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Abstract

In recent years the framework of learning from label proportions (LLP) has been gaining
importance in machine learning. In this setting, the training examples are aggregated into
subsets or bags and only the average label per bag is available for learning an example-level
predictor. This generalizes traditional PAC learning which is the special case of unit-sized bags.
The computational learning aspects of LLP were studied in recent works [21, 22] which showed
algorithms and hardness for learning halfspaces in the LLP setting. In this work we focus on the
intractability of LLP learning Boolean functions. Our first result shows that given a collection
of bags of size at most 2 which are consistent with an OR function, it is NP-hard to find a CNF
of constantly many clauses which satisfies any constant-fraction of the bags. This is in contrast
with the work of [21] which gave a (2/5)-approximation for learning ORs using a halfspace. Thus,
our result provides a separation between constant clause CNFs and halfspaces as hypotheses for
LLP learning ORs.

Next, we prove the hardness of satisfying more than 1/2 + o(1) fraction of such bags using
a t-DNF (i.e. DNF where each term has ≤ t literals) for any constant t. In usual PAC learning
such a hardness was known [15] only for learning noisy ORs. We also study the learnability
of parities and show that it is NP-hard to satisfy more than (q/2q−1 + o(1))-fraction of q-sized
bags which are consistent with a parity using a parity, while a random parity based algorithm
achieves a (1/2q−2)-approximation.

1 Introduction

In common machine learning applications, one is required to train a classifier using some training
set of (vectors, label)-pairs to predict the label of vectors sampled from the same (or a similar)
distribution as the training set. A typical approach is to optimize the classifier to predict correctly
on the training set to ensure that the classifier has good predictive performance over the target dis-
tribution. This optimization view is captured by the probably approximately correct (PAC) learning
framework [23].

In setting of learning from label proportions (LLP), the training set consists of subsets or bags
of vectors along with the sum or average of the labels of vectors in each bag. The goal is to train
a model to predict the labels for vectors. As before, one would want the model to firstly predict
as correctly as possible on the training bags. One measure of such performance is the fraction
of satisfied bags i.e., those on which the predicted average label matches the given average label
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i.e., the label proportion. Note that traditional PAC learning is the special case of LLP with only
unit-sized bags.

LLP is motivated by applications in which only the aggregated labels for bags of vectors are
available. This may be to preserve the privacy [20, 24, 16] of labels, due to lack of instrumentation
to obtain labels [9] or high labeling costs [8]. Other examples of LLP applications have been in
medical image classification [14, 5, 17] where small bag sizes – in the range of 10 to 50 – are typically
more relevant (see Sec 1.2 of [4]).

The work of [21] studied LLP from the computational learning perspective on bags of size ≤ 2.
The LLP learning goal is the following: given a collection of bags consistent with some function
from a target concept class, compute a hypothesis satisfying the most number of bags. With this
objective, [21] showed a (1/2+o(1))-factor hardness for LLP learning a halfspace using any function
of constantly many halfspaces on bags of size at most 2. From the algorithmic side on such bags [21]
gave a (2/5)-factor approximation for LLP learning a halfspace using halfspace, based on rounding a
semi-definite programming (SDP) relaxation. Subsequently, [22] proved a strengthened (4/9+o(1))-
factor hardness for LLP learning a halfspace using any function of constantly many halfspaces on
bags of size at most 2, a corresponding (1/q + o(1))-factor hardness for bags of size at most any
constant q ∈ Z+, and extended the algorithmic result of [21] showing a (1/12)-approximation on
bags of size at most 3.

Since halfspaces capture OR formulas, the algorithmic results of [21, 22] apply to learning OR

formulas using halfspaces. Moreover, the (1/2 + o(1))-factor hardness of [21] on bags of size ≤ 2
also holds for LLP learning an OR using any function of constantly many halfspaces. Typically
however, one would like to learn an OR using an OR or similar Boolean functions such as ℓ-clause
CNF formulas (OR is 1-clause CNF), rather than halfspaces. This raises the following question

Can we achieve constant-factor algorithmic approximations for LLP learning OR using OR or
constant-clause CNF?

In our first result, we answer the above question in the negative.

Theorem 1.1. For any constants δ > 0, ℓ ∈ Z+, given a collection of bags which are of size at most
2, and whose label proportions are consistent with some OR, it is NP-hard to compute an ℓ-clause
CNF that satisfies δ-fraction of the bags.

The above theorem is proved in Sec. 3. We find the result interesting since it (along with the
algorithmic results of [21, 22]) proves a separation between constant clause CNFs – in particular
ORs – and halfspaces as hypotheses for learning ORs.

We also study the LLP learnability of OR using as hypothesis ℓ-DNF formulas i.e., DNF where
each term is a conjunction of at most ℓ literals. While OR is 1-DNF, for ℓ ≥ 2, ℓ-DNFs are not
contained in halfspaces, therefore have the possibility of yielding better approximations. However,
our second result below (proved in Sec. 4) essentially rules out this possibility.

Theorem 1.2. For any constants δ > 0, ℓ ∈ Z+, given a collection of bags which are of size at most
2, and whose label proportions are consistent with some OR, it is NP-hard to compute an ℓ-DNF

that satisfies (1/2 + δ)-fraction of the bags.

Note that while the hardness factor achieved above is weaker than that of Theorem 1.1, no
inapproximability is known for the real analogue of Theorem 1.2 i.e., LLP learning halfspaces using
polynomial thresholds.
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While the works of [21, 22] studied the LLP learnability of halfspaces, the corresponding problem
over finite fields has not been studied. In particular, the F2-version of this problem is equivalent to
the LLP learnability of parities using parities over the Boolean domain. Parities are a fundamental
class of Boolean functions which makes this problem of significant interest as well. Our next result
however, shows that this is hard to approximate, with the inapproximability growing exponentially
as the bag size increases.

Theorem 1.3. For any constants δ > 0, q ∈ Z+ (q ≥ 2), given a collection of bags which are of size
at most q, and whose label proportions are consistent with some parity, it is NP-hard to compute a
parity that satisfies (q/2q−1 + δ)-fraction of the bags.

The above is proved in Section 5. The hardness factor is asymptotically close (for large q) to
the following (1/2q−2)-approximation for this problem described in Sec. 6.

Theorem 1.4. For any q ∈ Z+, q ≥ 2, given a collection of bags which are of size at most q,
and whose label proportions are consistent with some parity, there is a randomized polynomial time
algorithm that satisfies (1/2q−2)-fraction of the bags in expectation.

Note that, when q = 1 i.e., all bags are of size 1, one can deterministically satisfy all bags using
Gaussian elimination.

1.1 Previous Related Work

The formalization of the LLP framework was first done in the work of [25] who proved generalization
error bounds for classifiers for any distribution over (bag, label-proportion)-pairs, though their bag-
level objective was a relaxed notion – useful for studying LLP with large bag sizes – of the strict bag
satisfaction used in [21, 22] and our work. Related recent works [6, 7] have shown bag-to-instance
classification generalization error bounds. The study of LLP learnability of specific function classes
has nevertheless been fairly sparse, apart from the works of [21, 22] whose contributions have been
described earlier in this section.

The learnability of small Boolean formulas has been extensively studied in traditional PAC
learning. It is well known that an OR can be efficiently learnt by an OR up to arbitrary accuracy. On
the other hand, [15] proved a (1/2+o(1))-factor hardness for learning a 2-clause CNF using constant
clause CNF, and the same hardness factor for learning a noisy OR using ℓ-DNF for any constant ℓ.
The work of [10] proved the same hardness for learning noisy OR with a halfspace as hypothesis.
These results were further generalized by [11] who proved the same hardness factors for learning
2-clause CNF and noisy OR using any function of constantly many halfspaces as hypothesis. Similar
to OR, parities can also be efficiently learnt by parities using Gaussian elimination over F2. On the
other hand, the (1/2+o(1))-factor hardness for noisy Max-3-Lin by [13] implies the same hardness
factor for learning a noisy parity using a parity. Note that all the (1/2 + o(1))-factor hardness
results are tight since one of the constant 0 or 1 functions trivially obtain (1/2)-approximation for
learning Boolean valued functions. However, this trivial threshold does not hold in the LLP setting
since the constant functions are not guaranteed to satisfy even one bag.

The above hardness results carry over to the LLP setting for the special case when all bags are
unit-sized. However, we prove hardness of approximating the problems of LLP learning OR and
parity without any noise, which are tractable in the usual PAC case, thereby showing a qualitative
difference between the LLP and PAC settings.
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1.2 Overview of Our Techniques

Proof of Theorem 1.1. Our reduction is from bipartite Label-Cover [1] with N and M as the
sizes of the smaller and larger label sets respectively, and is similar to that of [15] for the hardness
of learning noisy OR. The high-level approach is to have one coordinate for each vertex-label pair on
the larger (right) side of the Label-Cover instance, i.e. the variables are xv,i for v ∈ V and i ∈ [M ].
Fix a random sample of 2t vertices {v̂1, . . . , v̂t, ṽ1, . . . , ṽt} from a neighborhood of a left vertex u.
For simplicity assume that the projection constraints between u and each of the 2t vertices are the
same i.e, for each label j ∈ [N ] for u there is a subset Sj ⊆ [M ] such that assigning any of the 2t
vertices with a label from Sj satisfies that edge.

A 2-sized bag with label proportion 1/2 is sampled by letting J ⊆ [N ] be a random subset, and
for the first point x setting only the coordinates {xv̂r ,i | πv̂ru(i) ∈ J, r ∈ [t]} to be 1, and for the
second point z only the coordinates {zṽr ,i | πṽru(i) ∈ J, r ∈ [t]} to be 1. It is easy to see in the YES
case that an OR of exactly the coordinates (v, ρ(v)) – where ρ is the satisfying labeling – for each
right vertex v, satisfies all such bags. For the NO case, we illustrate the analysis of an OR formula
C which satisfies some constant fraction of the bags. From the o(1)-Hamming weight of the points,
one can assume that C has no negated literals. If C has no coordinates of the 2t vertices (empty
case) then the bag is anyway not satisfied as C evaluates to 0 on both points.

On the other hand, if a sufficiently large number of these vertices have a corresponding variable
in C (dense case), then elementary probabilistic arguments yield at least two vertices among the
2t which have their pre-decided distinguished variables in C with the same projection, leading to
a good randomized labeling to the Label-Cover. A key idea for ensuring that this analysis goes
through is to sample t u.a.r. from {1, . . . , 2T } for some large T so that for each u and most values
of t, nearly all samples of the 2t vertices are either the empty case or the dense case.

Proof of Theorem 1.2. The hardness reduction is similar to the above, except that we need to
ensure that a significant fraction of vertices have at least one term in which all the positive literals
correspond to its coordinates, while none of the negated literals do. Thereafter a similar analysis
as the previous case goes through. However, for ensuring this property we introduce an additional
distribution over bags of size 1 and label proportion 1, essentially saying that for each vertex the
point with all its coordinates to 1 and the rest to 0 should be 1-labeled. Due to this we obtain a
(1/2 + o(1))-factor hardness in this case.

Proof of Theorem 1.3. While the reductions above create points in a bag whose active coordinates
span the edges of the label-cover, in the parity case we can add homogeneous F2-linear folding
constraints which ensure consistency of labels across edges via a reduction from the non-bipartite
Smooth Label-Cover [12]. It is sufficient to then describe a dictatorship test (see Chap. 7 of [18])
on the M coordinates of a single vertex. Our dictatorship test is a distribution over q-sized bags,
i.e., q points in the hypercube FM2 , sampled as follows: independently for each i ∈ M , set exactly
one of the q points to 1 in the i’th coordinate and the rest to 0. All these bags have target label
proportion 1/q which is satisfied by any dictator, i.e., parity given by a single coordinate. On the
other hand, any parity over a much larger number K of coordinates will induce a near-uniform
distribution over the q-sized vector of labeling to the points of a random bag. In fact, this is close
to the uniform distribution over the points of F

q
2 with even or odd (depending only on q and K)

number of non-zero coordinates. It is then easy to see that such a distribution will satisfy the 1/q
label proportion of the bags with probability ≈ q/2q−1.

The algorithm for this problem first does Gaussian elimination for all the linear constraints given
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by bags of label proportion {0, 1} and obeying the bag-level parity constraints for the remaining
bags. It then chooses a random parity from the remaining coordinates. We show that this yields
an 1/2q−2 approximation.

2 Preliminaries

2.1 Problem Definitions

Consider the space {0, 1}d for some d ∈ Z+ and some function f : {0, 1}d → {0, 1}. For B ⊆ {0, 1}d,
define σ(B, f) := |{x ∈ B | f(x) = 1}| /|B| to be the corresponding label proportion.

An instance I of LLP-OR[q] is given by a collection B := {(Bj , σj)}mj=1 of bags and their label
proportions where each bag is of size at most q. The goal is to find an OR function h(x) which
satisfies the most bags of B i.e., maximize |{j ∈ [m] | σj = σ(Bj , h)}|.

An instance I of LLP-PARITY[q] is similar to the above except that the goal accordingly is to
compute a parity maximizing the number of satisfied bags. Since the XOR is simply an addition
over F2 we shall think of the Boolean values as elements of F2 in this case.

2.2 Label Cover

Definition 2.1. An instance of L of Label-Cover is given by (G(U, V,E ⊆ V × U),M,N, {πvu :
[M ]→ [N ]}e=(v,u)∈E) where G(U, V,E) is a bi-regular bipartite graph. A labeling ρ assigning labels
from [N ] to U and [M ] to V satisfies an edge (u, v) iff πvu(ρ(v)) = ρ(u). The goal is to find a
labeling satisfying the most number of edges.

The following well-known inapproximability of Label-Cover follows from the the PCP Theorem [3,
2] along with the Parallel Repetition Theorem [19].

Theorem 2.2. For any constant ξ > 0 there exist M and N such that it is NP-hard, given an
Label-Cover instance L(U, V,E,M,N, {πvu}e=(v,u)∈E) to distinguish between: (i) YES case: there is
labeling that satisfies all edges in E, or (ii) NO case: Any labeling satisfies at most ξ fraction of the
edges of E.

2.3 Smooth Label Cover

Unlike the standard bipartite version in Definition 2.1 we also use a non-bipartite version with useful
structural properties defined below.

Definition 2.3. An instance of Smooth-Label-Cover L(G(V,E), N,M, {πev | e ∈ E, v ∈ e}) consists
of a regular connected (undirected) graph G(V,E) with vertex set V and edge set E. Every edge
e = (v1, v2) is associated with projection functions {πevi}2i=1 where πevi : [M ] → [N ]. A vertex
labeling is a mapping defined on ρ : V → [M ]. A labeling ρ satisfies edge e = (v1, v2) if πev1(ρ(v1)) =
πev2(ρ(v2)). The goal is to find a labeling which satisfies the maximum number of edges.

The following theorem is proved in Appendix A of [12].

Theorem 2.4. There exists a constant c0 > 0 such that for any constant integer parameters Q,R ≥
1, it is NP-hard to distinguish between the following two cases for a Smooth Label Cover instance
L(G(V,E), N,M, {πev | e ∈ E, v ∈ e}) with M = 7(Q+1)R and N = 2R7QR:
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• (YES Case) There is a labeling that satisfies every edge.

• (NO Case) Every labeling satisfies less than a fraction 2−c0R of the edges.

In addition, the instance L satisfies the following properties:

• (Smoothness) For any vertex w ∈ V , ∀i, j ∈ [M ], i 6= j, Pre∼w [πew(i) = πew(j)] ≤ 1/Q,
where the probability is over a randomly chosen edge incident on w.

• (Weak Expansion) For any δ > 0, let V ′ ⊆ V and |V ′| = δ · |V |, then the number of edges
among the vertices in |V ′| is at least δ2|E|.

2.4 Tail Bounds

We use the Chernoff bound stated as follows.

Lemma 2.5 (Chernoff Bound). Suppose X1, . . . ,Xn and independent {0, 1}-valued random variables
with S =

∑n
i=1Xi and µ = E[S]. Then, Pr[S ≤ (1− δ)µ] ≤ exp(−δ2µ/2) for any δ > 0.

3 Hardness of LLP Learning OR using ℓ-clause CNF

We prove the following hardness reduction which along with Theorem 2.2 implies Theorem 1.1.

Theorem 3.1. For any constants δ > 0 and ℓ ∈ Z+, there is a polynomial time reduction from an
instance L of Label-Cover to an LLP-OR[2] instance B s.t.
YES Case: If L is YES instance then there is an OR consistent with all the bags of B.
NO Case: If L is a NO instance then there is no ℓ-clause CNF formula satisfying at least δ-fraction
of the bags.

We begin with the following useful technique. Let T ≥ 10 be a large integer and consider the
set T = {2, 4, . . . , 2T }. For any s ∈ R+ define the subsets L(s), R(s) ⊆ T as

L(s) := {t ∈ T | t ≤ s/
√
T} and R(s) := {t ∈ T | t ≥ s ·

√
T}. (1)

We have the following simple lemma:

Lemma 3.2. For any s ∈ R+, L(s) ∩R(s) = ∅ and |L(s)|+ |R(s)| ≥ |T| − 2 log T .

Proof. Since T > 1, L(s) ∩ R(s) = ∅ by definition. Let t′ ∈ T be the smallest element which is
larger than s/

√
T and t′′ ∈ T be the largest element smaller than s

√
T . By definition, we have that

T \ (L(s) ∪R(s)) = [t′, t′′]∩ T. Note also that t′′/t′ ≤ T , and thus |[t′, t′′] ∩ T| ≤ log T + 1 ≤ 2 log T
since T ≥ 10, which completes the proof.

3.1 Hardness Reduction

The hardness reduction is from a Label-Cover instance L(U, V,E ⊆ V × U,M,N, {πvu : [M ] →
[N ]}e=(v,u)∈E). We shall use T as defined above for some large enough choice of T depending on
δ and ℓ. Note that T is a constant compared to |V | which is an increasing value. The underlying
space of the vectors is X = {0, 1}V ×[M ] i.e., a vector x ∈ X is given by x = (xv,i)v∈V,i∈[M ]. The
reduction yields a distribution DB over 2-sized bags and all bags B in its support have the label
proportion σ = 1/2. A random bag from DB is given by the following steps:
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1. Sample t uniformly at random from T.

2. U.a.r. sample a vertex u ∈ U .

3. Independently and u.a.r. sample vertices V x
u = {v̂1, . . . , v̂t} and V z

u = {ṽ1, . . . , ṽt} from the
neighborhood N(u) of u in V .

4. Randomly sample J ⊆ [N ], and let J = [N ] \ J .

5. Define a point x ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

xv,i =

{

1 if v ∈ V x
u and πvu(i) ∈ J

0 otherwise.
(2)

6. Define another point z ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

zv,i =

{

1 if v ∈ V z
u and πvu(i) ∈ J

0 otherwise.
(3)

7. Output (B = {x, z}, σB = 1/2).

In particular, observe that the points x and z are zero outside of the coordinates corresponding to
the vertices in V x

u ∪ V z
u .

YES Case. Consider a labeling ρ to the vertices of L that satisfy all the edges. Define the OR,
h∗(x) =

∨

v∈V xv,ρ(v). Let u be the choice in Step 2 above, and assume that ρ(u) ∈ J as chosen in
Step 4. Then, we know that for all v ∈ V x

u ∪ V z
u (as chosen in Step 3), πvu(ρ(v)) = ρ(u) ∈ J . By

construction of x and z therefore, h∗(x) = 1 and h∗(z) = 0, and thus B is satisfied by h∗. Similarly,
when ρ(u) ∈ J , we obtain that h∗(x) = 0 and h∗(z) = 1.

3.2 NO Case

Assume for a contradiction an ℓ-clause CNF formula h′ s.t. PrB←DB
[h′ satisfies B] ≥ δ. From

the bi-regularity of L, if any clause of h′ contains a negated literal then with probability at least
1−2t/|V | the literal’s coordinate is not from those of the vertices in V x

u ∪V z
u and the clause evaluates

to 1 on both points of a random bag B ← DB. Removing all such clauses we obtain r-clause CNF

h = C1 ∧ · · · ∧Cr (r ≤ ℓ) that satisfies at least δ − 2tℓ/|V | ≥ δ/2 fraction of the bags (since we can
take |V | ≫ 2T+2ℓ/δ as |V | is super-constant). We have the following lemma.

Lemma 3.3. For any constant ζ > 0, there is a choice of T = T (ζ) s.t. for any Ci (i ∈ [r]),
PrB=(x,z)←DB

[Ci(x) 6= Ci(z)] ≤ ζ.

Using the above lemma, the NO case proof can be completed by taking ζ = δ/(6ℓ). By a union
bound, the probability that any one of C1, . . . , Cr evaluates differently on x and y is at most δ/6.
This also upper bounds the probability of satisfying the bags of DB, contradicting our assumption.

Proof of Lemma 3.3. Fix any clause C ∈ {C1, . . . , Cr}, and from our construction above C has no
negated literals. Call a vertex which has at least one variable from C as non-empty, otherwise call
it empty. For each non-empty vertex v arbitrarily choose iv such that the (v, iv)-th variable is in C.
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For each u ∈ U let µ(u) denote the fraction of its neighbors which are non-empty. In our analysis
below we shall be collecting the error probabilities using

Pr [A] ≤ Pr [A ∩B] + Pr
[

B̄
]

, and Pr [A ∩B] ≤ min {Pr [A] ,Pr [A | B]} (4)

for any two events A and B, where B̄ denotes the complement of B.
We will first bound γ which we define to be the probability over the choice of t, u, V x

u and V z
u

that there is a pair of non-empty vertices v, v′ ∈ V x
u ∪ V z

u s.t. πvu(iv) = πv′u(iv′). We call this
event Ψ. In this case we can construct a randomized partial labeling ρ for the vertices of L as
follows: for each v ∈ V which is non-empty, assign it the label iv defined above. For each u, select
a random neighbor vu and assign u the label πvuu(ivu) if vu is non-empty. Since t ≤ 2T we obtain
that this randomized labeling satisfies in expectation at least maxt γ/(2t)

2 = γ/
(

22(T+1)
)

fraction
of the edges. Choosing the soundness of L to be small enough one can ensure that γ ≤ ζ/100.

We consider two the cases for t and u below, and in each of them (setting B = Ψ in (4)) we can
assume that Ψ does not occur, while incurring at most ζ/100 probability error.

Case I: t ∈ L(1/µ(u)). In this case the probability that there is non-empty vertex in V x
u ∪V z

u is at

most 2tµ(u) ≤ 2
(

1/
√
T
)

(1/µ(u))µ(u) ≤ 2/
√
T . Therefore, except with probability at most 2/

√
T ,

C evaluates to zero on x and z.

Case II: t ∈ R(1/µ(u)). We shall first show that w.h.p. V x
u contains a significant number of

non-empty vertices, and given that happens, w.h.p. C evaluates to 1 on x. The expected number

of non-empty vertices in V x
u is tµ(u) ≥

(√
T/µ(u)

)

µ(u) ≥
√
T . Therefore, by the Chernoff bound

(see Lemma 2.5), except with probability exp
(

−
√
T/8

)

, the number of non-empty vertices is at

least
√
T/2. From the assumption that Ψ does not occur, for all pairs of non-empty vertices

v, v′ ∈ V x
u , πvu(iv) 6= πv′u(iv′). Thus, each {xv,iv | v ∈ V x

u , v is non-empty } is independently

set to 1 with probability 1/2. In particular, except with probability (1/2)
√
T/2, at least one of

{xv,iv | v ∈ V x
u , v is non-empty } is set to 1 and thus C evaluates to 1 on x. The same argument

as above also works for V z
u and z.

From the analysis of the above two cases, using Lemma 3.2 and repeated applications of (4) to
add up the error probabilities above (for V z

u and z as well in Case II) we obtain that:

Pr [C(x) 6= C(z)] ≤ 2/
√
T + ζ/100 + 2

(

log T

T
+ exp

(

−
√
T/8

)

+ 2−
√
T/2

)

(5)

Choosing T to be 100/ζ2 we can ensure that the above probability is at most ζ.

4 Hardness of LLP Learning OR using ℓ-DNF

This section proves the following hardness reduction which implies Theorem 1.2.

Theorem 4.1. For any constants δ > 0 and ℓ ∈ Z+, there is a polynomial time reduction from an
instance L of Label-Cover to an LLP-OR[2] instance B s.t.
YES Case: If L is YES instance then there is an OR consistent with all the bags of B.
NO Case: If L is a NO instance then there is no ℓ-DNF formula satisfying at least (1/2+δ)-fraction
of the bags.
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4.1 Hardness Reduction

The setup is the same as in the previous section. The reduction outputs a distribution DB over
two types of bags with equal probability: (i) the first type has size 1 with label proportion 1, (ii)
the second type has size 2 and label proportion 1/2. With T being a large enough constant to be
chosen later, the following steps define a random bag of DB.

1. U.a.r. sample a vertex u ∈ U .

2. With probability 1/2 do the following:

(a) U.a.r. sample vertex v ∈ N(u) and create the point x(v) as follows: set all coordinates

{x(v)v,i }Mi=1 to 1, and set all the other coordinates to 0.

(b) Output
(

B = {x(v)}, σB = 1
)

.

3. With the remaining probability 1/2 do the following:

(a) Independently and u.a.r. sample vertices V x
u = {v̂1, . . . , v̂T } and V z

u = {ṽ1, . . . , ṽT } from
the neighborhood N(u) of u in V .

(b) Randomly sample J ⊆ [N ], and let J = [N ] \ J .

(c) Define a point x ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

xv,i =

{

1 if v ∈ V x
u and πvu(i) ∈ J

0 otherwise.
(6)

(d) Define another point z ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

zv,i =

{

1 if v ∈ V z
u and πvu(i) ∈ J

0 otherwise.
(7)

(e) Output (B = {x, z}, σB = 1/2).

YES Case. This is easy to see using the same OR formula h∗ defined in the previous section.
Using the same arguments h∗ satisfies all the bags of size 2 from DB. Further, h∗ has exactly one
(positive) literal from the coordinates corresponding to each v ∈ V so that h∗(x(v)) = 1 where x(v)

is as defined in Step 2a. of DB. Thus, h∗ satisfies all the bags of size 1 as well.

4.2 NO Case

Let us assume that there is an ℓ-DNF h that satisfies 1/2 + δ fraction of the bags of DB. First,
observe that if h has a term consisting only of negated literals, then from the bi-regularity of L and
a union bound that term will not have any coordinate from among the vertices chosen in Step 3a
with probability at least 1− 2Tℓ/|V |. Thus, h will have label proportion 1 on at least 1− 2Tℓ/|V |
fraction of the 2-sized bags i.e., h will not satisfy them, implying that the maximum fraction of bags
satisfied by h is 1/2 + Tℓ/|V |. This is a contradiction since |V | = ω(Tℓ) and can be taken to be
large enough. Thus, we may assume that h does not have a term of only negated literals.

9



Before proceeding, let us call a v ∈ V as non-empty if h has a term in which all the positive
literals correspond to v and none of the negated literals correspond to v. Let Γ(v) be an arbitrary
map from each non-empty v to one such term corresponding to it. Note that Γ(v) is injective.
Further, define ∆(v) to be the set of all indices i ∈ [M ] such that the positive literal corresponding
to (v, i) occurs in Γ(v).

Define for each u ∈ U , κu to be the probability that the choice of V x
u and V z

u in Step 3a satisfies
that there exists a pair v, v′ ∈ V x

u ∪V z
u of non-empty vertices such that πvu (∆(v))∩πv′u (∆(v′)) 6= ∅

(call these intersecting non-empty pair of vertices). Using this, let us define a randomized labeling
ρ for the vertices in L as follows: for each non-empty v ∈ V , ρ(v) is chosen u.a.r from ∆(v), and for
each u ∈ U , vu is chosen u.a.r. from N(u) and then if vu is non-empty ρ(u) set to i which is chosen
u.a.r. from ∆(vu). By standard arguments, this labeling satisfies in expectation at least κu/(4ℓ

2T 2)
fraction of the edges incident on u, and thus overall in expectation Eu[κu]/(4ℓ

2T 2) fraction of edges
of L. Choosing the soundness of L to be small enough (and since T is a constant), we can assume
that Eu[κu] ≤ δ2/200.

By averaging, for at least δ/2 fraction of u ∈ U (call them good) h satisfies at least 1/2 + δ/2
fraction of the bags from DB |u i.e., given the choice of u in Step 1. In particular from the above,

Eu[κu|u good ] ≤ δ/100. (8)

For any such good u, h must satisfy at least δ fraction of the bags of size 1 and label proportion
1 (as they constitute exactly half of the bags), implying that for at least δ-fraction of v ∈ N(v),
h
(

x(v)
)

= 1. Clearly, these vertices are non-empty for h to evaluate to 1 on them, and thus any
good u has at least δ-fraction non-empty v in N(u).

Let us fix on one such good u. First, from above we can assume by adding an error probability of
κu that in Step 3a, V x

u ∪V z
u does not contain an intersecting non-empty pair. Further, the probability

that any term in {Γ(v) | v ∈ V x
u ∪ V z

u and non-empty} contains a negated literal corresponding to
vertices in V x

u ∪ V z
u is at most 2Tℓ/dU where dU is the uniform degree on U . Since dU can be taken

to be an arbitrarily large constant, possibly by replicating V , we can assume by adding an error
probability of δ/100 that this event does not occur.

Given the above, we will show that w.h.p over the choice of a 2-sized bag, h evaluates to 1
on both x and z. We shall prove this for x, the argument for z is analogous and the conjunction
is obtained by a union bound. Since u is good, the expected number of non-empty vertices in
V x
u is at least δT . By Chernoff bound, by adding an error probability of exp(−δT/8) we can

assume there are at least δT/2 non-empty vertices in V x
u . By our assumptions above, each term in

{Γ(v) | v ∈ V x
u ∪ V z

u and non-empty} independently evaluates to 1 w.p. at least (1/2)ℓ over the
choice of x. Thus, the probability that none of them evaluate to 1 is at most (1− (1/2)ℓ)δT/2. This
analysis can be repeated for V z

u and z.
Summing up the error probabilities (using repeated applications of (4)), we obtain that:

Pr [h(x) 6= h(z)] ≤ κu + δ/100 + 2
(

exp(−δT/8) + (1− (1/2)ℓ)δT/2
)

≤ κu + δ/50 (9)

for a good u, using an appropriate choice of T = O
(

2ℓ log(1/δ)/δ
)

. By (8), the average of the
LHS of (9) over all good u is at most 3δ/100, which means that h satisfies on an average at most
1/2 + 3δ/100 bags corresponding to a random choice of good u. This is a contradiction to the
definition of good u thus completes the NO case analysis.
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5 Hardness of LLP Learning Parities

This section is devoted to proving the following hardness reduction which, along with the inapprox-
imability of Smooth-Label-Cover (Th. 2.4) proves Theorem 1.3.

Theorem 5.1. For any constants δ > 0 and q ∈ Z+, q ≥ 2, there is a polynomial time reduction
from an instance L of Smooth-Label-Cover to an LLP-PARITY[q] instance B s.t.
YES Case: If L is YES instance then there is a parity consistent with all the bags of B.
NO Case: If L is a NO instance then there is no parity satisfying at least (q/2q−1 + δ)-fraction of
the bags.

We begin with the dictatorship test below using which the hardness reduction is described and
analyzed in Sec. 5.2.

5.1 Dictatorship Test

Consider a large M ∈ Z+, and the space of vectors FM2 . For some integer q > 1, let he dictatorship
test distribution Ddict

M,q on (B,σ) be as follows:

1. Choose B =
{

x(1), . . . ,x(q)
}

where for each i ∈ [M ],
(

x
(1)
i , . . . , x

(q)
i

)

is sampled u.a.r. from
{

e(j)
}q

j=1
where e(j) ∈ F

q
2 is the jth coordinate vector.

2. Output (B,σ = 1/q).

We prove the following lemma summarizing the completeness and soundness of t Ddict

M,q.

Lemma 5.2. The distribution Ddict

M,q satisfies the following properties:
Completeness: For any i ∈ [M ] the parity function hi(x) := xi has the property that σ(B,hi) = 1/q
for any B in the support of Ddict

M,q i.e., hi satisfies all bags of Ddict

M,q.

Soundness: Let h(x) := c0⊕
⊕M

i=1 cixi be such that |{i ∈ [M ] | ci = 1}| = K ≤M . Then, h satisfies
a random (B,σ) ∼ Ddict

M,q with probability at most q/2q−1 + exp (−2K/q + q/2).

Proof. The completeness follows from construction, since for any (B,σ) ∼ Ddict

M,q, where B =
{

x(1), . . . ,x(q)
}

,
(

hi

(

x
(j)
i

))q

j=1
=
(

x
(j)
i

)q

j=1
∈
{

e(j)
}q

j=1
for all i ∈ [M ]. Therefore, σ(B,hi) =

1/q = σ, and therefore hi satisfies all the bags, for all i ∈ [M ].
The proof of the soundness is given next in Sec. 5.1.1.

5.1.1 Soundness of Ddict

M,q

Let Ih = {i ∈ [M ] | ci = 1} so that |Ih| = K. Letting B =
{

x(1), . . . ,x(q)
}

be a random bag

from Ddict

M,q, for convenience define the random variable Zj := h
(

x(j)
)

for j ∈ [q] and let DZ be

the distribution on (Z1, . . . , Zq). Since any (B,σ) in the support of Ddict

M,q has σ = 1/q, using the

construction of B =
{

x(1), . . . ,x(q)
}

we obtain

q
⊕

j=1

Zj =

q
⊕

j=1

h
(

x(j)
)

=

q
⊕

j=1

(

c0 ⊕
M
⊕

i=1

cix
(j)
i

)

=

q
⊕

j=1

c0 ⊕
⊕

i∈Ih

q
⊕

j=1

x
(j)
i

=

q
⊕

j=1

c0 ⊕
⊕

i∈Ih
1 =

q
⊕

j=1

c0 ⊕
K
⊕

i=1

1 = ψ∗ ∈ F2 (10)

11



Our goal is to show that DZ is close to Dq which we define to be the uniform distribution over the
elements of Fq2 with parity ψ∗. Towards this we prove the following lemma, which shows that the
distribution DZ has low-bias.

Lemma 5.3. Consider any strict non-empty subset S ( [q], s.t. 1 ≤ |S| = s ≤ q. Then,
∣

∣

∣

∣

∣

∣

Pr





⊕

j∈S
Zj = 0



− 1

2

∣

∣

∣

∣

∣

∣

≤ 1

2
· exp (−2K/q) .

Proof. First, we may assume that s ≤ q/2, otherwise we can use [q] \S along with (10) to complete
the argument. Analogous to (10) we have that

⊕

j∈S
Zj =

⊕

j∈S
h
(

x(j)
)

=

|S|
⊕

j=1

c0 ⊕
⊕

i∈Ih

⊕

j∈S
x
(j)
i = ψS,c0 ⊕

⊕

i∈Ih
ri (11)

where ψS,c0 =
⊕|S|

j=1 c0 is a constant and ri :=
⊕

j∈S x
(j)
i . From the construction of the random bag

B, we have that {ri}i∈Ih are iid F2-valued random variables such that Pr[ri = 1] = s/q,∀i ∈ Ih. In
other words, the RHS of (11) denotes the parity of K such iid random variables. To analyze this,
let us consider an alternate way of sampling {ri}Mi=1:

1. Sample T ⊆ Ih by including each i ∈ Ih into T independently with probability 2s/q ≤ 1.

2. For each i ∈ Ih \ T , set ri = 0. Independently for each i ∈ T , set ri = 1 w.p. 1/2 and to 0
otherwise.

It is easy to see that conditioned on T 6= ∅, ⊕i∈Ihri is unbiased. This, along with (11) leads us to,

Pr





⊕

j∈S
Zj = ψS,c0



 =
1

2
· (1− Pr[T = ∅]) + p · Pr[T = ∅] = 1

2
+ Pr[T = ∅]

(

p− 1

2

)

(12)

where p ∈ [0, 1] is some probability. Further,

Pr[T = ∅] =
(

1− 2s

q

)K

≤ exp(−2Ks/q)

Since s ≥ 1 and |p− 1/2| ≤ 1/2, the above along with (12) completes the proof.

The rest of the argument is similar to the Vazirani XOR Lemma except we need to show closeness
to Dq rather than the uniform distribution. We now transition to Fourier analysis of {0, 1}-valued
functions over {−1, 1}q . For this purpose, we shall map F2 to {−1, 1} via b 7→ (−1)b and think of DZ

and Dq as distributions over {−1, 1}q . First, from the definitions of DZ and Dq, χ[q](z) = (−1)ψ∗

for any z in the support of DZ or Dq. Thus,

E
z←Dq

[

χ[q](z)
]

= E
z←DZ

[

χ[q](z)
]

= (−1)ψ∗

(13)

and it is also easy to observe that for any S ( [q],

E
z←Dq

[χS(z)] = 0 and |E
z←DZ

[χS(z)]| ≤ exp (−2K/q) , (14)
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where the upper bound follows from Lemma 5.3. Consider any function f : {−1, 1}q → [0, 1] having
Fourier expansion

∑

S⊆[q] f̂SχS. Using (13), and (14) we obtain

∣

∣

∣
E
Dq

[f ]− EDZ
[f ]
∣

∣

∣
≤ exp (−2K/q)

∑

S([q]

∣

∣

∣
f̂S

∣

∣

∣

≤ 2q/2 · exp (−2K/q)
√

∑

S([q]

f̂2S ≤ 2q/2 · exp (−2K/q) ,

where we use Cauchy-Schwarz and Parseval’s bound. We can take f to be indicator function of the
event that exactly one of the coordinates is −1. This function evaluates to 1 on Dq with probability
exactly q/2q−1. Using this along with the above bound completes the proof.

5.2 Hardness Reduction

Our hardness reduction is from an instance L of Smooth-Label-Cover given in Theorem 2.4.

Points, bags and label proportions. The initial set of points is defined in the space F
V×[M ]
2 .

For a point x̂ ∈ F
V×[M ]
2 let x̂[v] = (x̂v,1, . . . , x̂v,M ) be the vector of M coordinates corresponding to

v ∈ V . Let DB be the distribution on bags and label proportions given by the following process.

1. Sample v ∈ V u.a.r.

2. Sample (B = {x(1), . . . ,x(q)}, 1/q)← Ddict

M,q.

3. For j ∈ [q]: define x̂(j) ∈ F
V×[M ]
2 by letting x̂(j)[v] = x(j)[v] and for all v′ 6= v, x̂(j)[v′] = 0.

4. Output (B̂ = {x̂(1), . . . , x̂(q)}, 1/q)

Folding and projected point-set. For each e = (v1, v2) ∈ E and j ∈ [N ] define the linear

constraint C[e, j] over point x̂ ∈ F
V×[M ]
2 as

C[e, j]⇔
⊕

i∈π−1
ev1

(j)

x̂v1i =
⊕

i∈π−1
ev2

(j)

x̂v2i. (15)

Let H ⊂ F
V×[M ]
2 be the subspace of all the points which satisfy the set of homogeneous linear

constraints C := {C[e, j] | e ∈ E, j ∈ [N ]}. We let H be the space in which our final instance
resides by linearly projecting all points x̂ created in the support of DB into points x ∈ H. Since our
final instance is represented in a coordinate system corresponding to a linear basis for H, this also
forces any solution h to be represented in a basis for H. In particular, h represented in the original
space by h(x̂) := c0 ⊕ 〈c, x̂〉 (where the inner product is over F2) must obey c ∈ H. Let DB be the
new distribution on the bags (B, 1/q) given by the linear projection of all the points in the bags of
DB on to H.
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5.2.1 YES Case

In this case, there is a labeling ρ : V → [M ] which satisfies all the edges of L. Consider over

F
V×[M ]
2 the parity h∗(x̂) =

⊕

v∈V x̂v,ρ(v) =: 〈c∗, x̂〉. Since, for any edge e = (v1, v2), πev1(ρ(v1)) =
πev2(ρ(v2)), c∗ ∈ H. Now fix a choice of v in Step 1 of the distribution DB. Restricted to the
coordinates corresponding to v (since the others are set to 0), h∗ is simply xv,ρ(v). We can now

directly apply the completeness property of Ddict

M,q in Lemma 5.2 to obtain that h∗ satisfies all the
bags given the choice v. Since this holds for all choices of v, h∗ satisfies all the bags of DB.

5.2.2 NO Case

Assume for a contradiction that there is a parity in the space H that satisfies (q/2q−1 + δ)-fraction
of the bags of DB. This parity can be written as

h(x̂) = c0 ⊕
⊕

v∈V

M
⊕

i=1

cix̂i = c0 ⊕
⊕

v∈V
〈c[v], x̂[v]〉, (16)

where c satisfies the constraints C. By averaging there are δ/2 fraction of good v ∈ V such that h
satisfies (q/2q−1 + δ/2)-fraction of the bags of DB |v i.e., DB given v is chosen in Step 1. By the
weak-expansion property of L in Theorem 2.4, the subset of edges E′ induced by the good vertices
satisfies |E′| ≥ (δ/2)2|E|. Let Sv := {i ∈ [M ] | cv,i = 1}. From the soundness of Ddict

M,q (Lemma
5.2), we obtain that all good v satisfy

|Sv| ≤ ∆ := q(log(2/δ) + q/2)/2 . (17)

The smoothness of L implies that for any good v ∈ V , Pre∼v [πev (Sv) = |Sv|] ≥ 1 − |Sv|2 /(2Q) ≥
1−∆2/(2Q). Let E∗ = {e = (v1, v2) ∈ E′ | πevr (Svr) = |Svr | , r = 1, 2}. Then

|E∗|
|E| ≥ ζ :=

δ2

4
− ∆2

Q
. (18)

We have the following lemma.

Lemma 5.4. For any e = (v1, v2) ∈ E∗, πev1 (Sv1) ∩ πev2 (Sv2) 6= ∅.

Proof. Since h satisfies at least one bag of D |v1 , c[v] 6= 0, and thus Sv1 6= ∅. Consider any
j ∈ πev1 (Sv1). From the definition of E∗,

∣

∣π−1ev1(j) ∩ Sv1
∣

∣ = 1. Thus,
⊕

i∈π−1
ev1

(j) x̂v1i = 1 and from

(15) and the fact that ĉ satisfies C[e, j] we obtain that π−1ev2(j) ∩ Sv2 6= ∅.

Let ρ be the randomized labeling to the good vertices given by randomly assigning each good
v ∈ V a label chosen u.a.r. from Sv. From Lem. 5.4, (17) and (18) we obtain that ρ satisfies in
expectation at least, ν := ζ/∆2 fraction of the edges of L. By choosing the parameter Q in Theorem
2.4 to be large enough we can take ζ ≥ δ2/8 and then taking taking the parameter R to be be large
enough we obtain a contradiction.
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6 Approximately LLP Learning Parities

We restate Theorem 1.4 which is proved in the section.

Theorem 6.1. For any q ≥ 2, given B := {(Bk, σk)}mk=1 as an instance of LLP-PARITY[q] over
Fd2 such that there is an (unknown) parity that satisfies all the bags of B, there is a randomized
polynomial time algorithm that satisfies (1/2q−2)-fraction of the bags of B in expectation.

Let us first define the subsets of bags Ba := {(B,σ) ∈ B | σ = a} for a ∈ {0, 1}. We call
the bags in B0 ∪ B1 as monochromatic since we know that the vectors in any such bag are either
all labeled 0 or all labeled 1. Therefore, one can write a (possibly non-homogeneous) F2-linear
constraint (in the coefficients of the parity) for each vector in any monochromatic bag. Further,
since the label proportion of each bag is given, the parity of labels in each bag is also determined.
Thus, we can add these F2-linear constraints capturing the parity of the labels for each bag.

Since this system of linear equations is feasible (due to the existence of the satisfying parity)
one can do Gaussian elimination to obtain a reduced instance B′ of LLP-PARITY[q] which satisfies
the following properties:

1. B′ has no monochromatic bags.

2. A subset of the coefficients may be eliminated or assigned a fixed value ∈ F2, and the rest are
free.

3. For any bag (B,σ) ∈ B′, any assignment to the free coefficients yields a labeling which satisfies
the parity constraint of that bag. In particular, the set of such assignments yields a (possibly
affine) subspace of labelings of size at most 2t−1 where t = |B|. Let us call this subspace of
labelings as FB .

The algorithm outputs a random parity given by a random assignment to the free coefficients. To
analyze its performance, let us consider a bag (B,σ) ∈ B′ where |B| = t ≤ q and tσ ∈ {1, . . . , t− 1}
since B′ has no monochromatic bags. By feasibility there exists a vector in FB which has Hamming
weight tσ. The probability that the bag will be satisfied by a random parity is precisely the
probability that a random point in FB has Hamming weight tσ. There are two cases:

1. FB contains all vectors of Hamming weight tσ. Since tσ ∈ {1, . . . , t− 1} the number of such
vectors is at least t. Since |F | ≤ 2t−1, the probability that the bag is satisfied is at least
t/2t−1 ≥ 1/2q−2 for any positive integers t ≤ q and q ≥ 2.

2. FB does not contains all vectors of Hamming weight tσ. In this case, FB is at most (t − 2)-
dimensional and thus |FB | ≤ 2t−2. Since FB does contain one vector of Hamming weight tσ,
the probability that the bag is satisfied is at least 1/2t−2 ≥ 1/2q−2.
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