...,p%) # 0, then there are at least f indices i
with e; = 1. Let J C {1,..., s} be smallest with respect to inclusion and
such that J NI, # @ for all ¢ € Ypax. Let J' = J \ {j} for some j € J.
Let e; =1for i€ Jand e; =0 fori ¢ J. Let e, = e; for i # j ande;-:().

Then x(pet,...,p%) =0 and x(pell, e ,pe;) =1 by minimality of J. Thus
w(pet, ..., p¢) = —1+# 0. Hence,

f= min{Zei s(ery ... es) #F 0, u(p®, ... p%) # O} . (2.3)
i=1
For B = (B1,...,Bs) € Ry, let

fﬁ = mln{z/g’bez : (617"'765) 7&07M(p61,”.7p65) #0}

i=1
Lemma 2.5. (i) The series
ooz IT;_ M(@)P

converges absolutely if fg > 1.
(ii) If f5 > 1 and By, ..., By € Lo, then Yoz, (sitosm > 0.
Proof. For part We follow the proof of [Sal98, Lemma 11.15] and [Piel6, Propo-
sition 4]. For p € Ix prime ideal, let S(p) = >_, . ez, W. As in
50003 €s —1 i€i
[Sal98| Lemma 11.15] and [Piel6, Proposition 4]
: k@)
1
oY e - Ilse)
ISy =
f 1 ‘J’I(Di)gb

By Remark [Z4)(ii)| the sum S(p) is finite. By definition of fg, if p(p®*,...,p%) #0
and (e1,...,es) # 0, then fz < Y7, B;e;. Thus

1 1
110 (5).
) N(p)7e = \N(p)
where @ : R>g — R is a monotone increasing function. Since p(p°,...,p%) is

independent of the choice of p, the function @ is independent of the choice of p.

Thus
1 1 1
> s () < - @) ¥ o

n€Zxo
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In part the series is absolutely convergent by part hence it suffices to
show that each factor of its Euler product 1_[p Sy is positive. For a prime ideal
p € Ik, let O, be the ring of integers of the completion K, of K at the valuation
vp defined by p. Endow K, with the Haar measure normalized such that O, has
volume 1. Then fpiop dy = N(p)~7 for all j > 0 by [CLNSI8, §1.1.13] and [Neu99,
Proposition I1.4.3]. We denote by x the characteristic function of (Z.2]) where ideals
of Ok are replaced by ideals of Op. By Remark 2.4{ii)]

Sp= Y pp,..pe) [[9p)
=1

ec{0,1}¢
s Bi
= Z M(pela"'apes)]:[n/ dyi,j
ec{0,1}* i=1j=1"P"
s Bi
= /25:1 Xy sy wss)) T TT dwis
Op i=1j=1
s Bi 1 Zf:l Bi
> ay=(1-55) >0
Jogyzes L= (-
as x is a nonnegative function with x(O,,...,0,) = L. O

Definition 2.6. A function A : Z2; — R is compatible with Md&bius inversion on
X if there are f1,. .., 3s € R® such that A(d) <[] d; % with f,..5) > 1.

=1 "

Remark 2.7. (i) The inequality fz > 1 holds whenever fy,..., 8, > 1.
(i) If By =+ = B, = 1, then fz = f by @Z3).
(iii) (Case f1 = ni,...,8s = ns) As in [Sal98] Lemma 11.15(d)], let f be the
smallest positive integer such that there are f rays of the fan ¥ that are
not contained in a maximal cone. Then f > 2, as X is proper. Moreover,

f=min{{t7: T CL,TNL, # Do € Xmax},
and Remark 2.4] combined with Lemma gives

fmin{Zni:JQ{1,...,5},Jﬁ]0%@VJGEmaX,HJf}

ieJ
= min{Zniei s(e1y..a,es) E 0, u(p, ..., p%) # 0}.
i=1

3. SUBVARIETIES

Here we want to count rational points or Campana points of bounded height in
subvarieties of toric varieties.

From now on K = Q. Let X be a complete smooth split toric variety as in
Section Assume that rkPic(X) > 2, that is X is not a projective space. Let
L be a semiample toric invariant Q-divisor on X that satisfies [PS24, Assumption
6.3]. The latter holds, for example, if L is ample.

Let g1,...,9: € R be Pic(X)-homogeneous elements. Let V' C X be the
schematic intersection of the ¢ hypersurfaces defined by ¢1,...,9:. Let T C X
be the torus. Without loss of generality, we can assume that VNT # (. Otherwise,
V' is contained in a complete smooth split toric subvariety X’ of X, and we can
replace X by X'. Fix m;; € Z>; for each (i,j) € Z. Let m = (m; ;)¢ j)ez, and

D = > iy 27;1 (1 - #]) P;.;. Let ¥ be the Zariski closure of V' in 2. Let
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(¥, Dm|v) (Z) be the set of Campana Z-points on the Campana orbifold (¥, Zm|v)
as in [PSTVA2I] Definition 3.4], where if V is singular, the intersection multiplic-
ity of a point x : SpecOx — ¥ with %;|y at a place v of K is defined as the
colength of the ideal of the fiber product of Spec Ok Xy Z;|y after base change to
the completion of Ok at v.

Let Ny (B) be the number of points in (¥, Zml|v) (Z) N T(Q) of height Hy, at
most B. If m; ; =1 for all (4, ) € Z, then Ny (B) is the set of Q-rational points on
V' NT of height H;, at most B.

Fori € {1,...,s} and x € #(Z), let y; = sup; <<y, |7ij|- For 0 € Ypay, write
L(o) = 3271 25ty @ijoDiyj and a0 = 3700 @i j o for alli € {1,...,s}. Then
by [PS24, Proposition 6.10] and Lemma [2.2]

Hp(x)= sup Yo

( 0EX max zl;[l

By construction, (¥, Zml|v) (Z) = (2", Dm) (Z) N V(Q). We use the torsor pa-
rameterization of (2, Zm) (Z) from [PS24] §6.4]. For B > 0 and d € (Zx0)*®, let
A(B,d) be the set of points x = (7 j)1<i<s,1<j<n: € (Zzo)* such that

H(x) < B, (3.1)
d; |$i,j ViE{1,...,8},Vj€{1,...,7’bi}, (32)
T4 is miyj—full Vi € {1, ey S},Vj S {1, ey ni}, (33)
g=--=g=0. (3.4)
We observe that A(B,d) is a finite set by [PS24] Lemma 6.11]. Then
1
Ne(B) =5 S pdAB,d) (3.5)
dG(Z>0)S
by Lemma 23] and the definition of p in Section [Z41
Write
ﬁA(Bvd): Z fd(ylv"'7y5>a
Y1, Ys€L>0
[, v; "7 <B, Vo€ max
where
fd(yla oo ays) = ﬂ{X € (Z#O)Z : m; m; (M)ayl = L Sup |$i,j| Vi € {15 RS S}}
SIS
Let
Fa(Bi,...,B,) = > falyr, ... us).

1<y;<B;,1<i<s

Lemma 3.1. Assume that

Fa(By,...,Bs) = Cyma H B+ 0O (CE,d (1121125 Bi) HBZW> (3.6)
== i=1

i=1

with Cp.a,CEd, @1, - .., Ws, € > 0 such that Cypr,a, Cg.a are compatible with Mébius
inversion on X as functions of the variables d.
Let a be the mazimal value of Zle wiu; on the polytope P C R?® defined by

S
ZaiﬁuiglVUEEmax, u; >0Vie{l,..., s}
i=1

Let F' be the face of P where Zle wiu; = a. Let k be the dimension of F'.
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If F is not contained in a coordinate hyperplane of R®, then
Ny (B) = ¢B*(log B)* + O(B"(log B)*~*(log log B)*),
where k is the dimension of F, and

c=(s—1=k)lep2™" > p(d)Cara. (3.7)
dezs,

Here, cp = limg_yo 6Ft1—° meas;_1(Hs N'P), where Hs C R® is the hyper-
plane defined by >;_, wu; = a—3§, and meas,_y is the (s—1)-dimensional
measure on Hs given by [ [, << ;5(@widu;) for any choice ofi€{l,...,s}.
If L is ample, then

a = inf {t eR:t[L] - [Z wiDi] is eﬁective} ,
i=1

and k+ 1 is the codimension of the minimal face of the effective cone of X
containing a[L] — [>°7_; w;D;].

If [L) =7, w;D; is ample, then the face F is not contained in a coordi-
nate hyperplane, a = 1 and k = rk Pic(X) — 1.

(i) Let t; = wyu; for all i € {1,...,s}. By the assumptions on L, the
polytope P is bounded and nondegenerate by [PS24, Remark 6.2]. Applying
[PS24, Theorem 1.1] to $A(B,d) gives

Nv(B) = cB"(log B)* + O | B*(log B)* ' (loglog B)* Y 1(d)Cg.a

d€(Z>0)®

The sums Zde(z>0)s in the leading constant ¢ and in the error term con-
verge absolutely by Lemma 25 as Cps.q, Cg 4 are compatible with M6bius
inversion on X.

Let

R” — R® — RT

be the sequence of injective linear maps dual to

d: @ D7 — @DiZ — Pic(X).
(i,§)€T i=1
Here,

R® < RZ, Zuiei — Zzuiei,ja
i=1 i=1 j=1
where {ei,...,es} denotes the dual basis to {D1,...,Ds}, and {e;; :
(i,7) € I} denotes the dual basis to {D;; : (i,5) € Z}. Let P be the
polytope defined by

Z QG oW 5 <1 Vo € Xnax, Ui, j >0 V(l,j) el
(i,5)€T

Then PAR® = Pand 3, ;o7 Zui

P Zf:l (27;1 fz) u;. By [PS24]

Lemma 6.7], the face F' of P where the maximal value of the function

Z %um (38)
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is attained is contained in P N R", and hence also in P. Then a is the
maximal value of the function (88) on P. The dual linear programming
problem is given by minimizing Zaezmx As on the polytope given by
Z ai,j,a)\a Z E V(’L,j) € Ia )\O' Z Oa Vo € Ema\x-
Uz
0EXmax
The arguments in [PS24, §6.5.1] show that @ is the smallest real number

such that a[L] — 377, 3770, 2D is effective. As in [PS24, Proposition

i

6.13], the smallest face of Eff(X) that contains a[L] —_._; w;D; is dual to
the cone generated by F' in R", and the latter is defined by a Z;l Qo Wi —
Sy wiu; = 0 for any o0 € Xpax such that F C {>°7_ | a5 0u;; = 1}.
Thus the minimal face of Eff(X) containing a[L] — [>;_, @;D;] has codi-
mension k + 1. B

(iii) We argue as in the proof of [PS24 Lemma 6.7(ii)]. Let H C R® be
the inclusion dual to the surjection @;_; RD; — Pic(X) ®z R. Then
Y ieui =y wu,; for allu € H and all 0 € ¥, Thus PN H is
the set of elements u of H such that Ug,...,us > 0 and Zle wiu; < 1.
Since F C H by [PS24, Lemma 6.7(i)], we have F = HN{>}_, wiu; = 1}.
As in in the proof of [PS24) Lemma 6.7(ii)] we conclude that F is not
contained in a coordinate hyperplane of R®.

O

4. RATIONAL POINTS ON LINEAR COMPLETE INTERSECTIONS

Proof of Theorem[I1l For 1 < i < sand 1 <[ < t;, let g;; € R be a linear
polynomial defining H; ;. Then

n;
gil = Zci,j,lwi,j, Ledl,... 6},
j=1

with ¢; j; € Z, and g;1,. .., ¢i+, are linearly independent for all ¢ € {1,...,s}. Let
m; ; =1 for all (¢,7) € Z. Then

Fa(By,...,Bs) = || Fia.(B),
=1

where for ¢ € {1,...,s},d € Z~o and B > 0,
Fia(B) = #{(zi1,. .-, Tin,) € (Zzo)™ © sup |z < B,
1<j<n;
d | T g Vj S {17"'ani}a gi1 = "=4git; = 0}
For i € {1,...,s}, let W; C R™ be the linear space defined by g;1 = --- =
git; = 0, and let A; C W; be restriction of the standard lattice Z™* C R™ to W;.
Then by [BGO06l Lemma 11.10.15] for every T' > 1,
gz N [T, 7" N W;) = t(A; 0 (T([-1,1]" N W;))
n;—t; J€aSn,; —¢; ([_1’ 1]7” N WZ)
det Az

where meas,,, ¢, is the (n; — t;)-dimensional measure induced by the Lebesgue
measure on R™. Let

=T

+ o) (T’M—ti—l) )

measy, ¢, ([—1, 1]™ N W;)
C; =
det Ai
Then applying this estimate with 7' = B/d gives

F;4(B) = Ci(B/d)ni—ti + O((B/d)m_ti_l)
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whenever d < B. If d > B, then F; 4(B) = 0 and the same estimate holds. Hence,
for § > 0,

s s —d
Fq(By,...,Bs) = CM,dHB?i_ti +0 <C’E,d (HBZ-”_“> (1211.12831') ) ;

i=1 i=1
where
S Cz
CM’d = H m;—t; 0 (41)
i=1 di
Cpa=[[d "% (4.2)
i=1

We show that for § > 0 sufficiently small, the assumptions of Lemma B.1] are
satisfied. Since n;—t; > 2 foralli € {1,...,s} such that ¢; # 0,if f,, —¢, . n,—t,) <
2, by Remark Z4(iv)| there is i € {1,...,s} such that t; = 0, i€l foral o € Zhax,
and n; = 1. Then p; ; is not contained in any maximal cone of ¥, contradicting
the fact that X is proper. Thus f(,, ¢, .. n,—¢,) = 2. By definition and by Remark
m‘{] f(nl—tl—é,...,ns—ts—é) > f(nl—tl,...,ns—ts) — 0.

Since V' is a smooth complete intersection of smooth divisors, by adjunction
[MRI92, Proposition 16.4] we have Ky = Kx + Y_i_, >;i,[H,,]. Since

S S s ti
Z(ni —t;)D; = —[Kx] — ZtiDi = —[Kx] - ZZ[HH],
i=1 i=1 i=1 =1
Lemma [37] gives

Ny (B) = ¢B(log B)"~' + O(B(log B)"~*(log log B)*),

where b = rkPic(X), and c is defined in B7) with k¥ = b — 1, Cp.a given by
(@I) and w; = n; — t; for ¢ € {1,...,s}. The restriction Pic(X) — Pic(V) is an

isomorphism as ¢; < n; —2 for all i € {1,...,s}. The leading constant c is positive
by Lemma 2.5(ii)| O

5. BIHOMOGENEOUS HYPERSURFACES

Proof of Theorem[L.2. In the setting of Theorem [[.2] the hypersurfaces Hy, ..., H;

are defined by bihomogeneous polynomials g1, ..., g: of degree (e1,es) in the two
sets of variables {z1,; : 1 < j <mnq} and {z2,:1<j <mng}. Let m;; =1 for all
(i,j) € I.

We will apply [Sch16l Theorem 4.4] with R = ¢, F; = ¢;, $; = [-1,1]™, P, =

B;/d;, d; = e;. In order to apply [Schl6l Theorem 4.4] we need to restrict the
points to an open set. Let U C A™*"2 be the open set in [Schi16l, Theorem 4.4].
Since the complement of U is the zero set of homogeneous polynomials by [Sch16,
Theorems 4.1, 4.2], the set W :=n({x €Y : (Z1,1,...,Z1,n,,T2,1,..-,%2,n,) € U})
is an open subset of X. Then
1 w
Nvw(B) = > w(d)A"(B.d),

s
de(Z>o)®

with
AY(B,d) = > £ s us)

Y1,--Ys€L>0
[T;=1 v, "7 <B, Vo€ max
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and

fc‘ijv(yla v ays) = ﬁ{X S (Z?EO)I : (xlyla e Tlmg s L2150 - 7':02,712) S U(Q>5

(m)a(m%([ﬂ)vyi* sup |zi,j|Vi€{17'-'as}}'

1<j<n;

Let
F(:‘l/V(Bla"'aBs): Z fc‘ijv(yla---ays)‘
1<y;<B;,1<i<s
Then
FY(Bi,...,Bs) = ﬁ(x/,dz(BhBﬂ HFi,di(Bi),
i=3
where

ﬁxf,dz = ﬂ{(ml,l, ey TIng T2 - - - ,,1'27”2) e (Zio)nl-‘rnz ) U(@) .
sup |yij| < Bi/d; Vi€ {1,2}, g1 = -+ =g, = 0}.

1<j<n;
and for d € Z~g and B > 0,
Fia(B) =8{(zi1, - Tin,) € (Zpo)™ © sup |z 5| < B,
1<j<n;

d | Tij Vj e {1, . ..,ni}}.
If d < B;, then
Fia(B) = 2"(B/d)" + O((B/d)"~°)

with 0 < 6 < 1. If d > B, then F; 4(B) = 0, and the same estimate holds.
To compute le/,dz (Bi1, Bs), write x; ; = d;y; ; for all (¢,5) € Z. Then

ﬁg/de (Bl7 BQ) = u{(yl,lﬂ e Ying  Y2,15 -, y2,n2> S (Z;£O>nl+n2 N U(Q) :
sup |y | < Bi/di Vi€ {1,2}, g1 =--- = g: = 0},
1<j<n;
as the complement of U is the zero set of homogeneous polynomials by [Schl6]

Theorems 4.1, 4.2]. Let V;* C A" *"2 he the locus where the matrix (%) L<1<t
2,3 =t=

1<j<n;

does not have full rank. If n; +ng > dimV* +dim V5* + 3 - 2¢1te20 0513 then by

[Sch16, Theorem 4.4] there is § > 0 such that

2 -5 2
Fy 4,(B1,Bo) = C T (Bi/d)™ ™" 4 O ((E}%Bz-/@ H(Bz-/dn"”ei)

=1 i=1

2 2 -5 2
_ /g \ni—te; —(n;—te;)+6 : ) n;—te;
_CH(BZ/dz) +O<<1:[1di ) (1111%11231) 1:[131- )

with C' € R>g, and C' > 0 whenever V' has nonsingular Q,-points for all places v
of Q. Thus

FcIi/V(Bla B 'aBS) = CJVI,dB?litelBgZit@ HBZ%
=3

-5 s
: nl—te1 ng—t(ig Uz
+0 (Cﬂd (1m;2 Bi) Bt gy 115 ) ,

<iss s
=
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where
Cara = Cdy "0y et T, (5.1)
=3
Cp,a = dy "M ie0H0 gy et O TT grmetd (5.2)
=3

Recall that n; — te; > 2 for i € {1,2}. For § > 0 sufficiently small, if

fnl—te1—6,712—teg—é,ng—(?,...,ns—é S 1,

then by Remarkthere isi€{3,...,s} such that i € I, for all 0 € ¥ax and
n; = 1. Then the ray p; ; is contained in no maximal cone of ¥, contradicting the
fact that X is proper.

Since V is a smooth complete intersection, the adjunction formula [MRI192]
Proposition 16.4] gives Ky = Kx + Hy + -+ H;. Let w; = n; —te; for i € {1,2},
and w; =n, for i € {3,...,s}. Since

ZwiDi = —[Kx] - t(61D1 +€2D2) = —[KX] — [Hl + ... +Ht];
i=1

Lemma B0 applied to FY (B, ..., Bs) and Ny,w(B) gives
Ny.w (B) = cB(log B)*~! 4+ O(B*(log B)*~%(loglog B)*)

for B > 0, where b = rkPic(X), and ¢ is defined in 1) with k = b — 1, Cpra
given by (BI). Moreover, the restriction Pic(X) — Pic(V) is an isomorphism,
as t < min{ni,na} — 2. By Lemma the leading constant ¢ is positive if
V(Qy) # 0 for all places v of Q as C is positive under the same conditions by
[Sch16, Theorems 4.3 and 4.4]. O

6. CAMPANA POINTS ON CERTAIN DIAGONAL COMPLETE INTERSECTIONS

Proof of Theorem [L3 In the setting of Theorem [[3] the hypersurfaces Hy,. .., H;
are defined by homogeneous diagonal polynomials g1, ..., g; € R with deg g; = ¢;D;
in Pic(X) for all 4 € {1,...,t}. Then

ni
9i =Y cijas,
j=1
with ¢; ; € Zzo, and
S
Fd(Bla ce Bs) = H Fi7di(Bi)a
i=1

where for ¢ < t,

E,d(B) = u{(l'i’l, .. -;zi,ni) S (Z#O)nl . d | SCZ'J', SCZ'J' iS miﬁj—full Vj S {1, .. .,TLZ'},

sup |$i,j| S Ba gi = 0})
1<j<n;

and for i > t,

Fia(B) = #{(zi1, - Tin,) € (Zpo)™ : sup |z | < B, d|

1<j<n;
55 is miﬁj—full Vj S {1,,7’),1}} (61)
For i < ¢, we estimate F; 4(B) via the following lemma.

Lemma 6.1. Let n,e,m1,...,my € Zsg. Letci,...,cn € Zyo. Let d be a square-
free positive integer. Assume thatn > 2 and 2 <mqj < --- < m,.
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(1) Ife=1, assumethatzn —>3 and YT —L > 1,

j= 1 emj(em;+1) =
(2) If e > 2 assume that 377, o >3 > 250(em 5 > 1, where

1
so(m) = min {le, §m(m - 1)+ |[vV2m+ QJ} , m € Z>o.
For B > 0, let
Fa(B) =t{(z1,...,2n) € (Z20)" : d| xj, xj is mj-full Vj € {1,...,n},

sup |z;] < B, chx = 0}.

1<j<n

Jj=1
Then there is n > 0 such that
Fy(B) = ceaB" +O(d~'""B""),
where I' = Z —e and ce q 1s defined in (68) and satisfies 0 < ceq < d7177.

Proof. For every j € {1,...,n} and x; € Zyo that is mj -full, there exist unique
Ujy Vi1, 7'Uj,mj71 S Z>0 such that

mj—1

ol = T of ™

r=1
i) =1, ged(jmvjm)=1 Yror' € {l,...,m; —1},r #7r.
For every choice of u; and v, as above, if d | x; with d € Z>( squarefree, then
there exist unique sj,%1,...,%jm;—1 € Z>o such that

mjfl

d=s; H tir, M2(s)) =p(t;) =1Vre{l,...;m; —1}

ged(s;,vjr) = ng(SJa tir) = ged(typ,tjr) = 1¥r,r" € {1,...om; —1},r £ 7!
sj luj, tjr|vie Vre{l,...;mj — 1}.

Write u; = s;4; and v, = t;,0;, forallr € {1,...,m;_1}. Write s = (s1,..., Sn),
t = (tjr)1<j<ni<r<m;—1. For j € {1,...,n}, write

mj—1 mj—1 mj—1

o; =5; H L, T = m] H th—H wj = H ﬁff—‘_T.
r=1 r=1
o (my—

Let Tq(B) be the set of pairs (s,t) € Z%, x Zj
poj)=1, d=oj, 7,<B Vje{l,..., s}

that satisfy

Note that the first two conditions imply

§T4(B) < H m? P < d, (6.2)
j=1
where w(d) is the number of distinct prime divisors of d. Let Vs +(B) be the set of
(U]r)1§]§n,1§r§m]71 € ZZ] 1(my=1) such that

MQ(tJTv”)fl ged(s;,05,) =1Vje{l,...,n},re{l,...,m; — 1},
ged ()0, ”/vﬂ):lwG{l,...,n},r,r e{l,....m; —1},r # 1,
Tjw; < BVje{l,...,n}.

Let Ta(00) = Upso Ta(B) and Vs ¢(00) = Upo Vse(B).
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Then
FyB) = %EE{il}" Z(s,t)en(B) Zoevs,t(B) iwfcﬁ(Be) %f € %S odd, (6.3)
2" Y (s.0)eTa(B) Zvevs,t(B) M. ~(B°) if e is even,
where ¢ = (¢1,...,¢n), € = (€1,...,6n), €€ = (€11, .. ncn), ¥ = (V1s-++,Vn)
with
;= em] H te(mﬁr) e(mﬂ”) Vie{l,...,n}
and
Mecn(BE) = £3 (ti1,. .., 0in) € Z% : Joax v ™ < B¢ Zgjcm " =0

j=1

An estimate for Mec~(B°) is proven in [BY21, Theorem 2.7] in the case where

Py - m > 1. The subsequent paper [BBKT23, Theorem 5.3] extends the

range of apphcabmty of [BY21, Theorem 2.7] to the case where >, -1 > 3,

7j=1 em;
n
Zj:l 230(emj) > 1.

Let
1 : —
0. = {7mn(mn+1) ife=1,
e n 1 .
2j=1 Zagtemy — 1 Hfe22

For 0 < < (2(n_1)+5)elmn(emn+1) and € > 0, [BY21], Theorem 2.7] and [BBK*23|
Theorem 5.3] give

GecrJec
Y Mey= Y Y Smreg
(s,£)ETa(B) VE€Vs +(B) (s,t)€Tu(B) ¥E€Vs +(B) H;}ﬂ Wjemj

+O(B"(Fi+ F, + F3)), (6.4)

where
= 1 = g . em;
Gecy = Z — Z H Z exp(2miag jc;7v,; 7™ /q),
q=1 q a(mod q) j=1r=1
ged(a,q)=1
oo n 1
Jec = / (/ eXp(27Ti)\€jCJ£em])d€) d\
—00 =1 0
Fy = Be(@n-n+9i-)-T ™ ) H B Z N o
(s,6)E€Ta(B) VEVs £ (B) \J=1 7 5
Fy = B—e(5 Z Z qu I'/e+e H ng Yirq o ,
(s,t)€Tq(B) vEVs ¢ (B) g=1
—edOc+€ n _m-+1 . .
Fy = B - Z(s t)€Ta(B) Z\‘zevst(B) ijl ;5 N ife=1,
B~ edO.+e Z Z H “emy +250(em_) fe>9
(s,6)€Ta(B) 2uveVso(B) L1j=17; ez 2.
Let

6Ec, jEc : :
Zee{:l:l}n Z(syt)er(oo) Z{,eys,t(oo) —eeree if e is odd,

| 7‘emj
Ce,d = n SeTe ! . . (6-5)
2 Z(s,t)er(oo) ZGGVS,t(oo) —lexy-e if e is even.

em

H;:1 5 ’
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For T' > 0, let
1
n ,q em,j
filg) = H( j ) ;
(s,t)€Ta(o0) j=1
o [ ged(ws,q) |
CUREP H( ; ) ,
,1(00) j=1
and

d(ws,q)\ ™
B0 T.s.t) = 3 H<gc Jq> |

VEVs 1 (00)\Ve,t (T') j=1
Note that for 377 W > 1 we have
[Tec| < 1.

Similarly as in [BY21) (2.8), (2.9), (2.12)], the difference between c, 4B! and the
main term obtained combining (6.3) and (6.4]) is bounded by

BT Z Z qu 5=t oy HVJ i ged(v;,q ); (6.6)

(s,t)€Ta(o0) VEVs,t(00)\ Vs, (B) ¢=1

<BFZq—F/e+6 Z H <gcd J,q)) emj £2(0,B.a.t), .

(s,£)€Ta(o0) =1 7

and ce,q < ZZ’L g f1(g) f2(q)-
By [BY21l (3.10)] and the arguments used to prove [BY21], (3.9)], we have

f2(q) < ¢, (6.8)

and
mi— ~e(m;+r _—
(¥ ( ) q) Pr

" i, d
fQ(anaSat) < Z Z H M U gj;nl—i-r)ﬁnZ

i0=1 V;,r, 1<i<n, 1<r<m;—1i=1 r=1 zr

m;—1 TYI+T
T2 ;. >7i if i=io

n m;—1 (’U ) Cd( e(mz"’_T) )R
¢ ir)8
< q Z Z H ~(ml+r)/m1
i=1 ;,, 1<r<m;—1 r=1 z T

m;—1 ~m;+r
I e > L

r=1 Yir

Our next goal is to provide an upper bound for sums of the type occurring in
this estimate for f2(q,T,s,t).

Lemma 6.2. Let m € N>o, e € N and A > 0 a real parameter. Then, for every

O<e< we have

1
m(m+1)
e(m+r) 1
(vy) ged(v ,q)em 1 m—1
Z II 'u - g (m-‘rrr)/m q) Lm,e A m'(erl)-"_ﬁqem(m'+1)+€-

v-€N, 1<r<m-—1 r=1
7 0P >4

Proof. We first consider the sum

1= Z H (m+7‘)/m

vr€N, 1<r<m-—1 r=1 Ur

IS op >4
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for A > 1. A dyadic decomposition for each of the variables v,, 1 <r < m — 1,
leads us to the upper bound

Sl << Z 2_%ll_~~~_%lanl

l17~~~1l7n71 EN
2(m+1)11+,“+(2m—1)1m71 >A

Note that for each k € %N we have

1 -1
0, €Nt =l 4 Sy = k) < KT
m m
We deduce that

Sl <m Z k/,m7227k
ke =N
r(k)>0
where r(k) is the number of (I1,...,ln—1) € N™~! such that both

lll 4+ .+ m—illmil —k and 2(m+1)l1+m+(2m71)lm,1 > A
m m

hold. Observe that if r(k) > 0, then there exists (I1,...,ln—1) € N™~! with
%ll+...+%lm_1:kand

mm+Dk=m+1)(L+...4+(m—1)ln-1)

2m —1
m . (m —1)lp—1 >log A/log 2,

m+ 2
2(m+1)l1+T2lg+...+

ie.

S) <m > K207k < AT R T
ke XN
m(m+1)k>log A/ log 2
Note that the upper bound for S; also holds for A <1 and € < m
We now turn to the sum in the statement of the lemma. If v, is a square-free

natural number and d, = gcd(vﬁ(erT), q), then we can write

dp = dprdy. . AT 2 (dyg) =1, V1 < G < e(mAr),  ged(dy,dpg) =1, Vi # §'.

r.e(m+r)’

Writing v, = vy [} emtn) g, 5 and d. = [[<""") d,.; we find that

Jj=1

e(m—i—r)

() ged(v Lq)e
Sp 1= Z H (m+7‘)/m

v-€N, 1<r<m-—1 r=1
[t omtr>a

m—1

d%
< Z Z H d/ / (A1 1 Y(mtr)/m

dr,ldﬁz...d?:;;?r)\q, 1<r<m—1 v.€N, 1<r<m-—1 7=1
' 15 (dpv)™ > A

m—1 d;Lm m—1 1
< Z /"”T“ Z H (’U/ )(m-i—r)/m
drv1d32...di(:é;1)ﬂ|q, 1<r<m-—1 r=1 \dr vl€N, 1<r<m—1 r=1 T
o 175 (drop) ™ 7> A
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By using the upper bound for S; we find that for € > 0 sufficiently small

m—1 dJ" L m—1 o=y
8’2 <<E,m Z H (%) A7 m(m+1) +e (H (d;)’mri”l“)

+ 1 =1
drad2 5 df ) g, 1<r<m—1 T u r

m—
Len AT 3 H (a7 ()~
m—1

dryd? . dD) g 1<r<m—1 T

re(m4r)

1 1 mdr

<em A7 mOnFD) te Z H d;m e(m+7‘)(m+1)
drad? o dl T g, 1<r<m—1 "=

m
1 1 1 m—1
Legn A”mEFD Ty [ 5™ <em A”7mdD gm0
drlg, 1<r<m—1 r=1

Lemma [6.2] shows that we can bound fa2(q,T,s,t) by

7Tn'(77]i'+1)+6

73 % m;—1

f2(q,T,s,t) <<E < > gFmimiTo e,
Ti

=1

In the following we write A; = #ﬁ;i_l) Then (G.7)) is bounded by

L 1
- ged(7¢,q) \ ™ [/ B\ mitmian T
— BFZZ /et Aite Z H < J ) <_>
=1 a=l (s,£)€Ta(o0) j=1 75 Ti

1

< BFZB reeET e Z Zq—F/e+A ihe I CEny) H (ng b aQ)> o .

(s,t)€Ta(o0) 4=

As we will encounter similar expressions in our further analysis, we introduce for
E,D > 0 and d squarefree the following sum

Su(D,B) :=d" ) iqfl‘/eJrDJre ﬂ <w> i

(s,t)ETa(o0) g=1 j=1 J

We write ¢ = g1g2 with ged(g1,d) = 1 and such that all prime divisors of ¢o
divide d. With this we obtain that

Sa(D,E) < d” Z i g /et Dte i 4TI De 12[ <w> oy |

(s,£)ETq(o0) 1 =1 g2=1 J=1 J
pla2=pld

If we assume —I'/e + D < —1, then the sum over ¢; is absolutely convergent.
For a given vector (s,t) € T4(c0) and a prime p we write 7, for the power of p
which exactly divides 7;. We find that

Sq(D, F) < Z dEH Zpl( I'/etD+e) H <ng Tps D )) o
.77

(s;t)€Ta(o0)  pld \1=0 P

We now split the summation over [ into the term [ = 0, where we use the inequality
7jp = p™, and we bound the rest by a geometric sum for [ > 1 using ged(75 pl) <
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TJaP’

Sa(D,E) <p Z JE+e H (p—n +p—F/e+D+e)
(s,£)€Ta(c0) pld

<p df H (pE—n +p—1"/e+D+E+e)

pld
If -T'/e+ D + E < —1, then we deduce that

S4(D,E) <pd '™ (6.9)
for some n > 0.

Applying equation ([G.9) to S3 with D = A; and E = % we obtain S5 <
BT=1d=1=7_ for some n > 0. Hence,
Fy(B) = ceaB" + O(B"(d™ "B~ "+ I} + F» + F3)).

We use the bound in (6.8) and apply equation ([GJ) with D = EF = 0 to get

Ced <K d717M.
It remains to estimate the error terms Fi, Fb, F3. We rewrite F; as follows:

P = BeSCn—1)+5) ZB S+ Z Z H 7;#]

=1 (s,t)€Ta(B) VE€Vs 1 (B) 1<j<n
J#l

As in [BY21], §3] and [BBK™23| §6], we have

n
— oD 771 +ed(2(n—1)+5) Tmt1
Fy <« B” ma(ma+h) Z HTj j
(s,;t)€Ta(B) 5=1

<d i ™ 1+€B*m+66(2(n71)+5)

)

where the last estimate follows from
> IIn77 < > 1lo
(s,£)€Ta(B) j=1 (s,;t)€Ta(B) j=1
< d > ﬁﬂrﬁl( ) < d i ™5 +1+5

by ([6.2). Combining the arguments for F3 in [BY21] §3] and in [BBK™23, §6] and
the estimate above we have

noo__1_ n omy
< B—e6®e+e Z HTj m;+1 < d Ej:l ﬁil+EB—€5®e+€_
(s,t)€Ta(B) j=1

Since Z] e +1 > 3n > 1 is satisfied for n > 2, we have Fy, F3 < d~17"B~" for

a suitable n > 0. Since

Fy =B~ " ¢" 7 f1(q) f2(q),

q=1

the estimate (6.8) combined with (63) for D = 1 and F = 0 yields Fy < d~!""B~¢,
asI'/e > 2. O

By Lemma [6.1] and [PS24] Lemma 5.6)
Fa(Bi,....B) =]] (CM,iBfi + O(di"i*EBfi*‘;))

i=1
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where
nl_ L — €5 le < t,
w; = 23;1 s T (6.10)
Zj;l —— if 1>t
vi < —lfori <t vy = —2ni if i > ¢, ear,; is the constant ce, 4, defined in (G.5)
if 1 <t, and cpry = 2™ (H;“ 1 Cm s ), where ¢y, ; 4, is the constant defined in
[PS24, (5.11)].
Thus
F4(Bi,...,B,) = chHBwl +0 cEd( min B;) 51‘[3@ ,
=1 =1
where
CM,d = HCM7i' (6.11)
i=1

Lemma 6] and [PS24] (5.14), (5.15)] give Cara, Cra < [[i_, d; 7 with 8; > 1
whenever n; > 2, and 3; > 2 — ¢ otherwise. For € > 0 sufficiently small, §; + 3; > 1
for every 4,5 € {1,...,s}. Thus, if fs, .. 5, < 1, by Remark then there
exists an index i € {1,...,s} such that 1 €1, for all ¢ € Ypax and n; = 1. Then
the ray p; ; is contained in no maximal cone of ¥, contradicting the fact that X is
proper.

Since ¢;; # 0 for all ¢ € {1,...,t}, 7 € {1,...,n;}, the adjunction formula
IMR192, Proposition 16.4] gives Ky = (KX + Hy +---+ Hi)|y. Since

sz z:*KX ZZ 1*m—w z+zez 7 — KX+[ m|X]+[H1++Ht]);

=1 j=1
Lemma [3.7] gives
Ny (B) = ¢B(log B)*™' + O(B(log B)"~*(log log B)*),

where b = rk Pic(X), and ¢ is defined in B.7) with ¥ = b—1, Cas.q given by (6.11)),
and w1, ..., w, given by ([G.I0). Moreover, the restriction Pic(X) — Pic(V) is an

isomorphism as n; > 3 for 1 <14 <t. O
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