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Abstract

Examining the effect of different encoding techniques on entity and context embeddings, the goal of
this work is to challenge commonly used Ordinal encoding for tabular learning. Applying different
preprocessing methods and network architectures over several datasets resulted in a benchmark on
how the encoders influence the learning outcome of the networks. By keeping the test, validation and
training data consistent, results have shown that ordinal encoding is not the most suited encoder for
categorical data in terms of preprocessing the data and thereafter, classifying the target variable cor-
rectly. A better outcome was achieved, encoding the features based on string similarities by computing
a similarity matrix as input for the network. This is the case for both, entity and context embeddings,
where the transformer architecture showed improved performance for Ordinal and Similarity encoding

with regard to multi-label classification tasks.

I Introduction

Tree based methods such as Random Forests|1]
and gradient boosted ensemble methods (e.g. XG-
Boost)[2] are popular machine learning models
which are used for a wide range of different appli-
cations. Being capable of handling homogenous
(solely continuous or discrete predictors) as well
as heterogenous tabular data, these models are
appreciated for their ease of use. It is not sur-
prising that the mentioned algorithm family still
dominates the structured data domain, as recent
benchmarks have shown|3][4].

Though neural networks are still being outper-
formed, continued adaption of methods and archi-
tectures from e.g. the field of text analysis yielded
interesting results within the past several years.
The use of embeddings for categorical data origi-
nally proposed by Cheng Guo and Felix Berkham

[5] opened up a novel way of handling categorical
data. Over the course of time the outcomes were
new deep learning architectures such as e.g. Tab-
Net[6], TabTransformer|7] and TabPFN][8|.

The following work is focusing not on the fur-
ther development of a potential architecture but
rather on the data input of such a model. Con-
sidering the survey on categorical data for neu-
ral networks[9], the goal is to determine the ef-
fect of different encoding techniques on the entity
and context model respectively. Therefore, dis-
cretization of continuous features present in the
used datasets will be applied as a first step. To
evaluate potential differences between several en-
coding methods, the model architecture from Guo
& Berkham as well as the TabTransformer are im-
plemented during a second step to obtain entity
and context embeddings as well as the model pre-
dictions.
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IT Discretization

Discretization describes the procedure of splitting
continuous variables and assigning their values to
a number of bins in order to get a set of cate-
gories. Methods used to obtain said output can
be assigned to two sets of characteristics: unsu-
pervised /supervised and global/local[10]. Unsu-
pervised methods aim at learning internal data
patterns by processing large amounts of data,
whereas supervised methods utilize a predefined
target variable in order to search for not yet known
data structures[11]. On the other hand, it can
be distinguished between algorithms who oper-
ate on a global (considering all input features at
once before decision-making) or local scale, pro-
cessing one variable at the time[12]. Examples
for an unsupervised-global method is k-means|[13]
and for the supervised-local variant a decision tree
model (when performed as entropy minimization
method on a single input feature)[14]. Fundamen-
tal approaches like the equal-interval-width[15] or
the equal-frequency-per-interval[16] method are
not considered as a preprocessing step for the ex-
perimental setup.

K-means

K-means aims at dividing a dataset into K par-
titions by minimizing the sum of Euclidean dis-
tances between the data points x; and their cor-
responding centroid ¢; within cluster S;[17].
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Optimized by minimizing the intra cluster vari-
ance as shown in equation 2, Lloyds algorithm (k-
means) proceeds to assign a new data point to

a possible cluster which lets the cluster variance
grow the least per iteration done[18].
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After assigning each data point z; to a cluster S,
the centroids c¢; need to be updated as shown in
eq. 3 in order to represent the cluster-center dur-

ing the next iteration.
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Although the procedure of k-means is very pow-
erful, it comes with a major disadvantage with re-
gard to its starting criterion. Usually the right
number of partitions K is unknown but needs
to be selected by the user in advance. To dis-
cretize features, the method therefore demands
prior knowledge on how many categories are ap-
propriate. Furthermore, since the approach uti-
lizes all inputs to calculate a group membership
for a single data point, a sample will be affiliated
over the row and not column wise as intended.
Thus, the behaviour will not effectively result in
discretization of single features.

Decision Tree

Based on its predecessor ID3 (Iterative Di-
chotomiser 3)[19], C4.5 is known as one of the
first algorithms to build decision trees from con-
tinuous and discrete features[20]. A Decision Tree
model aims to subset the feature space X by hi-
erarchical mutual exclusion, resulting in a set of
classes C' = {C1,C4,...,Ct}. This is done by ob-
taining regions { Ry, Ra, ..., R} which are split by
the decision node’s threshold ¢.

Ry ={z € Rlz; >t} and Ry = {x € R|z; <t}
(4)
Referring to eq. 4, threshold ¢ is chosen based on
some impurity measure (e.g. cross-entropy)[20]
to maximize the node’s purity. The split should
therefore produce two regions which include as
many samples z; of one class Cy, as possible (eq.
5).
K
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Tree models tend to overfit extensively the more
complex they grow. This behaviour leads to
malperformance on unseen data. Considering
the variance bias tradeoff, growing a less com-
plex model which can still capture important data
structures is desired. To achieve such a tree, cost
complexity pruning[21] provides an elegant way
for regularization of the algorithm.

|7
Ra(T) =Y NpQu(T) +alT|, a>0  (6)

By growing a very large tree Ty, cost complex-
ity (weakest link) pruning searches for a subtree
T C Ty which minimizes the cost complexity func-
tion 6. While @,,(T) represents an arbitrary im-
purity measure, choosing a high « results in more



regularization and therefore in a tree with less ter-
minal and decision nodes.

As a supervised approach, decision trees rely on
a target variable in order to partition the feature
space. Therefore, it is possible to create a mono-
tonic relationship between each predictor and the
target, which will be advantageous during model
training|22]|. Furthermore, not having to define a
starting criterion gives the algorithm more flex-
ibility in forming meaningful categories for each
feature. Lastly, by preventing complexity through
pruning, preserving relevant decision nodes during
discretization will keep the number of categories
within each feature at an acceptable occurrence
rate.

III Encoders

Used to translate categorical features and repre-
sent them as numerical values, encoders play a
crucial preprocessing role when obtaining a suit-
able input format for numerical algorithms. In
general, encoding methods can be summarized
into the three groups determined, automatic and
algorithmic[9]. It is not unusual that blends be-
tween those groups are created where e.g. deter-
mined encoded variables are fed into automatic or
algorithmic approaches. Within the determined
domain, a further distinction between methods
can be made[23]. Based on the work of Fitkov

et al., an incomplete list of encoders and their
potential affiliation to an encoder-family was con-
structed. Table 1 shows all evaluated encoders
where k represents the number of classes, n the
base of BaseN encoding and g the number of quan-
tiles used for Summary encoding.

(Rare-)Label /Ordinal Encoder

The widely used procedure transforms categorical
variables into a discrete numerical representation.
Known for its simplicity, the method introduces
an ordinal structure which implies ordering and
equal distances between each class Cj[24]. Rarela-
bel encoding differentiates by reducing the vari-
able cardinality CY}, if a given Class frequency F,
falls below a predefined threshold ¢.

P # of samples x; in class C}

)

# of all samples x;
where F, < tandt € [0,1]

(7)

One-Hot Encoder

Another well known transformation method is the
One-Hot encoding technique. By converting a
variable with a set of C' distinct classes into a set
of X binary features (where C' and X are holding
an equal number of elements), the encoder lets the
feature space grow rapidly and tends to introduce
sparsity when processing predictors[25].

Encoder
Family Name Acronym | Max Feature Feature- Class-
Dimensionality | Space Semantic
Index Label LE 1 Preservation Preservation
Rarelabel RE 1 Preservation Decomposition
Ordinal OE 1 Preservation Preservation
BaseN BNE n Expansion Decomposition
Bit One-Hot OHE k Expansion Decomposition
Binary BE [Toga (k)] Expansion Decomposition
Target Target (Mean) TE 1 Preservation Preservation
Leave-One-Out LOOE 1 Preservation Preservation
Weight of Evidence WEE 1 Preservation Preservation
James-Stein JSE 1 Preservation Preservation
Summary (Quantile) | SE q Expansion Decomposition
Contrast | Backward Difference | BDE k—1 Expansion Decomposition
Helmert HE k—1 Expansion Decomposition
Effect (Sum) EE k—1 Expansion Decomposition
Others Frequency FE 1 Preservation Preservation
String Similarity STSE k Expansion Preservation

Table 1: Encoders grouped by their characteristics




Target Encoder

Also known as Mean encoding, the method takes
the target variable into account and therefore uti-
lizes prior knowledge to calculate the impact a
class C; could have on the target Y'[26]. As shown
in eq. 8, in the simplest case (if all classes are suf-
ficiently large) the ratio between the observations
x; where Y = 1 and the overall number of obser-
vations n for each class will be computed.

n;y
n;

Si = (8)
The above assumption that all classes are suffi-
ciently large does not hold for high cardinality
features. Therefore, smoothing is introduced by
combining the posterior and prior probability as
well as adding a weighting factor «[26].
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The updated equation 9 results in considering the
overall mean " more strongly if the class Cy oc-

curs infrequently.

Summary Encoder

Also known as the Quantile encoder, the method
is aiming at incorporating quantiles instead of the
mean as proposed with the Target encoder, in or-
der to account for infrequent classes[27].

q(@iv)ni + ¢p(Y)a
n; + o

S; = (10)
Controlled by the number of samples per class n;,
the encoding technique assigns more weight to the
overall p-quantile of the target g,(Y") if the corre-
sponding class has infrequent occurrences.

String Similarity

String similarity encoding compares class names
in order to form a similarity matrix. While many
methods exist to compare two strings with each
other[28], the Jaro-Winkler similarity[29] will be
given as an example.

m n m er—t
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diaro(s1,s2) =

jllTO( 1, 2) 3‘81|
Eq. 11 shows the calculated distance based on
the matching characters m between a string s; and
the number of transpositions ¢ used to account for
malpositioned characters.

IV Datasets

To retrieve some certainty during empirical evalu-
ation, preprocessing steps as well as model train-
ing and evaluation on 10 datasets is conducted to
form a benchmark. Consideration of three data
providers led to the conclusion that the UCI Ma-
chine Learning Repository[30] is used as a single
source of data.

Focusing solely on classification tasks, the follow-
ing datasets for binary as well as multi-label clas-
sification are selected:

Dataset
Name Target | Features | Imbalance
Adult[31] Binary 14 0.203
Mushroom|[32] | Binary 22 0.001
Bank[33] Binary 17 0.492
Breast[34] Binary 9 0.070
German|35] Binary 20 0.118
Spambase[36] | Binary 57 0.032
Car[37] Multi 6 0.396
CMC|38| Multi 10 0.230
Nursery|[39] Multi 8 0.142
Scale[40] Multi 4 0.343

Table 2: Utilized Datasets

The balance of a dataset is calculated by utiliz-
ing the Shannon Diversity Index[41] in order to
understand the label-distribution of the target.

— 38, B log(mx)
log(k)

Ey =

(12)

Imbalance is given by 1 — Ey where 0 is inter-
preted as perfectly balanced.

V Experiment

The first step of the experimental setup consists
of preprocessing the continuous predictors in or-
der to obtain fully categorical datasets. The sec-
ond step describes the encoding with a prede-
fined subset of encoding methods to cover the
aforementioned encoder families. The last sub-
section focusses on the neural entity and context
model, which embed and learn from the prepro-
cessed data.



Preprocessing 1

Discretization is conducted using a decision tree
model due to the advantages it offers as mentioned
in the last paragraph of section II. The procedure
is described on the Adult data for exemplary pur-
poses.

Before one can start with growing a tree, the
datasets need to be initially evaluated and divided
into continuous and discrete features. Attributes
with less than 10 unique values are considered dis-
crete and will not be processed by the Discretizer.
After partitioning, the continuous attributes are
handled one at the time. Done by growing a large,
5-fold cross-validated tree and performing a grid
search over its maximum path of seven instances
from root to leave, one can obtain the cost com-
plexity pruning path of the best estimator built.
Using the a-parameters of the initial tree, building
a pruned version by passing one « at the time and
evaluate the performance of the regularized model
by conducting a second 5-fold cross-validation. It
can be shown that pruning does affect the model’s
outcome only marginally and reduces the com-
plexity to its relevant nodes as seen in figure 1.

we——y "

0.70 ?
L 60

0.68

y
o
o
o
'S
S

nodes
—&— accuracies

o
o
>
tree_nodes

tree_accurac

0.62

r10
0.60

ro
0.0010

T T T
0.0004 0.0006 0.0008

cost_complexity

T T
0.0000 0.0002

Figure 1: Number of Decision Nodes and Accuracy

To perform discretization, the mean accuracy di-
vided by the standard deviation of the cross-
validated model is used to choose a suited o. The
remaining nodes represent the bin edges for in-
terval construction, where each value of the con-
tinuous variable is assigned to the corresponding
bin. Since building intervals from decision nodes
result in a Set of Cj_; classes, the first and last
node is interpreted as an open interval to avoid
mismatches while assigning the predictor values
to the intervals.

Using only few relevant nodes to form bins, a

smoothing effect between discretized predictor
and target can be observed as seen in figure 2.
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Figure 2: Monotonic Relationship Between Predic-
tor and Target

Preprocessing 11

The next preprocessing step includes the encoding
of predictors as well as the target. Starting with
the target variable of each dataset, the values are
either Ordinal or One-Hot encoded, depending on
the classification task at hand. In case of multi-
label classification, the target additionally needs
to be reshaped to a 3-dimensional format in case
of the entity model, and a 2-dimensional format
for the context model.

On the other hand, six encoding techniques
are applied to transform the predictor variables.
Again, the Ordinal encoder is used to provide a
baseline to compare the other methods against.
Comparisons are made to the Rarelabel encoder
of the same encoder family as well as the One-Hot,
Target, Summary and String-Similarity methods.
Contrast encoders were dismissed during evalua-
tion due to their assumptions (e.g. levels of effect
present within data or sequential dependence be-
tween instances).

The transformation is applied to one feature at
a time in order to handle unknown values dur-
ing transformation per predictor, as well as ob-
taining a mapping for verification. The proce-
dure is necessary due to the preceding data split
into training-, validation- and test-set. This is
achieved by wrapping the encoding methods from
sklearn and the feature engine library. One has to
be cautious to perform a train-, test- & validation-
split before fitting certain encoders to the data,



since some of them incorporate the target variable
during the procedure.

Entity Model

Due to the architecture of the neural network, no
feature scaling (e.g. normalization) is conducted
during preprocessing. Although no statement can
be made on how such scaling influences the em-
bedding layers for tabular data, the topic has po-
tential to be picked up for future investigation.
The "Entity" model (base model) captivates
through its simplicity. Consisting only of embed-
ding layers and a multi-layer perceptron block, the
network is already able to learn underlying data
structures within the datasets.

Feature Space

e

s N
..... T
P E
-}
i3 Feature 1 | | Feature 2 | Feature n
.
)
=R
=i
-8 = |Embeddingl| |Embedding2| Embedding n
E-
1
< |
2 |:
s Concatenation
)
= | H
= | i
= | E Norm & Dropout
.-
-
= | Dense |
i [

Figure 3: Entity Model Architecture

The model itself is constructed with the functional
APT of the Keras library. A major distinction to
other architectures can be observed in the parallel
setup of the embedding layers. Each layer corre-
sponds to a single feature and therefore, the num-
ber of embedding layers is given by the feature
space the applied encoding method introduces.
Furthermore, the embedding dimension is given
by the number of classes C} per predictor, result-
ing in a dynamic embedding space allocation[42].

d=[¥/Cy%1.6] (13)

The embedding space d is calculated by taking the
square root of the number of classes in set C per

feature and multiplied by the constant 1.6. Ad-
ditionally, to obtain integer based dimensions, a
ceiling function is applied. Although just a rule
of thumb, equation 13 introduces suitable embed-
ding spaces per passed feature. Smaller embed-
dings prove to be sufficient, since increasing the
space often is superfluous|43].

The Input dimension for each embedding layer
consists of the number of unique classes in set C
per feature. Additionally, 1 is added to each in-
put per layer to enable the handling of potentially
unknown values during encoding.

After concatenating all embeddings of all pre-
dictors, the vector is being fed into the multi-
layer perceptron block consisting of two repeti-
tions N = 2. The size of both dense layers is de-
pendent on the concatenated vector length. Dense
layer 1 holds 50% of the vector length as hidden
units, and dense layer 2 consists of 25%. Added to
each dense layer is normalization with e = 1x1076
and a dropout rate of 10%. ReLU will be applied
as activation for the hidden layers of the MLP
block and a Sigmoid activation function for the
dense output layer respectively.

The Entity model is trained using binary cross en-
tropy as loss function and Adam[44] as optimizer.
Training is further conducted using 10 epochs and
a batch size of 256 samples propagated through
the network in between updates.

Returning loss, accuracy and the prediction prob-
abilities to form metrics as well as keeping track
of the training time builds the foundation for the
evaluation process.

Context Model

As mentioned in the previous section, the Context
model shares the same foundation as the Entity
model, except for the added encoding part of the
transformer architecture[45]. The model is in-
spired by Khalid Salamas code example' found
on the official Keras website and the underlying
work of Xin Huang et al.[7]

Besides the additional encoder block added to
the Context model, a second change needs to be
made to the embedding layers for the multi-head
attention to work at all. Due to stacking instead
of concatenating the embeddings before feeding
them into the encoder block, all embedding layers
need to have the same dimensionality.

Ihttps://keras.io/examples/structured_data/tabtransformer/
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Figure 4: Context Model Architecture

Since the embedding dimension is no longer de-
pendent on the input feature, a fixed dimension-
ality of d = 10 is applied after consideration of all
datasets.

Proceeding with the Transformer part, the block
is implemented using only N = 1 repetition. Af-
ter multi-head attention and the feed forward
network respectively, a skip connection and layer
normalization is added. The multi-head comprises
4 attention heads, the embedding dimensionality
d =10 as well as a dropout rate of 10 Percent.
Implementing the feed forward network, the MLP
block, consisting only of N = 1 repetition, is
reused. No reduction is performed with regard to
the hidden units of the dense layer, as described
during the MLP setup.

The model run is conducted using the same hy-
perparameters as for the base model. A slight
change is made with regard to the batch size, re-
ducing the number of samples from previously 256
to 128. Arguably, the training length might be in-
creased in order to check for further potential of
the context embeddings. Due to comparability of
the two models, it was decided to leave the num-
ber of epochs identical.

VI Results

The experiment was conducted five times while
keeping discretization as well as train-, test-
and validation-split unchanged for model training.
The procedure allowed for variation due to ran-
domly initialized embeddings, resulting in slightly
deviating outcomes. Furthermore, having fully
categorical datasets reduced the result set dras-
tically, which made it possible to compute 120
models on an Intel Core i7-9750H within approx-

Entity Model

Dataset Ordinal One-Hot Rarelabel String Sim.  Summary Target

Adult 0.71 (0.01) | 0.69 (0.03) 0.64 (0.02) 0.72 (0.02) undefined  0.04 (0.0)
Mushroom | 1.0 (0.0) | 1.0 (0.0) L0 (0.0) 1.0 (0.0) 099 (0.0) 0.97 (0.0)
Bank 0.55 (0.02) | 0.54 (0.02) 0.53 (0.01) 0.53 (0.04) wundefined undefined
Breast 0.98 (0.02) | 0.98 (0.03) 0.99 (0.02) 0.98 (0.03) 0.99 (0.02) undefined
German 0.49 (0.05) | 0.49 (0.04) 0.45 (0.06) 0.51 (0.03) 0.43 (0.05) wundefined
Spambase | 0.97 (0.01) | 077 (0.43) 0.97 (0.01) 0.97 (0.0) 0.93 (0.0)  undefined
Car 0.79 (0.04) | 0.91 (0.02) 0.81 (0.05) 0.88 (0.04) 0.70 (0.01) 0.72 (0.02)
CMC 0.37 (0.07) | 0.42 (0.06) 0.40 (0.04) 042 (0.03) 046 (0.05) 020 (0.12)
Nursery | 0.97 (0.01) | 1.0 (0.0) 0.8 (0.0) 1.0 (0.0) 0.82 (0.0) 0.8 (0.0)
Scale 054 (0.19) | 0.87 (0.06) 0.57 (0.19) 0.88 (0.02) 0.56 (0.17) 0.18 (0.25)

Note: Mean and Standard Deviation, where undefined denotes absence of true positive instances.

Table 3: Entity Model: F1-Score per Dataset and Encoding Technique




imately 4 hours per experimental run.

Next to the binary cross entropy loss, the F1-
Score[46] was computed to compare the model
outputs with different encoding methods against
each other. Interpretation is done purely on the
F-measure since it incorporates precision and re-
call and therefore holds additional information if
the built models were able learn from the encoded
data. Computation of the loss is found in the ap-
pendix.

Comparison is made between the Ordinal encoder
as baseline and the remaining encoding methods.
Bold numbers represent a better result as the
baseline. Additionally, some methods returned an
undefined result due to the number of true posi-
tive instances being 0.

String Similarity encoding worked outstandingly
well, performing better than Ordinal encoding

on 6 datasets and equally or better as the base-
line 9 out of 10 times. One-Hot, Rarelabel and
String Similarity also outperformed the baseline
on multi-label classification problems without ex-
ception. On the Car and Scale datasets were im-
provements up to 15 and 63 percent observed.
Although the context model had the same num-
ber of epochs for training as the entity model, im-
provement on Ordinal encoding is noted within
the multi-label classification tasks. Despite the
gain of the baseline, the One-Hot and String Sim-
ilarity methods are still able to outperform Ordi-
nal encoding on the context embeddings. Overall,
String Similarity encoding achieved the same or
improved results on 7 out of 9 datasets compared
to the baseline.

Results suggest that using the String Similarity
method for classification yields better outcomes

Context Model

Dataset Ordinal One-Hot Rarelabel String Sim.  Summary Target

Adult 0.71 (0.01) | 0.69 (0.02) 0.63 (0.01) 0.69 (0.03) undefined  0.04 (0.0)
Mushroom | 1.0 (0.0) | 1.0 (0.0) 1.0 (0.0) 10 (0.0) 0.9 (0.0) 0.97 (0.0)
Bank 0.54 (0.03) | 0.54 (0.04) 0.51 (0.02) 0.55 (0.03) wundefined undefined
Breast 0.99 (0.02) | 0.96 (0.04) 0.98 (0.03) 0.95 (0.03) 0.96 (0.0)  undefined
German | 0.48 (0.05) | 0.44 (0.06) 0.42 (0.04) 0.45 (0.06) 0.41 (0.09) undefined
Spambase | 0.96 (0.01) | 0.95 (0.02) 0.97 (0.01) 0.96 (0.01) 0.92 (0.01) wundefined
Car 0.86 (0.01) | 0.93 (0.02) 0.85 (0.01) 0.92 (0.01) 0.70 (0.01) 0.69 (0.01)
CMC 0.37 (0.11) | 0.41 (0.04) 0.40 (0.05) 0.41 (0.03) 0.47 (0.03) 0.26 (0.02)
Nursery | 0.99 (0.01) | 1.0 (0.0) 0.98 (0.01) 1.0 (0.0) 0.82 (0.0) 0.82 (0.01)
Scale 0.74 (0.19) | 0.92 (0.02) 0.54 (0.36) 0.2 (0.02) 0.64 (0.0) 0.22 (0.31)

Note: Mean and Standard Deviation, where undefined denotes absence of true positive instances.

Table 4: Context Model: F1-Score per Dataset and Encoding Technique

Adult
Mushroom L]
Bank (]
Breast .
German °
Spambase L]
Car °
cMmC .
Nursery .
@ String Similarity
Scale . Ordinal

@ string Similarity
. ordinal

20 40 60

80

training time [s]

(a) Mean Training Time Entity Model

100 120

0 200 400 600 800 1000 1200 1400

training time [s]

(b) Mean Training Time Context Model

Figure 5: Training Times Ordinal versus String Similarity Encoding per Dataset



than using the standard Ordinal encoding tech-
nique. Nonetheless, testing different methods for
a specific use case is always advised.

Achieving better performance usually comes with
some sort of cost. In this case, the major draw-
back lies within computation time. Especially
high cardinality predictors are expensive due to
rapid expansion of the feature space. The be-
haviour can be observed when comparing the
mean training time of Ordinal Encoding to the
String Similarity method for both models.

VII Future Work

During exploration as well as experimental setup,
further questions occurred which make interesting
topics for potential future studies:

First and foremost, no comparison was made re-
garding neural networks with and without fully
discretized datasets. The standard procedure con-
sists of implementing two inputs, one for contin-
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Supplements

Entity Model

Dataset Ordinal One-Hot Rarelabel String Sim.  Summary Target

Adult 3.033¢-1 2.997c-1  3.56e-1 T2.008¢-1 58581 5.829e-1
Mushroom | 5.6e-5 9.6e-5 5.8e-5 1.01e-4 4.726e-3 1.197e-1
Bank 1.752¢-1 1.742e-1 1.811e-1 1.737e-1 3.277e-1 3.276e-1
Breast 7.2250-2 1.2976-2 7.168¢-2 5.274e-2 129162 6.914e-1
German 1.257e-1 1.621e-1 154501 £.578¢-1 1.6850-1 5.137e-1
Spambase 8.461e-2 1.352 7.953e-2 9.668e-2 1.656e-1 6.822¢-1
Car 2.606e-1 1.235¢-1 2.653¢-1 1.402e-1 2.6330-1 2.843¢-1
CMC 5.941e-1 5.764e-1 5.971e-1 5.779%-1 5.47e-1 6.484e-1
Nursery 3.5080-2 6.282¢-3 2.581c-2 1.309¢-3 1.942¢-1 1.933¢-1
Scale 5.208¢-1 3.2¢-1 5.407e-1 2.911e-1 5.049¢-1 5.762e-1

Table 5: Entity Model: Mean Binary Cross Entropy Loss per Dataset and Encoding Technique

Entity Model

Dataset Ordinal One-Hot Rarelabel String Sim.  Summary Target
Adult 2.2260-3 1.102e2  7.73¢-3 162403 15le3  3.013¢3
Mushroom | 1.2e-5 4.2e-5 2.3e-5 4.5e-5 7.238e-3 4.167e-3
Bank 1.261e-3 3.081e-3 4.148e-3 2.843e-3 1.576e-3 9.7e-4
Breast 1.282¢-2 1.519e-2 1.807e-2 2.902¢-2 2.9e-2 1.455e-2
German 2.989¢-2 2.179e-2 2.179¢-2 2.797e-2 1.747e-2 1.704e-2
Spambase 6.116e-3 2.806 8.749¢-3 2.494e-3 8.625e-3 4.461e-3
Car 3.628e-2 1.049¢-2 7.573e-2 2.255e-2 8.029¢-3 4.437e-2
CMC 8.619¢-3 2.715e-3 1.649¢-2 3.848e-3 8.844e-3 1.787e-3
Nursery 8.684e-3 3.353e-3 2.768¢e-3 4.25e-4 9.28e-4 8.39%-4
Scale 6.325¢-2 8.197e-2 9.397e-2 2.335e-2 2.663¢-2 2.031e-2

Table 6: Entity Model: Standard Deviation Binary Cross Entropy Loss per Dataset and Encoding Technique

Context Model

Dataset Ordinal One-Hot Rarelabel String Sim.  Summary Target

Adult 3.01lc1 3.0llel 35881  3.04del  5892e1  5.798¢1
Mushroom | 9e-6 2e-6 1.4e-5 3e-6 2.987e-3 1.173e-1
Bank 1.761e-1 1.771e-1 1.83e-1 1.776e-1 3.265e-1 3.272e-1
Breast 3.27e-2 5.392e-2 3.351e-2 5.816e-2 5.423e-2 6.781e-1
German 4.321e-1 4.822¢-1 4.561e-1 4.721e-1 4.63e-1 5.155e-1
Spambase 9.358e-2 1.224e-1 8.407e-2 1.044e-1 1.688e-1 6.815e-1
Car 1.626e-1 8.907e-2 1.708e-1 9.005e-2 2.437e-1 2.374e-1
CMC 5.993e-1 5.726e-1 5.911e-1 5.851e-1 5.334e-1 6.548e-1
Nursery 1.622e-2 2.1e-3 2.277e-2 1.88e-3 1.927e-1 1.931e-1
Scale 4.428e-1 1.904e-1 4.876e-1 1.862e-1 4.812¢-1 6.124e-1

Table 7: Context Model:

Mean Binary Cross Entropy Loss per Dataset and Encoding Technique
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Context Model
Dataset Ordinal One-Hot Rarelabel String Sim.  Summary Target
Adult 5.803¢3 8223¢3 46203 582203 30793  2.003¢3
Mushroom | 3e-5 le-5 4e-5 le-5 1.832e-3 8.07e-4
Bank 3.906e-3 5.329e-3 2.417e-3 3.899e-3 5.09e-4 8.64e-4
Breast 2.995e-3 2.634e-2 3.398e-2 2.181e-2 1.592e-2 5.117e-3
German 3.132e-2 5.755e-2 1.711e-2 5.022e-2 2.614e-2 1.187e-2
Spambase 1.35e-2 3.167e-2 1.256e-2 7.383e-3 1.477e-2 1.084e-3
Car 1.361e-2 1.43e-2 4.048¢-2 1.174e-2 7.681e-3 4.163e-3
CMC 1.618e-2 1.352e-2 1.578e-2 9.084e-3 9.512¢-3 5.141e-3
Nursery 4.756e-3 6.43e-4 6.772e-3 6.77e-4 1.104e-3 9.61e-4
Scale 1.019e-1 1.13e-2 8.888¢-2 1.969¢-2 8.813e-3 4.977e-2

Table 8: Context Model: Standard Deviation Binary Cross Entropy Loss per Dataset and Encoding Technique
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