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Collision models describe the sequential interactions of a system with independent ancillas. Motivated by
recent advances in neutral atom arrays, in this Letter we investigate a model where the ancillas are governed by
a classical controller that allows them to queue up while they wait for their turn to interact with the system. The
ancillas can undergo individual open dynamics while they wait, which may cause them to decohere. The system,
which plays the role of the server in the queue, can also undergo its own open dynamics whenever it is idle.
We first show that this framework generalizes existing approaches for quantum collision models, recovering the
deterministic and stochastic formulations in the appropriate limits. Next, we show how the classical queueing
dynamics introduces non-trivial effects in the quantum collisions, that can lead to different phases in the system-
ancilla response. We illustrate the idea with a model of coherence transfer under noisy waiting dynamics.

Introduction.−Open quantum systems traditionally de-
scribe the interaction with a many-body reservoir, whose
properties are not very controllable. However, advances in
quantum-coherent platforms motivate the design of synthetic
open dynamics, in which the environment is highly structured.
The canonical example is cavity QED [1, 2], in which the en-
vironment is a stream of atoms that are sent toward a cavity
in an orderly fashion. Other important examples include cas-
caded quantum systems [3–5], squeezed baths [6, 7] and dis-
persive resonator couplings [8–11]. Recent experiments with
neutral atom arrays [12–16] have taken this a step further and
demonstrated the efficient use of classical controllers, which
can physically move qubits at will, in order to put them in con-
tact so that they can interact. These results motivate furthering
our understanding of new types of engineered open dynamics.

An approach that has enjoyed significant success in
this respect are the so-called quantum collision models
(QCMs) [17–31], in which a central system interacts sequen-
tially with arriving ancillas, one at a time (Fig. 1(a,b)). QCMs
replace the complex system+bath evolution with a simpler dy-
namics involving only two bodies, at any given time. More-
over, they allow for fine control over energetics and memory
effects, making them ideal for benchmarking e.g. thermody-
namics [18, 32–35], and non-Markovianity [36–40]. For this
reason, in the past they have been used in various tasks, such
as metrology/thermometry [22, 41–45], and in the modeling
of continuous measurements [46–48].

QCMs come in two standard flavors [23]. The first, called
stochastic QCMs (Fig. 1(a)), is motivated by Boltzmann’s
molecular chaos hypothesis. It consists of a system that
evolves unitarily by itself but is also subject to random colli-
sions by arriving ancillas. The interarrival times of the ancillas
are random, the duration of the collision process is short and,
afterwards, the ancillas leave the process and never interact
with the system again. The second are called the deterministic
QCMs, in which there is an infinite “conveyor belt” of ancil-
las, usually prepared in identical states. Each ancilla interacts
with the system for a fixed duration, after which they leave and
never participate again in the dynamics (Fig. 1(b)). The re-
duced dynamics of the system is therefore stroboscopic. This
kind of model fits naturally into a cavity QED scheme [49–

51]. It also appears as the discrete-time picture of a system
interacting with a chiral waveguide [52].

Both types of collision models can be imagined as partic-
ular cases of a more general scenario, in which a classical
controller physically moves the ancillas according to some
protocol. This will be the basic paradigm we adopt in this
Letter. The system-ancilla interaction is quantum. But the
way in which the ancillas are brought close to the system is
classical, governed by an external controller. In neutral atom
arrays, this paradigm is the backbone of any quantum compu-
tation [12–15]. Our interest here will be in the different types
of dynamical behaviors that it may lead to.

More specifically, we consider in this Letter a queued ver-
sion of the QCM. The rules are the following (Fig. 1(c)). The
system still interacts with the ancillas one at a time. The dura-
tion of that interaction may vary from one ancilla to the other,
either randomly or deterministically. Ancillas arrive accord-
ing to some classical protocol, which can also be determin-
istic or stochastic. The main ingredient in the model is the
assumption that if the system is occupied when an ancilla ar-
rives, that ancilla will queue up, and wait for its turn. As we
will show, this simple dynamical rule naturally interpolates
between the stochastic and deterministic QCMs (Figs. 1(a,b)).
Next, what will make this dynamical model particularly rich
is the fact that, while the ancillas wait in the queue, they can
undergo their own dynamics. For example, ancillas that are
initially coherent might dephase depending on how long they
wait. Similarly, whenever the system is idle – i.e. there are no
ancillas available to interact with – it might also undergo its
own dynamics.

We will show that this competition between the system-
ancilla interactions and their individual waiting/idle dynamics
leads to a rich set of dynamical behaviors, including different
phases in the system-ancilla response. This will be illustrated
with a toy model in which the ancillas are meant to transfer
their initial coherence to the system, and both may undergo
decohering effects while they are waiting/idle.

Queueing theory.−The classical controller governing the
queue of ancillas follows the basic rules of single server
queueing, with a first come, first serve discipline [53–55].
The system plays the role of a server, while the ancillas
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play the role of customers arriving in the queue, labeled as
n = 1, 2, 3, · · · , based on the order in which they arrive. We
let Tn denote the interarrival time between ancilla n and n+ 1,
with T1 = 0. And we let S n denote the time the system spends
serving/interacting with ancilla n (see Fig. 1(d)). The set of
times {Tn, S n} completely specifies the classical queueing dy-
namics, as all other stochastic quantities that may be of inter-
est are entirely determined by this set. No assumptions need
to be made about the structure of the {Tn, S n}: they can be
deterministic or stochastic, and they can be statistically inde-
pendent or correlated [56].

The time the n-th ancilla waits in the queue is denoted as
Wq

n . We define In as the idle time of the system after the (n −
1)-th ancilla leaves and before the n-th ancilla arrives. The
symbols are explained in Fig. 1(d). Importantly, Wq

n and In

can be zero. For example, an ancilla might arrive to find the
system idle, so it does not have to wait (Wq

n = 0). If the ancilla
n has already arrived when the system is done with ancilla
n − 1, the system will have no idle time (In = 0).

Both Wq
n and In are fully specified from the set {Tn, S n} us-

ing Lindley’s recursion relations [57]:

Wq
n+1 = max

{
0,Wq

n + S n − Tn
}
, (1)

In+1 = max
{
0,−(Wq

n + S n − Tn)
}
, (2)

where Wq
1 ≡ 0 (the first customer always finds the queue

empty) and I1 ≡ 0. These relations can be intuitively under-
stood from the diagram in Fig. 1(d). It is clear from this that
Wq

n In = 0, meaning either there is no waiting for the ancilla
or no idleness for the system. See Supplemental Material [58]
for a comprehensive discussion about the statistics of waiting
times Wq

n and idle times In.
The absolute time at which the n-th ancilla arrives in the

queue is tn =
∑n−1

j=1 T j, and the absolute time when it leaves is

sn :=
n∑

j=1

(I j + S j), (3)

which is nothing but the sum of all previous service and idle
times of the system, up to n. The number of ancillas in the
queue, at any given time, is depicted pictorially in Fig. 1(e). It
will generally fluctuate with time and, during certain periods,
drop down to zero [59]. The queue evolution therefore breaks
down into busy periods and idle periods.

Queued QCMs.−We assume all ancillas arrive in the queue
prepared in the same state ρA. While they wait, they may un-
dergo a generic quantum channel EA(Wq

n )[ρA] that depends
on their waiting time Wq

n . Similarly, if the system is idle, it
may undergo its own quantum channel ES [In](ρS ), which de-
pends on the idle time In. If Wq

n = 0 or In = 0, their corre-
sponding channels are assumed to reduce to the identity. Fi-
nally, the system-ancilla interaction is modeled by a channel
US A(S n)(ρS ⊗ ρA) that depends on the service time S n (see
Fig. 1(c)). A pictorial representation of the response of the
system to the fluctuating number of ancillas in the queue is

shown in Fig. 1(f). During idle periods, the system evolves
according to ES . During busy periods, it evolves according to
a series of US A maps (we assume that as soon as an ancilla
leaves, the next starts interacting with the system immediately
if there are ancillas in the queue).

From a modeling perspective, it is more tractable to de-
scribe the system in discrete steps, only at the times each an-
cilla leaves the process. Let ρn

S = ρS (sn) denote the state of
the system after the n-th ancilla leaves (which occurs at ab-
solute time sn, Eq. (3)). With the above definitions, one may
readily write down a dynamical map connecting ρn

S with ρn−1
S :

ρn
S = TrA

{
US A(S n)

[
ES (In)[ρn−1

S ] ⊗ EA(Wq
n )[ρA]

]}
, (4)

where TrA{·} denotes the partial trace over the ancilla. This
map completely specifies the single-shot dynamics of the sys-
tem, within a single realization of the queue. In general, there
is no closed equation for the ensemble-averaged (“uncondi-
tional”) evolution, which therefore has to be computed by nu-
merically averaging Eq. (4) over different realizations of the
queue. As our first result, we show how the map (4) recovers
the stochastic and deterministic QCMs as particular cases.

Heavy traffic and deterministic QCMs.− The determinis-
tic QCM in Fig. 1(b) is recovered in the “heavy traffic” limit,
where S n ≫ Tn. This means that ancillas arrive much more
quickly than the system can serve them. As a consequence,
the queue quickly builds up, and the system will never be idle
(In = 0), so ES is the identity. To recover the standard for-
mulation of deterministic QCMs, we must further assume that
all service times are equal and deterministic, S n = τS A. The
system-ancilla map is often assumed to be unitary, of the form
US A(τS A)[•] = e−iHS AτS A • eiHS AτS A , where HS A is the system-
ancilla Hamiltonian. However, this need not be the case in
general. As a last ingredient, if we want all ancillas to start
their interactions with the system in the same state, we must
take EA as the identity. Under these assumptions Eq. (4) re-
duces to

ρn
S = TrA

[
US A(τS A)(ρn−1

S ⊗ ρA)
]
, (5)

while Eq. (3) reduces to sn = nτS A. Hence this recovers ex-
actly the “conveyor belt” stroboscopic system dynamics [58].

Rare arrivals and stochastic QCMs.−The stochastic model
in Fig. 1(a) is obtained in the regime of “rare arrivals”, where
Tn ≫ S n. In this limit, the recursion relation (2) implies that
Wq

n+1 ≃ 0 and In+1 ≃ Tn. The ancillas therefore have no wait-
ing time. The system is evolving, most of the time, under
the idle map ES (Tn−1), which now depends only on the inter-
arrival times Tn−1. For the model to remain interesting, one
must assume that US A(S n) = US A is still non-trivial, even if
S n is very small. For example, a typical assumption is that
US A is generated by a delta-like Hamiltonian, and is therefore
independent of the actual value of S n [28, 60].

A more common representation of stochastic QCMs is ob-
tained if one switches to a time ensemble, where the sys-
tem state is described at a fixed time, but the number of
collisions can vary. This way, one obtains the evolution of
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FIG. 1. Quantum collision models (QCMs), where a system interacts sequentially with arriving ancillas. (a) Stochastic QCM, where ancillas
arrive according to a random interarrival distribution. (b) Deterministic QCM, where a “conveyor belt” of ancillas interacts stroboscopically
with the system, at regular intervals. (c) The queued QCM introduced in this letter. The system interacts with the ancilla via the quantum
channelUS A. If an ancilla arrives and another one is already interacting with the system, it will queue up and wait for its turn. While they wait,
ancillas can undergo a quantum channel EA that depends on the time spent in the queue Wq

n . If no ancillas are waiting, the system becomes
idle and goes through a quantum channel ES that depends on the idle period duration In. (d) Circuit diagram describing the main quantities
in a classical queueing dynamics. Circles represent the ancilla’s arrivals, triangles describe the beginning of the system-ancilla interaction and
squares represent the ancilla’s departures. The waiting and idle times Wq

n and In are determined from the interarrival and service times Tn

and S n through the Lindley recursion relations (1) and (2). (e) Schematic depiction of the random queue size over time, displaying busy and
idle periods of the server (system). (f) Schematic depiction of a system observable over time, displaying how it responds differently to idle
dynamics and system−ancilla interactions.
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FIG. 2. System ℓ1 norm of coherence C in the qubit toy model. (a) Cn

as a function of ancilla number (evaluated at the times each ancilla
leaves the process), for different values of λτS A, with γτS A = 0.05
and gτS A = π/12. (b) Single-shot time average and (c) variance of the
coherence in the long-time limit as a function of λτS A, for different
values of gτS A, with γτS A = 0.05.

an unconditional state. We show in [58] that the queued
framework (Eq. (4)) recovers exactly this case. In partic-
ular, if Tn follows an exponential distribution, the uncondi-
tional state evolves under a time-local quantum master equa-
tion [28, 60]. Otherwise, the unconditional dynamics is gen-
erally non-Markovian [30, 61].

Competing dynamics.−Having shown how the map (4)
contains the standard QCM formulations as particular cases,
we move on to discuss how the competing effects between
system-ancilla interactions (US A) and individual waiting/idle
dynamics (EA/S ) give rise to a rich dynamics. To that end,
we consider a model where the system and ancillas are
qubits, which exchange excitations via a partial SWAP uni-
tary US A(S n)[ρS ⊗ ρA] = US n (ρS ⊗ ρA)U†S n

, where US n =

i cos(gS n)+ sin(gS n)Uswap. Here g controls the strength of the
interaction and Uswap is the full SWAP. The ancillas are pre-
pared in ρA = |+⟩⟨+|, where |+⟩ = (|0⟩ + |1⟩)/

√
2 and |0/1⟩

are the eigenstates of the Pauli matrix σz. The partial SWAP
dynamics therefore transfers some of the coherence from the
ancillas to the system. In the absence of EA/S this reduces
(irrespective of the queueing properties) to the homogeniza-
tion problem of Ref. [18] where, in the long run, the system
converges (homogenizes) to the ancilla’s state.

We assume that while the ancillas wait in the queue or while
the system is idle, they can both decohere. We model this as a
dephasing channel E(t)[ρ] = 1

2
[
(1 + e−γt)ρ + (1 − e−γt)σzρσz

]
with (γ, t) → (γS , In) for the system and (γ, t) → (γA,W

q
n ) for

the ancillas. For simplicity, we focus here on γS = γA = γ.
We discuss in [58] the case where either γS or γA is zero. The
goal of this toy model is to maintain the system in a state with
a high amount of coherence, which we quantify using the ℓ1
norm of coherence [62, 63] in the system, C = |Tr(σ+ρS )|. In
this regard, both the heavy traffic and the rare arrivals regimes
are deleterious. In the former, the ancillas wait too long and
hence lose the coherence before they transfer it to the system.
In the latter, the system is idle too often and hence loses the co-
herences it receives from the ancillas. To illustrate this inter-
play more concretely, we assume that the service times are all
equal and deterministic, S n = τS A, while the interarrival times
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Tn are iid and exponentially distributed, with pT (t) = λe−λt,
where λ determines the rate of arrivals. The queueing prop-
erties are fully determined by λτS A, which is large for heavy
traffic and small for rare arrivals. The quantum dynamics, on
the other hand, is described by the interplay between the time-
scales gτS A, γIn and γWq

n .
In Fig. 2(a) we plot the coherence after each ancilla colli-

sion for different values of λτS A, assuming the system starts
in ρ0

S = |0⟩⟨0|. In the first few collisions, the coherence grows.
For small λτS A it remains roughly constant, while for larger
λτS A it drops down to zero. This happens because for large
λτS A the size of the queue starts to grow unboundedly. As a
consequence, the waiting time for each ancilla grows and they
tend to decohere more and more. A more systematic analy-
sis is shown in Fig. 2(b), where we study the time-averaged
coherence after very many collisions,

E(C) = lim
n→∞

1
n

n∑
j=1

C j. (6)

This is a single shot calculation; i.e., we average the coher-
ence over a single long time run. The quantity is plotted as
a function of λτS A, showing a clear transition at λτS A = 1,
where E(C) is nonanalytic. More interestingly, we see that
C is not monotonic with λτS A, which reflects the non-trivial
interplay of waiting and idle times. There is, therefore, an op-
timal value λτS A ∈ (0, 1), which depends on the quantum dy-
namics parameters g and γ, for which the coherence reaches a
maximum.

Another important feature of the queueing dynamics is that,
in general, the system will never reach a steady state, in the
sense that the long-time dynamics will cause the system state
to fluctuate for arbitrarily long times. We illustrate this in
Fig. 2(c), where we plot the single-shot variance of the co-
herence, computed in the long-time limit:

var(C) = lim
n→∞

1
n − 1

n∑
j=1

[
Cn − E(C)

]2
. (7)

Following what happened to the average, var(C) is also non-
analytic at λτS A = 1. We see that for λτS A > 1 the fluc-
tuations tend exactly to zero. This state coincides with the
homogenization problem of Ref. [18], except that the system
homogenizes to the maximally mixed state since the ancillas
fully decohere. Conversely, for λτS A < 1 the fluctuations are
non-zero, even in the long-time limit. This happens because
in this regime the queue randomly alternates between idle and
busy periods, as depicted in Fig. 1(e). During idle periods,
the system decoheres. During busy periods, it absorbs some
coherence from the ancillas.

Conclusions.−We have introduced a new dynamical model
of open quantum dynamics, in which a system interacts se-
quentially with ancillas, in a way that is governed by a clas-
sical controller. The only assumption is that the system in-
teracts only with one ancilla at a time. All other dynamical
properties are established by the choice of interarrival and ser-
vice times Tn and S n, as well as the quantum maps US A,EA

and ES . This framework therefore greatly generalizes colli-
sion models, containing previously studied QCMs as partic-
ular/limiting cases. In this Letter we aimed to illustrate the
types of new dynamical rules that might emerge from this
framework by studying a qubit model of coherence transfer
and showing how decoherence can lead to non-trivial phases
of the system’s steady state.

Our results open up various avenues of research. Notably,
there is still much to be explored about the map (4), includ-
ing particular cases that might allow for analytical solutions,
or other types of competing dynamics that could lead to in-
teresting behaviors. In addition, the basic building blocks in-
troduced here naturally lead to various other dynamical mod-
els. First, one could allow the ancillas to interact while in the
queue. Second, one can introduce priority mechanisms, where
certain ancillas are flagged as priorities, and therefore allowed
to skip the queue entirely [64–66]. Third, one could study
pairwise queues, where ancillas from each queue interact with
one another in a pairwise fashion. This closely matches the
quantum computations with neutral atom arrays [13]. Fourth,
one could introduce mechanisms in which the quantum dy-
namics also affect the classical queue. In Eq. (4) the classical
queue dynamics affects the quantum properties, but not vice-
versa. One way to change that is, for example, to have the
system-ancilla service time be determined by the occurrence
of a quantum jump in the system (e.g. a photon is emitted).
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M. Huber, Physical Review Applied 14 (2020), 10.1103/phys-
revapplied.14.054005.

[27] S. Campbell, F. Ciccarello, G. M. Palma, and B. Vacchini,
Physical Review A 98 (2018), 10.1103/physreva.98.012142.

[28] D. A. Chisholm, G. Garcı́a-Pérez, M. A. C. Rossi, G. M. Palma,
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Supplemental Material

COMMENTS ABOUT QUEUES AND DERIVATION OF LINDLEY’S EQUATION

A queueing process is defined by the interarrival times Tn and the service times S n. Although the recursion relations (1) and
(2) effectively provide a way to “solve” the queue by calculating the idle times In and waiting times Wq

n for every customer
(ancilla), they make no mention toward the distributions of those quantities. Therefore, a natural question to address is what
the distributions of In and Wq

n look like. One aspect that makes this analysis nontrivial and interesting is the fact that both
distributions are a sum of a discrete part and a continuous smooth part, e.g.,

P(Wq
n ) = P0δ(W

q
n ) + f (Wq

n ),
P(In) = I0δ(In) + g(In),

where P0 and I0 account for the nonvanishing probability that the ancilla has no waiting time (i.e. finds the queue empty upon
arrival) or the system has no idle time, respectively. Functions f (g) denote some smooth function that depends on Wq

n (In). In
what follows, we analyze some of the richness behind the distributions P(Wq

n ) and P(In) in the case where both Tn and S n are
independent and identically distributed (iid) random variables.

Let us denote the cumulative distribution function (CDF) of the waiting times as

Fn(x) = P
(
Wq

n ⩽ x
)
. (S1)

Here it is convenient to introduce Un = S n − Tn, which is an iid random variable distributed according to a probability density
function p(u). It follows,

Fn+1(x) = P
(
Wq

n+1 ⩽ x
)

= P
(
Wq

n+1 = 0
)
+ P

(
0 < Wq

n+1 ⩽ x
)

= P
(
Wq

n + Un ⩽ 0
)
+ P

(
0 < Wq

n + Un ⩽ x
)

= P
(
Wq

n + Un ⩽ x
)

=

∫ x

−∞

P
(
Wq

n ⩽ x − u)p(u)du,

where we conclude, after changing variables to v = x − u,

Fn+1(x) =
∫ ∞

0
Fn(v)p(x − v)dv. (S2)

This result is known as the Lindley equation. It allows us to specify the CDF of any customer in terms of only the CDF of the
previous customer. Given that Fn(x) are CDFs, they have the following properties: (i) F1(x) = 1, ∀ x ⩾ 0, which follows from
Wq

1 ≡ 0; (ii) Fn(x → ∞) = 1; (iii) Fn(0) is generally not zero, since this represents the probability that the customer finds the
queue empty and does not have to wait.

Following the same procedure, we use the recursion relations (1) and (2) to derive a result where the idle time statistics can be
calculated from the waiting time probabilities Fn(x). The starting point is

P(In+1 ⩽ x) = P(In+1 = 0) + P(0 < In+1 ⩽ x),

applying the recursion relations (1) and (2),

P(In+1 ⩽ x) = P(Wq
n + Un = 0) + P(0 < −(Wq

n + Un ⩽ x)
= P(Wq

n + Un ⩾ 0) + P(−x ⩽ Wq
n + Un < 0)

= P(−x ⩽ Wq
n + Un)

= P(Wq
n ⩾ −x − Un) (x ⩾ 0),
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now we use the fact that Un is an iid random variable with a PDF given by p(u). It follows

P(In+1 ⩽ x) =
∫ −∞

∞

du p(u)P(Wq
n ⩾ −x − u)

=

∫ ∞

−∞

du p(u)
[
1 − P(Wq

n ⩽ −x − u)
]

= 1 −
∫ −x

−∞

du p(u)Fn(−x − u),

so the result becomes

Gn+1(x) = P(In+1 ⩽ x) = 1 −
∫ ∞

0
dv p(−x − v)Fn(v), (S3)

with v = −x − u. To the best of the authors’ knowledge, this result of queueing theory has never been reported in the literature
before.

STEADY STATE SOLUTION FOR THE DETERMINISTIC QCM

We further elaborate on the steady state solution of the deterministic QCM in Fig. 1(b) from the queued QCM. Here, we work
in the “heavy traffic” limit, where S n ≫ Tn. This means that ancillas arrive much more quickly than the system can serve them.
As a consequence, the queue quickly builds up, and the system will never be idle (In = 0), so ES is the identity. To make a
connection with typical deterministic QCM dynamics, we also assume that there is no waiting time dynamics for the ancillas.
The dynamics from Eq. (4) then reduce to

ρn
S = TrA

[
US A(S n)(ρn−1

S ⊗ ρA)
]
. (S4)

The expectation value of the state after the collision with the n-th ancilla is then given by

E[ρn
S ] =

∫
dS 1...dS nP(S 1)...P(S n) TrA[US A(S n)(ρn−1

S ⊗ ρA)]

=

∫
dS nP(S n) TrA[US A(S n)(E[ρn−1

S ] ⊗ ρA)],

and the steady state follows

E[ρss
S ] =

∫
dsP(s) TrA[US A(s)(E[ρss

S ] ⊗ ρA)] (S5)

= Φ[E(ρss
S )]. (S6)

Note that the steady state solution is reached irrespective of the properties of the service times S n. However, to recover the
standard formulation, we may assume that S n = τS A, and that the system-ancilla map is unitary, of the form US A(τS A)[•] =
e−iHS AτS A • eiHS AτS A , where HS A is the system-ancilla Hamiltonian. We emphasize, however, that the steady state solution in the
heavy traffic regime does not rely on this last assumption. In the case that S n = τS A, the integration (S5) becomes trivial.

RECOVERING THE STOCHASTIC QCM FROM THE QUEUED QCM

Here, we show how one recovers the stochastic model in Fig. 1(a) from the queued QCM (4). Here, we work in the regime
of “rare arrivals”, where Tn ≫ S n. This imples, following Eq. (2), that Wq

n+1 ≃ 0 and In+1 ≃ Tn. The queue is empty most of
the time, so ancillas arriving do not have to wait. The system is evolving, most of the time, under the idle map ES (Tn−1), which
now depends only on the interarrival times Tn−1. We also assume that US A(S n) = US A is still non-trivial, even for very small
S n. Under these assumptions, Eq. (4) reduces to

ρn
S = TrA

{
US A

[
ES (Tn−1)[ρn−1

S ] ⊗ ρA

]}
, (S7)

while Eq. (3) reduces to sn =
∑n

j=1 T j.
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It is clear that in this limit any stochasticity in the model will reside in the statistics of Tn−1. The usual stochastic QCMs
correspond to the case where the interarrival times Tn are iid with distribution pT (t). A more common representation of stochastic
QCMs is obtained if one switches to a time ensemble, where we describe the state of the system at a definite time, but allow the
number of collisions to vary. This can be accomplished by defining

ϱ(n)
S (t) := E[ρn

S δ(t − sn−1)]/E[δ(t − sn−1)], (S8)

where the ensemble average is over the joint realization of all interarrival times. The state ϱ(n)
S (t) now describes the evolution of

the system over some time t, where the number of collisions n can vary. Explicitly, the expectation values are given by

E[·] =
∫

dT1...dTn−1(·)P(T1)...P(Tn−1)

≡

∫
dT1...n−1(·)P(T1...n−1),

it then follows

ϱ(n)
S (t) =

1
E[δ(t − sn−1)]

∫
dT1...n−1P(T1...n−1)δ(t − sn−1)TrA

[
US A

(
ES (Tn−1)(ρn−1

S ) ⊗ ρA

)]
,

where the only term that depends on the interarrival time Tn−1 is the idle dynamics channel. On top of that, we can substitute
sn−1 = sn−2 + In−1 + S n−1 = sn−2 + Tn−2 in the delta inside the integral, so we get

ϱ(n)
S (t) =

1
E[δ(t − sn−1)]

∫
dTn−1P(Tn−1)TrA

[
US A (ES (Tn−1)

(∫
P(T1...n−2)ρn−1

S δ(t − sn−2 − Tn−2)dT1...n−2

)
⊗ ρA

)]
,

=
E[δ(t − sn−2)]
E[δ(t − sn−1)]

∫
dTn−1P(Tn−1)TrA

[
US A

(
ES (Tn−1)[ρ(n−1)

S (t − Tn−1)] ⊗ ρA

)]
.

By defining ϱ̃(n)
S (t) := ϱ(n)

S (t)E[δ(t − sn−1)] and changing variables Tn−1 ≡ t′, we obtain the final result

ϱ̃(n)
S (t) =

∫
dt′pT (t′)TrA

[
US A

(
ES (t′)[ϱ̃(n−1)

S (t − t′)] ⊗ ρA

)]
, (S9)

where P(t′) ≡ pT (t′). Eq. (S9) describes precisely the familiar representation used in studies of stochastic QCMs [60].

FURTHER EXAMPLES OF THE TOY MODEL DYNAMICS

In the main text, we considered a qubit toy model of coherence transfer where both the system and the ancillas underwent a
dephasing channel during their idle and waiting dynamics, respectively. The goal was to prepare ancillas with coherence and
observe the coherence transfer to the system through the partial SWAP interactions as a function of λτS A. Here, we discuss
two particular cases of this model. In the first, we consider that there is dephasing only in the system, so the idle channel is
ES (t)[ρ] = 1

2
[
(1 + e−γt)ρ + (1 − e−γt)σzρσz

]
with (γ, t) → (γS , In), and the waiting time channel is the identity (γA = 0). In

the second, we have a dephasing channel only for the ancillas, so the idle channel is the identity (γS = 0) and the waiting time
channel is EA(t)[ρ] = 1

2
[
(1 + e−γt)ρ + (1 − e−γt)σzρσz

]
with (γ, t)→ (γA,W

q
n ).

Let us begin by discussing the first extension, where the dephasing channel describes only the idle system dyamics. In
Fig. S1(a) we plot the coherence after each ancilla collision for different values of λτS A, assuming the system starts in ρ0

S = |0⟩⟨0|
and that ancillas are iid and prepared in the state ρA = |+⟩⟨+|. In this setup, ancillas always have coherence 1/2 whereas the
system loses coherence whenever it becomes idle. This competition gives rise to the oscillations observed in Fig. S1(a) for
λτS A < 1. Since there is no other mechanism in which the system may obtain coherence, we observe that the average coherence
is monotonically increasing with respect to λτS A, see Fig. S1(b). This result is intuitive in the sense that if the arrivals are more
frequent, the system is less and less idle, hence it loses less and less coherence. Once λτS A > 1 is reached, the system becomes
permanently busy and the model recovers the homogenization problem, where

lim
n→∞
ρn

S = ρA,

and a true steady state is reached because the fluctuations go to zero, see Fig. S1(c). This model captures the small λτS A

behavior (“left” part of Fig. 2(b)) of the general qubit model presented for the QQCM, where we observe that C is monotonically
increasing with λτS A before the inflection point is reached.
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FIG. S1. System ℓ1 norm of coherence C in the modified qubit toy model, where there is only idle dynamics describing a dephasing channel
(γA = 0). (a) Cn as a function of ancilla number (evaluated at the times each ancilla leaves the process), for different values of λτS A, with
γS τS A = 0.05 and gτS A = π/12. (b) Single-shot time average and (c) variance of the coherence in the long-time limit as a function of λτS A, for
different values of gτS A, with γS τS A = 0.05.

In the second extension, we consider that the dephasing channel describes only the ancilla waiting time dynamics. In Fig. S2(a)
we plot the coherence after each ancilla collision for different values of λτS A, assuming the system starts in ρ0

S = |0⟩⟨0| and that
ancillas are iid and prepared in the state ρA = |+⟩⟨+|. In this setup, ancillas lose coherence depending on how long they wait in
the queue, but the system does not lose any coherence while it is idle. The coherence transfer, therefore, becomes a competition
between the partially dephased ancillas and the remaining coherence of the system, which is acquired through previous partial
SWAP interactions. This new kind of competition effect gives rise to a peculiar feature that is observed in Fig. S2(b): the average
coherence is independent of the partial SWAP coupling. This is an artifact of the very long time behavior. Since the system does
not lose any coherence when it is idle, what effectively dictates how much coherence it will have in long times is how strongly
dephased the ancillas are. For smaller values of λτS A, even if ancillas arrive very rarely, they lose very little coherence, so the
partial SWAPs will eventually lead the system to a high coherence state. As the frequency of arrivals increases, the queue starts
to pile up and as a consequence, the long time behavior coherence of the system will be smaller because whenever it interacts
it will be with more and more dephased ancillas that are waiting longer in the queue. Once λτS A > 1 is reached, the queue
grows indefinitely and every ancilla is completely dephased. As a consequence, the system loses all coherence. The model now
homogenizes to the completely dephased ancilla state, which is the identity:

lim
n→∞
ρn

S = EA(t → ∞)[ρA] =
1
2
I.

Note that this is a steady state of the dynamics because the fluctuations vanish, see Fig. S2(c). This model captures the large
λτS A behavior (including values below and above the λτS A = 1 transition, i.e. the “right” part of Fig. 2(b)) of the general qubit
model we presented for the QQCM, where we observe that C is monotonically decreasing with λτS A before reaching λτS A = 1,
and zero after.

Those two examples where we turn on only one kind of dynamics at a time illustrate one feature of the full QQCM example we
discussed in the main text, namely, that there is value λτS A ∈ (0, 1) that maximizes the average coherence. This effect is a direct
competition between the two channels acting simultaneously. As we observed in the two examples discussed here, turning off
the waiting time dynamics essentially describes the small λτS A regime while turning off the idle dynamics effectively describes
the large λτS A regime. In the former, we see that the coherence transfer is monotonically increasing with λτS A whereas in the
latter it is monotonically decreasing. The optimal coherence point arises as an inflection point between those two behaviors,
which are directly related to the queue. In both examples, the transition is still present at λτS A = 1, where the average and the
variance of the coherence are nonanalytic at this point.
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FIG. S2. System ℓ1 norm of coherence C in the modified qubit toy model, where there is only waiting time dynamics describing a dephasing
channel. (a) Cn as a function of ancilla number (evaluated at the times each ancilla leaves the process), for different values of λτS A, with
γτS A = 0.05 and gτS A = π/12. (b) Single-shot time average and (c) variance of the coherence in the long-time limit as a function of λτS A, for
different values of gτS A, with γτS A = 0.05.
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