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Abstract

In this paper, we study discrete Carleman estimates for space semi-discrete approx-

imations of one-dimensional stochastic parabolic equation. As applications of these

discrete Carleman estimates, we apply them to study two inverse problems for the spa-

tial semi-discrete stochastic parabolic equations, including a discrete inverse random

source problem and a discrete Cauchy problem. We firstly establish two Carleman

estimates for a one-dimensional semi-discrete stochastic parabolic equation, one for ho-

mogeneous boundary and the other for non-homogeneous boundary. Then we apply

these two estimates separately to derive two stability results. The first one is the Lip-

schitz stability for the discrete inverse random source problem. The second one is the

Hölder stability for the discrete Cauchy problem.
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spatial semi-discrete stochastic parabolic equation.
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1 Introduction

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space on which a one-dimensional

standard Brownian motion {B(t)}t≥0 is defined such that {Ft}t≥0 is the natural filtration

generated by B(·), augmented by all the P-null sets in F . Let T > 0, G = (0, L) and

Q = G× (0, T ). Consider the following one-dimensional stochastic parabolic equation










dy − yxxdt = (ay + byx + f)dt+ (cy + g)dB(t), (x, t) ∈ Q,

y(0, t) = y(L, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ G

(1.1)

with suitable coefficients a, b and c. Physically, f and g are source terms, g stands for the

intensity of a random force of the white noise type.

The main objective of this paper is to establish discrete Carleman estimates for the

finite-difference space discretization of stochastic parabolic equation (1.1), and to give its

applications in two kinds of typical inverse problems, namely the inverse random source

problem and the Cauchy problem for spatial semi-discrete stochastic parabolic equation. To

do this, let us consider N ∈ N
∗, a step h = L

N+1 , and an equidistant mesh of the interval

(0, L), 0 = x0 < x1 < · · · < xN < xN+1 = L, with xi = ih, 0 ≤ i ≤ N + 1. The finite-

difference approximation of the space derivatives leads to the following semi-discretization

of (1.1):






















dyi(t)− yi+1(t)−2yi(t)+yi−1(t)
h2 dt =

(

aiyi(t) + bi
yi+1(t)−yi(t)

h
+ fi

)

dt

+(ciyi(t) + gi)dB(t), 1 ≤ i ≤ N, t > 0,

y0(t) = yN+1(t) = 0, t > 0,

yi(0) = y0i , 1 ≤ i ≤ N,

(1.2)

where yi(t) stands for y(xi, t), analogous definitions are for ai, bi, fi, gi and the other func-

tions in the sequel.

Throughout this paper, we denote the discrete domains and discrete boundaries by the

following notations

Gh = {x1, x2, · · · , xN} , Qh = Gh × (0, T ),

Gh = {x0, x1, x2, · · · , xN , xN+1} , Qh = Gh × (0, T ),

∂Gh = {x0, xN+1} , Σh = ∂Gh × (0, T ),

G−
h = {x0, x1, x2, · · · , xN} , Q−

h = G−
h × (0, T ).

We denote by R
M and R

M the set of discrete functions defined on Gh and Gh, respectively.

Furthermore, for uh = (u0, u1, · · · , uN+1)
T ∈ R

M, we define the averaging operators and

difference operators as follows

(m+
h uh)i =

ui+1 + ui
2

, (m−
h uh)i =

ui + ui−1

2
, (mhuh)i =

ui+1 + 2ui + ui−1

4
,

(D+
h uh)i =

ui+1 − ui
h

, (D−
h uh)i =

ui − ui−1

h
, (Dhuh)i =

ui+1 − ui−1

2h
,

(∆huh)i =
ui+1 − 2ui + ui−1

h2
.
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These notations allow us to express semi-discretization (1.2) in a more compact way, which

is necessary to formulate our inverse problems.

Discrete inverse random source problem. Determine the random source term gh ∈ R
M

in the following semi-discrete stochastic parabolic equation:











dyh −∆hyhdt = (ahyh + bhD
+
h yh)dt+ ghdB(t), (xh, t) ∈ Qh,

yh = 0, (xh, t) ∈ Σh,

yh(0) = y0h, xh ∈ Gh,

(1.3)

by the observation data

(D−
h yh)N+1 and yh(T ),

where yh ∈ R
M and ah, bh, y

0
h ∈ R

M.

Let G0 ⊂ G such that G0 ⊂ G∪{xN+1} and ∂G0∩∂G = {xN+1}. We set G0,h = G0∩Gh.
The discrete Cauchy problem is described as follows.

Discrete Cauchy problem. For any ǫ > 0, determine the solution yh in G0,h × (ǫ, T − ǫ)

of the following semi-discrete stochastic parabolic equation:

dyh −∆hyhdt = (ahyh + bhD
+
h yh)dt+ chyhdB(t), (xh, t) ∈ Qh, (1.4)

by the discrete lateral boundary data

(yh)N+1 = ξ(t) and
(

D−
h yh

)

N+1
= η(t), t ∈ (0, T ). (1.5)

Carleman estimate is a class of weighted energy estimates related to some differential

operator, which can be applied to many aspects, such as inverse problems [18, 20, 21,

33], control theory [14, 19, 29] and so on. There are rich references on discrete Carleman

estimates for deterministic partial differential equations, which can be divided into three

main categories: space-discrete, time-discrete and full-discrete results. We refer to [4, 5, 7,

9, 10, 12, 23, 27] for space-discrete Carleman estimates, [6, 16] for time-discrete Carleman

estimates and [8, 11] for full-discrete Carleman estimates. These discrete Carleman estimates

have been successfully applied to prove the uniform controllability and the stability of inverse

problems for various discrete deterministic partial differential equations [22, 28, 36, 37]. To

the best of our knowledge, there is no paper considering discrete Carleman estimates for

stochastic partial differential equations.

Carleman estimate is a powerful tool to study inverse problems related to various stochas-

tic partial differential equations [15, 24, 31, 32, 34]. For inverse source problem related to

stochastic parabolic equations, we refer to [25] for the uniqueness of an inverse problem

of determining source function f in (1.1). The inverse source problem of determining two

kinds of sources f and g simultaneously in (1.1) was studied in [35]. Moreover, we also

refer to [1] or [2] for applications of regularization techniques in the numerical methods for

inverse random source problems. The Cauchy problem aims to recover the solution with

observed data from the lateral boundary. In [33], a conditional stability was proved for the
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Cauchy problem of deterministic parabolic equations. Recently, this method is extended to

the stochastic case. The conditional stability and convergence rate of the Tikhonov regular-

ization method for the Cauchy problem of stochastic parabolic equations was obtained [13].

It is worth mentioning that in [26] the authors gave a detailed review on inverse problems

for stochastic partial differential equations. However, these results were all obtained within

a continuous framework. Discrete inverse problems for the stochastic differential equations

have not been studied thoroughly yet.

In this paper, we firstly focus on Carleman estimates for discrete stochastic parabolic

equation. More precisely, we will prove two Carleman estimates for spatial semi-discretization

(1.2) of one-dimensional stochastic parabolic equation. We apply the first Carleman estimate

to study the discrete inverse random source problem. Unlike the deterministic counterparts,

the solution of a stochastic differential equation is not differentiable with respect to time

variable. We have to choose a regular weight function to put the random source term on

the left-hand side of discrete Carleman estimate. Since the second parameter λ plays an

important role in the proof of the uniform stability result with respect to the mesh size,

we need to carefully decouple λ from the constant C in our Carleman estimate. Secondly,

in order to handle the discrete Cauchy problem, we need a slight revision to present the

second discrete Carleman estimate with non-homogeneous boundary. Applying this Carle-

man estimate, we obtain a Hölder stability for the discrete Cauchy problem. In comparison

with the deterministic discrete Carleman estimates, there are additional terms arising from

stochastic effects to be considered.

The rest of this paper is organized as follows. In section 2, we present discrete settings

and our main results. In section 3, we show two Carleman estimates for space semi-discrete

approximations of one-dimensional stochastic parabolic equation. In next two sections,

based on these two Carleman estimates we study the discrete inverse random source problem

and the discrete Cauchy problem, respectively.

2 Discrete settings and main results

In this section, we introduce fundamental concepts of discrete calculus, including discrete

function spaces, some useful discrete identities, and integration by parts for discrete opera-

tors, which will be used in the proofs of our main results. Subsequently, we present our main

results in this paper. We first give two discrete Carleman estimates for the semi-discrete

stochastic parabolic equation, namely, one for homogeneous boundary and the other for

non-homogeneous boundary. Then we address two stability results. The first one pertains

to the discrete inverse random source problem, while the second one focuses on the discrete

Cauchy problem.

2.1 Discrete settings

By analogy with the continuous case, for uh = (u0, u1, · · · , uN+1)
T ∈ R

M we define the

discrete integrals:
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∫

Gh

uh = h
∑

xi∈Gh

ui = h

N
∑

i=1

ui,

∫

G
−
h

uh = h
∑

xi∈G−
h

ui = h

N
∑

i=0

ui.

For uh, vh ∈ R
M, we define the following L2-inner product on R

M

(uh, vh)L2(Gh) = h
N
∑

i=1

uivi.

The associated norm is denoted by ‖uh‖L2(Gh). Analogously, we define the L
∞-norm on R

M

||uh||2L∞(Gh)
= max

1≤i≤N
|ui|.

Also, we introduce

‖uh‖2H1(Gh)
=

∫

G
−
h

|D+
h uh|2 +

∫

Gh

|uh|2

and

‖uh‖H2(Gh) =

∫

Gh

|∆huh|2 +
∫

G
−
h

|D+
h uh|2 +

∫

Gh

|uh|2.

Furthermore, for a discrete Banach space Xh defined on Gh, we denote by L2(0, T ;Xh) the
set of discrete functions endowed with the norm

||uh||2L2(0,T ;Xh)
=

∫ T

0

‖uh‖2Xh
dt.

Now we introduce some notations for stochastic analysis on discrete space meshes. For a

Banach space Y, we denote by L2
F(Ω;Y) the space of all progressively measurable stochastic

process ζ such that E(‖ζ‖2Y) < ∞. For a discrete Banach space Xh on Gh, we denote by

L2
F(0, T ;Xh) the Banach space consisting of all Xh-valued {Ft}t≥0-adapted processes ζ(·)

such that E(‖ζ(·)‖2
L2(0,T ;Xh)

) < ∞, with the canonical norm; by L∞
F (0, T ;Xh) the Banach

space consisting of all Xh-valued {Ft}t≥0-adapted bounded processes.

For the space-discrete operators, we also need to provide several preliminary identities

and discrete integration by parts formula that will be extensively used in the sequel. We

present the results without the proof and refer the readers to [7] (see also [5]) for a detailed

discussion.

Lemma 2.1. Let u and v be discrete functions defined on Gh. Then for the averaging

operators and difference operators, we have the following identities:

m+
h u = u+

h

2
D+
h u, mhu = u+

h2

4
∆hu, Dhu = m−

hD
+
h u, ∆hu = D+

hD
−
h u, (2.1)

m+
h (uv) = m+

h um
+
h v +

h2

4
D+
h uD

+
h v, D+

h (uv) = D+
h um

+
h v +m+

h uD
+
h v, (2.2)

∆h(uv) = ∆humhv + 2DhuDhv +mhu∆hv. (2.3)
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Lemma 2.2. Let u and v be discrete functions defined on Gh such that v0 = vN+1 = 0.

Then we have the following identities:

2

∫

Gh

uvDhv = −
∫

Gh

Dhu|v|2 +
h2

2

∫

G
−
h

D+
h u|D+

h v|2, (2.4)

∫

Gh

u∆hv = −
∫

G−
h

D+
h uD

+
h v − u0(D

+
h v)0 + uN+1(D

−
h v)N+1, (2.5)

∫

Gh

uv∆hv = −
∫

G
−
h

m+
h u|D+

h v|2 +
1

2

∫

Gh

∆hu|v|2, (2.6)

2

∫

Gh

uDhv∆hv = −
∫

G
−
h

D+
h u|D+

h v|2 + uN+1|(D−
h v)N+1|2 − u0|(D+

h v)0|2. (2.7)

Remark 2.1. According to the detailed proof of discrete integration by parts (2.5) in [5],

we know that it also holds for v without v0 = vN+1 = 0. So we can use (2.5) to obtain

(3.60) in next section.

2.2 Main results

To state our first result, we introduce several weight functions which will be used in our

discrete Carleman estimate. Let λ and s be two large parameters. For some x∗ < 0,

t0 ∈ (0, T ) and a small parameter β > 0, we define the regular weight functions by

ϕ(x, t) = eλψ(x,t), θ(x, t) = esϕ(x,t), r(x, t) = θ−1(x, t) (2.8)

with

ψ(x, t) = |x− x∗|2 − β|t− t0|2. (2.9)

Moreover, in the following, we will use C to denote generic positive constants depending

on x∗, L, T, β, but independent of s and λ. Similarly, C(λ) denote constants also depending

on λ. Moreover, we use the notation Oλ(γ), which satisfies |Oλ(γ)| ≤ C(λ)|γ| with a

constant C(λ). All of these notations may vary from line to line and are independent of h.

According to Proposition 2.9 and Lemma 2.12 in [5], we have the following asymptotic

expansion properties:

θDhr = −sλA1, θ∆hr = s2λ2A2 − sλ2A3 − sλA4 (2.10)

where

Aj = fj +Oλ(sh), j = 1, 2, 3, 4 (2.11)

with

f1 = ϕ∂xψ, f2 = ϕ2|∂xψ|2, f3 = ϕ|∂xψ|2, f4 = ϕ∂xxψ.

Further, we also have for j = 1, 2, 3, 4 that










m±
hAj = fj +Oλ(sh), ∂tm

+
hAj = ∂tfj +Oλ(sh),

∂tAj = ∂tfj +Oλ(sh), DhAj = ∂xfj +Oλ(sh) = D±
hAj +Oλ(sh),

∆hAj = ∂xxfj +Oλ(sh), ∂tD
±
hAj = ∂xtfj +Oλ(sh).

(2.12)
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The first main result in this paper is the following uniform Carleman estimate for the

semi-discrete stochastic parabolic equation.

Theorem 2.3. Let fh ∈ L2
F(0, T ;L

2(Gh)), gh ∈ L2
F(0, T ;H

1(Gh)). For the parameter

λ ≥ 1 sufficiently large, there exist positive constant C depending on x∗, L, T, β, and positive

constants s0, ε, h0, C(λ) also depending on λ, all of which are independent of h such that

E

∫

Qh

1

sϕ
θ2|∆hyh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|∂+h yh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|yh|2dt

+ E

∫

Q
−
h

sλ2ϕθ2|gh|2dt

≤CE
∫

Qh

θ2|fh|2dt+ CE

∫

Q−
h

sϕθ2|∂+h gh|2dt+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h yh)N+1|2dt

+ C(λ)s2eC(λ)s||yh(T )||2L2(Ω,FT ,P;L2(Gh))
(2.13)

for all h ∈ (0, h0), s ∈ (s0,
√

ε/h) and all yh ∈ L2
F(0, T ;H

2(Gh)) satisfying











dyh −∆hyhdt = fhdt+ ghdB(t), (xh, t) ∈ Qh,

yh = 0, (xh, t) ∈ Σh,

yh(0) = 0, xh ∈ Gh.

(2.14)

Remark 2.2. In comparison with the existing discrete Carleman estimates for parabolic

equations [6, 8, 11], we introduce a regular weight function in our Carleman estimate. The

reason is that the solution of a stochastic parabolic equation is not differentiable with respect

to time variable. This leads to that the method by applying Carleman estimate to ut could

not directly employed for the inverse random source problem. Consequently, we have to

choose the regular weight function to put the random source term on the left-side of the

Carleman estimate. Unfortunately, there is still a first-order difference term left on the

right-hand side of the Carleman estimate. This means that the unknown random source

function has to satisfy condition (2.17) in the proof of the stability result.

Remark 2.3. In this Carleman estimate, the boundary term at xN+1 could be replaced by

the one at x0. In fact, if we choose x∗ in weight function (2.9) such that x∗ > L, we can

obtain ψx < 0 for all x ∈ G. Then the boundary term left in (3.43) is the one at x0.

Remark 2.4. In this Carleman estimate, we use a special function |x − x∗|2 in ψ. In fact,

we can choose a general form

ψ(x, t) = d(x)− β|t− t0|2

with function d such that |dx| > 0 in G to guarantee (3.39) and (3.40).

In order to deal with the discrete Cauchy problem, we need the following discrete Car-

leman estimate with non-homogeneous boundary condition.
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Theorem 2.4. Let fh ∈ L2
F(0, T ;L

2(Gh)), gh ∈ L2
F(0, T ;H

1(Gh)) and γ1, γ2 ∈ L2
F(Ω;H

1(0,

T )) satisfying compatibility condition γ1(0) = γ2(0) = 0. For the parameter λ ≥ 1 suffi-

ciently large, there exist positive constant C depending on x∗, L, T, β, and positive constants

s0, ε, h0, C(λ) also depending on λ, all of which are independent of h such that

E

∫

Qh

1

sϕ
θ2|∆hyh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|∂+h yh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|yh|2dt

+ E

∫

Q
−
h

sλ2ϕθ2|gh|2dt

≤CE
∫

Qh

θ2|fh|2dt+ CE

∫

Q
−
h

sϕθ2|∂+h gh|2dt+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h yh)N+1|2dt

+ C(λ)s3eC(λ)s
2
∑

i=1

‖γi‖2L2(Ω;H1(0,T )) + C(λ)s2eC(λ)s||yh(T )||2L2(Ω,FT ,P;L2(Gh))
(2.15)

for all h ∈ (0, h0), s ∈ (s0,
√

ε/h) and all yh ∈ L2
F(0, T ;H

2
h(Gh)) satisfying











dyh −∆hyhdt = fhdt+ ghdB(t), (xh, t) ∈ Qh,

(yh)0 = γ1, (yh)N+1 = γ2, t ∈ (0, T ),

yh(0) = 0, xh ∈ Gh.

(2.16)

Remark 2.5. The duality argument introduced in [17] is a main tool to handle non-

homogeneous boundary conditions when proving Carleman estimates. It seems that by

employing this duality argument, we could obtain a weaker Carleman estimate with γ1, γ2 ∈
L2
F(Ω;L

2(0, T )). In this case, the second derivative term could not be included in the left-

hand side of (2.15). However, as mentioned in [33], this regularity of γ1, γ2 ∈ L2
F(Ω;H

1(0, T ))

is necessary to establish the stability for the Cauchy problem. Therefore, we use a simple

method to make the boundary conditions homogeneous, and then use Theorem 2.3 to prove

(2.15).

Based on the first Carleman estimate, we obtain the uniform stability result with respect

to the mesh size h for our discrete inverse random source problem.

Theorem 2.5. Let ah, bh ∈ L∞
F (0, T ;L∞(Gh)) and g

(j)
h ∈ L2

F(0, T ;H
1(Gh)) for j = 1, 2

such that
∣

∣

∣
D+
h

(

g
(1)
h − g

(2)
h

)

i

∣

∣

∣
≤ C

∣

∣

∣

(

g
(1)
h − g

(2)
h

)

i

∣

∣

∣
, i = 0, 1, 2, · · · , N. (2.17)

Then there exists a positive constant C depending on x∗, L, T and β, but independent of h

such that

∥

∥

∥
g
(1)
h − g

(2)
h

∥

∥

∥

L2
F (0,T ;L2(Gh))

≤C
∥

∥

∥

∥

(

D−
h y

(1)
h

)

N+1
−
(

D−
h y

(2)
h

)

N+1

∥

∥

∥

∥

L2
F (Ω;L2(0,T ))

+ C
∥

∥

∥
y
(1)
h (T )− y

(2)
h (T )

∥

∥

∥

L2(Ω,FT ,P;L2(Gh))
, (2.18)

where y
(j)
h is the solution to (1.3) corresponding to g

(j)
h for j = 1, 2, respectively.
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Remark 2.6. A special form of unknown source function is gh = r(t)Rh with known Rh

such that
∣

∣

(

D+
hRh

)

i

∣

∣ ≤ R1 and |(Rh)i| ≥ R0 > 0, P− a.s.

with positive constants R0 and R1. Then we have
∣

∣

∣
D+
h

(

g
(1)
h − g

(2)
h

)

i

∣

∣

∣
=
∣

∣

∣
r(1) − r(2)

∣

∣

∣

∣

∣

(

D+
hRh

)

i

∣

∣ ≤ R1

R0

∣

∣

∣

(

g
(1)
h − g

(2)
h

)

i

∣

∣

∣
.

Compared to the continuous inverse problem addressed in [31, 35], a similar condition is

imposed on the random source function in the continuous setting to investigate the corre-

sponding inverse problem.

Remark 2.7. There is an additional term depending on the mesh size h in the stability

result for discrete inverse problem related to hyperbolic equations [4, 5]. This is because

of the appearance of the term h∂+h ∂tyh on the right-hand side of the Carleman estimate,

which can not be removed according to [5]. However, for parabolic equations, there is no

such an additional term in Carleman estimate (2.13). This means that our stability result

is uniform with respect to h.

Remark 2.8. The uniqueness is a direct result from Theorem 2.5. More precisely, under

the same assumptions as in Theorem 2.5 and if
(

D−
h y

(1)
h

)

N+1
=
(

D−
h y

(2)
h

)

N+1
and y

(1)
h (T ) = y

(2)
h (T ), P− a.s.,

then g
(1)
h = g

(2)
h in Qh, P−a.s.

The last main result is the stability result for our discrete Cauchy problem, which is an

application of the second discrete Carleman estimate.

Theorem 2.6. Let ah, bh ∈ L∞
F (0, T ;L∞(Gh)), ch ∈ L∞

F (0, T ;W 1,∞(Gh)), ξ ∈ L2
F(Ω;H

1

(0, T )) and η ∈ L2
F(Ω;L

2(0, T )). Then for any ǫ > 0, there exist positive constants C, h∗

and κ ∈ (0, 1) depending on x∗, L, T, β and ǫ, such that

‖yh‖L2
F (ǫ,T−ǫ;H2(G0,h) ≤ CMκ

(

‖ξ‖L2(Ω;H1(0,T )) + ‖η‖L2(Ω;L2(0,T ))

)1−κ
(2.19)

for all h ∈ (0, h∗) and all yh ∈ L2
F(0, T ;H

2(Gh)) satisfying

‖yh‖L2
F(0,T ;H2(Gh)) ≤M.

Remark 2.9. The stability result also holds for discrete Cauchy problem with the lateral

boundary data at x0. Since ǫ > 0 is arbitrary, (2.19) immediately implies the uniqueness of

the solution of (1.4) in Qh with ξ(t) = η(t) = 0 for t ∈ (0, T ).

3 Discrete Carleman estimates

In this section, we prove two discrete Carleman estimates for semi-discrete stochastic parabolic

equation, i.e. Theorem 2.3 and Theorem 2.4. The proof follows as close as possible the ideas

presented in the classical continuous setting (see e.g. [3, 30]), where Carleman estimates for

stochastic parabolic equations are obtained in the continuous setting.

9



3.1 Proof of Theorem 2.3

Let l = sϕ, θ = el, r = θ−1 and Yh = θyh. By Itô formula, we obtain

θdyh = dYh − ∂tlYhdt. (3.1)

By (2.1) and (2.3) in Lemma 2.1, we have

θ∆hyhdt =θ (∆hrmhYh + 2DhrDhYh +mhr∆hYh) dt

=θ∆hr

(

Yh +
h2

4
∆hYh

)

dt+ 2θDhrDhYhdt+ θ

(

r +
h2

4
∆hr

)

∆hYhdt

=θ∆hrYhdt+

(

1 +
h2

2
θ∆hr

)

∆hYhdt+ 2θDhrDhYhdt. (3.2)

Then from (3.1) and (3.2), it follows

θ (dyh −∆hyhdt)

=dYh − ∂tlYhdt− θ∆hrYhdt−
(

1 +
h2

2
θ∆hr

)

∆hYhdt− 2θDhrDhYhdt. (3.3)

According to (2.10), we rewrite (3.3) as the following form:

θ(dyh −∆hyhdt) = I1 + Idt, (3.4)

where
I1 = dYh + 2sλA1DhYhdt+ΨYhdt,

I = −(1 +A0)∆hYh − s2λ2A2Yh + (−∂tl + sλ2A3 + sλA4 −Ψ)Yh.

with

A0 =
h2

2

(

s2λ2A2 − sλ2A3 − sλA4

)

, Ψ = τ∂xxl.

Here τ is a positive constant such that τ ∈ (3/2, 3). By (2.12) we have the following

properties of A0:

A0 =
h2

2

(

s2λ2f2 − sλ2f3 − sλf4 + s2Oλ(sh)
)

= Oλ(sh). (3.5)

Similarly,

m+
hA0 = Oλ(sh), D+

hA0 = Oλ(sh), ∆hA0 = Oλ(sh). (3.6)

Furthermore, multiplying I in both sides of (3.4), integrating the result equality over Qh

and taking mathematical expectation, we find

E

∫

Qh

θI(dyh −∆hyhdt) = E

∫

Qh

II1 + E

∫

Qh

I2dt. (3.7)

Next, we provide a detailed calculation of the term involving II1 and then find positive

lower bounds for the terms related to dYh and dt, respectively. Finally, we combine these

10



estimates to complete our proof. To do this, we divide the subsequent proof into the following

several steps. For clarity, we first split the term of II1 into a sum of nine terms

E

∫

Qh

II1 =

3
∑

i,j=1

Iij , (3.8)

where Iij is the inner product of i-th term of I1 and the j-th term of I.

3.1.1 Estimates involving the terms of dYh

By discrete identities (2.1) and discrete integration by parts (2.5), together with

(dYh)0 = (dYh)N+1 = 0, t ∈ [0, T ]

due to yh = 0 on Σh, we obtain

I11 = − E

∫

Qh

(1 +A0)∆hYhdYh

=E

∫

Q
−
h

D+
h YhD

+
h (dYh +A0dYh) + E

∫ T

0

(D+
h Yh)0(dYh +A0dYh)0

− E

∫ T

0

(D−
h Yh)N+1(dYh +A0dYh)N+1

=E

∫

Q
−
h

(

1 +
h

2
D+
hA0 +m+

hA0

)

D+
h YhD

+
h dYh + E

∫

Q
−
h

D+
hA0D

+
h YhdYh. (3.9)

By using Itô formula, we further obtain

I11 =X1 + Y1 + Z1 + E

∫

Q
−
h

B1|D+
h Yh|2dt, (3.10)

where

X1 =
1

2
E

∫

Q
−
h

d

((

1 +
h

2
D+
hA0 +m+

hA0

)

|D+
h Yh|2

)

,

Y1 = −1

2
E

∫

Q
−
h

(

1 +
h

2
D+
hA0 +m+

hA0

)

|D+
h dYh|2,

Z1 = E

∫

Q
−
h

D+
hA0D

+
h YhdYh,

B1 = −1

2
∂t

(

1 +
h

2
D+
hA0 +m+

hA0

)

.

Using Itô formula again, we obtain

I12 =− E

∫

Qh

s2λ2A2YhdYh = X2 + Y2 + E

∫

Qh

D1|Yh|2dt, (3.11)
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where

X2 =− 1

2
E

∫

Qh

d(s2λ2A2|Yh|2),

Y2 =
1

2
E

∫

Qh

s2λ2A2|dYh|2,

D1 =
1

2
s2λ2∂tA2.

Similarly,

I13 =E

∫

Qh

(−∂tl+ sλ2A3 + sλA4 −Ψ)YhdYh = X3 + Y3 + E

∫

Qh

D2|Yh|2dt, (3.12)

where

X3 =
1

2
E

∫

Qh

d
((

−∂tl + sλ2A3 + sλA4 −Ψ
)

|Yh|2
)

,

Y3 =− 1

2
E

∫

Qh

(−∂tl + sλ2A3 + sλA4 −Ψ)|dYh|2,

D2 =− 1

2
(−∂ttl+ sλ2∂tA3 + sλ∂tA4 − ∂tΨ).

Therefore, we have

3
∑

j=1

I1j =

3
∑

i=1

Xi +

3
∑

i=1

Yi + Z1 +

2
∑

i=1

E

∫

Qh

Di|Yh|2dt+ E

∫

Q
−
h

B1|D+
h Yh|2dt. (3.13)

Using (3.6), we obtain

1 +
h

2
D+
hA0 +m+

hA0 = 1 +Oλ(sh). (3.14)

If we choose ε = ε(λ) sufficiently small such that |Oλ(sh)| ≤ 1
2 , we further have

1 +
h

2
D+
hA0 +m+

hA0 ≥ 1

2
. (3.15)

On the other hand, we have

− ∂tl + sλ2A3 + sλA4 −Ψ = −s∂tϕ+ sλ2A3 + sλA4 − τ∂xxl

=− sλϕψt + (1− τ)(sλ2ϕ|∂xψ|2 + sλϕ∂xxψ) + sOλ(sh). (3.16)

By (3.15) and (3.16), together with Yh(0) = 0 due to yh(0) = 0, we then use integration by

parts with respect to time t to yield

3
∑

i=1

Xi =
1

2
E

∫

G
−
h

((

1 +
h

2
D+
hA0 +m+

hA0

)

|D+
h Yh|2

)

∣

∣

∣

∣

∣

t=T

− 1

2
E

∫

Gh

(s2λ2A2|Yh|2)
∣

∣

∣

∣

t=T

+
1

2
E

∫

Gh

((

−∂tl + sλ2A3 + sλA4 −Ψ
)

|Yh|2
)

∣

∣

∣

∣

t=T
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≥ 1

4
E

∫

G
−
h

(

|D+
h Yh|2

)

∣

∣

∣

∣

∣

t=T

− C(λ)s2(1 + |Oλ(sh)|) E
∫

Gh

(|Yh|2)
∣

∣

∣

∣

t=T

− C(λ)s (1 + |Oλ(sh)|) E
∫

Gh

(

|Yh|2
)

∣

∣

∣

∣

t=T

≥ −C(λ)s2 E

∫

Gh

(

θ2|yh|2
)

∣

∣

∣

∣

t=T

. (3.17)

Next we estimate the terms involving Yi in (3.13). By (3.6), we obtain

3
∑

i=1

Yi =− 1

2
E

∫

Q−
h

(1 +Oλ(sh))|D+
h dYh|2

+
1

2
E

∫

Qh

(

s2λ2A2 + ∂tl − sλ2A3 − sλA4 +Ψ
)

|dYh|2. (3.18)

Obviously,

|D+
h dYh|2 =|D+

h (θdyh)|2 = |D+
h θm

+
h dyh +m+

h θD
+
h dyh|2

=|D+
h θdyh + hD+

h θD
+
h dyh + θD+

h dyh|2

=|D+
h θ|2|dyh|2 +

(

hD+
h θ + θ

)2 |D+
h dyh|2 + 2

(

h|D+
h θ|2 + θD+

h θ
)

dyhD
+
h dyh.

(3.19)

By using Young’s inequality, we further obtain

|D+
h dYh|2 ≤|D+

h θ|2|dyh|2 + 2h2|D+
h θ|2|D+

h dyh|2 + 2θ2|D+
h dyh|2

+
1

2
h2∂xxl|D+

h θ|2|dyh|2 +
2

∂xxl
|D+

h θ|2|D+
h dyh|2

+
1

2
∂xxlθ

2|dyh|2 +
2

∂xxl
|D+

h θ|2|D+
h dyh|2

≤
(

|D+
h θ|2 +

1

2
h2∂xxl|D+

h θ|2 +
1

2
∂xxlθ

2

)

|dyh|2

+

(

2h2|D+
h θ|2 + 2θ2 +

4

∂xxl
|D+

h θ|2
)

|D+
h dyh|2. (3.20)

By Taylor formula, we have

(

D+
h θ
)

j
=

∫ 1

0

∂xθ(xj + σh, t)dσ = (∂xθ)j + sOλ(sh)θj . (3.21)

Similarly,

(∆hθ)j = (∂xxθ)j + s2Oλ(sh)θj . (3.22)
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Therefore, we obtain

|D+
h θ|2 +

1

2
h2∂xxl|D+

h θ|2 +
1

2
∂xxlθ

2

≤
(

1 +
1

2
h2(sλ2ϕ|∂xψ|2 + sλϕ∂xxψ)

)

(

s2λ2ϕ2|∂xψ|2 + s2 |Oλ(sh)|
)

θ2

+
1

2

(

sλ2ϕ|∂xψ|2 + sλϕ∂xxψ
)

θ2

≤
(

s2λ2ϕ2|∂xψ|2 +
1

2
sλ2ϕ|∂xψ|2 +

1

2
sλϕ∂xxψ + s2 |Oλ(sh)|

)

θ2 (3.23)

and

2h2|D+
h θ|2 + 2θ2 +

4

∂xxl
|D+

h θ|2 ≤2h2
(

s2λ2ϕ2|∂xψ|2 + s2 |Oλ(sh)|
)

θ2 + 2θ2

+
4
(

s2λ2ϕ2|∂xψ|2 + s2 |Oλ(sh)|
)

θ2

sλ2ϕ|∂xψ|2 + sλϕ∂xxψ

≤ (2 + 4sϕ+ s|Oλ(sh)|) θ2. (3.24)

Combining (3.23), (3.24) and (3.20) we obtain

|D+
h dYh|2 ≤

(

s2λ2ϕ2|∂xψ|2 +
1

2
sλ2ϕ|∂xψ|2 +

1

2
sλϕ∂xxψ + s2 |Oλ(sh)|

)

θ2|dyh|2

+ C (sϕ+ s|Oλ(sh)|) θ2|D+
h dyh|2. (3.25)

On the other hand, from (2.11) and (3.16), it follows that

s2λ2A2 + ∂tl − sλ2A3 − sλA4 +Ψ

=s2λ2ϕ2|∂xψ|2 + sλϕψt + (τ − 1)(sλ2ϕ|∂xψ|2 + sλϕ∂xxψ) + sOλ(sh). (3.26)

Then, noticing that dyh = 0 at x = x0 due to (yh)0 = 0 and substituting (3.25), (3.26) into

(3.18), we obtain the following estimate

3
∑

i=1

Yi ≥− 1

2
E

∫

Q
−
h

(s2λ2ϕ2|∂xψ|2 +
1

2
sλ2ϕ|∂xψ|2 +

1

2
sλϕ∂xxψ)θ

2|dyh|2

− s2E

∫

Q
−
h

|Oλ(sh)|θ2|dyh|2 − CE

∫

Q
−
h

(sϕ+ s|Oλ(sh)|) θ2|D+
h dyh|2

+
1

2
E

∫

Q
−
h

(

s2λ2ϕ2|∂xψ|2 + sλϕψt + (τ − 1)(sλ2ϕ|∂xψ|2 + sλϕ∂xxψ)
)

θ2|dyh|2

≥1

4
E

∫

Q
−
h

(

τ − 3

2

)

sλ2ϕ|∂xψ|2θ2|dyh|2 − s2E

∫

Q
−
h

|Oλ(sh)|θ2|dyh|2

− CE

∫

Q
−
h

(sϕ+ s|Oλ(sh)|) θ2|D+
h dyh|2. (3.27)

where we choose λ sufficiently small such that

1

4

(

τ − 3

2

)

λ|ψx|2 ≥ 1

2

(

τ − 3

2

)

|∂xxψ|+
1

2
|ψt|, t ∈ [0, T ].
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Since s ∈ (s0,
√

ε/h), there exists ε(λ) sufficiently small such that

s2|Oλ(sh)| ≤
ε

h
C(λ)sh ≤ 1

8
s. (3.28)

Thus, together with |dyh|2 = |gh|2dt, we obtain

3
∑

i=1

Yi ≥
1

4
E

∫

Q−
h

(τ − 2) sλ2ϕ|∂xψ|2θ2|gh|2dt− CE

∫

Q−
h

sϕθ2|D+
h gh|2dt. (3.29)

Now we deal with the cross term Z1 in (3.13). By (2.1) and Itô’s inequality, we obtain

D+
hA0D

+
h YhdYh

=D+
hA0(D

+
h θm

+
h yh +m+

h θD
+
h yh)(θdyh + ∂tθyhdt)

=D+
hA0

(

D+
h θyh + θD+

h yh + hD+
h θD

+
h yh

)

(θdyh + ∂tθyhdt)

=
1

2
d
(

D+
hA0θD

+
h θ|yh|2

)

− 1

2
D+
hA0θD

+
h θ|dyh|2 −

1

2
∂t(D

+
hA0θD

+
h θ)|yh|2dt

+D+
hA0∂tθD

+
h θ|yh|2dt+D+

hA0

(

θ + hD+
h θ
)

∂tθyhD
+
h yhdt

+D+
hA0

(

θ + hD+
h θ
)

θD+
h yhdyh. (3.30)

By (3.6) and (3.21), we have

{

D+
hA0θD

+
h θ = Oλ(sh)(sλϕ∂xψ + sOλ(sh))θ

2 = sOλ(sh)θ
2,

D+
hA0

(

θ + hD+
h θ
)

θ = Oλ(sh) (1 + h(sλϕ∂xψ + sOλ(sh))) θ
2 = Oλ(sh)θ

2.
(3.31)

Then, using (3.30) and (3.31) we obtain the following estimate for Z1:

Z1 ≥− E

∫

G
−
h

s|Oλ(sh)|
(

θ2|yh|2
)

∣

∣

∣

∣

∣

t=T

− E

∫

Q
−
h

s|Oλ(sh)|θ2|gh|2dt+ E

∫

Q
−
h

D3|Yh|2dt

+ E

∫

Q
−
h

KyhD
+
h yhdt+ E

∫

Q
−
h

Oλ(sh)θ
2D+

h yhdyh, (3.32)

where

D3 =

(

−1

2
∂t(D

+
hA0θD

+
h θ) +D+

hA0∂tθD
+
h θ

)

θ−2,

K = D+
hA0

(

θ + hD+
h θ
)

∂tθ.

By the equation of yh in (2.16), we have

D+
h yhdyh = D+

h yh∆hyhdt+ fhD
+
h yhdt+ ghD

+
h yhdB(t). (3.33)

Then, using (3.33) and

E

∫

Q
−
h

Oλ(sh)θ
2D+

h yhdyh = E

∫

Qh

Oλ(sh)θ
2D+

h yhdyh
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duet to yh = 0 at x = x0, we obtain the following estimate for the last term on the right-hand

side of (3.32):

E

∫

Q
−
h

Oλ(sh)θ
2D+

h yhdyh

=E

∫

Qh

Oλ(sh)θ
2
(

D+
h yh∆hyhdt+ fhD

+
h yhdt+ ghD

+
h yhdB(t)

)

=E

∫

Qh

Oλ(sh)θ
2D+

h yh∆hyhdt+ E

∫

Qh

Oλ(sh)θ
2fhD

+
h yhdt,

where we have used

E

∫

Qh

Oλ(sh)θ
2ghD

+
h yhdB(t) = 0.

Young’s inequality with ǫ further yields that

E

∫

Q
−
h

Oλ(sh)θ
2D+

h yhdyh

≥− ǫE

∫

Qh

1

sϕ
θ2|∆hyh|2dt− C(ǫ)E

∫

Qh

s|Oλ(sh)|ϕθ2|D+
h yh|2dt

− E

∫

Qh

θ2|fh|2dt, (3.34)

Therefore, we deduce from (3.34) and (3.32) that

Z1 ≥− E

∫

G
−
h

s|Oλ(sh)|
(

θ2|yh|2
)

∣

∣

∣

∣

∣

t=T

− E

∫

Q
−
h

s|Oλ(sh)|θ2|gh|2dt+ E

∫

Q
−
h

D3|yh|2dt

− ǫE

∫

Qh

1

sϕ
θ2|∆hyh|2dt− C(ǫ)E

∫

Qh

s|Oλ(sh)|ϕθ2|D+
h yh|2dt− E

∫

Qh

θ2|fh|2dt

+ E

∫

Q
−
h

KyhD
+
h yhdt. (3.35)

Substituting (3.17), (3.29) and (3.35) into (3.13), and noticing that s|Oλ(sh)| ≤ 1/8 we

obtain

3
∑

j=1

I1j ≥
1

4
E

∫

Q
−
h

(τ − 2) sλ2ϕ|∂xψ|2θ2|gh|2dt− CE

∫

Q
−
h

sϕθ2|D+
h gh|2dt

− E

∫

Qh

θ2|fh|2dt− C(λ)s2eC(λ)s||yh(T )||2L2(Ω,FT ,P;L2(Gh))

− ǫE

∫

Qh

1

sϕ
θ2|∆hyh|2dt− C(ǫ)E

∫

Qh

ϕθ2|D+
h yh|2dt+

3
∑

i=1

E

∫

Qh

Di|Yh|2dt

+ E

∫

Q
−
h

B1|D+
h Yh|2dt+ E

∫

Q
−
h

KyhD
+
h yhdt. (3.36)
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3.1.2 Estimates involving the terms of dt

Proceeding as done in [5] or [10], we apply discrete integrations by parts in Lemma 2.2 to

yield

• I21 =− 2E

∫

Qh

sλA1(1 +A0)DhYh∆hYhdt

=E

∫

Q
−
h

sλD+
h (A1(1 +A0))|D+

h Yh|2dt+ E

∫ T

0

sλ(A1(1 +A0))(x0, t)|(D+
h Yh)0|2dt

− E

∫ T

0

sλ(A1(1 +A0)(xN+1, t))|(D−
h Yh)N+1|2dt,

• I22 =− 2E

∫

Qh

s3λ3A1A2YhDhYhdt

=E

∫

Qh

s3λ3Dh(A1A2)|Yh|2dt−
h2

2
E

∫

Q
−
h

s3λ3D+
h (A1A2)|D+

h Yh|2dt,

• I23 =2E

∫

Qh

sλA1(−∂tl + sλ2A3 + sλA4 −Ψ)YhDhYhdt

=− E

∫

Qh

sλDh

(

A1(−∂tl + sλ2A3 + sλA4 −Ψ)
)

|Yh|2dt

+
h2

2
E

∫

Q
−
h

sλD+
h

(

A1(−∂tl + sλ2A3 + sλA4 −Ψ)
)

|D+
h Yh|2dt,

• I31 =− E

∫

Qh

(1 +A0)ΨYh∆hYhdt

=E

∫

Q
−
h

m+
h ((1 + A0)Ψ) |D+

h Yh|2dt−
1

2
E

∫

Qh

∆h((1 +A0)Ψ)|Yh|2dt,

• I32 =− E

∫

Qh

s2λ2A2Ψ|Yh|2dt,

• I33 =E

∫

Qh

(−∂tl + sλ2A3 + sλA4 −Ψ)Ψ|Yh|2dt.

Then we find that

3
∑

i=2

3
∑

j=1

Iij = E

∫

Qh

D4|Yh|2dt+ E

∫

Q
−
h

B2|D+
h Yh|2dt+ E

∫ T

0

R1dt, (3.37)
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where

D4 =s3λ3Dh(A1A2)− sλDh

(

A1(−∂tl+ sλ2A3 + sλA4 −Ψ)
)

− 1

2
∆h((1 +A0)Ψ)

− s2λ2A2Ψ+ (−∂tl + sλ2A3 + sλA4 −Ψ)Ψ,

B2 =sλD+
h (A1(1 +A0))−

h2

2
s3λ3D+

h (A1A2) +
h2

2
sλD+

h

(

A1(−∂tl + sλ2A3 + sλA4 −Ψ)
)

+m+
h ((1 +A0)Ψ) ,

R1 =sλ(A1(1 +A0)(x0, t))|(D+
h Yh)0|2 − sλ(A1(1 +A0)(xN+1, t))|(D−

h Yh)N+1|2.

Therefore, from (3.36) and (3.37) it follows that

3
∑

i=1

3
∑

j=1

Iij ≥
1

4
E

∫

Q
−
h

(τ − 2) sλ2ϕ|∂xψ|2θ2|gh|2dt− CE

∫

Q
−
h

sϕθ2|D+
h gh|2dt

− E

∫

Qh

θ2|fh|2dt− C(λ)s2eC(λ)s||yh(T )||2L2(Ω,FT ,P;L2(Gh))

− ǫE

∫

Qh

1

sϕ
θ2|∆hyh|2dt− C(ǫ)E

∫

Qh

θ2|D+
h yh|2dt+

4
∑

i=1

E

∫

Qh

Di|Yh|2dt

+

2
∑

i=1

E

∫

Q
−
h

Bi|D+
h Yh|2dt+ E

∫

Q
−
h

KyhD
+
h yhdt+ E

∫ T

0

R1dt. (3.38)

3.1.3 Positive lower bounds for the terms of |Yh|2 and |D+
h Yh|2

A direct calculation gives

D1 =
1

2
s2λ2(∂tf2 +Oλ(sh)) = s2Oλ(1),

D2 = − 1

2
(−sϕtt + sλ2(∂tf3 +Oλ(sh)) + sλ(∂tf4 +Oλ(sh))− τsϕxxt) = sOλ(1),

D3 = − 1

2

(

∂t(D
+
hA0)θD

+
h θ −D+

hA0∂tθD
+
h θ +D+

hA0θ∂t(D
+
h θ)
)

θ−2 = s2Oλ(sh),

D4 =s3λ3(DhA1mhA2 +mhA1DhA2)− s2λ2A2Ψ

+ (−∂tl + sλ2A3 + sλA4 −Ψ)Ψ− sλDhA1mh(−∂tl + sλ2A3 + sλA4 −Ψ)

− sλmhA1Dh(−∂tl + sλ2A3 + sλA4 −Ψ)− 1

2
∆hΨ− 1

2
∆h(A0Ψ)

=s3λ3
(

∂x(ϕ∂xψ)(ϕ
2|∂xψ|2) + ϕ∂xψ∂x(ϕ

2|∂xψ|2) +Oλ(sh)
)

− τs3λ2ϕ2∂xxϕ|∂xψ|2

+ s3Oλ(sh) + s2Oλ(1)

=(3− τ)
(

s3λ4ϕ3|∂xψ|4 + s3λ3ϕ3∂xxψ|∂xψ|2
)

+ s3Oλ(sh) + s2Oλ(1)

and

B1 = hOλ(sh) +Oλ(sh) = Oλ(sh),

B2 = m+
hΨ+m+

hA0m
+
hΨ+

h2

4
D+
hA0D

+
hΨ+ sλ

(

D+
hA1(1 +m+

hA0) +m+
hA1D

+
hA0

)
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− h2

2
s3λ3(D+

hA1m
+
hA2 +m+

hA1D
+
hA2) +

h2

2
sλD+

h

(

A1(−∂tl + sλ2A3 + sλA4 −Ψ)
)

=τ
(

sλ2ϕ|∂xψ|2 + sλϕψxx + sOλ(sh)
)

+ sOλ(sh) + sh2Oλ(sh)

+ (sλ2ϕ|∂xψ|2 + sλϕ∂xx + sOλ(sh)) + s3h2Oλ(1)

=(τ + 1)
(

sλ2ϕ|∂xψ|2 + sλϕψxx
)

+ sOλ(sh),

where we have used










∂t(D
+
hA0)θD

+
h θ = Oλ(sh)(sλϕ∂xψ + sOλ(sh))θ

2 = sOλ(sh)θ
2,

D+
hA0∂tθD

+
h θ = Oλ(sh)(sλϕ∂xψ + sOλ(sh))sλψtθ

2 = s2Oλ(sh)θ
2,

D+
hA0θ∂t(D

+
h θ) = Oλ(sh)

(

sλ∂tϕ∂xψ + s2λ2ϕ2∂tψ∂xψ + s2Oλ(sh)
)

θ2 = s2Oλ(sh)θ
2.

Since τ ∈ (3/2, 3) and |∂xψ| > 0 for all x ∈ G, we can choose λ sufficiently large to

satisfy

(3 − τ)
(

s3λ4ϕ3|∂xψ|4 + s3λ3ϕ3∂xxψ|∂xψ|2
)

+ s3Oλ(sh) + s2Oλ(1)

≥1

2
(3− τ)s3λ4ϕ3|∂xψ|4 ≥ Cs3λ4ϕ3 (3.39)

and

(τ + 1)
(

sλ2ϕ|∂xψ|2 + sλϕψxx
)

+ sOλ(sh) ≥
τ + 1

2
sλ2ϕ|∂xψ|2 ≥ Csλ2ϕ. (3.40)

Then, we have

4
∑

i=1

E

∫

Qh

Di|Yh|2dt+
2
∑

i=1

E

∫

Q
−
h

Bi|D+
h Yh|2dt

≥CE
∫

Qh

s3λ4ϕ3|Yh|2dt+ C

∫

Q
−
h

sλ2ϕ|D+Yh|2dt. (3.41)

3.1.4 The remainder of the proof of Theorem 2.3

Since ∂xψ = 2(x− x∗) > 0 for all x ∈ G, we obtain

R1 =sλ(ϕ∂xψ +Oλ(sh))
(

|(D+
h Yh)0|2 − |(D−

h Yh)N+1|2
)

≥ −Csλϕ|(D−
h Yh)N+1|2, (3.42)

which leads to

E

∫ T

0

R1dt ≥ −CE
∫ T

0

sλϕ|(D−
h Yh)N+1|2dt. (3.43)

Then, we substitute (3.41) and (3.43) into (3.38) to yield

E

∫

Qh

s3λ4ϕ3|Yh|2dt+
∫

Q
−
h

sλ2ϕ|D+Yh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|gh|2dt

≤CE
∫

Qh

II1 + CE

∫

Qh

θ2|fh|2dt+ CE

∫

Q−
h

sϕθ2|D+
h gh|2dt+ CE

∫ T

0

sλϕ|(D−
h Yh)N+1|2dt

+ C(λ)s2eC(λ)s‖yh(T )‖2L2(Ω,FT ,P;L2(Gh))
+ ǫCE

∫

Qh

1

sϕ
θ2|∆hyh|2dt

+ C(ǫ)E

∫

Qh

θ2|D+
h yh|2dt+ E

∫

Q
−
h

KyhD
+
h yhdt. (3.44)
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On the other hand, by (3.7) we have

E

∫

Qh

II1 =E

∫

Qh

θI (fhdt+ ghdB(t))− E

∫

Qh

I2dt

≤1

2
E

∫

Qh

θ2|fn|2dt−
1

2
E

∫

Qh

I2dt. (3.45)

Moreover, we have

D+
h Yh = m+

h θD
+
h yh +D+

h θm
+
h yh

=(1 +Oλ(sh))θD
+
h yh + (sλϕψx + sOλ(sh))θ

(

yh +
h

2
D+
h yh

)

=θD+
h yh +Oλ(sh)θD

+
h yh + sOλ(1)θyh. (3.46)

Therefore, by (3.44)-(3.46) and choosing Oλ(sh) sufficiently small and s sufficiently large to

absorb the last two terms of D+
h yh and yh on the right-hand side of (3.46), we find that

E

∫

Qh

s3λ4ϕ3θ2|yh|2dt+
∫

Q
−
h

sλ2ϕθ2|D+yh|2dt+ E

∫

Q
−
h

sλ2ϕ|θ2|gh|2dt+ E

∫

Qh

I2dt

≤CE
∫

Qh

θ2|fh|2dt+ CE

∫

Q
−
h

sϕθ2|D+
h gh|2dt+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h yh)N+1|2dt

+ C(λ)s2eC(λ)s‖yh(T )‖2L2(Ω,FT ,P;L2(Gh))
+ ǫCE

∫

Qh

1

sϕ
θ2|∆hyh|2dt

+ C(ǫ)E

∫

Qh

θ2|D+
h yh|2dt+ E

∫

Q
−
h

KyhD
+
h yhdt. (3.47)

The first-order difference term of D+
h yh on the right-hand side of (3.47) can be absorbed

by the first-order difference term on the left-hand side of (3.47) if we choose λ sufficiently

large such that λ ≥ C(ǫ). To handle the second-order central difference term, we have to

express ∆hYh in terms of I and provide an estimate by the terms on the left-hand side of

(3.47). The definition of I gives

(1 +A0)∆hYh = −I + (−s2λ2A2 − ∂tl + sλ2A3 + sλA4 −Ψh)Yh.

Then, we obtain

(1 +A0)
2|∆hYh|2 ≤|I|2 +

(

−s2λ2A2 − ∂tl + sλ2A3 + sλA4 −Ψ
)2 |Yh|2

≤|I|2 + C
(

s4λ4ϕ4|∂xψ|4 + s4Oλ(sh) + s2Oλ(1)
)

|Yh|2,

which implies

E

∫

Qh

(1 +A0)
2 1

sϕ
|∆hYh|2dt ≤ E

∫

Qh

I2dt+ CE

∫

Qh

s3λ4ϕ3|Yh|2dt (3.48)

for sufficiently large s such that sϕ ≥ 1. If we choose h sufficiently small such that |A0| =
|Oλ(sh)| ≤ 1

2 , we have (1 +A0)
2 ≥ 1

4 . Then by (3.48), we obtain

E

∫

Qh

1

sϕ
|∆hYh|2dt ≤ CE

∫

Qh

I2dt+ CE

∫

Qh

s3λ4ϕ3|Yh|2dt. (3.49)
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We use (2.1), (2.3) and (3.22) to obtain

∆hYh =∆hθmhyh +mhθ∆hyh + 2DhθDhyh

=∆hθyh +

(

θ +
h2

2
∆hθ

)

∆hyh + 2Dhθ

(

D+
h yh +

h

2
∆hyh

)

=
(

s2λ2ϕ2|ψx|2 + sλ∂x(ϕ∂xψ) + s2Oλ(sh)
)

θyh +
(

1 + s2h2Oλ(1)
)

θ∆hyh

+ 2(sλϕψ + sOλ(sh))θ

(

D+
h yh +

h

2
∆hyh

)

=θ∆hyh +Oλ(sh)θ∆hyh + s2λ2ϕ2O(1)θyh + sλϕO(1)θD+
h yh. (3.50)

Then, combining (3.49) and (3.50) we obtain

ǫE

∫

Qh

1

sϕ
θ2|∆hyh|2dt

≤ǫCE
∫

Qh

1

sϕ
|∆hYh|2dt+ ǫCE

∫

Qh

s3λ4ϕ3θ2|yh|2dt+ ǫC

∫

Q
−
h

sλ2ϕθ2|D+yh|2dt

≤ǫCE
∫

Qh

I2dt+ ǫCE

∫

Qh

s3λ4ϕ3θ2|yh|2dt+ ǫC

∫

Q
−
h

sλ2ϕθ2|D+yh|2dt. (3.51)

Next we deal with the last term on the right-hand side of (3.47). By

K = D+
hA0θ∂tθ + hD+

hA0D
+
h θ∂tθ = sOλ(sh)θ

2 + s2hOλ(sh)θ
2 = sOλ(sh)θ

2,

we have

E

∫

Q
−
h

KyhD
+
h yhdt = E

∫

Q
−
h

sOλ(sh)θ
2yhD

+
h yhdt

≤E

∫

Qh

sOλ(sh)θ
2|yh|2dt+ E

∫

Q
−
h

sθ2|D+
h yh|2dt. (3.52)

Therefore, by substituting (3.51) and (3.52) into (3.47) we obtain

E

∫

Qh

(

(1− ǫC)s3λ4 − sOλ(sh)
)

ϕ3θ2|yh|2dt+
∫

Q
−
h

(

(1− ǫC)sλ2 − s
)

ϕθ2|D+yh|2dt

+ E

∫

Q
−
h

sλ2ϕθ2|gh|2dt+
∫

Qh

(1− ǫC)I2dt

≤CE
∫

Qh

θ2|fh|2dt+ CE

∫

Q
−
h

sϕθ2|D+
h gh|2dt+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h yh)N+1|2dt

+ C(λ)s2eC(λ)s‖yh(T )‖2L2(Ω,FT ,P;L2(Gh))
. (3.53)

Finally, choosing ǫ sufficiently small, we can obtain the desired estimate (2.13) and then

complete the proof of Theorem 2.3.

3.2 Proof of Theorem 2.4

In order to apply Theorem 2.3 to prove (2.15), we need to make the boundary conditions in

(2.16) homogeneous. To do this, we introduce uh satisfying
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duh −∆huhdt = 0, (xh, t) ∈ Qh,

(uh)0 = γ1, (uh)N+1 = γ2, t ∈ (0, T ),

uh(0) = 0, x ∈ Gh.

(3.54)

Obviously, we know for a.e. ω ∈ Ω that uh ∈ L2(0, T ;H2(Gh)) ∩ C([0, T ];L2(Gh)) satisfies

‖uh‖L2
F (Ω;L2(0,T ;H2(Gh))) + ‖uh‖L2

F (Ω;C([0,T ];L2(Gh))) ≤ C

2
∑

i=1

‖γi‖L2
F(Ω;H1(0,T )). (3.55)

Additionally, we can also obtain the following estimate for D−
h uh at boundary xN+1:

E

∫ T

0

|(D−
h uh)N+1|2dt ≤ C

2
∑

i=1

‖γi‖2L2
F(Ω;H1(0,T )). (3.56)

Indeed, we introduce a cut-off function χ ∈ C∞[0, L] such that 0 ≤ χ(x) ≤ 1 and

χ(x) =

{

0, x ∈ [x0, x1],

1, x ∈ [xN , xN+1].
(3.57)

Letting ûh = χuh, we easily see that










dûh −∆hûhdt = f̂dt, (xh, t) ∈ Qh,

(ûh)0 = 0, (ûh)N+1 = γ2, t ∈ (0, T ),

ûh(0) = 0, x ∈ Gh,

(3.58)

where

f̂ = −∆hχmhuh − 2DhχDhuh −
h2

4
∆hχ∆huh

satisfies

|f̂ | ≤ C
(

|uh|+ |D+
h uh|+ h|∆huh|

)

. (3.59)

We multiply the equation of ∆hûh by D−
h ûh and integrate over Qh. Then by using discrete

integration by parts (2.5) and (3.57), we obtain

∫

Qh

∂tûhD
−
h ûhdt+

∫

Q
−
h

∆hûhD
+
h ûhdt−

∫ T

0

∣

∣(D−
h uh)N+1

∣

∣

2
dt =

∫

Qh

f̂D−
h ûhdt, (3.60)

which implies

E

∫ T

0

∣

∣(D−
h uh)N+1

∣

∣

2
dt ≤ C

(

‖ûh‖2L2(0,T ;H2(Gh))
+ ‖f̂‖2L2(0,T ;L2(Gh))

)

. (3.61)

Therefore, from (3.55), (3.59) and (3.61) we deduce (3.56).

Letting zh = yh − uh, we then obtain










dzh −∆hzhdt = fhdt+ ghdB(t), (xh, t) ∈ Qh,

zh = 0, (xh, t) ∈ Σh,

zh(0) = 0, xh ∈ Gh.

(3.62)
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Applying (2.13) to zh, we have

E

∫

Qh

1

sϕ
θ2|∆hzh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|∂+h zh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|zh|2dt

+ E

∫

Q
−
h

sλ2ϕθ2|gh|2dt

≤CE
∫

Qh

θ2|fh|2dt+ CE

∫

Q−
h

sϕθ2|∂+h gh|2dt+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h zh)N+1|2dt

+ C(λ)s2eC(λ)s||zh(T )||2L2(Ω,FT ,P;L2(Gh))
, (3.63)

which implies

E

∫

Qh

1

sϕ
θ2|∆hyh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|∂+h yh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|yh|2dt

+ E

∫

Q
−
h

sλ2ϕθ2|gh|2dt

≤CE
∫

Qh

θ2|fh|2dt+ CE

∫

Q−
h

sϕθ2|∂+h gh|2dt+ CE

∫ T

0

sλθ2(xN+1, t)|(D−
h yh)N+1|2dt

+ C(λ)s2eC(λ)s||yh(T )||2L2(Ω,FT ,P;L2(Gh))
+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h uh)N+1|2dt

+ C(λ)s3eC(λ)s
(

||uh||2L2
F (Ω;L2(0,T ;H2(Gh)))

+ ||uh(T )||2L2(Ω,FT ,P;L2(Gh))

)

. (3.64)

Substituting (3.55) and (3.56) into (3.64), we obtain the desired estimate (2.15) and then

complete the proof of Theorem 2.4.

4 Proof of Theorem 2.5

In this section, we will prove the stability of our discrete inverse random source problem,

i.e. Theorem 2.5.

Proof of Theorem 2.5. Letting ỹh = y
(1)
h − y

(2)
h and g̃h = g

(1)
h − g

(2)
h , we obtain











dỹh −∆hỹhdt =
(

ahỹh + bhD
+
h ỹh

)

dt+ g̃hdB(t), (xh, t) ∈ Qh,

ỹh = 0, (xh, t) ∈ Σh,

ỹh(0) = 0, xh ∈ Gh.

(4.1)

Then applying Theorem 2.3 to ỹh, we obtain

E

∫

Q
−
h

sλ2ϕθ2|∂+h ỹh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|ỹh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|g̃h|2dt

≤CE
∫

Qh

θ2
(

|ỹh|2 + |D+
h ỹh|2

)

dt+ CE

∫

Q
−
h

sϕθ2|∂+h g̃h|2dt

+ CE

∫ T

0

sλϕθ2(xN+1, t)|(D−
h ỹh)N+1|2dt+ C(λ)s2eC(λ)s‖ỹh(T )‖2L2(Ω,FT ,P;L2(Gh))

.

(4.2)
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By means of (2.17), and choosing λ sufficiently large to absorb the first and second terms

on the right-hand side of (4.2), we obtain

E

∫

Q
−
h

sλ2ϕθ2|∂+h ỹh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|ỹh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|g̃h|2dt

≤CE
∫ T

0

sλϕθ2(xN+1, t)|(D−
h ỹh)N+1|2dt+ C(λ)s2eC(λ)s‖ỹh(T )‖2L2(Ω,FT ,P;L2(Gh))

. (4.3)

From (4.3), we immediately deduce (2.18) and then complete the proof of Theorem 2.5. �

5 Proof of Theorem 2.6

In this section, we prove the conditional stability for the discrete Cauchy problem, i.e.

Theorem 2.6. In the proof we borrow some ideas from [33].

Proof of Theorem 2.6. In order to estimate the solution of (1.4) in G0,h × (ǫ, T − ǫ) by

Cauchy data at xN+1, we need to choose a suitable weight function ϕ. Let G̃ = (0, L + δ)

with δ > 0, and let Ĝ ⊂ G̃ \G. It is easy to find a function d ∈ C2(G̃) such that











d(x) > 0, x ∈ G̃,

d(x) = 0, x ∈ ∂G̃,

|∂xd(x)| > 0, x ∈ G ⊂ G̃ \ Ĝ.
(5.1)

A typical form of function d is d(x) = x((L+ δ)− x) with δ > L. Then, since G0 ⊂⊂ G̃, we

can choose a sufficiently large N > 1 such that

G0 ⊂
{

x | x ∈ G̃, d(x) >
4

N
‖d‖L∞(G̃)

}

∩G. (5.2)

Moreover, we choose a positive number β such that

βǫ2 < ‖d‖L∞(G̃) < 2βǫ2. (5.3)

We arbitrarily fix t0 ∈ [
√
2ǫ, T −

√
2ǫ]. Meanwhile, we denote

ψ(x, t) = d(x) − β(t− t0)
2, ϕ(x, t) = eλψ(x,t)

with fixed large parameter λ > 0. Let

µk = e
λ
(

k
N

‖d‖L∞(G̃)−
βǫ2

N

)

and

Q(k) =
{

(x, t) | x ∈ G, ϕ(x, t) > µk
}

, k = 1, 2, 3, 4. (5.4)

Then, we can verify that

G0 ×
(

t0 −
ǫ√
N
, t0 +

ǫ√
N

)

⊂ Q(k) ⊂ G× (t0 −
√
2ǫ, t0 +

√
2ǫ), k = 1, 2, 3, 4. (5.5)
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Let Q
(k)
h = Q(k) ∩ Qh. In order to apply Theorem 2.4, we introduce a cut-off function

χ̃ ∈ C∞(Q) such that 0 ≤ χ̃ ≤ 1 and

χ̃(x, t) =

{

1, ϕ(x, t) > µ3,

0, ϕ(x, t) < µ2.
(5.6)

Then letting zh = χ̃yh, we obtain

dzh −∆hzhdt = (ahzh + bhD
+
h zh + Fh)dt+ chzhdB(t), (xh, t) ∈ Qh, (5.7)

where

Fh =∂tχ̃yh −∆hχ̃mhyh − 2Dhχ̃Dhyh −
h2

4
∆hχ̃∆hyh

− bhD
+
h χ̃m

+
h yh −

h

2
bhD

+
h χ̃D

+
h yh.

From the definition of χ̃, together with d(x0) = 0, we have (x0, t) ∈ Q \ Q(1) and then

χ̃(x0, t) = 0. We further have

(zh)0 = 0, t ∈ (0, T ). (5.8)

Since t0 ∈
[√

2ǫ, T −
√
2ǫ
]

, we have

max {ψ(x, 0), ψ(x, T )} ≤ d(x)− 2βǫ2 ≤ 0,

which implies (G× {t = 0}) ∪ (G× {t = T }) ⊂ Supp(χ̃) and then

zh(0) = 0, and zh(T ) = 0. (5.9)

Applying (2.15) to zh and noting (5.8) and (5.9), we obtain

E

∫

Qh

1

sϕ
θ2|∆hzh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|D+
h zh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|zh|2dt

≤CE
∫

Qh

θ2|ahzh + bhD
+
h zh + Fh|2dt+ CE

∫

Q
−
h

sϕθ2|D+
h (chzh)|2dt

+ CE

∫ T

0

sλϕθ2(xN+1, t)|η|2dt+ C(λ)s3eC(λ)s‖ξ‖2L2(Ω;H1(0,T ))

≤CE
∫

Qh

θ2|Fh|2dt+ CE

∫

Q
−
h

sϕθ2
(

1 +
h

2

)2
(

|zh|2 + |D+
h zh|2

)

dt

+ C(λ)s3eC(λ)s
(

‖ξ‖2L2(Ω;H1(0,T )) + ‖η‖2L2(Ω;L2(0,T ))

)

(5.10)

Firstly, we notice that the second term on the right-hand side of (5.10) can be absorbed

by the second and third terms on the left-side of (5.10). Secondly, by (5.5), we have G0 ×
(

t0 − ǫ√
N
, t0 +

ǫ√
N

)

⊂ Q(4) and then

G0,h ×
(

t0 −
ǫ√
N
, t0 +

ǫ√
N

)

⊂ Q
(4)
h ⊂ Qh (5.11)
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for sufficiently small h ∈ (0, h1). Then, noting (5.6) and (5.11) we see that

E

∫

Qh

1

sϕ
θ2|∆hzh|2dt+ E

∫

Q
−
h

sλ2ϕθ2|D+
h zh|2dt+ E

∫

Qh

s3λ4ϕ3θ2|zh|2dt

≥E

∫ t0+
ǫ√
N

t0− ǫ√
N

(

∫

G0,h

1

sϕ
θ2|∆hyh|2 +

∫

G
−
0,h

sλ2ϕθ2|D+
h yh|2 +

∫

G0,h

s3λ4ϕ3θ2|yh|2
)

dt

≥C(λ)1
s
e2µ4sE

∫ t0+
ǫ√
N

t0− ǫ√
N

(

∫

G0,h

|∆hyh|2 +
∫

G
−
0,h

|D+
h yh|2 +

∫

G0,h

|yh|2
)

dt. (5.12)

On the other hand, we can verify that there exists a sufficiently small h2 such that

∂tχ̃(xh, t) = D+
h χ̃(xh, t) = Dhχ̃(xh, t) = ∆hχ̃(xh, t) = 0, (xh, t) ∈ Q′

h (5.13)

for all h ∈ (0, h2), where

Q′
h =

{

(xh, t) ∈ Qh | ϕ(xh, t) > µ3 +
1

2
(µ4 − µ3)

}

.

Indeed, we only need to prove

χ̃(xh ± h, t) ≡ 1, (xh, t) ∈ Q′
h. (5.14)

Since ϕ(xh, t) > µ3 +
1
2 (µ4 − µ3), we have

ϕ(xh ± h, t) = ϕ(xh, t) (1 +Oλ(h)) > µ3 +
1

2
(µ4 − µ3) +Oλ(h).

Then we can choose h2 sufficiently small such that ϕ(xh ± h, t) > µ3 for all h ∈ (0, h2). By

the definition of χ̃ we obtain (5.14). We apply (2.1) and (5.13) to yield

E

∫

Qh

θ2|Fh|2dt

≤Ce2s(µ3+
1
2 (µ4−µ3))E

∫

Qh\Q′
h

(

|yh|2 + |mhyh|2 + |m+
h yh|2 + |Dhyh|2

)

dt

+ Ce2s(µ3+
1
2 (µ4−µ3))E

∫

Qh\Q′
h

O(h)
(

|D+
h yh|2 + |∆hyh|2

)

dt

≤Ces(µ3+µ4)E

∫

Qh\Q′
h

(

|yh|2 + |D+
h yh|2 + |∆hyh|2

)

dt. (5.15)

Therefore, from (5.10), (5.12) and (5.15) it follows that

C(λ)
1

s
e2µ4sE

∫ t0+
ǫ√
N

t0− ǫ√
N

(

∫

G0,h

|∆hyh|2 +
∫

G−
0,h

|D+
h yh|2 +

∫

G0,h

|yh|2
)

dt

≤Ces(µ3+µ4)‖yh‖2L2
F(0,T ;H2(Gh))

+ C(λ)s3eC(λ)s
(

‖ξ‖2L2(Ω;H1(0,T )) + ‖η‖2L2(Ω;L2(0,T ))

)

which implies

E

∫ t0+
ǫ√
N

t0− ǫ√
N

(

∫

G0,h

|∆hyh|2 +
∫

G
−
0,h

|D+
h yh|2 +

∫

G0,h

|yh|2
)

dt

≤C(λ)se−s(µ4−µ3)‖yh‖2L2
F (0,T ;H2(Gh))

+ C(λ)s4eC(λ)s
(

‖ξ‖2L2(Ω;H1(0,T )) + ‖η‖2L2(Ω;L2(0,T ))

)

≤e− 1
2 s(µ4−µ3)‖yh‖2L2

F (0,T ;H2(Gh))
+ e2C(λ)s

(

‖ξ‖2L2(Ω;H1(0,T )) + ‖η‖2L2(Ω;L2(0,T ))

)
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for all sufficiently large s. Noticing that µ4 − µ3 > 0, for fixed λ by the standard argument

we obtain

‖yh‖L2
F

(

t0− ǫ√
N
,t0+

ǫ√
N

;H2(G0,h)
) ≤ CMκ

(

‖ξ‖L2(Ω;H1(0,T )) + ‖η‖L2(Ω;L2(0,T ))

)1−κ
(5.16)

with

κ =
C(λ)

C(λ) + 1
4 (µ4 − µ3)

∈ (0, 1).

Finally, in (5.16) taking t0 =
√
2ǫ+ jǫ√

N
, j = 0, 1, 2, · · · ,m such that

√
2ǫ+

mǫ√
N

≤ T −
√
2ǫ ≤

√
2ǫ+

mǫ√
N

and summing up over j, we obtain the desired estimate (2.19) with replacing ǫ by
√
2ǫ and

then complete the proof of Theorem 2.6 due to ǫ is arbitrary. �
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pures et appliquées, 2010, 93(3): 240-276.

[8] Boyer F, Hubert F, Le Rousseau J. Uniform controllability properties for space/time-discretized

parabolic equations[J]. Numerische Mathematik, 2011, 118(4): 601-661.

[9] Boyer F, Hubert F, Rousseau J L. Discrete Carleman estimates for elliptic operators in arb-

itrary dimension and applications[J]. SIAM journal on control and optimization, 2010, 48(8):

5357-5397.

27



[10] Boyer F, Le Rousseau J. Carleman estimates for semi-discrete parabolic operators and ap-

plication to the controllability of semi-linear semi-discrete parabolic equations[J]. Annales de

l’Institut Henri Poincare (C) Non Linear Analysis, 2014, 31(5): 1035-1078.
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