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Abstract
Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous
works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue
context as sequential text with annotated medical entities. While these methods have been successful in generating
fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To
address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER),
which explicitly model MDG’s multi-step reasoning process and iteratively enhance this reasoning process. We
employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking
down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally, we
also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and facilitate
the LLM’s explicit reasoning. This approach eliminates the need for entity annotation and increases the transparency
of the MDG process by explicitly generating the intermediate reasoning chain. The experimental findings on the two
public datasets indicate that BP4ER outperforms state-of-the-art methods in terms of both objective and subjective

evaluation metrics.
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1. Introduction

Medical dialogue systems (MDS) are receiving
significant attention due to the rising demand for
telemedicine (Zhou et al., 2021; henfeng He et al.,
2022), offering accessible medical services such as
health consultations, diagnosis, and prescriptions,
to a broader population (Yan et al., 2022; Xia et al.,
2022b). Within MDS, medical dialogue generation
(MDGQ) plays a crucial role by generating accurate
medical responses based on given dialogue his-
tories (Lin et al., 2021; Wei et al., 2018; Xu et al.,
2019a). Typically, MDG involves understanding the
patient’s overall state, making the next diagnosis
decisions in a limited-turn dialogue, and conducting
medical reasoning analysis to generate responses
(Li et al., 2021a; Chen et al., 2022).

Previous research on MDG typically adopts a
framework in which dialogue context is modeled
as sequential text (Xu et al., 2023; Liu et al., 2021),
and medical entities are identified and annotated
within this textual context (Liu et al., 2022b; Du et al.,
2019b). Subsequently, response generation is car-
ried out using sequence-to-sequence (Seq2Seq)
models (Sutskever et al., 2014). These Seq2Seq
methods leverage pre-trained text encoders and
decoders to generate medical responses (Li et al.,
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2021a; Zhao et al., 2022), as illustrated in Figure
1 (a). Although these methods have yielded sub-
stantial success in generating coherent and fluent
responses in MDG, they face two key challenges:
(1) Lack of process explanation. To help patients or
physicians understand why an MDG module gener-
ates a response, interpretability of the medical rea-
soning process is indispensable (Li et al., 2021a),
i.e., information on patient status and diagnostic
decision-making by physicians. (2) Requirement
for large-scale annotations. Previous works (Xu
et al., 2023; Zhao et al., 2022) heavily depend on
the availability of a substantial amount of manually
labeled data during the training phase. However,
obtaining such data is often challenging due to the
specialized medical knowledge required and strin-
gent privacy considerations.

To address the limitations above, we propose the
Bootstrap Prompting for Explicit Reasoning method
(BP4ER), as illustrated in Figure 1 (b). Our moti-
vation is to eliminate the need for entity annotation
by treating MDG as a multi-step reasoning prob-
lem. Specifically, we explicitly break down MDG
into a reasoning chain and sequentially address
each intermediate reasoning step, aligning with
its inherent multi-step reasoning process. Draw-
ing from the concept of chain-of-thought prompting
(Wei et al., 2022c), we introduce the least-to-most



******************************** Dialogue History ————
BETFEE RN, To HA R, B
RWAR, WARREEAE? My stomach

g often makes gurgling sounds, and sometimes
abdominal pain and mild indigestion. What
could be the reason for this?

AR ATH? KEEAR? How
KRS, SERRFERSA, JIAA. The bowel
movements are fine, and these symptoms have

|

|

|

s |

long have you been? How s your | () }

|

been going on for afew months Y }
|

|

bowel movement?
.Q‘ BARM, ST, No acid reflux, but I do ‘

FEARRATHEE? Have you 9
experienced acid reflux or burping?
have some burping.

Gold Response

2 AL, AT LA SR B s 2, LS oy, s T
W, 0 AEFERME S . Its likely indigestion. You can take some medication to
promote motility, such as or

along with pantoprazole.

S
@

Sub-questions
(1) Patient state tracking
(2) Physician next diagnosis
decision-making
(3) Medical response generation

Dialogue
History

=

| Dialogue History |

Heuristic [im FEIME] ﬁiLLMP‘
Annotation ) ) "
Medical Entities —L
- - }Flllered
s ncorrectan Correct
[ s e | wasme Date )
acd N Reasoning process
Seq2Seq Patient State: g p
[SEzt] 1t

SRR, R TN . KWIER, SRR, ST
My stomach often rumbles, causing abdominal pain and indigestion, and
this has been going on for several months. Bowel movements are normal,
there is no acid reflux, but there is a bit of burping.

Response Diagnosi cision:

PG, 38 Gy A AR 24,k bninnf @i
FIBRRRVCEIIHEN, 38 SR B o Pro
Eat regularly, avoid spicy and greasy Re:
foods, reduce coffee and carbonated B FURITHTROL T, WRAE I 16 80 i i
drinks intake, and avoid lying down after Digestive discomfort, it is recommended to use Mosapride and
ey Pantoprazole tablets to reduce stomach acid secretion and alleviate
gastrointestinal discomfort.

ind medication recommendations.

(@) (b)

Figure 1: Paradigm comparison in MDG: prior
works adopt a Seq2Seq framework (a); our model
(b) explicitly incorporates a multi-step reasoning
process and reduces entity annotation.

prompting (LMP) strategy (Zhou et al., 2023) to
guide a large language model (LLM) (Zhao et al.,
2023; Du et al., 2022) towards explicit reasoning
in MDG. We first decompose the MDG process
into a reasoning chain, comprising a series of inter-
related sub-questions. Then, we follow Zelikman
et al. (2022) and construct demonstration prompts
for each sub-question and address them sequen-
tially with answers from resolved sub-questions,
promoting a coherent reasoning process.

Despite LLMs’ impressive language understand-
ing ability in general language modeling (Wang
et al., 2022b; Huang and Chang, 2022; Zhu et al.,
2023), their intermediate reasoning steps in MDG
would be error-prone, reducing overall performance
(Zhang et al., 2022). To facilitate the model’s ex-
plicit reasoning ability, we propose two distinct
bootstrapping techniques for prompting: answer-
providing bootstrapping (AP-Bootstrap) and prompt-
revising bootstrapping (PR-Bootstrap). These tech-
niques allow the model to autonomously rectify
errors without relying on large-scale annotations.
Subsequently, we collect the accurate reasoning
chain to create filtered data by implementing feed-
back loops. The model is then fine-tuned using
this filtered data, and the process is repeated. This
approach yields a significant improvement in the
model’'s performance and enhances the quality of
the generated responses.

Our contributions can be summarized as follows:

» We present a novel explicit reasoning model
for medical dialogue generation (MDG) called

BP4ER. To the best of our knowledge, BP4ER
is the first model to systematically deconstruct
MDG into an intermediate reasoning chain,
which notably enhances the interpretability of
the MDG process.

+ BP4ER introduces the least-to-most prompt-
ing strategy to guide LLM for explicit reason-
ing and an iterative approach to bootstrap the
prompting process for augmenting the LLM’s
reasoning capabilities, resulting in coherent
and precise medical dialogue responses.

* We evaluate BP4ER on two public datasets
using both automatic and manual evaluation
metrics. Experimental results demonstrate its
superiority over previous methods.

2. Related Work

2.1. Medical Dialogue Generation

Medical dialogue generation (MDG) has attracted
increasing attention due to its high practical value.
Early attempts at MDG were based on pre-defined
templates to generate natural language (Ferguson
et al., 2009; Wong et al., 2011; Xu et al., 2019b).
However, template-based MDG suffers from the
problem of inflexibility. Recently, Zeng et al. (2020)
took an initial step in neural-based MDG. They
pre-trained several dialogue generation models
on large-scale medical corpora. Liu et al. (2022b)
frame medical dialogue generation as entity predic-
tion and entity-aware response generation. Further-
more, Liu et al. (2021) unifies the dialogue context
understanding and entity reasoning through a het-
erogeneous graph. Li et al. (2021a) consider medi-
cal entities in the utterances as states and actions
and present semi-supervised variation reasoning
with a patient state tracker and a physician action
network. Zhao et al. (2022) exploit the medical
relationship between dialogue context and recall
pivotal information to produce responses. Xu et al.
(2023) models a medical entity flow and a dialogue
act flow to improve entity selection and dialogue
act prediction.

Although these models achieve comparable per-
formance, they often lack process interpretability
and need substantial annotation.

2.2. Prompt Learning of LLMs

Recent studies (Dong et al., 2023; Jeblick et al.,
2022) have proposed various prompting strategies
to strengthen and generalize the in-context learn-
ing ability of LLMs. One such strategy is chain-
of-thoughts (CoT) prompting, introduced by Wei
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Figure 2: Overview of BP4ER. Medical dialogue is deconstructed into a reasoning chain of sub-questions.
Demonstration prompts guide intermediate reasoning, sequentially querying the LLM. Two bootstrapping
techniques for prompting, AP-Bootstrap and RP-Bootstrap, are introduced to enhance explicit reasoning.

et al. (2022c), which incorporates intermediate rea-
soning steps into LLMs to construct demonstra-
tions between inputs and outputs. While Wei et al.
(2022c) manually constructs CoTs, AutoCoT (Zhang
etal., 2022) utilizes LLMs to automatically generate
CoTs, using the prompt sentence "let’s think step
by step." Additionally, Wang et al. (2022a) propose
iCAP, a context-aware prompter capable of dynami-
cally adjusting contexts for each reasoning step. To
tackle the challenge of easy-to-hard generalization,
Zhou et al. (2023) propose a least-to-most prompt-
ing (LMP) strategy. Unlike CoT, which focuses on
individual instances, LMP is task-oriented, break-
ing down a problem into interrelated sub-questions
from a task perspective and forming a progressive
prompt sequence for LLMs. Moreover, while CoTs
are crucial for model performance, they are not
readily available for specific tasks, and creating
them requires significant time and resources, po-
tentially introducing bias.

Inspired by LMP, we introduce MDG as a multi-
step reasoning problem aimed at explicitly and iter-
atively modeling the reasoning process, mirroring
the decision-making process of doctors in real med-
ical scenarios.

3. Main Method

Problem Formulation. In the context of a dia-
logue comprising T turns, a medical dialogue ses-
sion D is a sequence of utterances, denoted as
D = {P\,Ry, P2, Ry,...,Pr,Rr}. Here, P, and
R, (t = 1...7) refer to utterances from a pa-
tient and responses from a virtual physician, re-
spectively. At the t-th turn, given the dialogue
history H = {P;,Ry,...R;—1, P} as input, the
model aims to generate an intermediate reasoning
chain S = {51, ..., St} and corresponding answers
A={A,..., Ay}, where k is the number of reason-
ing steps. Subsequently, the model generates a
medical response R, for the current turn. Figure 2
provides an illustrative overview of our proposed
BP4ER method. In this section, we provide a de-
scription of the multi-step reasoning process for
MDG, as outlined in Section 3.1. Then, we present
the details of the explicit reasoning process in Sec-
tion 3.2, with a specific focus on augmenting the
model’s interpretability. Finally, we introduce two
distinct bootstrapping techniques for prompting to
enhance explicit reasoning in the BP4ER model,
as discussed in Section 3.3.



3.1.

In real-world medical scenarios, MDG involves a
multi-step reasoning process that aligns with the
logical framework of medical consultation (Chen
et al., 2022). It consists of three essential steps
(Li et al., 2021a): (i) Patient State Tracking: Ini-
tially, the MDG system interacts with the patient
to acquire additional symptoms beyond those self-
reported. Here, the system focuses on comprehen-
sively tracking and maintaining the patient’s con-
dition within the dialogue context, including symp-
toms, medications, and other relevant information.
(i) Next Diagnosis Decision-making: Drawing from
the collected patient states and the ongoing conver-
sation, the system infers the next diagnosis deci-
sion that a physician would make. This step guides
the responses generated by the system, ensuring
a coherent flow in the medical dialogue. (iii) Med-
ical Response Generation: Utilizing the identified
patient states and the diagnosis decision-making,
the MDG system generates a contextually relevant
and coherent response that aligns with the ongoing
medical dialogue.

Multi-step Reasoning

3.2. Explicit Reasoning Process

In Section 1, we emphasized the importance of
explicitly demonstrating the multi-step reasoning
process of MDG for better interpretability, rather
than simply generating direct answers. To achieve
this, we employ a few-shot Least-to-Most Prompt-
ing (LMP) strategy (Zhou et al., 2023) to guide the
Large Language Model (LLM) (Zhao et al., 2023;
Du et al., 2022). This strategy breaks down the
complex MDG task into a sequence of interrelated
sub-questions, inspired by medical diagnostic logic.
In this study, we simplify this decomposition into
three specific sub-questions following the multi-step
reasoning process described in Section 3.1, creat-
ing an intermediate reasoning chain, denoted as
S = {Sl, SQ, Sg}:

+ S1: What's the patient’s current state?
+ S5: What's the physician’s next decision?
» S3: What's the physician’s response?

As depicted in Figure 2, the process of generating a
response from a dialogue history is reframed as an-
swering two intermediate sub-questions: "What's
the patient’s current state?" and "What's the physi-
cian’s next diagnostic decision?".

We tackle these sub-questions sequentially, with
each solution building upon previously obtained
answers. To facilitate this, we create question-
rational-answer pairs as demonstrations and con-
struct a demonstration prompt for each intermedi-
ate reasoning step, inspired by (Zelikman et al.,

2022). This prompt consists of examples illustrat-
ing sub-question resolution, the dialogue history,
a list of previously answered sub-questions and
their corresponding answers (if any), and the next
sub-question to be addressed.

The solving process starts with a few-shot
prompting, providing the LLM with a demonstration
prompt comprising few-shot examples, dialogue
history, and the first sub-question. For example
in Figure 2, the demonstration prompt is "Exam-
ples: <Few-shot Examplesy, Dialogue History H:
P: Hi, I have a vague pain ... P: No medication, no
tests, Sub-question S,: What's the patient’s current
state?". Then, We use the generated answer, e.g.,
"Ai: The navel ... examination," to construct the
next prompt by appending the answer to the previ-
ous prompt followed by the next sub-question S;:
"What's the physician’s next diagnostic decision?".
This process repeats for sub-question Ss: "What's
the physician’s response?". The final answer (e.g.,
"As: Are the bowel movements normal?") for MDG
R, is obtained by adding the generated answer A,
to the previous prompt. This approach allows us to
address each sub-question sequentially, leveraging
answers from previously resolved sub-questions,
resulting in a coherent, step-by-step reasoning pro-
cess.

3.3. Bootstrap Prompting

The intermediate reasoning steps in LLMs may con-
tain errors, affecting reasoning results and overall
performance. To enhance the explicit reasoning
abilities of LLMs, drawing inspiration from (Wang
et al., 2022a), we improve the quality of demon-
strations through iterative prompting bootstrapping.
During the training phase, the final step of rea-
soning benefits from having access to ground
truth responses, ensuring accuracy. However, in-
termediate steps lack correct answers, posing a
challenge. To overcome this limitation, we intro-
duce two iterative bootstrapping techniques for
prompting: answer-providing bootstrapping (AP-
Bootstrap) and prompt-revising bootstrapping (PR-
Bootstrap), tailored to different scenarios. AP-
Bootstrap can be seen as a greedy decoding pro-
cess, whereas PR-Bootstrap is based on a sam-
pling approach. These techniques help LLMs to
autonomously rectify errors in demonstrations, re-
ducing the reliance on extensive annotations.

3.3.1. Answer-Providing Bootstrapping

Given a pre-trained LLM M and a dataset of dia-
logue histories H paired with responses R, denoted
as D = {(H;, R;)}Y73, the AP-Bootstrap approach
takes a demonstration prompt as input. This prompt
consists of a small example set P, defined as P =
{H?,QY, R?}Nr,, where Np < Np (e.g. Np = 5).



Similar to standard few-shot prompting, this ex-
ample set is concatenated with each dialogue his-
tory instance in D and sub-question S;, resulting
in H; = {HY,QV,RY,...,HY, Q% .R%.  Hi Si}.
This encourages the model to generate a rationale
Qi for H; followed by an answer A;. If the gener-
ated answers A; are semantically similar to the gold
response R;, the reasoning process is considered
credible. Otherwise, our objective is to correct the
reasoning process and obtain available answers A,.
Finally, the credible and corrected dialogue data
are combined for iterative fine-tuning of the LLM,
enhancing its reasoning capabilities.

To achieve this, we employ cosine similarity, de-
noted as Sim(.), to measure the semantic similarity
between the generated answers A; and the gold
response R;. We utilize this similarity metric to fil-
ter the dialogue data, retaining instances with high
semantic similarity, i.e., Sim(4,, R;) > n, where
is a predefined threshold. For those instances with
low similarity, following (Zelikman et al., 2022), we
provide a model with the gold response, allowing
it to autonomously rectify errors by generating a
reasoning chain similar to the previous explicit rea-
soning process (as described in Section 3.2). By
providing the gold response, the model can reason
backward, facilitating the generation of a reason-
ing chain leading to the correct answer. After error
correction, the dialogue with the revised reason-
ing chain is added to the filtered dataset. Subse-
quently, we fine-tune the LLM M on this filtered
dataset and iteratively bootstrap prompting M to
generate a new reasoning chain with the newly fine-
tuned model until performance reaches a plateau.
Throughout this iterative process, we consistently
fine-tune from the original pre-trained model M to
mitigate overfitting concerns.

The AP-Bootstrap method can be conceptualized
as an approximation to an RL-style policy gradient
objective. To illustrate this, consider that M can
be interpreted as a discrete latent variable model
pu(RIH) =) o p(QH)p(R|H, Q); in other words,
M first samples a latent rationale @) before gen-
erating the response R. Now, given the indicator
reward function f; = I(Sim(A4, R) > n), the total
expected reward across the dataset is:

J(M,H,R) = Zi Ep, aiprs (1 f10)

whose gradient is obtained via the standard log-
derivative trick for policy gradients:

VJ(M’ H, R) = Zz EQi;AiNPNI('lHi)
[f1() - Viogpy = (A, Qi Hy))

Note that the indicator function discards the gradi-
ent for dissimilar sampled demonstrations to the

correct response R;. Thus, the AP-Bootstrap ap-
proximates 7 by 1) greedily decoding samples of
(Qi, A;) to reduce the variance of this estimate, and
2) taking multiple gradient steps on the same data
batch, similar to policy gradient algorithms (Schul-
man et al., 2017).

3.3.2. Prompt-Revising Bootstrapping

During our experiments, we noticed that au-
tonomous error correction faces challenges when
dealing with complex dialogues, such as doctors
continuously questioning patients, cross-questions
between doctors and patients, and ambiguous de-
scriptions of patient conditions. We attribute this
challenge to the lack of correct answers in the in-
termediate steps of the reasoning process within
MDG. To address this, we introduce a straightfor-
ward yet effective strategy called prompt-revising
bootstrapping (PR-Bootstrap). This strategy capi-
talizes on the understanding that complex reason-
ing tasks often offer multiple pathways to arrive
at a correct answer, as discussed in (Stanovich
and West, 2000). In contrast to AP-Bootstrap, PR-
Bootstrap alleviates the problem of limited diversity
inherent in greedy decoding, as demonstrated in
our experiments.

To implement PR-Bootstrap, we first prompt the
LLM in the format of a demonstration prompt to yield
an initial answer, which is added to the candidate
answers. We then revise the few-shot examples in
the original demonstration prompt to generate an
alternative rationale, along with its corresponding
new answer, which is also included in the candidate
answers. It's important to note that each answer
within the candidate set is derived from a distinct ra-
tionale. Therefore, if two answers exhibit significant
semantic similarity, they are considered a consis-
tent answer pair. We measure this similarity using
cosine similarity calculations between the newly
generated answer and those in the candidate set.
Answer pairs surpassing a predefined threshold
0 are considered the most consistent within the
candidate answer set and are added to the filtered
dataset. When no answer pairs meet the threshold
0, we iterate the prompt revision process to explore
diverse reasoning paths and generate alternative
answers until reliable answers are obtained for all
provided data.

The iterative bootstrapping approach mirrors the
human experience, where multiple different rea-
soning paths leading to the same answer increase
confidence in its correctness. Finally, similar to the
AP-Bootstrap method, we fine-tune the LLM on the
filtered dataset to enhance its reasoning abilities
by bootstrapping the prompting process.



4. Experiments

4.1.

We adopt two publicly available benchmark
datasets, namely MedDG (Liu et al., 2022c)
and KaMed (Li et al., 2021b), collected from
medical consultation websites' after anonymiza-
tion. MedDG contains 17K dialogues, focus-
ing on 12 distinct diseases within the gastroen-
terology department. On average, each dia-
logue consists of 9.92 rounds. We divide the
dataset into training/validation/test sets with sizes
of 14,864/2,000/1,000 dialogues, as originally out-
lined in Liu et al. (2022b). KaMed contains over
63K dialogues, covering an extensive range of over
300 diseases across 13 different medical depart-
ments. KaMed exhibits a higher average dialogue
length compared to MedDG, e.g., 11.62 rounds
per dialogue. Following the setting in Xu et al.
(2023), we filtered dialogues with privacy concerns
and obtained 29,159/1,532/1,539 dialogues for the
training/validation/test sets. The dataset presents
challenging and diverse scenarios, with over 300
hospital departments.

Datasets

4.2. Evaluation metrics

Automatic Evaluation. To evaluate the linguistic
quality of the generated responses, we employ stan-
dard word-overlap-based metrics: BLEU (B@n)
(Papineni et al., 2002) and ROUGE (R@n) (Lin,
2004). These metrics measure lexical quality by
calculating n-gram overlaps between the generated
and accurate responses. Additionally, we incorpo-
rate the DISTINCT (D@n) metric (Li et al., 2016)
for a more comprehensive evaluation. DISTINCT-
n measures response diversity by calculating the
proportion of distinct n-grams within the generated
responses, offering a valuable perspective on re-
sponse quality often missed by traditional BLEU
and ROUGE metrics.

Human Evaluation. Aligned with prior studies (Li
etal.,, 2021a; Zhao et al., 2022), we conducted a hu-
man evaluation to assess the quality of responses
in terms of fluency, coherence, and correctness.
Fluency evaluation measures overall smoothness
and naturalness, coherence assesses logical con-
sistency with the dialogue history, and correctness
measures the accuracy of medical knowledge in
the responses. Consistent with Li et al. (2021a) and
Zhao et al. (2022), we randomly sampled 100 cases
and invited three professional annotators from a
thirty-party hospital to perform manual evaluations.
Annotators utilized the aforementioned metrics, rat-
ing each response on a scale from 1 (poor) to 5
(excellent). It's noteworthy that model names were

1https ://www.chunyuyisheng.com/

anonymized to ensure objectivity throughout the
evaluation process.

4.3. Implementation Details

In this work, we used ChatGLM-6B? (Du et al.,
2022) as the foundational LLM for BP4ER.
ChatGLM-6B is equipped with 6 billion parameters
and is optimized with the Adam optimizer (Kingma
and Ba, 2014). We chose this model for its robust
language understanding abilities in Chinese and
its relatively lightweight design compared to other
LLMs. Hyperparameters were selected based on
the best-performing checkpoints during validation,
with a batch size of 32 and a learning rate of 1e-2.
For MedDG, we set similarity thresholds as [0.75,
0.8, 0.65] for its three reasoning steps, while for
KaMed, they were [0.65, 0.75, 0.65]. All experi-
ments were conducted on a single NVIDIA GeForce
RTX 3090 GPU.

4.4. Baseline models

Our method is compared with the following base-
lines. Seq2Seq (Sutskever et al., 2014) is an RNN-
based sequence-to-sequence model with an at-
tention mechanism. HRED (Serban et al., 2016)
uses hierarchical encoders to model the dialogue
context from token level and utterance level com-
pared to Seq2Seq. DialoGPT (Zhang et al., 2019)
and GPT-2 (Radford et al., 2019) are transformers-
based pre-trained language models widely adopted
in tasks of dialogue generation. VRBot (Li et al.,
2021a) summarizes patient states and physician ac-
tions into phrases through variational methods and
generate the response. MedPIR (Zhao et al., 2022)
exploit the medical relationship between dialogue
context and recall pivotal information to produce re-
sponses in the recall-enhanced generator. DFMed
(Xu et al., 2023) models the transitions of medi-
cal entities and dialogue acts with the pre-trained
model. ChatGLM-6B (Du et al., 2022) is a pre-
trained language model with 6 billion parameters,
which generates medical responses directly.

4.5. Automatic Evaluation

Table 1 presents the automatic evaluation results
for the MedDG and KaMed datasets, revealing sev-
eral key insights:

(1) BP4ER demonstrates significant improve-
ments, as depicted in Table 1. These results con-
firm BP4ER’s efficacy in enhancing response qual-
ity and ensuring greater semantic consistency with

2|t can be done with any off-the-shelf LLMs, such as
LLaMA (Touvron et al., 2023) and Alpaca (Taori et al.,
2023).
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Dataset Model B@1 B@2 B@4 R@1 R@2 D@2
Seq2Seq (Sutskever et al., 2014) 28.55  22.85  15.45  25.61 11.24  /
HRED (Serban et al., 2016) 31.61 2522 17.05 2417  9.79  /
DialoGPT (Zhang et al., 2019) 32.77t 26.937  17.96" 27.11F  11.347  79.261

MedDg CGPT-2 (Radford et al., 2019) 35.27 2819 19.16 28.74 1361 /
VRBot (Li et al., 2021a) 29.69  23.9 16.34  24.69  11.23 /
MedPIR (Zhao et al., 2022) 38.721  27.64t 18.147 25.72f  10.307 82.77%
DFMed (Xu et al., 2023) 42.56  33.34 22,53 2931 1421/
ChatGLM-6B (Du et al., 2022) 37.96 24.22 1537 18.05  10.53  89.81
BP4ER (ours) 4478 33.80 2376 41.47 2247 89.93
Improvement +2.22 +046 +1.23 +12.16 +8.26 +0.12
Seq2Seq (Sutskever et al., 2014) 23.52 1856  12.13  23.56 8.67 /
HRED (Serban et al., 2016) 26.75 21.08 16.36 18.71 7.28 /
DialoGPT (Zhang et al., 2019) 30.177  25.53"  17.09T 24.30"7 9.79T  80.271

KaMed CGPT-2 (Radford et al., 2019) 33.76  26.58 17.82  26.8 10.59  /
VRBot (Li et al., 2021a) 30.04 23.76 16.36 1871 728  /
MedPIR (Zhao et al., 2022) 29.427  21.60f 16.477 20.697  9.277  83.75f
DFMed (Xu et al., 2023) 40.20 30.97 20.76 28.28 1154 /
ChatGLM-6B (Du et al., 2022) 38.70 27.19 16.38 33.86 2021  85.70
BP4ER (ours) 4189 31.74 2081 3576 21.19 86.83
Improvement +1.69 +0.77 +0.05 +1.90 +0.98 +1.07

Table 1: Automatic evaluation (%) on MedDG and KaMed datasets. B@n denotes BLEU-n, R@n denotes
ROUGE-n and D@2 denotes DISTINCT-2. The best values are in boldface and the second best are
underlined. Models marked with  were reproduced by us, while the others were copied from the original

results in (Xu et al., 2023).

gold standard responses. While ChatGLM-6B ini-
tially exhibits lower BLEU and ROUGE scores com-
pared to DFMed, integrating explicit reasoning and
bootstrapping prompting techniques yields notable
enhancements. Specifically, there’s a remarkable
increase of 23.42% in ROUGE-1 and 11.94% in
ROUGE-2. This integration not only boosts perfor-
mance metrics but also enhances the transparency
of the multi-step reasoning process in MDG. It ren-
ders the reasoning steps more comprehensible and
interpretable without the need for extensive anno-
tations. As a result, the model’s decision-making
process becomes more transparent, facilitating a
deeper understanding of the underlying logic be-
hind the generated responses.

(2) The performance enhancement is more pro-
nounced in MedDG compared to KaMed, as in-
dicated in Table 1. This discrepancy can be at-
tributed to the fact that MedDG is focused on a spe-
cific department, i.e., gastroenterology, and con-
tains a relatively small number of diseases, only
12 diseases. In contrast, KaMed covers a more
extensive range of over 300 diseases across 13
different medical departments. The diversity and
complexity inherent in KaMed render it a more chal-
lenging dataset for BP4ER. Additionally, it's worth
noting that KaMed involves a greater number of
dialogue rounds compared to MedDG, suggest-
ing that the necessity to consider larger contextual
information contributes to the dialogue’s complex-

ity. In summary, this observation suggests that
BP4ER demonstrates more effectiveness when
confronted with smaller and more focused datasets
like MedDG, and it may encounter greater chal-
lenges when confronted with larger and more di-
verse datasets featuring extended dialogue rounds,
such as KaMed.

(3) In comparison to traditional seq2seq-based
models, LLM-based models demonstrate superior
performance in the ROUGE and DISTINCT-2 met-
rics, while seq2seq-based models perform well on
the BLEU metric. For instance, BP4ER achieves
substantial improvements of 12.16% and 8.26% in
the MedDG dataset when considering the ROUGE
metric. Furthermore, LLM-based models consis-
tently outperform other models in both the MedDG
and KaMed datasets according to the DISTINCT-2
metric. These findings highlight the strength of LLM-
based models in generating responses that closely
align with the gold standard responses in terms of
recall and content coverage, as indicated by the
ROUGE metric. Additionally, they demonstrate the
ability to produce diverse and distinct responses,
as indicated by the DISTINCT-2 metric. Conversely,
other models may prioritize response quality based
on precision and n-gram matching, as indicated by
their performance in the BLEU metric. In summary,
the results underscore the strengths of LLM-based
models in generating high-quality responses that
capture both the richness and diversity in MDG,



Fine- Exp. AP- PR- MedDG \ KaMed

Tune Rea. Boots. Boots. | B@1 R@1 D@1 D@2 | B@1 R@1 D@1 D@2
v v v v 4478 4147 9120 89.93 | 41.89 35.76 89.10 86.83
v v v 4227 3764 89.76 88.73 | 40.69 35.01 87.97 85.94
v v 40.75 36.63 90.14 88.90 | 39.68 34.99 88.47 86.07
v 39.41 27.38 88.54 89.81 | 39.13 33.97 87.34 85.83

Table 2: Ablation studies (%) are carried out on two datasets by individually removing modules PR-
Bootstrap, AP-Bootstrap and explicit reasoning process.

Model Fluency Cohe. Correct.
DialoGPT 3.11 2.56 2.89
MedPIR 3.34 3.07 3.23
BP4ER 4.00 3.50 3.52
Gold 4.32 417 4.41

Table 3: Human evaluation (%) results on KaMed.
The maximum score for each indicator is 5.

making them particularly suitable for tasks requir-
ing comprehensive and diverse outputs.

4.6. Ablation Study

To assess the impact of different modules in
BP4ER, we conducted ablation studies on two
datasets by individually removing modules PR-
Bootstrap, AP-Bootstrap, and the explicit reasoning
process, as outlined in Table 2.

Firstly, we analyzed the effects of PR-Bootstrap
on performance. Comparing the results to BP4ER,
we observed decreases in all metrics upon remov-
ing PR-Bootstrap. This suggests that instructing
the model of its incorrectness by revising the prompt
positively influences model performance. Secondly,
when removing AP-Bootstrap from BP4ER, we no-
tice a slight increase in the DISTINCT-1/2 metric.
We hypothesize that this improvement may be at-
tributed to the fact that AP-Bootstrap can be con-
sidered as a form of greedy decoding, which tends
to generate repetitive or monotonous sequences
rather than diverse content. Finally, upon remov-
ing the explicit reasoning process, we observed
a decline in all evaluation metrics, with a notably
significant drop of 8.3% in the ROUGE metric in
the MedDG dataset. This indicates that the intro-
duction of an explicit reasoning process enhances
the interpretability of the response generation in the
MDG and improves the semantic similarity between
the generated response and the ground truth.

Our ablation experiments robustly confirm the ef-
fectiveness of each module on model performance.
The results indicate that all these modules con-
tribute positively to our approach, underscoring
their importance in achieving superior performance
in MDG tasks.

4.7. Human Evaluation

In addition to quantitative evaluations, we con-
ducted a human evaluation to assess the re-
sponses generated by different models in terms
of fluency, consistency, and entity correctness. We
randomly sampled 100 instances from the test
set of KaMed, and the corresponding responses
were generated by well-performing models such
as DialoGPT, MedPIR, and BP4ER. To ensure
the fairness of the assessment, the responses for
each sample were shuffled and then presented
to volunteers for evaluation. The final statistical
results are summarized in Table 3. Notably, our
proposed model BP4ER consistently outperformed
other models across all three manual evaluation
indicators. Particularly noteworthy is BP4ER'’s su-
periority in fluency and coherence, suggesting that
our proposed method significantly enhances the
quality of responses. This improvement can be
attributed to the explicit decomposition of MDG’s
multi-step reasoning process and the iterative boot-
strapping on prompting, both of which contribute
to generating more linguistically fluent and con-
textually coherent responses, improving the over-
all user experience in medical dialogue scenarios.
These findings provide additional evidence of the
effectiveness of BP4ER in improving the quality of
responses in MDG tasks, demonstrating its superi-
ority over existing models.

4.8. Case Study

We randomly selected dialogue examples from the
KaMed test set and compared the generated re-
sponses from several models in Figure 3.

In case 1, BP4ER follows a multi-step reason-
ing procedure: firstly, it summarizes the patient’s
current state and then infers the next diagnostic
action for the physician, i.e., inquire about the pa-
tient’s medical history. Finally, BP4ER generates a
response semantically close to the gold response,
both emphasizing "asking for the specific area of
pain". In contrast, other models primarily focus on
providing suggestions. This highlights BP4ER’s
ability to produce responses that are more aligned
with the context of the dialogue, achieved through
explicit reasoning in MDG and iterative bootstrap
prompting.



P: I have morning and evening stomach pain, which eases after
eating, with normal bowel movements and no nausea.

R: How long? Have any prior stomach issues?

P: Three or four days. No stomach issues, just these two days.
Gold Response: Probably peptic ulcer. You can take Daxi and
omeprazole .

MedPIR: Stomach indigestion; eat small, frequent meals.
ChatGLM: Gastric ulcer, avoid greasy, spicy foods and
caffeine.

BP4ER:

Patient’s State: Stomach pain in the morning and evening,
eases after eating, normal stools, no nausea, lasts for three or
four days, no stomach issues.

Diagnostic Decision: Give diagnostic results and drug advises.
Response: Gastric ulcer, suggest to take anti-inflammatory
drugs, such as omeprazole.

P: Is the pain on the outer front of the knee rheumatism?

Gold Response: How long? Does it hurt when pressed down?
MePIR: The knee pain can have many causes, not necessarily
related to theumatism.

BP4ER: How long has the pain been lasting? How does it pain?

P: What medication or injection for brucellosis? I'm a sheep
farmer, and I get the disease with no energy and cold.

R: Hi, have you been diagnosed? How long have you been sick?
P: It has been two or three months since the diagnosis.

Gold Response: Rifampicin 600-900mg/day plus tetracycline
200mg/day for 6 weeks. Is there any medication? It needs a
sufficient course of treatment.

ChatGLM: Brucellosis is an infectious disease caused by
Brucella, that may require antibiotics to treat.

BP4ER: Have any medicine? Antibiotics are usually used for
brucellosis, like tetracycline.

Figure 3: A case study on comparative responses
generated from various models, where "P" repre-
sents patient descriptions and "R" represents sys-
tem responses.

In case 2, upon receiving the patient’s self-
reported information, BP4ER predicts the next di-
agnostic decision and generates a response to in-
quire about the patient’s drug history. This rationale
closely aligns with medical logic. Conversely, other
models offer advice without a comprehensive un-
derstanding of the patient’s medical background,
lacking medical rationale.

In case 3, it is apparent that ChatGLM-6B is lim-
ited to providing only approximate antibiotic drug
recommendations. Conversely, BP4ER exhibits a
more advanced ability by not only inquiring about
the patient’'s medication history but also providing
specific recommendations for antibiotic drugs suit-
able for the individual’s condition. Despite this ad-
vanced ability, BP4ER still falls short when com-
pared to the gold standard response, particularly
in accurately determining the appropriate dosage
and duration for medication use. This finding under-
scores the crucial necessity of integrating expert
medical knowledge into the model to achieve preci-
sion for effective medical decision-making.

5. Conclusion

In this paper, we propose BP4ER, a novel medical
dialogue generation (MDG) model. BP4ER em-
ploys a least-to-most prompting strategy to guide a
large language model (LLM) towards explicit rea-
soning. This strategy involves breaking down MDG
into a sequence of interrelated sub-questions, mak-
ing the process closer to real medical reasoning.
Each sub-question is driven by answers obtained
from resolving preceding queries. Furthermore, the
model incorporates two iterative bootstrapping tech-
niques for prompting, enhancing the LLM'’s explicit
reasoning ability. Through the iterative approach,
BP4ER autonomously corrects intermediate errors,
leading to more precise and coherent medical re-
sponses. These features collectively enhance the
transparency and interpretability of the medical rea-
soning process while improving the overall qual-
ity of the generated medical dialogue responses.
Both automatic and human evaluations consistently
show BP4ER outperforming existing state-of-the-
art methods.

6. Limitations

Given that the BP4ER relies on large language
models and prompts to direct response generation,
it necessitates greater computational resources to
execute the reasoning chain and bootstrap prompt-
ing prior to generating responses. Another crucial
limitation lies in the potential for the model to gen-
erate incorrect or nonsensical responses during
the reasoning process. This risk arises from the
inherent reliance on the reasoning ability of LLMs,
which possess general knowledge but lack the spe-
cialized medical knowledge for accurate medical
dialogue generation. As a result, there’s a notable
gap between the model’s understanding of medical
concepts. In future work, we hope to explore the in-
troduction of medical knowledge to further enhance
the model’s explicit reasoning ability in the medical
domain.
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