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POINTS OF BOUNDED HEIGHT ON CERTAIN SUBVARIETIES

OF TORIC VARIETIES

MARTA PIEROPAN AND DAMARIS SCHINDLER

Abstract. We combine the split torsor method and the hyperbola method
for toric varieties to count rational points and Campana points of bounded
height on certain subvarieties of toric varieties.
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1. Introduction

We combine the split torsor method and the hyperbola method for toric vari-
eties to count rational points and Campana points of bounded height on certain
subvarieties of smooth split proper toric varieties. This line of research has been
initiated by Blomer and Brüdern [BB18] in the setting of diagonal hypersurfaces in
products of projective spaces. Other results in this direction include hypersurfaces
and complete intersections in products of projective spaces [Sch16], improvements
for bihomogeneous hypersurfaces for degree (2, 2) and (1, 2) by Browning and Hu
[BH19] and Hu [Hu20], as well as generalisations to hypersurfaces in certain toric
varieties by Mignot [Mig15, Mig16, Mig18].

The versions of hyperbola method used in all of these articles are rather close
to the original one [BB18] for products of projective spaces. In our recent work
[PS24] we established a very general form of the hyperbola method for split toric
varieties, in which the height condition can also globally be given by the maximum
of several monomials. The goal of this article is to show applications of our new
hyperbola method. We develop a refined framework for the split torsor method on
split smooth proper toric varieties and show that counting results for subvarieties
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2 MARTA PIEROPAN AND DAMARIS SCHINDLER

of projective spaces can be carried over to toric varieties by a direct application
of the hyperbola method [PS24]. With this we can prove new cases of Manin’s
conjecture [FMT89, BM90] on the number of rational points of bounded height on
Fano varieties for certain subvarieties in toric varieties.

The split torsor method provides a parametrisation of rational points on Fano
varieties via Cox rings [Sal98, DP20]. The Cox ring of a smooth proper toric variety
X is a polynomial ring endowed with a grading by the Picard group of the toric
variety [Cox95]. Subvarieties of toric varieties are intersections of hypersurfaces,
which are defined by Pic(X)-homogeneous polynomials in the Cox ring of X . The
subvarieties considered in this paper are defined by homogeneous elements in the
Cox ring of the toric variety such that each polynomial involves only variables of
the same degree. With the split torsor method parametrisation the height is given
by the maximum of a set of monomials and with this in the correct shape to apply
our generalised version of the hyperbola method [PS24]. The hyperbola method
reduces the counting problem to counting functions over boxes of different shapes.
An advantage of our method is that it is already adapted to the shape of height
functions appearing. Also compared to earlier versions of the hyperbola method,
we do not need estimates for lower dimensional boxes and with this our proofs are
relatively short.

We now illustrate our approach on a number of examples. In a similar fashion, it
is possible to apply counting results such as [Bir62, HB96, RM18, RM19, BHB17]
and many others, to subvarieties of toric varieties defined by elements of the Cox
ring each involving only variables of the same degree.

1.1. Results. Let X be a smooth split complete toric Q-variety with open torus
T . Let D1, . . . ,Ds ∈ Pic(X) be the pairwise distinct classes of the torus invariant
prime divisors on X . For i ∈ {1, . . . , s}, let ni = dimQ H0(X,Di). Let HL be the
height associated to a semiample torus invariant divisor L on X as in Section 2.2.

Our first result concerns subvarieties of toric varieties defined by linear forms.

Theorem 1.1. Let V ⊆ X be a complete intersection of hypersurfaces Hi,l with
1 ≤ i ≤ s, 1 ≤ l ≤ ti such that [Hi,l] = Di in Pic(X) for i ∈ {1, . . . , s} with
ti 6= 0. Assume that V ∩ T 6= ∅ and ti ≤ ni − 2 for all i ∈ {1, . . . , s}. Assume that

L = −(KX +
∑s

i=1

∑ti
l=1[Hi,l]) is ample. For B > 0, let NV (B) be the number of

Q-rational points on V ∩ T of height HL at most B. Then

NV (B) = cB(logB)b−1 +O(B(logB)b−2(log logB)s),

where b = rkPic(V ), and c is a positive constant, which is defined by (3.7) with
k = b − 1, CM,d given by (4.1), and ̟i = ni − ti for i ∈ {1, . . . , s}.

We use this result as a toy example to show how to combine the hyperbola
method with the universal torsor method in the context of rather general smooth
split toric varieties. We now move on to results which require deeper understanding
of the underlying Diophantine problems via methods from Fourier analysis.

We start with a result that concerns subvarieties of toric varieties defined by
bihomogeneous polynomials. It is obtained combining the framework developed in
this paper with the hyperbola method [PS24] and preliminary counting results in
boxes of different side lengths from [Sch16].

Theorem 1.2. Let V ⊆ X be a smooth complete intersection of hypersurfaces
H1, . . . , Ht of the same degree e1D1+e2D2 in Pic(X). Assume that V ∩T 6= ∅, that
ni−tei ≥ 2 for i ∈ {1, 2}, and that n1+n2 > dimV ∗

1 +dimV ∗
2 +3·2e1+e2e1e2t

3, where
V ∗
1 , V

∗
2 ⊆ An1+n2 are affine varieties defined in §5. Assume that L = −([KX ] +

[H1+· · ·+Ht]) is ample. Then there is an open subset W ⊆ X such that the number
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NV,W (B) of Q-rational points on V ∩W ∩ T of height HL at most B satisfies

NV,W (B) = cB(logB)b−1 +O(B(logB)b−2(log logB)s)

for B > 0, where b = rkPic(V ), and c is defined in (3.7) with k = b − 1, CM,d

given by (5.1), ̟i = ni − tei for i ∈ {1, 2}, and ̟i = ni for i ∈ {3, . . . , s}. The
constant c is positive if V (Qv) 6= ∅ for all places v of Q.

Theorems 1.1 and 1.2 are compatible with Manin’s conjecture [FMT89], as L|V =
−KV by adjunction. The proofs in Sections 4 and 5 yield an asymptotic formula
even if we drop the ampleness assumption on L.

Theorem 1.2 as well as work of Mignot [Mig16, Mig18] include the case of certain
hypersurfaces in products of projective spaces. However, in comparison to Mignot’s
work we do not require the condition that the effective cone of the toric variety is
simplicial. An example of a split toric variety with non-simplicial effective cone,
where our theorem applies, is the blow-up at a torus-invariant point of Pn1×Pn2×Y
where n1, n2 are sufficiently large and Y is a split del Pezzo surface of degree 6.

Our last result concerns sets of Campana points in the sense of [PSTVA21] for
subvarieties defined by diagonal equations. We introduce the following integral
models. Let X be the Z-toric scheme defined by the fan of X . For i ∈ {1, . . . , s},
let Di,1, . . . ,Di,ni

be the torus invariant prime divisors on X of class Di.

Theorem 1.3. Let V ⊆ X be an intersection of hypersurfaces H1, . . . , Ht such
that Hi is defined by a homogeneous diagonal polynomial in the Cox ring of X of
degree eiDi in Pic(X) and with none of the coefficients equal to zero. Let V be the
closure of V in X . For i ∈ {1, . . . , s}, fix integers 2 ≤ mi,1 ≤ · · · ≤ mi,ni

. Let
Dm =

∑s
i=1

∑ni

j=1(1− 1
mi,j

)Di,j. Assume that V ∩ T 6= ∅, that n1, . . . , nt ≥ 2, and

for i ∈ {1, . . . , s}, that ∑ni

j=1
1

mi,j
> 3, that

∑ni−1
j=1

1
eimi,j(eimi,j+1) ≥ 1 if ei = 1,

and
∑ni

j=1
1

2s0(eimi,j)
> 1 if ei ≥ 2, where s0(eimi,j) is defined in Lemma 6.1. Let

L = −(KX+Dm|X+H1+ · · ·+Ht) be ample. For B > 0, let NV (B) be the number
of Z-Campana points on (V ,Dm|V ) that lie in T and have height HL at most B.
Then

NV (B) = cB(logB)b−1 +O(B(logB)b−2(log logB)s),

where b = rkPic(V ), and c is defined in (3.7) with k = b− 1, CM,d given by (6.11),
and ̟1, . . . , ̟s given by (6.10).

The order of growth in Theorem 1.3 is compatible with the Manin-type conjec-
ture for Campana points [PSTVA21], as L|V is the log anticanonical divisor of the
pair (V,Dm|V ) by adjunction.

Due to the range of application of the circle method, Theorems 1.2 and 1.3
require the Cox ring of the toric variety to have a large number of variables of
the same degree. This holds for toric varieties with several torus invariant prime
divisors of the same degree and for products of such toric varieties. Here are some
examples: the Cox ring of the projective space Pn has n+ 1 variables of the same
degree, the Cox ring of the blow-up of the projective space Pn at l < n + 1 torus
invariant points has n+1− l variables of the same degree. Another example is given
by blow-ups of products of toric varieties each with several torus invariant prime
divisors of the same degree. Indeed, if X and Y are smooth split toric varieties and
the Cox ring of X has nX variables of the same degree dX , and the Cox ring of Y
has nY variables of the same degree dY , and P ∈ X×Y is a point where mX ≤ nX

variables of degree dX vanish and mY ≤ nY variables of degree dY vanish, then the
Cox ring of the blow-up of X×Y at P has mX variables of the same degree dX − e
and mY variables of the same degree dY − e, where e is the class of the exceptional
divisor.
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The structure of this article is as follows. In Section 2 we reformulate the height
function and the multiplicative function µ for Möbius inversion according to the
principle of grouping variables of the same degree. In Section 3 we combine the
new framework with the hyperbola method developed in [PS24] to obtain a gen-
eral counting tool for points of bounded height on subvarieties of toric varieties.
Theorems 1.1, 1.2, and 1.3 are proven in Sections 4, 5, and 6, respectively.

Acknowledgements. We thank for their hospitality the organizers of the work-
shop “Rational Points 2023” at Schney, where we made significant progress on this
project. We are grateful to the Lorentz center in Leiden for their hospitality during
the workshop “Enumerative geometry and arithmetic”. The first named author is
supported by the NWO grants VI.Vidi.213.019 and OCENW.XL21.XL21.011. For
the purpose of open access, a CC BY public copyright license is applied to any
Author Accepted Manuscript version arising from this submission.

2. Toric varieties setting

Let Σ be the fan of a complete smooth split toric variety X over a number
field K. We denote by {D1, . . . ,Ds} ⊆ Pic(X) the set of degrees of prime torus
invariant divisors of X . For each i ∈ {1, . . . , s} we denote by Di,1, . . . , Di,ni

the
torus invariant divisors of degree Di, and by ρi,1, . . . , ρi,ni

the corresponding rays
of Σ. Let I := {(i, j) ∈ N2 : 1 ≤ i ≤ s, 1 ≤ j ≤ ni}. Let Σmax be the set of
maximal cones of Σ. For each maximal cone σ of Σ, let Jσ := {(i, j) ∈ I : ρi,j ⊆
σ}, let Iσ = I r Jσ, and let Iσ be the set of indices i ∈ {1, . . . , s} such that
{(i, 1), . . . , (i, ni)} ∩ Iσ 6= ∅.

Let X be the toric scheme defined by Σ over OK, and for each (i, j) ∈ I, let
Di,j be the closure of Di,j in X .

Let R be the polynomial ring over OK with variables xi,j for (i, j) ∈ I and
endowed with the Pic(X)-grading induced by assigning degree Di to the variable
xi,j for all (i, j) ∈ I. For every torus invariant divisor D =

∑s
i=1

∑ni

j=1 ai,jDi,j on

X and every vector x = (xi,j)(i,j)∈I ∈ CI , we write

xD :=

s∏

i=1

ni∏

j=1

x
ai,j

i,j .

By [Sal98, §8], X has a unique universal torsor π : Y → X , and Y ⊆ A
♯I
OK

is

the open subset whose complement is defined by xDσ = 0 for all maximal cones σ
of Σ, where Dσ :=

∑
(i,j)∈Iσ

Di,j for all σ ∈ Σmax.

Let r be the rank of Pic(X). Let C be a set of ideals of OK that form a system of
representatives for the class group of K. As in [PS24, §6.1], we fix a basis of Pic(X),

and for every divisor D on X we write c[D] :=
∏r

i=1 c
bi
i where [D] = (b1, . . . , br)

with respect to the fixed basis of Pic(X). Then, as in [Pie16, §2],

X(K) = X (OK) =
⊔

c∈Cr

πc (Y c(OK)) ,

where πc : Y c → X is the twist of π defined in [FP16, Theorem 2.7]. The fibers
of π|Y c(OK) are all isomorphic to (O×

K )
r, and Y c(OK) ⊆ OI

K is the subset of points

x ∈⊕(i,j)∈I c[Di,j ] that satisfy
∑

σ∈Σmax

xDσ c−[Dσ ] = OK. (2.1)

LetN be the lattice of cocharacters ofX . Then Σ ⊆ N⊗ZR. For every (i, j) ∈ I,
let νi,j be the unique generator of ρi,j ∩ N . For every torus invariant Q-divisor
D =

∑s
i=1

∑ni

j=1 ai,jDi,j of X and for every σ ∈ Σmax, let uσ,D ∈ HomZ(N,Q)
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be the character determined by uσ,D(νi,j) = ai,j for all (i, j) ∈ Jσ, and define
D(σ) := D−∑s

i=1

∑ni

j=1 uσ,D(νi,j)Di,j . Then D and D(σ) are linearly equivalent.

2.1. Torus invariant divisors. Here we collect some properties of toric varieties
and their torus invariant divisors.

Lemma 2.1.

(i) Let σ ∈ Σmax.
(a) For i ∈ Iσ, there is a unique index ji,σ ∈ {1, . . . , ni} such that (i, ji,σ) ∈

Iσ. So ♯Iσ = ♯Iσ = r.
(b) For i ∈ Iσ, (i, j

′) ∈ Jσ for all j′ ∈ {1, . . . , ni}r {ji,σ}.
(c) For i ∈ {1, . . . , s}r Iσ, {(i, 1), . . . , (i, ni)} ⊆ Jσ.

Let D be a torus invariant Q-divisor on X. For σ ∈ Σmax, write

D(σ) =
s∑

i=1

ni∑

j=1

αi,j,σDi,j .

For i ∈ {1, . . . , s}, let αi,σ =
∑ni

j=1 αi,j,σ.

(ii) Let σ ∈ Σmax. Then D(σ) =
∑

i∈Iσ
αi,σDi,ji,σ .

(iii) Let σ, σ′ ∈ Σmax. If there are i ∈ Iσ and j ∈ {1, . . . , ni} such that Jσ∩Jσ′ =
Jσ r {(i, j)}, then Iσ = Iσ′ and αi′,σ = αi′,σ′ for all i′ ∈ {1, . . . , s}.

(iv) Let σ ∈ Σmax and for every i ∈ Iσ, let ji ∈ {1, . . . , ni}. Then there exists
a unique σ′ ∈ Σmax such that Iσ′ = Iσ, (i, ji) ∈ Iσ′ for i ∈ Iσ, and
αi,σ′ = αi,σ for i ∈ {1, . . . , s}.

(v) The relation σ ∼ σ′ if and only if Iσ = Iσ′ defines an equivalence relation
on Σmax, and the equivalence class of σ has cardinality

∏
i∈Iσ

ni.

(vi) Let J ⊆ I minimal for inclusion and such that J ∩ Iσ 6= ∅ for all σ ∈
Σmax. Let i ∈ {1, . . . , s} such that {(i, 1), . . . , (i, ni)} ∩ J 6= ∅. Then
{(i, 1), . . . , (i, ni)} ⊆ J .

Proof. Part (i) follows from the fact that [Di,j ] = Di for all j ∈ {1, . . . , ni} and
that the set {Di : i ∈ Iσ} is a basis of Pic(X) by [CLS11, Theorem 4.2.8] as X is
smooth and proper.

Part (ii) follows from part (i) and the fact that by construction αi,j,σ = 0 when-
ever (i, j) ∈ Jσ.

For part (iii) we observe that if σ 6= σ′, then Jσ = (Jσ∩Jσ′ )⊔{(i, j)} and Jσ′ =
(Jσ ∩Jσ′ )⊔{(i, ji,σ)}, where ji,σ is the index defined in part (i). Thus i ∈ Iσ ∩ Iσ′ ,
and for every index i′ ∈ {1, . . . , s} with i′ 6= i we have Jσ ∩ {(i′, 1), . . . , (i′, ni′)} =
Jσ′ ∩ {(i′, 1), . . . , (i′, ni′)} ⊆ Jσ ∩ Jσ′ . Recall that [D(σ)] =

∑
i∈Iσ

αi,σDi and

[D(σ′)] =
∑

i∈Iσ′
αi,σ′Di. Now the result follows as [D(σ)] = [D(σ′)] in Pic(X)

and {Di : i ∈ Iσ} is a basis of Pic(X).
For part (iv), write Iσ = {i1, . . . , ir}. We construct by induction σ1, . . . , σr such

that for each l ∈ {1, . . . , r}, (i1, ji1), . . . , (il, jil) ∈ Iσl
, Iσl

= Iσ and αi,σl
= αi,σ

for all i ∈ {1, . . . , s}. If (i1, ji1) ∈ Iσ, let σ1 = σ. Otherwise, (i1, ji1 ) ∈ Jσ and
by [Sal98, Lemma 8.9] there is σ1 ∈ Σmax such that Jσ1 ∩ Jσ = Jσ r {(i1, ji1)}.
Since i1 ∈ Iσ, by part (iii) we have Iσ1 = Iσ and αi,σ1 = αi,σ for all i ∈ {1, . . . , s}.
Assume that we have constructed σl−1 for given l ≤ r. If (il, jil) ∈ Iσl−1

, let
σl = σl−1. Otherwise, (il, jil) ∈ Jσl−1

and by [Sal98, Lemma 8.9] there is σl ∈ Σmax

such that Jσl
∩ Jσl−1

= Jσl−1
r {(il, jil)}. Since il ∈ Iσl−1

, by part (iii) we
have Iσl

= Iσl−1
= Iσ and αi,σl

= αi,σl−1
= αi,σ for all i ∈ {1, . . . , s}. Since

(i1, ji1), . . . , (il−1, jil−1) ∈ Iσl−1
and Jσl

= (Jσl−1
∩ Jσl

) ∪ {(il, jil,σl−1
)}, where

jil,σl−1
is the index defined in part (i), we conclude that (i1, ji1), . . . , (il, jil) ∈ Iσl

.
Take σ′ = σr. The uniqueness of σ′ follows from part (i), as σ′ is completely
determined by Iσ′ .
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Part (v) is a direct consequence of part (iv).
For part (vi), let j ∈ {1, . . . , ni} such that (i, j) ∈ J . By minimality of J , there

exists σ ∈ Σmax such that J ∩Iσ = {(i, j)}. If ni > 1, let j′ ∈ {1, . . . , ni}r{j}. By
[Sal98, Lemma 8.9] there is σ′ ∈ Σmax such that Jσ′ ∩ Jσ = Jσ r {(i, j′)}. Hence,
Iσ′ = (Iσ r {(i, j)}) ∪ {(i, j′)}. Since J ∩ (Iσ r {(i, j)}) = ∅ and J ∩ Iσ′ 6= ∅, we
conclude that (i, j′) ∈ J . �

2.2. Heights. Let L be a semiample torus invariant Q-divisor on X . Let HL be
the height on X defined by L as in [PS24, §6.3]. For σ ∈ Σmax, write L(σ) =∑s

i=1

∑ni

j=1 αi,j,σDi,j and αi,σ =
∑ni

j=1 αi,j,σ for all i ∈ {1, . . . , s}. Let ΩK be the
set of places of K.

Lemma 2.2. For every ν ∈ ΩK and every x ∈ Y (K), we have

sup
σ∈Σmax

|xL(σ)|ν = sup
σ∈Σmax

s∏

i=1

sup
1≤j≤ni

|xi,j |αi,σ
ν .

Proof. Fix ν ∈ ΩK and x ∈ Y (K). By Lemma 2.1(ii), we have

sup
σ∈Σmax

|xL(σ)|ν = sup
σ∈Σmax

∏

i∈Iσ

|xi,ji,σ |αi,σ
ν .

For every i ∈ {1, . . . , s}, let ji ∈ {1, . . . , ni} such that |xi,ji |ν = sup1≤j≤ni
|xi,j |ν .

Let σ ∈ Σmax. By Lemma 2.1(iv) there is σ′ ∈ Σmax such that Iσ′ = Iσ , (i, ji) ∈ Iσ′

for all i ∈ Iσ , and αi,σ′ = αi,σ for all i ∈ {1, . . . , s}. Then

|xL(σ′)|ν =
∏

i∈Iσ′

|xi,ji |
αi,σ′

ν =
∏

i∈Iσ

sup
1≤j≤ni

|xi,j |αi,σ
ν =

s∏

i=1

sup
1≤j≤ni

|xi,j |αi,σ
ν . �

Thus HL(x) =
∏

ν∈ΩK
supσ∈Σmax

∏s
i=1 sup1≤j≤ni

|xi,j |αi,σ
ν for all x ∈ Y (K).

2.3. Coprimality conditions. We now rewrite the coprimality condition (2.1) in
terms of the notation introduced in this paper.

Lemma 2.3. For all x ∈⊕(i,j)∈I c[Di,j ],
∑

σ∈Σmax

xDσ c−[Dσ] =
∑

σ∈Σmax

∏

i∈Iσ

(xi,1, . . . , xi,ni
)c−Di .

Proof. For σ ∈ Σmax, let Xσ = {∏i∈Iσ
xi,ji : ji ∈ {1, . . . , ni} ∀i ∈ {1, . . . , s}}. The

inclusion ⊆ is clear as xDσ ∈ Xσ and c−[Dσ ] =
∏

i∈Iσ
c−Di for all σ ∈ Σmax. For the

converse inclusion, fix σ ∈ Σmax and x ∈ Xσ. For every i ∈ Iσ , let ji ∈ {1, . . . , ni}
such that x =

∏
i∈Iσ

xi,ji . By Lemma 2.1(iv) there is σ′ ∈ Σmax such that Iσ′ = Iσ
and (i, ji) ∈ Iσ′ for i ∈ Iσ . Then xDσ′ = x. �

2.4. Möbius function. Let IK be the set of nonzero ideals of OK. Let χ : IKs →
{0, 1} be the characteristic function of the subset

{
b ∈ IKs :

∑

σ∈Σmax

∏

i∈Iσ

bi = OK

}
. (2.2)

For every d ∈ IKs, let χd : IKs → {0, 1} be the characteristic function of the subset

{b ∈ IKs : bi ⊆ di ∀i ∈ {1, . . . , s}} .
As in [Pey95, Lemme 8.5.1] there exists a unique multiplicative function µ : IKs → Z

such that

χ =
∑

d∈IK
s

µ(d)χd.
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Note that if X = Pn
Q, the function µ defined above coincides with the classical

Möbius function.

Remark 2.4. Let p ∈ IK be a prime ideal. The function µ is defined recursively by
the formula µ(b) = χ(b)−∑b(d µ(d) for every b ∈ IKs, and satisfies the following
properties.

(i) µ(1) = χ(1) = 1.
(ii) If ei ≥ 2 for some i ∈ {1, . . . , s}, then µ(pe1 , . . . , pes) = 0, as in that case

χ(pe1 , . . . , pes) = χ(pe
′
1 , . . . , pe

′
s) for e′i = ei − 1 and e′l = el for all l 6= i.

(iii) By induction one shows that µ(pe1 , . . . , pes) = 0 whenever (e1, . . . , es) 6= 0

and there is σ ∈ Σmax such that ei = 0 for all i ∈ Iσ , as χ(p
e1 , . . . , pes) = 1

if and only if there is σ ∈ Σmax such that ei = 0 for all i ∈ Iσ .
(iv) Let

f̃ := min {♯J : J ⊆ {1, . . . , s}, J ∩ Iσ 6= ∅ ∀σ ∈ Σmax} .
By property (iii), if µ(pe1 , . . . , pes) 6= 0, then there are at least f̃ indices i
with ei = 1. Let J ⊆ {1, . . . , s} be smallest with respect to inclusion and
such that J ∩ Iσ 6= ∅ for all σ ∈ Σmax. Let J ′ = J r {j} for some j ∈ J .
Let ei = 1 for i ∈ J and ei = 0 for i /∈ J . Let e′i = ei for i 6= j and e′j = 0.

Then χ(pe1 , . . . , pes) = 0 and χ(pe
′
1 , . . . , pe

′
s) = 1 by minimality of J . Thus

µ(pe1 , . . . , pes) = −1 6= 0. Hence,

f̃ = min

{
s∑

i=1

ei : (e1, . . . , es) 6= 0, µ(pe1 , . . . , pes) 6= 0

}
. (2.3)

For β = (β1, . . . , βs) ∈ Rs
≥0, let

fβ := min

{
s∑

i=1

βiei : (e1, . . . , es) 6= 0, µ(pe1 , . . . , pes) 6= 0

}
.

Lemma 2.5. (i) The series

∑

d∈Is
K

µ(d)∏s
i=1 N(di)βi

converges absolutely if fβ > 1.

(ii) If fβ > 1 and β1, . . . , βs ∈ Z>0, then
∑

d∈Is
K

µ(d)
∏

s
i=1 N(di)βi

> 0.

Proof. For part (i) we follow the proof of [Sal98, Lemma 11.15] and [Pie16, Propo-

sition 4]. For p ∈ IK prime ideal, let S(p) =
∑

(e1,...,es)∈Zs
≥0

|µ(pe1 ,...,pes )|
∏

s
i=1 N(p)βiei

. As in

[Sal98, Lemma 11.15] and [Pie16, Proposition 4],

lim
b→∞

∑

d∈Is
K∏

s
i=1 N(di)≤b

|µ(d)|∏s
i=1 N(di)βi

=
∏

p

S(p).

By Remark 2.4(ii) the sum S(p) is finite. By definition of fβ, if µ(p
e1 , . . . , pes) 6= 0

and (e1, . . . , es) 6= 0, then fβ ≤∑s
i=1 βiei. Thus

S(p) = 1 +
1

N(p)fβ
Q

(
1

N(p)

)
,

where Q : R≥0 → R≥0 is a monotone increasing function. Since µ(pe1 , . . . , pes) is
independent of the choice of p, the function Q is independent of the choice of p.
Thus

∑

p

1

N(p)fβ
Q

(
1

N(p)

)
≤ [K : Q]Q(1)

∑

n∈Z>0

1

nfβ
.
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In part (ii) the series is absolutely convergent by part (i), hence it suffices to
show that each factor of its Euler product

∏
p Sp is positive. For a prime ideal

p ∈ IK, let Op be the ring of integers of the completion Kp of K at the valuation
vp defined by p. Endow Kp with the Haar measure normalized such that Op has
volume 1. Then

∫
pjOp

dy = N(p)−j for all j ≥ 0 by [CLNS18, §1.1.13] and [Neu99,

Proposition II.4.3]. We denote by χ the characteristic function of (2.2) where ideals
of OK are replaced by ideals of Op. By Remark 2.4(ii),

Sp =
∑

e∈{0,1}s

µ(pe1 , . . . , pes)

s∏

i=1

N(p)−eiβi

=
∑

e∈{0,1}s

µ(pe1 , . . . , pes)
s∏

i=1

βi∏

j=1

∫

pei

dyi,j

=

∫

O

∑s
i=1

βi
p

χ((y1,1, . . . , y1,β1), . . . , (ys,1, . . . , ys,βs
))

s∏

i=1

βi∏

j=1

dyi,j

≥
∫

(O×
p )

∑s
i=1

βi

s∏

i=1

βi∏

j=1

dyi,j =

(
1− 1

N(p)

)∑s
i=1 βi

> 0,

as χ is a nonnegative function with χ(Op, . . . ,Op) = 1. �

Definition 2.6. A function A : Zs
>0 → R is compatible with Möbius inversion on

X if there are β1, . . . , βs ∈ Rs such that A(d) ≪∏s
i=1 d

−βi

i with f(β1,...,βs) > 1.

Remark 2.7. (i) The inequality fβ > 1 holds whenever β1, . . . , βs > 1.

(ii) If β1 = · · · = βs = 1, then fβ = f̃ by (2.3).
(iii) (Case β1 = n1, . . . , βs = ns) As in [Sal98, Lemma 11.15(d)], let f be the

smallest positive integer such that there are f rays of the fan Σ that are
not contained in a maximal cone. Then f ≥ 2, as X is proper. Moreover,

f = min {♯J : J ⊆ I,J ∩ Iσ 6= ∅ ∀σ ∈ Σmax} ,
and Remark 2.4 combined with Lemma 2.1(vi) gives

f = min

{
∑

i∈J

ni : J ⊆ {1, . . . , s}, J ∩ Iσ 6= ∅ ∀σ ∈ Σmax, ♯J = f̃

}

= min

{
s∑

i=1

niei : (e1, . . . , es) 6= 0, µ(pe1 , . . . , pes) 6= 0

}
.

3. Subvarieties

Here we want to count rational points or Campana points of bounded height in
subvarieties of toric varieties.

From now on K = Q. Let X be a complete smooth split toric variety as in
Section 2. Assume that rkPic(X) ≥ 2, that is X is not a projective space. Let
L be a semiample toric invariant Q-divisor on X that satisfies [PS24, Assumption
6.3]. The latter holds, for example, if L is ample.

Let g1, . . . , gt ∈ R be Pic(X)-homogeneous elements. Let V ⊆ X be the
schematic intersection of the t hypersurfaces defined by g1, . . . , gt. Let T ⊆ X
be the torus. Without loss of generality, we can assume that V ∩T 6= ∅. Otherwise,
V is contained in a complete smooth split toric subvariety X ′ of X , and we can
replace X by X ′. Fix mi,j ∈ Z≥1 for each (i, j) ∈ I. Let m = (mi,j)(i,j)∈I , and

Dm =
∑s

i=1

∑ni

j=1

(
1− 1

mi,j

)
Di,j . Let V be the Zariski closure of V in X . Let



POINTS OF BOUNDED HEIGHT ON CERTAIN SUBVARIETIES OF TORIC VARIETIES 9

(V ,Dm|V ) (Z) be the set of Campana Z-points on the Campana orbifold (V ,Dm|V )
as in [PSTVA21, Definition 3.4], where if V is singular, the intersection multiplic-
ity of a point x : SpecOK → V with Di|V at a place v of K is defined as the
colength of the ideal of the fiber product of SpecOK ×V Di|V after base change to
the completion of OK at v.

Let NV (B) be the number of points in (V ,Dm|V ) (Z) ∩ T (Q) of height HL at
most B. If mi,j = 1 for all (i, j) ∈ I, then NV (B) is the set of Q-rational points on
V ∩ T of height HL at most B.

For i ∈ {1, . . . , s} and x ∈ Y (Z), let yi = sup1≤j≤ni
|xi,j |. For σ ∈ Σmax, write

L(σ) =
∑s

i=1

∑ni

j=1 αi,j,σDi,j and αi,σ =
∑ni

j=1 αi,j,σ for all i ∈ {1, . . . , s}. Then

by [PS24, Proposition 6.10] and Lemma 2.2,

HL(x) = sup
σ∈Σmax

s∏

i=1

y
αi,σ

i .

By construction, (V ,Dm|V ) (Z) = (X ,Dm) (Z) ∩ V (Q). We use the torsor pa-
rameterization of (X ,Dm) (Z) from [PS24, §6.4]. For B > 0 and d ∈ (Z>0)

s, let
A(B,d) be the set of points x = (xi,j)1≤i≤s,1≤j≤ni

∈ (Z6=0)
I such that

H(x) ≤ B, (3.1)

di | xi,j ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , ni}, (3.2)

xi,j is mi,j-full ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , ni}, (3.3)

g1 = · · · = gt = 0. (3.4)

We observe that A(B,d) is a finite set by [PS24, Lemma 6.11]. Then

NV (B) =
1

2r

∑

d∈(Z>0)s

µ(d)♯A(B,d) (3.5)

by Lemma 2.3 and the definition of µ in Section 2.4.
Write

♯A(B,d) =
∑

y1,...,ys∈Z>0∏s
i=1 y

αi,σ
i ≤B, ∀σ∈Σmax

fd(y1, . . . , ys),

where

fd(y1, . . . , ys) = ♯{x ∈ (Z6=0)
I : (3.2), (3.3), (3.4), yi = sup

1≤j≤ni

|xi,j | ∀i ∈ {1, . . . , s}}.

Let

Fd(B1, . . . , Bs) =
∑

1≤yi≤Bi,1≤i≤s

fd(y1, . . . , ys).

Lemma 3.1. Assume that

Fd(B1, . . . , Bs) = CM,d

s∏

i=1

B̟i

i +O

(
CE,d

(
min
1≤i≤s

Bi

)−ǫ s∏

i=1

B̟i

i

)
(3.6)

with CM,d, CE,d, ̟1, . . . , ̟s, ǫ > 0 such that CM,d, CE,d are compatible with Möbius
inversion on X as functions of the variables d.

Let a be the maximal value of
∑s

i=1 ̟iui on the polytope P ⊆ Rs defined by

s∑

i=1

αi,σui ≤ 1 ∀σ ∈ Σmax, ui ≥ 0 ∀i ∈ {1, . . . , s}.

Let F be the face of P where
∑s

i=1 ̟iui = a. Let k be the dimension of F .
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(i) If F is not contained in a coordinate hyperplane of Rs, then

NV (B) = cBa(logB)k +O(Ba(logB)k−1(log logB)s),

where k is the dimension of F , and

c = (s− 1− k)!cP2
−r

∑

d∈Zs
>0

µ(d)CM,d. (3.7)

Here, cP = limδ→0 δ
k+1−s meass−1(Hδ ∩ P), where Hδ ⊆ Rs is the hyper-

plane defined by
∑s

i=1 ̟iui = a−δ, and meass−1 is the (s−1)-dimensional

measure on Hδ given by
∏

1≤i≤s,i6=ĩ(̟idui) for any choice of ĩ ∈ {1, . . . , s}.
(ii) If L is ample, then

a = inf

{
t ∈ R : t[L]−

[
s∑

i=1

̟iDi

]
is effective

}
,

and k+1 is the codimension of the minimal face of the effective cone of X
containing a[L]− [

∑s
i=1 ̟iDi].

(iii) If [L] =
∑s

i=1 ̟iDi is ample, then the face F is not contained in a coordi-
nate hyperplane, a = 1 and k = rkPic(X)− 1.

Proof. (i) Let ti = ̟iui for all i ∈ {1, . . . , s}. By the assumptions on L, the
polytope P is bounded and nondegenerate by [PS24, Remark 6.2]. Applying
[PS24, Theorem 1.1] to ♯A(B,d) gives

NV (B) = cBa(logB)k +O



Ba(logB)k−1(log logB)s
∑

d∈(Z>0)s

µ(d)CE,d



 .

The sums
∑

d∈(Z>0)s
in the leading constant c and in the error term con-

verge absolutely by Lemma 2.5 as CM,d, CE,d are compatible with Möbius
inversion on X .

(ii) Let

Rr →֒ Rs →֒ RI

be the sequence of injective linear maps dual to

d :
⊕

(i,j)∈I

Di,jZ ։

s⊕

i=1

DiZ ։ Pic(X).

Here,

Rs →֒ RI ,

s∑

i=1

uiei 7→
s∑

i=1

ni∑

j=1

uiei,j ,

where {e1, . . . , es} denotes the dual basis to {D1, . . . ,Ds}, and {ei,j :

(i, j) ∈ I} denotes the dual basis to {Di,j : (i, j) ∈ I}. Let P̃ be the
polytope defined by

∑

(i,j)∈I

αi,j,σui,j ≤ 1 ∀σ ∈ Σmax, ui,j ≥ 0 ∀(i, j) ∈ I.

Then P̃ ∩Rs = P and
∑

(i,j)∈I
̟i

ni
ui,j

∣∣∣
P
=
∑s

i=1

(∑ni

j=1
̟i

ni

)
ui. By [PS24,

Lemma 6.7], the face F of P̃ where the maximal value of the function
∑

(i,j)∈I

̟i

ni
ui,j (3.8)
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is attained is contained in P̃ ∩ Rr, and hence also in P . Then a is the
maximal value of the function (3.8) on P . The dual linear programming
problem is given by minimizing

∑
σ∈Σmax

λσ on the polytope given by
∑

σ∈Σmax

αi,j,σλσ ≥ ̟i

ni
∀(i, j) ∈ I, λσ ≥ 0, ∀σ ∈ Σmax.

The arguments in [PS24, §6.5.1] show that a is the smallest real number
such that a[L] −∑s

i=1

∑ni

j=1
̟i

ni
Di is effective. As in [PS24, Proposition

6.13], the smallest face of Eff(X) that contains a[L]−∑s
i=1 ̟iDi is dual to

the cone generated by F in Rr, and the latter is defined by a
∑s

i=1 αi,σui−∑s
i=1 ̟iui = 0 for any σ ∈ Σmax such that F ⊆ {∑s

i=1 αi,j,σui,j = 1}.
Thus the minimal face of Eff(X) containing a[L] − [

∑s
i=1 ̟iDi] has codi-

mension k + 1.
(iii) We argue as in the proof of [PS24, Lemma 6.7(ii)]. Let H̃ ⊆ Rs be

the inclusion dual to the surjection
⊕s

i=1 RDi → Pic(X) ⊗Z R. Then∑s
i=1 αi,σui =

∑s
i=1 ̟iui for all u ∈ H̃ and all σ ∈ Σmax. Thus P ∩ H̃ is

the set of elements u of H̃ such that u1, . . . , us ≥ 0 and
∑s

i=1 ̟iui ≤ 1.

Since F ⊆ H̃ by [PS24, Lemma 6.7(i)], we have F = H̃ ∩{∑s
i=1 ̟iui = 1}.

As in in the proof of [PS24, Lemma 6.7(ii)] we conclude that F is not
contained in a coordinate hyperplane of Rs.

�

4. Rational points on linear complete intersections

Proof of Theorem 1.1. For 1 ≤ i ≤ s and 1 ≤ l ≤ ti, let gi,l ∈ R be a linear
polynomial defining Hi,j . Then

gi,l =

ni∑

j=1

ci,j,lxi,j , l ∈ {1, . . . , ti},

with ci,j,l ∈ Z, and gi,1, . . . , gi,ti are linearly independent for all i ∈ {1, . . . , s}. Let
mi,j = 1 for all (i, j) ∈ I. Then

Fd(B1, . . . , Bs) =

s∏

i=1

Fi,di
(Bi),

where for i ∈ {1, . . . , s}, d ∈ Z>0 and B > 0,

Fi,d(B) = ♯{(xi,1, . . . , xi,ni
) ∈ (Z6=0)

ni : sup
1≤j≤ni

|xi,j | ≤ B,

d | xi,j ∀j ∈ {1, . . . , ni}, gi,1 = · · · = gi,ti = 0}.
For i ∈ {1, . . . , s}, let Wi ⊆ Rni be the linear space defined by gi,1 = · · · =

gi,ti = 0, and let Λi ⊆ Wi be restriction of the standard lattice Zni ⊆ Rni to Wi.
Then by [BG06, Lemma 11.10.15] for every T ≥ 1,

♯(Zni ∩ [−T, T ]ni ∩Wi) = ♯(Λi ∩ (T ([−1, 1]n ∩Wi))

= T ni−ti
measni−ti([−1, 1]ni ∩Wi)

det Λi
+O

(
T ni−ti−1

)
,

where measni−ti is the (ni − ti)-dimensional measure induced by the Lebesgue
measure on Rni . Let

ci =
measni−ti([−1, 1]ni ∩Wi)

detΛi
.

Then applying this estimate with T = B/d gives

Fi,d(B) = ci(B/d)ni−ti +O((B/d)ni−ti−1)



12 MARTA PIEROPAN AND DAMARIS SCHINDLER

whenever d ≤ B. If d > B, then Fi,d(B) = 0 and the same estimate holds. Hence,
for δ > 0,

Fd(B1, . . . , Bs) = CM,d

s∏

i=1

Bni−ti
i + O

(
CE,d

(
s∏

i=1

Bni−ti
i

)(
min
1≤i≤s

Bi

)−δ
)
,

where

CM,d =

s∏

i=1

ci

dni−ti
i

, (4.1)

CE,d =
s∏

i=1

d
−(ni−ti)+δ
i . (4.2)

We show that for δ > 0 sufficiently small, the assumptions of Lemma 3.1 are
satisfied. Since ni−ti ≥ 2 for all i ∈ {1, . . . , s} such that ti 6= 0, if f(n1−t1,...,ns−ts) <

2, by Remark 2.4(iv) there is ĩ ∈ {1, . . . , s} such that t̃i = 0, ĩ ∈ Iσ for all σ ∈ Σmax,
and nĩ = 1. Then ρĩ,1 is not contained in any maximal cone of Σ, contradicting
the fact that X is proper. Thus f(n1−t1,...,ns−ts) ≥ 2. By definition and by Remark
2.4(ii), f(n1−t1−δ,...,ns−ts−δ) ≥ f(n1−t1,...,ns−ts) − sδ.

Since V is a smooth complete intersection of smooth divisors, by adjunction
[MR192, Proposition 16.4] we have KV = KX +

∑s
i=1

∑ti
l=1[Hi,l]. Since

s∑

i=1

(ni − ti)Di = −[KX ]−
s∑

i=1

tiDi = −[KX ]−
s∑

i=1

ti∑

l=1

[Hi,l],

Lemma 3.1 gives

NV (B) = cB(logB)b−1 +O(B(logB)b−2(log logB)s),

where b = rkPic(X), and c is defined in (3.7) with k = b − 1, CM,d given by
(4.1) and ̟i = ni − ti for i ∈ {1, . . . , s}. The restriction Pic(X) → Pic(V ) is an
isomorphism as ti ≤ ni − 2 for all i ∈ {1, . . . , s}. The leading constant c is positive
by Lemma 2.5(ii). �

5. Bihomogeneous hypersurfaces

Proof of Theorem 1.2. In the setting of Theorem 1.2, the hypersurfaces H1, . . . , Ht

are defined by bihomogeneous polynomials g1, . . . , gt of degree (e1, e2) in the two
sets of variables {x1,j : 1 ≤ j ≤ n1} and {x2,j : 1 ≤ j ≤ n2}. Let mi,j = 1 for all
(i, j) ∈ I.

We will apply [Sch16, Theorem 4.4] with R = t, Fi = gi, Bi = [−1, 1]ni, Pi =
Bi/di, di = ei. In order to apply [Sch16, Theorem 4.4] we need to restrict the
points to an open set. Let U ⊆ An1+n2 be the open set in [Sch16, Theorem 4.4].
Since the complement of U is the zero set of homogeneous polynomials by [Sch16,
Theorems 4.1, 4.2], the set W := π({x ∈ Y : (x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2) ∈ U})
is an open subset of X . Then

NV,W (B) =
1

2r

∑

d∈(Z>0)s

µ(d)♯AW (B,d),

with

AW (B,d) =
∑

y1,...,ys∈Z>0∏
s
i=1 y

αi,σ

i
≤B, ∀σ∈Σmax

fW
d (y1, . . . , ys)
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and

fW
d

(y1, . . . , ys) = ♯{x ∈ (Z6=0)
I : (x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2) ∈ U(Q),

(3.2), (3.3), (3.4), yi = sup
1≤j≤ni

|xi,j | ∀i ∈ {1, . . . , s}}.

Let

FW
d (B1, . . . , Bs) =

∑

1≤yi≤Bi,1≤i≤s

fW
d (y1, . . . , ys).

Then

FW
d

(B1, . . . , Bs) = F̃W
d1,d2

(B1, B2)
s∏

i=3

Fi,di
(Bi),

where

F̃W
d1,d2

= ♯{(x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2) ∈ (Z6=0)
n1+n2 ∩ U(Q) :

sup
1≤j≤ni

|yi,j | ≤ Bi/di ∀i ∈ {1, 2}, g1 = · · · = gt = 0}.

and for d ∈ Z>0 and B > 0,

Fi,d(B) = ♯{(xi,1, . . . , xi,ni
) ∈ (Z6=0)

ni : sup
1≤j≤ni

|xi,j | ≤ B,

d | xi,j ∀j ∈ {1, . . . , ni}}.
If d ≤ Bi, then

Fi,d(B) = 2ni(B/d)ni +O((B/d)ni−δ)

with 0 < δ ≤ 1. If d > B, then Fi,d(B) = 0, and the same estimate holds.

To compute F̃W
d1,d2

(B1, B2), write xi,j = diyi,j for all (i, j) ∈ I. Then

F̃W
d1,d2

(B1, B2) = ♯{(y1,1, . . . , y1,n1 , y2,1, . . . , y2,n2) ∈ (Z6=0)
n1+n2 ∩ U(Q) :

sup
1≤j≤ni

|yi,j | ≤ Bi/di ∀i ∈ {1, 2}, g1 = · · · = gt = 0},

as the complement of U is the zero set of homogeneous polynomials by [Sch16,

Theorems 4.1, 4.2]. Let V ∗
i ⊆ An1+n2 be the locus where the matrix

(
∂gl
∂xi,j

)
1≤l≤t
1≤j≤ni

does not have full rank. If n1 + n2 > dimV ∗
1 + dimV ∗

2 + 3 · 2e1+e2e1e2t
3, then by

[Sch16, Theorem 4.4] there is δ > 0 such that

F̃W
d1,d2

(B1, B2) = C

2∏

i=1

(Bi/di)
ni−tei + O

((
min
i=1,2

Bi/di

)−δ 2∏

i=1

(Bi/di)
ni−tei

)

= C

2∏

i=1

(Bi/di)
ni−tei +O

((
2∏

i=1

d
−(ni−tei)+δ
i

)(
min
i=1,2

Bi

)−δ 2∏

i=1

Bni−tei
i

)

with C ∈ R≥0, and C > 0 whenever V has nonsingular Qv-points for all places v
of Q. Thus

FW
d (B1, . . . , Bs) = CM,dB

n1−te1
1 Bn2−te2

2

s∏

i=3

Bni

i

+O

(
CE,d

(
min
1≤i≤s

Bi

)−δ

Bn1−te1
1 Bn2−te2

2

s∏

i=3

Bni

i

)
,
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where

CM,d = Cd
−(n1−te1)
1 d

−(n2−te2)
2

s∏

i=3

d−ni

i , (5.1)

CE,d = d
−(n1−te1)+δ
1 d

−(n2−te2)+δ
2

s∏

i=3

d−ni+δ
i . (5.2)

Recall that ni − tei ≥ 2 for i ∈ {1, 2}. For δ > 0 sufficiently small, if

fn1−te1−δ,n2−te2−δ,n3−δ,...,ns−δ ≤ 1,

then by Remark 2.4(iv) there is ĩ ∈ {3, . . . , s} such that ĩ ∈ Iσ for all σ ∈ Σmax and
nĩ = 1. Then the ray ρĩ,1 is contained in no maximal cone of Σ, contradicting the
fact that X is proper.

Since V is a smooth complete intersection, the adjunction formula [MR192,
Proposition 16.4] gives KV = KX +H1 + · · ·+Ht. Let ̟i = ni − tei for i ∈ {1, 2},
and ̟i = ni for i ∈ {3, . . . , s}. Since

s∑

i=1

̟iDi = −[KX ]− t(e1D1 + e2D2) = −[KX ]− [H1 + · · ·+Ht],

Lemma 3.1 applied to FW
d

(B1, . . . , Bs) and NV,W (B) gives

NV,W (B) = cB(logB)b−1 +O(Ba(logB)b−2(log logB)s)

for B > 0, where b = rkPic(X), and c is defined in (3.7) with k = b − 1, CM,d

given by (5.1). Moreover, the restriction Pic(X) → Pic(V ) is an isomorphism,
as t ≤ min{n1, n2} − 2. By Lemma 2.5(ii) the leading constant c is positive if
V (Qv) 6= ∅ for all places v of Q as C is positive under the same conditions by
[Sch16, Theorems 4.3 and 4.4]. �

6. Campana points on certain diagonal complete intersections

Proof of Theorem 1.3. In the setting of Theorem 1.3, the hypersurfaces H1, . . . , Ht

are defined by homogeneous diagonal polynomials g1, . . . , gt ∈ R with deg gi = eiDi

in Pic(X) for all i ∈ {1, . . . , t}. Then

gi =

ni∑

j=1

ci,jx
ei
i,j ,

with ci,j ∈ Z6=0, and

Fd(B1, . . . , Bs) =

s∏

i=1

Fi,di
(Bi),

where for i ≤ t,

Fi,d(B) = ♯{(xi,1, . . . , xi,ni
) ∈ (Z6=0)

ni : d | xi,j , xi,j is mi,j-full ∀j ∈ {1, . . . , ni},
sup

1≤j≤ni

|xi,j | ≤ B, gi = 0},

and for i > t,

Fi,d(B) = ♯{(xi,1, . . . , xi,ni
) ∈ (Z6=0)

ni : sup
1≤j≤ni

|xi,j | ≤ B, d | xi,j ,

xi,j is mi,j-full ∀j ∈ {1, . . . , ni}}. (6.1)

For i ≤ t, we estimate Fi,d(B) via the following lemma.

Lemma 6.1. Let n, e,m1, . . . ,mn ∈ Z>0. Let c1, . . . , cn ∈ Z6=0. Let d be a square-
free positive integer. Assume that n ≥ 2 and 2 ≤ m1 ≤ · · · ≤ mn.
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(1) If e = 1, assume that
∑n

j=1
1
mj

> 3, and
∑n−1

j=1
1

emj(emj+1) ≥ 1.

(2) If e ≥ 2 assume that
∑n

j=1
1

emj
> 3,

∑n
j=1

1
2s0(emj)

> 1, where

s0(m) = min

{
2m−1,

1

2
m(m− 1) + ⌊

√
2m+ 2⌋

}
, m ∈ Z≥0.

For B > 0, let

Fd(B) = ♯{(x1, . . . , xn) ∈ (Z6=0)
n : d | xj , xj is mj-full ∀j ∈ {1, . . . , n},

sup
1≤j≤n

|xj | ≤ B,

n∑

j=1

cjx
e
j = 0}.

Then there is η > 0 such that

Fd(B) = ce,dB
Γ +O(d−1−ηBΓ−η),

where Γ =
∑n

j=1
1
mj

− e and ce,d is defined in (6.5) and satisfies 0 ≤ ce,d ≪ d−1−η.

Proof. For every j ∈ {1, . . . , n} and xj ∈ Z6=0 that is mj-full, there exist unique
uj, vj,1, . . . , vj,mj−1 ∈ Z>0 such that

|xj | = u
mj

j

mj−1∏

r=1

v
mj+r
j,r ,

µ2(vj,r) = 1, gcd(vj,r, vj,r′) = 1 ∀r, r′ ∈ {1, . . . ,mj − 1}, r 6= r′.

For every choice of uj and vj,r as above, if d | xj with d ∈ Z>0 squarefree, then
there exist unique sj , tj,1, . . . , tj,mj−1 ∈ Z>0 such that

d = sj

mj−1∏

r=1

tj,r, µ2(sj) = µ2(tj,r) = 1 ∀r ∈ {1, . . . ,mj − 1}

gcd(sj , vj,r) = gcd(sj , tj,r) = gcd(tj,r, tj,r′) = 1 ∀r, r′ ∈ {1, . . . ,mj − 1}, r 6= r′

sj | uj, tj,r | vj,r ∀r ∈ {1, . . . ,mj − 1}.
Write uj = sj ũj and vj,r = tj,rṽj,r for all r ∈ {1, . . . ,mj−1}. Write s = (s1, . . . , sn),
t = (tj,r)1≤j≤n,1≤r≤mj−1. For j ∈ {1, . . . , n}, write

σj = sj

mj−1∏

r=1

tj,r, τj = s
mj

j

mj−1∏

r=1

t
mj+r
j,r , wj =

mj−1∏

r=1

ṽ
mj+r
j,r .

Let Td(B) be the set of pairs (s, t) ∈ Zn
>0 × Z

∑
n
j=1(mj−1)

>0 that satisfy

µ2(σj) = 1, d = σj , τj ≤ B ∀j ∈ {1, . . . , s}.
Note that the first two conditions imply

♯Td(B) ≤
n∏

j=1

m
ω(d)
j ≪ dǫ, (6.2)

where ω(d) is the number of distinct prime divisors of d. Let Vs,t(B) be the set of

ṽ = (ṽj,r)1≤j≤n,1≤r≤mj−1 ∈ Z

∑n
j=1(mj−1)

>0 such that

µ2(tj,r ṽj,r) = 1, gcd(sj , ṽj,r) = 1 ∀j ∈ {1, . . . , n}, r ∈ {1, . . . ,mj − 1},
gcd(tj,r ṽj,r, tj,r′ ṽj,r′) = 1 ∀j ∈ {1, . . . , n}, r, r′ ∈ {1, . . . ,mj − 1}, r 6= r′,

τjwj ≤ B ∀j ∈ {1, . . . , n}.
Let Td(∞) =

⋃
B>0 Td(B) and Vs,t(∞) =

⋃
B>0 Vs,t(B).
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Then

Fd(B) =

{∑
ε∈{±1}n

∑
(s,t)∈Td(B)

∑
ṽ∈Vs,t(B) Mεc,γ(B

e) if e is odd,

2n
∑

(s,t)∈Td(B)

∑
ṽ∈Vs,t(B) Mc,γ(B

e) if e is even,
(6.3)

where c = (c1, . . . , cn), ε = (ε1, . . . , εn), εc = (ε1c1, . . . , εncn), γ = (γ1, . . . , γn)
with

γj = s
emj

j

mj−1∏

r=1

t
e(mj+r)
j,r ṽ

e(mj+r)
j,r ∀j ∈ {1, . . . , n},

and

Mεc,γ(B
e) = ♯




(ũ1, . . . , ũn) ∈ Zn
>0 : max

1≤j≤n
γj ũ

emj

j ≤ Be,

n∑

j=1

εjcjγj ũ
emj

j = 0




 .

An estimate for Mεc,γ(B
e) is proven in [BY21, Theorem 2.7] in the case where∑n−1

j=1
1

emj(emj+1) ≥ 1. The subsequent paper [BBK+23, Theorem 5.3] extends the

range of applicability of [BY21, Theorem 2.7] to the case where
∑n

j=1
1

emj
> 3,

∑n
j=1

1
2s0(emj)

> 1.

Let

Θe =

{
1

mn(mn+1) if e = 1,
∑n

j=1
1

2s0(emj)
− 1 if e ≥ 2.

For 0 < δ < 1
(2(n−1)+5)emn(emn+1) and ǫ > 0, [BY21, Theorem 2.7] and [BBK+23,

Theorem 5.3] give

∑

(s,t)∈Td(B)

∑

ṽ∈Vs,t(B)

Mεc,γ(B
e) =

∑

(s,t)∈Td(B)

∑

ṽ∈Vs,t(B)

Sεc,γIεc
∏n

j=1 γ
1

emj

j

BΓ

+O
(
BΓ(F1 + F2 + F3)

)
, (6.4)

where

Sεc,γ =

∞∑

q=1

1

qn

∑

a(mod q)
gcd(a,q)=1

n∏

j=1

q∑

r=1

exp(2πiaεjcjγjr
emj/q),

Iεc =

∫ ∞

−∞

n∏

j=1

(∫ 1

0

exp(2πiλεjcjξ
emj )dξ

)
dλ,

F1 = Be((2(n−1)+5)δ−1)−Γ
∑

(s,t)∈Td(B)

∑

ṽ∈Vs,t(B)




n∏

j=1

B
1

mj

γ
1

emj

j




n∑

l=1

γ
1

eml

l

B
1

ml

,

F2 = B−eδ
∑

(s,t)∈Td(B)

∑

ṽ∈Vs,t(B)

∞∑

q=1

q1−Γ/e+ǫ
n∏

j=1

gcd(γj , q)
1

emj γ
− 1

emj

j ,

F3 =





B−eδΘe+ǫ

∑
(s,t)∈Td(B)

∑
ṽ∈Vs,t(B)

∏n
j=1 γ

− 1
mj+1

j if e = 1,

B−eδΘe+ǫ
∑

(s,t)∈Td(B)

∑
ṽ∈Vs,t(B)

∏n
j=1 γ

− 1
emj

+ 1
2s0(emj )

j if e ≥ 2.

Let

ce,d =





∑
ε∈{±1}n

∑
(s,t)∈Td(∞)

∑
ṽ∈Vs,t(∞)

Sεc,γIεc

∏
n
j=1 γ

1
emj
j

if e is odd,

2n
∑

(s,t)∈Td(∞)

∑
ṽ∈Vs,t(∞)

Sc,γIc

∏
n
j=1 γ

1
emj

j

if e is even.
(6.5)



POINTS OF BOUNDED HEIGHT ON CERTAIN SUBVARIETIES OF TORIC VARIETIES 17

For T > 0, let

f1(q) =
∑

(s,t)∈Td(∞)

n∏

j=1

(
gcd(τej , q)

τej

) 1
emj

,

f2(q) =
∑

ṽ∈V1,1(∞)

n∏

j=1

(
gcd(we

j , q)

we
j

) 1
emj

,

and

f2(q, T, s, t) =
∑

ṽ∈Vs,t(∞)rVs,t(T )

n∏

j=1

(
gcd(we

j , q)

we
j

) 1
emj

.

Note that for
∑n

j=1
1

emj
> 1 we have

|Iεc| ≪ 1.

Similarly as in [BY21, (2.8), (2.9), (2.12)], the difference between ce,dB
Γ and the

main term obtained combining (6.3) and (6.4) is bounded by

BΓ
∑

(s,t)∈Td(∞)

∑

ṽ∈Vs,t(∞)rVs,t(B)

∞∑

q=1

q
1−

∑
n
j=1

1
emj

n∏

j=1

γ
− 1

emj

j gcd(γj , q)
1

emj (6.6)

≪ BΓ
∞∑

q=1

q−Γ/e+ǫ
∑

(s,t)∈Td(∞)

n∏

j=1

(
gcd(τej , q)

τej

) 1
emj

f2(q, B, s, t), (6.7)

and ce,d ≪∑∞
q=1 q

−Γ/e+ǫf1(q)f2(q).

By [BY21, (3.10)] and the arguments used to prove [BY21, (3.9)], we have

f2(q) ≪ qǫ, (6.8)

and

f2(q, T, s, t) ≪
n∑

i0=1

∑

ṽi,r, 1≤i≤n, 1≤r≤mi−1
∏mi−1

r=1 ṽ
mi+r

i,r
> T

τi
if i=i0

n∏

i=1

mi−1∏

r=1

µ2(ṽi,r) gcd(ṽ
e(mi+r)
i,r , q)

1
emi

ṽ
(mi+r)/mi

i,r

≪ qǫ
n∑

i=1

∑

ṽi,r , 1≤r≤mi−1
∏mi−1

r=1 ṽ
mi+r

i,r
> T

τi

mi−1∏

r=1

µ2(ṽi,r) gcd(ṽ
e(mi+r)
i,r , q)

1
emi

ṽ
(mi+r)/mi

i,r

.

Our next goal is to provide an upper bound for sums of the type occurring in
this estimate for f2(q, T, s, t).

Lemma 6.2. Let m ∈ N≥2, e ∈ N and A > 0 a real parameter. Then, for every
0 < ǫ < 1

m(m+1) we have

∑

vr∈N, 1≤r≤m−1
∏m−1

r=1 vm+r
r >A

m−1∏

r=1

µ2(vr) gcd(v
e(m+r)
r , q)

1
em

v
(m+r)/m
r

≪m,ǫ A
− 1

m(m+1)+ǫq
m−1

em(m+1)+ǫ.

Proof. We first consider the sum

S1 :=
∑

vr∈N, 1≤r≤m−1
∏m−1

r=1 vm+r
r >A

m−1∏

r=1

1

v
(m+r)/m
r
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for A > 1. A dyadic decomposition for each of the variables vr, 1 ≤ r ≤ m − 1,
leads us to the upper bound

S1 ≪
∑

l1,...,lm−1∈N

2(m+1)l1+...+(2m−1)lm−1>A

2−
1
m

l1−...−m−1
m

lm−1

Note that for each k ∈ 1
mN we have

♯{l1, . . . , lm−1 ∈ N :
1

m
l1 + . . .+

m− 1

m
lm−1 = k} ≪m km−2.

We deduce that

S1 ≪m

∑

k∈ 1
m

N
r(k)>0

km−22−k

where r(k) is the number of (l1, . . . , lm−1) ∈ Nm−1 such that both

1

m
l1 + . . .+

m− 1

m
lm−1 = k and 2(m+1)l1+...+(2m−1)lm−1 > A

hold. Observe that if r(k) > 0, then there exists (l1, . . . , lm−1) ∈ Nm−1 with
1
m l1 + . . .+ m−1

m lm−1 = k and

m(m+ 1)k = (m+ 1) (l1 + . . .+ (m− 1)lm−1)

≥ (m+ 1)l1 +
m+ 2

2
2l2 + . . .+

2m− 1

m− 1
(m− 1)lm−1 > logA/ log 2,

i.e.

S1 ≪m

∑

k∈ 1
m

N
m(m+1)k>logA/ log 2

km−22−k ≪m,ǫ A
− 1

m(m+1)
+ǫ.

Note that the upper bound for S1 also holds for A ≤ 1 and ǫ < 1
m(m+1) .

We now turn to the sum in the statement of the lemma. If vr is a square-free

natural number and dr = gcd(v
e(m+r)
r , q), then we can write

dr = dr,1d
2
r,2 . . . d

e(m+r)
r,e(m+r), µ2(dr,j) = 1, ∀1 ≤ j ≤ e(m+r), gcd(dr,j , dr,j′) = 1, ∀j 6= j′.

Writing vr = v′r
∏e(m+r)

j=1 dr,j and d′r =
∏e(m+r)

j=1 dr,j we find that

S2 :=
∑

vr∈N, 1≤r≤m−1
∏m−1

r=1 vm+r
r >A

m−1∏

r=1

µ2(vr) gcd(v
e(m+r)
r , q)

1
em

v
(m+r)/m
r

≪
∑

dr,1d2
r,2...d

e(m+r)

r,e(m+r)
|q, 1≤r≤m−1

∑

v′
r∈N, 1≤r≤m−1

∏m−1
r=1 (d′

rv
′
r)

m+r>A

m−1∏

r=1

d
1

em
r

(d′rv
′
r)

(m+r)/m

≪
∑

dr,1d2
r,2...d

e(m+r)

r,e(m+r)
|q, 1≤r≤m−1

m−1∏

r=1

(
d

1
em
r

d
′m+r

m
r

)
∑

v′
r∈N, 1≤r≤m−1

∏m−1
r=1 (d′

rv
′
r)

m+r>A

m−1∏

r=1

1

(v′r)
(m+r)/m
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By using the upper bound for S1 we find that for ǫ > 0 sufficiently small

S2 ≪ǫ,m

∑

dr,1d2
r,2...d

e(m+r)

r,e(m+r)
|q, 1≤r≤m−1

m−1∏

r=1

(
d

1
em
r

d
′m+r

m
r

)
A− 1

m(m+1)
+ǫ

(
m−1∏

r=1

(d′r)
m+r

) 1
m(m+1)

≪ǫ,m A− 1
m(m+1)

+ǫ
∑

dr,1d2
r,2...d

e(m+r)

r,e(m+r)
|q, 1≤r≤m−1

m−1∏

r=1

(
d

1
em
r (d′r)

−m+r
m+1

)

≪ǫ,m A− 1
m(m+1)

+ǫ
∑

dr,1d2
r,2...d

e(m+r)

r,e(m+r)
|q, 1≤r≤m−1

m−1∏

r=1

d
1

em
− m+r

e(m+r)(m+1)
r

≪ǫ,m A− 1
m(m+1)

+ǫ
∑

dr|q, 1≤r≤m−1

m−1∏

r=1

d
1

em(m+1)
r ≪ǫ,m A− 1

m(m+1)
+ǫq

m−1
em(m+1)

+ǫ. �

Lemma 6.2 shows that we can bound f2(q, T, s, t) by

f2(q, T, s, t) ≪
n∑

i=1

(
T

τi

)− 1
mi(mi+1)

+ǫ

q
mi−1

emi(mi+1)+ǫ
.

In the following we write ∆i =
mi−1

emi(mi+1) . Then (6.7) is bounded by

S3 := BΓ
n∑

i=1

∞∑

q=1

q−Γ/e+∆i+ǫ
∑

(s,t)∈Td(∞)

n∏

j=1

(
gcd(τej , q)

τej

) 1
emj

(
B

τi

)− 1
mi(mi+1)

+ǫ

≪ BΓ
n∑

i=1

B
− 1

mi(mi+1)
+ǫ

∑

(s,t)∈Td(∞)

∞∑

q=1

q−Γ/e+∆i+ǫτ
1

mi(mi+1)

i

n∏

j=1

(
gcd(τej , q)

τej

) 1
emj

.

As we will encounter similar expressions in our further analysis, we introduce for
E,D > 0 and d squarefree the following sum

Sd(D,E) := dE
∑

(s,t)∈Td(∞)

∞∑

q=1

q−Γ/e+D+ǫ
n∏

j=1

(
gcd(τej , q)

τej

) 1
emj

.

We write q = q1q2 with gcd(q1, d) = 1 and such that all prime divisors of q2
divide d. With this we obtain that

Sd(D,E) ≪ dE
∑

(s,t)∈Td(∞)

∞∑

q1=1

q
−Γ/e+D+ǫ
1

∞∑

q2=1
p|q2⇒p|d

q
−Γ/e+D+ǫ
2

n∏

j=1

(
gcd(τej , q2)

τej

) 1
emj

.

If we assume −Γ/e + D < −1, then the sum over q1 is absolutely convergent.
For a given vector (s, t) ∈ Td(∞) and a prime p we write τj,p for the power of p
which exactly divides τj . We find that

Sd(D,E) ≪
∑

(s,t)∈Td(∞)

dE
∏

p|d




∞∑

l=0

pl(−Γ/e+D+ǫ)
n∏

j=1

(
gcd(τej,p, p

l)

τej,p

) 1
emj



 .

We now split the summation over l into the term l = 0, where we use the inequality
τj,p ≥ pmj , and we bound the rest by a geometric sum for l ≥ 1 using gcd(τej,p, p

l) ≤



20 MARTA PIEROPAN AND DAMARIS SCHINDLER

τej,p,

Sd(D,E) ≪D

∑

(s,t)∈Td(∞)

dE+ǫ
∏

p|d

(
p−n + p−Γ/e+D+ǫ

)

≪D dǫ
∏

p|d

(
pE−n + p−Γ/e+D+E+ǫ

)

If −Γ/e+D + E < −1, then we deduce that

Sd(D,E) ≪D d−1−η (6.9)

for some η > 0.
Applying equation (6.9) to S3 with D = ∆i and E = 2mi−1

mi(mi+1) we obtain S3 ≪
BΓ−ηd−1−η, for some η > 0. Hence,

Fd(B) = ce,dB
Γ +O(BΓ(d−1−ηB−η + F1 + F2 + F3)).

We use the bound in (6.8) and apply equation (6.9) with D = E = 0 to get
ce,d ≪ d−1−η.

It remains to estimate the error terms F1, F2, F3. We rewrite F1 as follows:

F1 = Beδ(2(n−1)+5)
n∑

l=1

B
− 1

ml

∑

(s,t)∈Td(B)

∑

ṽ∈Vs,t(B)

∏

1≤j≤n
j 6=l

γ
− 1

emj

j .

As in [BY21, §3] and [BBK+23, §6], we have

F1 ≪ B− 1
mn(mn+1)

+eδ(2(n−1)+5)
∑

(s,t)∈Td(B)

n∏

j=1

τ
− 1

mj+1

j

≪ d
−

∑n
j=1

mj
mj+1+ε

B− 1
mn(mn+1)

+eδ(2(n−1)+5),

where the last estimate follows from

∑

(s,t)∈Td(B)

n∏

j=1

τ
− 1

mj+1

j ≤
∑

(s,t)∈Td(B)

n∏

j=1

σ
−

mj
mj+1

j

≤ d
−

∑n
j=1

mj
mj+1 ♯Td(B) ≪ d

−
∑n

j=1

mj
mj+1+ε

.

by (6.2). Combining the arguments for F3 in [BY21, §3] and in [BBK+23, §6] and
the estimate above we have

F3 ≪ B−eδΘe+ǫ
∑

(s,t)∈Td(B)

n∏

j=1

τ
− 1

mj+1

j ≪ d
−

∑
n
j=1

mj

mj+1+ǫ
B−eδΘe+ǫ.

Since
∑n

j=1
mj

mj+1 ≥ 2
3n > 1 is satisfied for n ≥ 2, we have F1, F3 ≪ d−1−ηB−η for

a suitable η > 0. Since

F2 = B−eδ
∞∑

q=1

q1−Γ/e+ǫf1(q)f2(q),

the estimate (6.8) combined with (6.9) forD = 1 andE = 0 yields F2 ≪ d−1−ηB−eδ,
as Γ/e > 2. �

By Lemma 6.1 and [PS24, Lemma 5.6]

Fd(B1, . . . , Bs) =

s∏

i=1

(
cM,iB

̟i

i +O(dνi+ε
i B̟i−δ

i )
)
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where

̟i =

{∑ni

j=1
1

mi,j
− ei if i ≤ t,

∑ni

j=1
1

mi,j
if i > t,

(6.10)

νi < −1 for i ≤ t, νi = − 2
3ni if i > t, cM,i is the constant cei,di

defined in (6.5)

if i ≤ t, and cM,i = 2ni

(∏ni

j=1 cmi,j ,di

)
, where cmi,j ,di

is the constant defined in

[PS24, (5.11)].
Thus

Fd(B1, . . . , Bs) = CM,d

s∏

i=1

B̟i

i +O

(
CE,d( min

1≤i≤s
Bi)

−δ
s∏

i=1

B̟i

i

)
,

where

CM,d =

s∏

i=1

cM,i. (6.11)

Lemma 6.1 and [PS24, (5.14), (5.15)] give CM,d, CE,d ≪ ∏s
i=1 d

−βi

i with βi > 1
whenever ni ≥ 2, and βi >

2
3 −ε otherwise. For ε > 0 sufficiently small, βi+βj > 1

for every i, j ∈ {1, . . . , s}. Thus, if fβ1,...,βs
≤ 1, by Remark 2.4(iv) then there

exists an index ĩ ∈ {1, . . . , s} such that ĩ ∈ Iσ for all σ ∈ Σmax and nĩ = 1. Then
the ray ρĩ,1 is contained in no maximal cone of Σ, contradicting the fact that X is
proper.

Since ci,j 6= 0 for all i ∈ {1, . . . , t}, j ∈ {1, . . . , ni}, the adjunction formula
[MR192, Proposition 16.4] gives KV = (KX +H1 + · · ·+Ht)|V . Since
s∑

i=1

̟iDi = −KX−
s∑

i=1

ni∑

j=1

(1− 1

mi,j
)Di+

t∑

i=1

eiDi = −(KX+[Dm|X ]+[H1+· · ·+Ht]),

Lemma 3.1 gives

NV (B) = cB(logB)b−1 +O(B(logB)b−2(log logB)s),

where b = rkPic(X), and c is defined in (3.7) with k = b− 1, CM,d given by (6.11),
and ̟1, . . . , ̟s given by (6.10). Moreover, the restriction Pic(X) → Pic(V ) is an
isomorphism as ni ≥ 3 for 1 ≤ i ≤ t. �
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conjecture over number fields. Ann. Sci. Éc. Norm. Supér. (4), 49(4):757–811, 2016.
[HB96] D. R. Heath-Brown. A new form of the circle method, and its application to quadratic

forms. J. Reine Angew. Math., 481:149–206, 1996.
[Hu20] L. Q. Hu. Counting rational points on biprojective hypersurfaces of bidegree (1, 2).

J. Number Theory, 214:312–325, 2020.
[Mig15] Teddy Mignot. Points de hauteur bornée sur les hypersurfaces lisses de l’espace tripro-

jectif. Int. J. Number Theory, 11(3):945–995, 2015.
[Mig16] T. Mignot. Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques.

Acta Arith., 172(1):1–97, 2016.
[Mig18] Y. Mignot. Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques.
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