
OAKINK2 : A Dataset of Bimanual Hands-Object Manipulation
in Complex Task Completion

Xinyu Zhan1⋆ Lixin Yang1⋆ Yifei Zhao1 Kangrui Mao1 Hanlin Xu1

Zenan Lin2,‡ Kailin Li1 Cewu Lu1†

1Shanghai Jiao Tong University, 2South China University of Technology

��������� �������������� �����
�����

�������������

��������������

	�����������

�������������������������������������
��������������������������������
�����������������������

������������������� ������������ ���������������

����

���� �����

�������

Level1 Level2 Level3
���������������������
�������������
���������

����������������

����������������

�	�����������������������������
������������������������

Use the knife to cut the apple;
then use the clamp to grip the sugar cubes into the bowl;
afterwards, use the microwave oven to heat the bowl.

���
���
��

L1L0 L2 L3 L9

OPEN CLOSE OPEN CLOSE

CLOSEOPEN

<heat, sth>
���
���
	

�������
�������
������
�����
���������

�
���������������� ��������������

Figure 1. An overview of the data and content of our proposed OAKINK2 dataset. OAKINK2 dataset focuses on bimanual object
manipulation tasks for complex daily activities. 1) The top row shows the data collection process, including the task setup (top-left panel),
human demonstration (top-center), and annotation (top-right). 2) The second row shows the three levels of abstraction constructed by
OAKINK2 for complex tasks, including the Affordance, Primitive Task, and Complex Task. OAKINK2 dataset provides allocentric and
egocentric videos of human manipulation process, as well as the corresponding 3D-pose annotation and task specification.

Abstract

We present OAKINK2, a dataset of bimanual object ma-
nipulation tasks for complex daily activities. In pursuit
of constructing the complex tasks into a structured repre-
sentation, OAKINK2 introduces three level of abstraction
to organize the manipulation tasks: Affordance, Primi-
tive Task, and Complex Task. OAKINK2 features on an

⋆The first two authors contributed equally.
‡This work is done when Lin is an intern at SJTU.
†Cewu Lu is the corresponding author. He is the member of Qing Yuan

Research Institute and MoE Key Lab of Artificial Intelligence, AI Institute,
Shanghai Jiao Tong University, China.

object-centric perspective for decoding the complex tasks,
treating them as a sequence of object affordance fulfill-
ment. The first level, Affordance, outlines the functionali-
ties that objects in the scene can afford, the second level,
Primitive Task, describes the minimal interaction units that
humans interact with the object to achieve its affordance,
and the third level, Complex Task, illustrates how Prim-
itive Tasks are composed and interdependent. OAKINK2
dataset provides multi-view image streams and precise pose
annotations for the human body, hands and various inter-
acting objects. This extensive collection supports applica-
tions such as interaction reconstruction and motion synthe-

1

ar
X

iv
:2

40
3.

19
41

7v
1

 [
cs

.C
V

]
 2

8
M

ar
 2

02
4

sis. Based on the 3-level abstraction of OAKINK2, we ex-
plore a task-oriented framework for Complex Task Comple-
tion (CTC). CTC aims to generate a sequence of bimanual
manipulation to achieve task objectives. Within the CTC
framework, we employ Large Language Models (LLMs) to
decompose the complex task objectives into sequences of
Primitive Tasks and have developed a Motion Fulfillment
Model that generates bimanual hand motion for each Prim-
itive Task. OAKINK2 datasets and models are available at
https://oakink.net/v2.

1. Introduction
Learning how humans achieve specific task objectives
through diverse object manipulation behaviors has been a
long-standing challenge. Recent data-driven approaches
have made significant progress on this topic, including
hand-object pose estimation [1, 7, 14, 22, 24–26, 39, 66],
interaction synthesis [12, 17, 31, 57, 62, 71], and action im-
itation [53, 54]. However, the gap still exists for current
methods to achieve a human-level understanding on object
manipulation for complex task completion. In particular,
humans possess a remarkable capacity to interact with spe-
cific objects in an appropriate sequence to achieve desired
outcomes [33]. This inspires us to focus on the decompo-
sition of hands-object interaction in complex manipulation
tasks into sequential units.

Tracing prior research, the advancement in hand-object
interaction understanding is inseparable from the emer-
gence of a series of hand-object interaction datasets [3,
8, 12, 15, 21, 24, 30, 34, 40, 47, 54, 56, 67, 72] to sup-
port data-driven methods. A noteworthy example among
these datasets is OakInk [67]. OakInk analyzed object
affordances (i.e. functional properties of objects/object-
parts [18]) and collected human-centric grasping interaction
driven by intents to utilize these affordances. The term: Oak
is for object affordance knowledge, and Ink for interaction
knowledge. Nevertheless, the previous OakInk has two ma-
jor limitations: 1) it lacks human demonstrations that cover
the process of fulfilling those affordances, and 2) it lacks
complex manipulation tasks that involve multiple object af-
fordances.

In this paper, we present OAKINK2, extending the data
and methodology of the previous OakInk. In order to man-
age the inherent complexity in complex manipulation tasks,
OAKINK2 adopts an object-centric perspective and con-
structs three levels of abstraction upon manipulation tasks:
1) Affordance: object/object-part level functionalities that

enable manipulation. For example, a bottle cap affords
securing and unsecuring of the content in the bottle.

2) Primitive Task (Primitive): a “minimal” sequence of
hand-object interaction that fulfills a given object’s af-
fordance. For instance, to fulfill the affordance: secur-
ing, one needs to either screw or press the cap onto

the bottle’s opening to form a seal that prevents leaking.
3) Complex Task: sequential combination of Primitives to

address the long-horizon and multi-goals manipulation
tasks. Tasks are characterized as “complex” for their
goal requires more than one object affordance. Complex
Tasks also detail the dependencies among the Primitives
and dictate the order in which they are executed. To il-
lustrate, to pour the fluid from a sealed bottle, one must
first unscrew the cap and then pour out the liquid.

In this way, OAKINK2 delineates Complex Tasks as directed
acyclic graphs, hereafter referred to as Primitive Depen-
dency Graphs (PDG). Within these graphs, each node rep-
resents a Primitive, serving to fulfill a specific affordance.
The directed edges illustrate the sequence in which Primi-
tives must be executed to achieve task completion.

Build upon the above methodology, OAKINK2 intro-
duces a large-scale dataset for bimanual object manipu-
lation. It encompasses human demonstrations for com-
plex task completion, with multi-view image streams and
paired pose annotations for human body, hands and objects.
OAKINK2 contains 627 sequences of real-world bimanual
manipulation sequences, where 264 of these sequences are
for Complex Tasks. These sequences contain 4.01M frames
from four different views (one egocentric and three allocen-
tric views). The dataset includes four manipulation scenar-
ios, 75 objects and 9 invited subjects in total.

The versatile and task-driven nature of OAKINK2 en-
ables a wide range of applications. In this paper, we focus
on the task and motion planning for Complex Task Comple-
tion (CTC). CTC involves two notable components: 1) tex-
t-based Complex Task decomposition using Primitives and
2) task-aware motion generation to fulfill each Primitive.
For the first component, we design a task interpreter with
Large Language Model (LLM) that can generate the PDG
and program the execution order of these Primitives, based
on textual descriptions of the Complex Tasks. For the lat-
ter component, we propose a generalist Task-aware Motion
Fulfillment model (TaMF) to generate the hand motion at
Primitive level, based on the task-related object trajectory.

In summary, our contributions are as follows:

• We build an object-centric, three-level abstraction to
structure and understand complex manipulation tasks, i.e.
Affordance, Primitive to fulfill affordance, and Complex
Task with Primitive dependencies.

• We introduce OAKINK2, a large-scale real-world dataset
for bimanual object manipulation with human demonstra-
tions for both Primitives and Complex Tasks.

• We propose a task-oriented framework, CTC, for com-
plex task and motion planning. CTC consists of a LLM-
based task interpreter for Complex Task decomposition
and a diffusion-based motion generator for Primitive ful-
fillment.

2

https://oakink.net/v2

2. Related Works

Hand-Object Interaction Datasets. The recent research
community has witnessed the emergence of numerous
datasets on hand-object interactions. Earlier datasets [3, 12,
24] focused on static hand-object interactions with limited
diversity. More recent datasets [8, 15, 21, 34, 41, 56, 72]
captured dynamic hand-object interactions, covering bi-
manual interactions [15, 34] and interactions with articu-
lated bodies [15, 72]. We pay particular attention to in-
teraction datasets related to object affordances. [12] ex-
pressed affordances in grasp type labels. [3, 15, 56] col-
lected intention labels for interactions. [30, 67] studied ob-
ject affordance-based hand-object interaction and collected
object segmentations and affordance labels. [41] studied
hand-object interactions in tool-action-object pairs. Our
proposed OAKINK2 captures both human demonstrations
for minimal interaction fulfilling object affordance as Prim-
itive, and demonstrations for Complex Task where these af-
fordances are fulfilled in specific order constrained by their
dependencies.

Decomposition of Manipulation Tasks. Decomposing
complex manipulation tasks into multiple building blocks
across different hierarchies represents a widely adopted
paradigm in the research community. [10] utilize the sym-
bolic interface of task planners to construct an abstract state
space, facilitating the reuse of hierarchical skills. [27, 63]
decompose task specifications into hierarchical neural pro-
grams, which feature bottom-level programs as callable
subroutines interacting with the environment. [9] chain
multiple dexterous policies for achieving long-horizon task
goals. [2] adopt a language-based methodology for de-
composing action hierarchies. In our work, we introduce
an object(affordance)-centric, three-level abstraction frame-
work within OAKINK2 for the decomposition of complex
manipulation tasks into Primitives.

Motion Synthesis. Motion synthesis involves obtaining
credible and realistic human action sequences. There are
plenty of works to generate human motions [51, 52, 59],
even interactions [17, 36, 37, 57, 58, 62] based on differ-
ent probabilistic model backbones like cVAE or denoising
diffusion. In particular, [36, 37, 58] synthesize human mo-
tion based on the object motion, delegating the latter part
to preceding models serving as inputs. Inspired by these
works, we propose a new task within OAKINK2: Task-
aware Motion Fulfillment This task requires the model to
synthesize hand motion trajectories based on given textual
task descriptions and object motions.

Foundation Models in Manipulation Tasks. Recent days
we have seen a significant increase in the application of
foundation models in completing manipulation tasks. There
are significant efforts for end-to-end foundation models

[4, 5, 11] that outputs control signals from visual and tex-
tual inputs. Existing works [6, 28, 55] also leverage the
in-context learning and zero-shot generalization abilities of
Large Language Models (LLMs) for action selection from
an array of choices to realize an autoregressive achieve-
ment of planning. Demonstration of LLM-based program
generation for task completion in [29, 37, 55] inspires us
to explore the ability of LLMs to reason code for discern-
ing interdependencies between object affordances in com-
plex tasks, along with the sequence in which they are im-
plemented. Our OAKINK2 introduce the decomposition of
Complex Tasks into interdependent affordance-based Prim-
itives, accompanied by their diverse image-textual descrip-
tions. Based on this, we show an application of OAKINK2
in Complex Task Completion utilizing existing power of
foundation models.

3. Construction of OAKINK2
We first introduce how the three-level of abstractions are
acquired in Sec. 3.1, then provide the details for data col-
lection and annotation in Sec. 3.2.

3.1. Complex Task Acquisition

Task Initialization. Given a collected repository of ob-
jects, we first construct four manipulation scenarios. Each
scenario has its unique characteristic and corresponds to a
set of complex manipulation tasks. These scenarios are:
1) kitchen table; 2) study room table; 3) demo chem lab;
4) bathroom table. Then, we invite four annotators () to
propose Complex Tasks in these scenarios and select object
cluster that required for these tasks (Fig. 2’s 1st column).

3.1.1 Object Affordance Analysis

After the task targets are determined, we proceed to analyze
the objects’ affordances in given scenarios. The expres-
sion of affordance adheres to the definitions in the previous
OakInk [67]: each affordance contains a specific object part
segmentation (e.g. a bottle cap) and a descriptive phrase tu-
ple (e.g. <secure, sth>), which elucidates the function
of that part. We provide examples of these affordances in
Fig. 2’s 2nd column.

3.1.2 Primitive Task Design

In the second stage, We design Primitives as the minimal
interactions that fulfill those object affordance. Here “min-
imal” indicates the task are required to fully complete the
functionality of a certain affordance without any redundant
interaction process. Each Primitive contains a starting con-
dition, a terminal condition, and the in-between hand-object
interaction process. For example, considering an affordance
associated with a knife blade meant to <cut, sth>, a
corresponding Primitive, cut, requires the subject to move

3

unscrew cap

open gate

place sth in

press button

take sth out

close gate

screw cap

pour out sth

grip sth

cut sth<cut, sth>

<secure, sth>

<contain, sth>

<grip, sth>

<contain, sth>

<secure, sth>

<control, sth>

OPEN

CLOSE

OPEN

CLOSE

I will first use for
Next
Then hold for
Afterwards of

cut sth

unscrew pour sthscrew cap

grip sth

and
,

Then,
Last,

of to start heat.

open gate

open

place sth in close gate

close
press button

take sth out

of

L1L0 L2 L3 L9

analyze Object Affordance design Primitive decompose Complex Task

Primitive
Dependency
Graph

Expert

Subject

How will you accomplish this task?

Pepare a bowl of
hot sweet fruit tea

Given the Scene and the Task objectives:

OPEN CLOSE OPEN CLOSE

CLOSEOPEN

<store, sth>

<heat, sth>

������

<heat, sth>
������

Prepare hot sweet fruit tea
Clean the kitchen table

Prepare a mug of tea
Prepare dishes

Prepare fruit platters
Prepare a cup of wine

envision Task

select Object Cluster

Object Repository

Figure 2. Illustration of the complex task acquisition process. This figure use a Complex Task: ‘Prepare a bowl of hot sweet fruit tea.’ to
demonstrate the process. Initially, the annotators () analyze the affordances of four essential objects (a gripper, a knife, a tea bottle, and
a microwave oven) and design corresponding Primitive. For instance, to prepare fruit slices, the Primitive: cut associated with the knife
blade is required. Following this, an expert () arranges the scene for the Complex Task, and then the subject (), utilizing the designed
Primitive, plans the execution path of the Complex Task. Later, these execution paths are structured into a Primitive Dependency Graphs.

the blade to completely pass through the object to be cut so
that the separated parts could be detached. In this stage, we
collect all available object affordances and their associated
Primitives, leading to a Primitive tasks pool (Fig. 2’s 3rd
column).

3.1.3 Complex Task Decomposition

In the third stage, we proceed to decompose the previous
proposed Complex Task – characterized by its long-horizon
and multi-goal manipulation targets – into a series of short-
term and single-goal Primitives. In emphasizing the order-
ing of Primitive completion is important for the Complex
Task completion, our approach also delineates the depen-
dencies between Primitives. Therefore, each Complex Task
contains a series of Primitives, along with a Primitive De-
pendency Graph (PDG), which maps out the hierarchical
execution order of these Primitives. Primitives at level 0
(L0) are independent, requiring no prior Primitives to be
completed, while the final level include those Primitives
that bring the Complex Task to completion.

We deploy a dedicated protocol to acquire the decom-
position and dependencies. As shown in Fig. 2’s 4th col-
umn, initially, an expert () instantiates the scene and tar-
get with specific description. Subsequently, a subject ()
is instructed to describe the order of the completion using
the available Primitive in the pool. Then, the expert records
and organizes this sequence into the PDG, concluding the
Complex Task acquisition process.

3.2. Data Collection and Annotation

After the acquisition of the three-level of abstractions, the
subjects are required to complete the Primitive and Complex
Task respectively in a data capture platform (Fig. 3).

Figure 3. Capture platform. 12 MoCap cameras are circled in
blue and 4 RGB cameras in red.

3.2.1 Capture Setup

The data capture platform contains two major components:
the multi-camera system for recording the manipulation
process and the optical MoCap system for pose tracking.
The MoCap system uses 12 Optitrack Prime 13W infrared
cameras to track the surface markers affixed to the subject’s
upper body, left and right hand, and interacting objects. The
multi-camera system consists of 4 commodity RGB cam-
eras, 3 of which are from allocentric views and 1 is from the
egocentric view. We synchronize all sensors at 30 fps and
calibrate the transformation between these two systems.

3.2.2 Data Annotation

Object Pose. Poses of rigid bodies are directly solved via
the MoCap system. For the poses of articulated bodies, the
base parts of articulated bodies are handled similarly to rigid
bodies, while the articulated parts are divided into two cat-
egories. If the part is large enough to attach enough mark-

4

State: The pear required for the
task is not cut. Use knife to cut it.

State: the pear has been cut.
The teacup lacks sugar and
water. Add sugar to the teacup.

State: The lid of the sugar can
has been removed. Transfer the
sugar to the teacup

State: The sugar has been
placed. Teacup lacks water.
Add water in it

… …

Action: cut the pear with knife
and place in the teacup.

Action: scoop sugar from sugar
can to the yellow teacup.

Action: uncap the lid of the
sugar can.

Action: unscrew the lid of the
bottle containing water.

… …

Task: prepare a sweet pear soup in the yellow teacup.
Primitives: cut, uncap, scoop, pour, unscrew, place ...

Figure 4. Commentary of the task execution. The left column
shows the current state of the scene. The center column shows the
narrative dialog retrieved from experts. The right column shows
the upcoming Primitive task to be executed.

ers without blocking the interaction then it will be handled
like rigid bodies. Otherwise, only one marker is attached
to that part. The marker’s position is calibrated in the ob-
ject’s canonical coordinate frame. Later, given the articula-
tion type (e.g. revolution or prismatic), the parameter of the
articulation joint is determined by minimizing the squared
difference between the observed marker position and the re-
covered marker position in the object’s canonical frame.

Human Pose and Surface. The annotation of human pose
and surface relies on SMPL-X [50] body mesh. To actu-
ally acquire human pose and surface, we employ a two-
stage fitting approach in align with the MoSH++ [44]. In
the first stage, we use the captured markers when the sub-
ject in T-pose to fit the subject’s SMPL-X shape parame-
ter β̄ and each marker’s location P

(c)
M in SMPL-X canon-

ical space. From stage one’s optimization result, we can
determine the correspondence C(·) from the subject’s sur-
face markers to the vertices of the SMPL-X model. In the
second stage, we fit the per-frame subject poses parame-
ter θ throughout the task completion process. This fitting
is grounded in the previously acquired shape β̄ and marker
correspondence C(·). With pose and shape parameters ob-
tained, the subject’s body mesh is reconstructed using the
SMPL-X model. Other body representations like MANO
are derived from this result. Refer to Sup. Mat for details.

Commentary of Task Execution. After the manipulation
process is completed, we send the video recording to ex-
perts for analysis, requesting them to furnish detailed com-

mentary on the task execution process. At each Primitive
step, experts are asked to provide comments on the current
task state and the forthcoming action. Specifically, given the
execution of the previous Primitive, experts are asked to 1)
summarize the tasks yet to be completed to achieve the ma-
nipulation goals, considering both the current scene and the
upcoming Primitive slated for execution; and 2) offer de-
scriptions of the next action using the available Primitives
in the pool. This process is illustrated in Fig. 4. The narra-
tive text provided by experts are subsequently refined using
GPT-4 [48] to serve as commentary. OAKINK2 features on
these commentaries as they encapsulate the expert’s chain-
of-thought when observing the manipulation process. These
commentaries serve not only to interpret user behaviors but
also to inform the generation of user actions.

4. The OAKINK2 Dataset
4.1. Data and Annotation List

OAKINK2 provide RGB videos that record the manipu-
lation processes. These videos are collected from multi-
view (1 egocentric and 3 allocentric) setup, synchronized
at 30 fps, with resolution 848 × 480. The annotations con-
tains two parts: 1) 3D motion, including pose and shape
for the human upper-body, hands, and objects (with artic-
ulation parameters) during the interaction process; and the
2) task specification, including object affordances, Prim-
itives that correspond to these affordances, Complex Tasks
with task goals, initial conditions, PDGs, expert commen-
tary, and subject’s completion sequence. Evaluations of the
3D annotation qualities are provided in Sup. Mat. Annota-
tion on 3D hand keypoints undergo cross-dataset validation
with a reconstruction model, while the 3D poses associated
with grasping actions are examined for the physical prop-
erty integrity.

4.2. Dataset Statistics
OAKINK2 sets up four scenarios of hand-object interac-
tion with a total number of 38 long-horizon complex ma-
nipulation goals, which instantiates to 150 Complex Tasks.
OAKINK2 contains in total 75 objects and 39 affordance.
These affordances map to 60 types of Primitives. OAKINK2
contains 627 sequences of bimanual dexterous hand-object
interaction in total. 363 of these are for Primitives and
264 are for Complex Tasks. In total, OAKINK2 contains
4.01M image frames. We compare OAKINK2 to multiple
existing hand-object interaction datasets in Tab. 4. Here we
highlight several notable features of OAKINK2: 1) it pro-
vides interaction grounded in object affordance (vs. HO3D,
DexYCB); 2) it features long-horizon manipulation goals
(vs. ARCTIC, HOI4D, GRAB); 3) it includes 3D pose and
shape annotation for both hands and objects (vs. EGO4D,
AssemblyHands); and 4) it offers task decomposition using
Primitives, which is not available in any datasets in Tab. 4.

5

Dataset image
mod. resolution #frame #views #subj #obj 3D

gnd.
real /
syn.

label
method

hand
pose

obj
pose

afford.
inter.

dynamic
inter.

long-
horizon

task
decomp.

EGO4D [19] ✓ ∼ ∼ 1 931 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
HO3D [21] ✓ 640× 480 78K 1-5 10 10 ✓ real auto ✓ ✓ ✗ ✓ ✗ ✗
GRAB [56] ✗ – 1.62M – 10 51 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
H2O [34] ✓ 1280× 720 571K 5 4 8 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗
HOI4D [40] ✓ 1280× 800 3M 1 9 1000 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
ARCTIC [15] ✓ 2800× 2000 2.1M 9 10 11 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
AssemblyHands [47] ✓ 1920× 1080 3.03M 12 34 – ✓ real semi-auto ✓ ✗ ✓ ✓ ✓ ✓
Ego-Exo4D [20] ✓ ∼ ∼ 5-6 839 – ✓ real semi-auto ✓ ✗ ✗ ✓ ✓ ✓
OakInk-Image [67] ✓ 848× 480 230K 4 12 100 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗

OAKINK2 ✓ 848× 480 4.01M 4 9 75 ✓ real mocap ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A cross-comparison among various public datasets. (Refer to Sup. Mat for the full table.)

5. Selected Applications

5.1. Hand Mesh Reconstruction

The Hand Mesh Reconstruction (HMR) task is to estimate
the 3D hand pose during the interaction process from the
captured images. We benchmark HMR task under both
single-view settings and multi-view settings. In single-view
settings, the image input only contains one view, egocentric
or allocentric. In multi-view settings, the image input will
contain multiple views, together with the camera calibration
parameters. For both settings we partition the corresponded
task-specified subsets at the sequence level, maintaining the
proportion of samples in train/val/test sets at approximately
70%, 5%, and 25%.

We evaluate mean per joint position error (MPJPE),
mean per vertex position error (MPVPE) in world space,
wrist(root)-relative (RR) systems and systems after Pro-
crustes analysis (PA). We also evaluate area under curve
(AUC) of correct keypoints percentage within range 0 −
20mm in root-relative systems. We show HMR benchmark
results under both settings in Tab. 2.

Setting Methods PA- PA- RR-MPJPE RR MPJPE MPVPEMPJPE MPVPE (AUC) -MPVPE

Mono
METRO [38] 6.90 6.47 17.56 (0.410) 16.44 – –
RLE [35] 5.46 6.86 13.08 (0.441) 14.03 – –+ HandTailer [42]

Multi KP-based Fit [68] 9.20 8.83 15.63 (0.349) 15.38 19.30 19.11
POEM [68] 6.18 6.61 12.12 (0.581) 12.15 9.17 9.52

Table 2. Single- and multi-view HMR evaluation results in mm.

5.2. Task-aware Motion Fulfillment (TaMF)

To achieve task objectives in interaction scenarios, we intro-
duce a novel task: Task-aware Motion Fulfillment (TaMF).
It targets at the generation of hand motion sequences that
can fulfill given object trajectories conditioned on textual
task descriptions.

Task Formulation. Given a textual description of the
Primitive task: textPT, we assume the involved objects

geometries Vo = {Vo,m} and their motion trajectories
To = {T(i)

o,m} during the interaction process are known. We
use subscript h to represent human hands, o to represent the
object, m to index different object instances (and different
parts of the same instance) and superscript (i) to index dif-
ferent timestamps. The task is to generate a corresponding
hands motion trajectory Ph = {P(0:L)

h } conditioned on the
textual description textPT, object geometries Vo, and mo-
tion trajectories To.

Evaluation Metrics. We evaluate contact ratio (CR) and
solid intersection volume (SIV) to measure the physical
plausibility of the generated motion. On sequence-level,
we evaluate motion smoothness with Power Spectrum KL
divergence of joints (PSKL-J) as in human motion gener-
ation, and evaluate FID to measure distances between the
ground-truth motions and the generated motions. We also
conduct a perceptual study to evaluate the level of realism
for the generated motion. Detailed definition of these met-
rics can be found in Sup. Mat.

��������� ���������

�������
���������� ����������������
�������

	��������

������������������

����

����� �����

����

���
��

��������� ��������� ���������

���
��

���������

������������������

����������	������

����������
�������

���� �������� ���� ���� ����

��������� ����������	������

+ + + + + + + + ++

����

x̂0 x̂0 x0

xT

xT−1 xT−2

x1

x̂0

x0

���� �������
���������� ���������������� ������

	��������

 �����	�����

 �����	�����

Figure 5. Architecture of MF-MDM. First sample random noises
xT ; then at each step iterating from T to 1, MF-MDM G predicts
the cleaned sample x̂0 and then diffuse it back to xt−1. After the
generated sample x0 is acquired, it is refined by MF-MDM R for
better interaction details.

6

��������������������������
�����������������
��������������

�������������������
���������
��

����������������������������� �����	����
���
��������������

�����������
���������	���	���

����������������������

����������������������

�������������������
�����������������������

������������
����������� ���������������������
���������������

����������������	����

�������������������
�

�������������������
����������������

������������������

�������������������
��������������������
�

��������������������������
�����������������
��������������

Figure 6. Qualitative Visualization of the generated hand motion
in TaMF model.

Physical lausibility Motion Smoothness
CR↑ SIV (cm3)↓ PSKL-J (g.t., p.) ↓ (p., g.t.) ↓
0.90 4.17 0.0446 0.0460

FID Perceptual Score
Dataset Generated

1.369 4.66± 0.48 3.64± 0.85

Table 3. Evaluations of generated hand motion in TaMF model.
PSKL-J is evaluated between the training data (g.t.) and the gen-
erated hand motion trajectory (p.); both directions are included as
PSKL-J is an asymmetric metric.

Model and Results. We enhance a diffusion-based motion
generation model: MDM [59], tailoring it to the nuanced
requirements of task-aware hand motion synthesis. The
model architecture is visualized in Fig. 5. Our proposed
model, named as MF-MDM, consists of two components:
1) MF-MDM G, which generates human motion trajectory
conditioned on textual descriptions of tasks and object mo-
tion trajectories; and 2) MF-MDM R, which refines gen-
erated hand motion based on spatial hand-object relation-
ships. The sampling process is modeled as a reversed dif-
fusion process of gradually cleaning noised samples. The
key difference for MF-MDM is to incorporate multi-object
related probabilistic conditions into existing transformer en-
coder. To achieve this, we employ an extra layer, Sequential
Merging, to aggregate spatial relationships in the interaction
scene at each frame. The object motion trajectories and the
previously diffused hand motion trajectory are projected to
the same dimension and aggregated. For the refine model
MF-MDM R, we append hand-object distances as an ex-
tra spatial information for Sequential Merging layer. The
aggregated embedding sequence is combined with other to-
kens before being fed into the main transformer encoder:
the noising step token, the text embedding of the task de-
scription from the CLIP text encoder, and the aggregated

object geometry embeddings from the PointBert encoder.
We also provide the quantitative evaluations in Tab. 3 and
qualitative visualization in Fig. 6.

5.3. Complex Task Completion (CTC)

OAKINK2 brings in a new application – breaking Complex
Task goals into paths of Primitive motions. The Complex
Task Completion (CTC) is to generate hands motion trajec-
tories based on a textual description of the scene and the
task objectives. Considering the challenge of direct trans-
lation from complex task and scene text to end-to-end mo-
tion generation, which involves a transition across multi-
ple modalities, there is currently no adequate framework to
address this problem. Therefore, we decompose CTC into
three stages, tackling each one sequentially.

The process initially begins with text-based 1) Primitive
planning. The recent breakthroughs in foundation mod-
els [48, 69], such as Large Language Models (LLMs), al-
low us to utilize them as the task planner, as these models
already have the capability to plan the Primitive execution
path, while only requiring proper guidance and context. The
output of this stage is a task planning script that includes
the execution order for each Primitive. Subsequently, the
problem is reformulated into generating the hand and ob-
ject motion trajectories for each Primitive, based on the tar-
get task and scene state, thus modeling P (Ph,To|textPT).
We again break this down into two subtasks: 2) object tra-
jectory retrieval, i.e. P (To|textPT) and 3) hand motion
generation i.e. P (Ph|To, textPT). The former is solved
by re-targeting1 object motion from expert’s demonstration
to meet the newly generated random scene. The latter is our
pre-defined Task-aware Motion Fulfillment model (TaMF,
Sec. 5.2).

1⃝ Primitive Planning by LLMs. In this stage, we lever-
age the off-the-shelf GPT-4 [48] to generate program that
decompose the Complex Task as a sequence of Primitive.
We first embed the scene description textscene, the com-
plex task description textgoal and each object’s descrip-
tion {textobj} into the prompt based on manually designed
templates. GPT-4 will respond to the prompt using the pro-
gram. As shown in Fig. 8’s code block, this program in-
stantiates the Primitive Dependency Graph (PDG) using a
sequence of code snippets, where each node of the PDG
(Primitive) is implemented as a execute([primitive],
...)function, and the edge of the PDG is implemented
as function’s calling order. Then we use a dependency
checker built upon the PDG information in OAKINK2 to
test whether the generated program completes the Complex
Task without violation of constraints. If a successful pro-
gram is obtained, we move to the next stage.

1re-target refers to the process of adjusting pre-existing motion trajec-
tories to align with new initial and target poses of objects, ensuring com-
patibility with the current scene

7

cut sth

��������� ���������

pour out sth���������������������������� ���������������������������������������
���transitionplace sth in

Figure 7. Visualization of Motion Generation Outcome in Complex Task Completion.

��� ������
���������

cut sth

pour sth

execute(“cut”,
 generator,
 object_trajectory,
 src_object=knife,
 tgt_object=pear)

execute(“pour”,
 generator,
 object_rajectory,
 src_object=bottle,
 tgt_object=frying_pan)

������������������

������

����������

��������
	���

def exec_task():

������

������
�����������

����������
�������

������
������
	

�����
�����������

������������
���������

��������� � � � � �

��������������������

Figure 8. The diagram of Complex Task Completion. The task
input populates a predefined template to generate the prompt for
planning. The 1⃝ LLM (GPT-4) responds with code of the pro-
gram’s execution path, delineating the DAG for Primitive depen-
dency. Within the code response block, the orange snippets
marks the 2⃝ Oracle to re-target object trajectories; the blue snip-
pets indicate 3⃝ motion generators for Primitives.

At this moment, the execute() function in Fig. 8’s
code snippets remain incomplete, lacking two pivotal com-
ponents: the object trajectory and the hand motion
generator. We will address these components in the fol-
lowing two stages.

2⃝ Object Trajectories Retrieval from Oracle. Accom-
plishing a Primitive task necessitates the object’s motion
trajectories within that context. In this stage, we leverage
an Oracle to retrieve object motion trajectories based on a
certain scene and Primitive. The term “Oracle” denotes a
dual-function capability: 1) pursuant to a given Primitive, it
fetches the object motion trajectories within the OAKINK2
dataset, and 2) it re-targets these expert-derived trajectories
based on the initial, functional and post poses of the objects,
thereby conforming to new scene requirements and gener-
ating the desired object trajectory.

3⃝ Hand Motion Generation with TaMF. Once the ob-
ject trajectories are obtained, the final stage is to generate
hand motion trajectories for each Primitive. To this end, we

utilize our previously designed Task-aware Motion Fulfill-
ment model (TaMF, Sec. 5.2) as a generalist generator
(indicating that a singular TaMF model accommodates all
Primitives). After populating all execute() functions with
the determined object trajectories and generator, the pro-
gram is executed in sequel and all the Primitive trajectories
are connected by interpolation. This interpolation ensures
smooth transitions by linking the final state of a preceding
trajectory with the initial state of the subsequent one.

We show an example of the generated motions for Com-
plex Task in Fig. 7. Details of test scene generation, prompts
and templates, evaluations of primitive planning, success/-
failure cases are referred to Sup. Mat.

6. Future Works
OAKINK2 is a dataset packing a variety of hand-object in-
teractions for human completion of long-horizon and multi-
goal complex manipulation tasks. OAKINK2 incorporates
Primitive demonstrations, characterized as minimal inter-
actions that fulfill object affordance, and Complex Tasks
demonstrations, which also include their decomposition
into interdependent Primitives.

First, we expect OAKINK2 to support large-scale
language-manipulation pre-training, improving the perfor-
mance of multi-modal (e.g. vision-language-action [69])
models for Complex Task Completion. In the longer
term, we expect OAKINK2 can potentially support learn-
ing frameworks capable of end-to-end text-to-manipulation
generation.

Second, OAKINK2 can empower various embodied ma-
nipulation tasks by re-targeting the collected demonstra-
tions of Primitives to different embodiments, such as het-
erogeneous hands and platforms as [23, 53, 54, 61, 64] im-
plied. The interaction scenarios constructed in OAKINK2
can also be transferred and integrated into existing simula-
tion environments [45, 60] to support embodied learning on
object manipulation.

Acknowledgments. This work was supported by the Na-
tional Key Research and Development Project of China (No.
2022ZD0160102), National Key Research and Development
Project of China (No. 2021ZD0110704), Shanghai Artificial Intel-
ligence Laboratory, XPLORER PRIZE grants, and 2023 Shanghai
Pujiang X Program Project (No. 23511103104).

8

References
[1] Ahmed Tawfik Aboukhadra, Jameel Malik, Ahmed Elhayek,

Nadia Robertini, and Didier Stricker. THOR-Net: End-to-
end graformer-based realistic two hands and object recon-
struction with self-supervision. In Winter Conference on Ap-
plications of Computer Vision (WACV), 2023. 2

[2] Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet,
Quon Vuong, Jonathan Tompson, Yevgen Chebotar, De-
bidatta Dwibedi, and Dorsa Sadigh. RT-H: Action hier-
archies using language. arXiv preprint arXiv:2403.01823,
2024. 3

[3] Samarth Brahmbhatt, Chengcheng Tang, Christopher D
Twigg, Charles C Kemp, and James Hays. ContactPose: A
dataset of grasps with object contact and hand pose. In Eu-
ropean Conference on Computer Vision (ECCV), 2020. 2, 3,
15

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence,
Chuyuan Fu, Montse Gonzalez Arenas, Keerthana Gopalakr-
ishnan, Kehang Han, Karol Hausman, Alex Herzog, Jas-
mine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal,
Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu,
Henryk Michalewski, Igor Mordatch, Karl Pertsch, Kan-
ishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait
Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke, Quan
Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin
Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. RT-2: Vision-language-action mod-
els transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023. 3

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakr-
ishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Ju-
lian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally
Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor
Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,
Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka
Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clay-
ton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega, Quan
Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. RT-1: Robotics transformer for real-
world control at scale. Robotics: Science and Systems (RSS),
2023. 3

[6] Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian Ibarz, Alex
Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say:
Grounding language in robotic affordances. In Conference
on Robot Learning (CoRL), 2023. 3

[7] Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, and Jitendra
Malik. Reconstructing hand-object interactions in the wild.

In International Conference on Computer Vision (ICCV),
2021. 2

[8] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov,
Ankur Handa, Jonathan Tremblay, Yashraj S. Narang, Karl
Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz, and Di-
eter Fox. DexYCB: A benchmark for capturing hand grasp-
ing of objects. In Computer Vision and Pattern Recognition
(CVPR), 2021. 2, 3, 15

[9] Yuanpei Chen, Chen Wang, Li Fei-Fei, and C Karen Liu.
Sequential dexterity: Chaining dexterous policies for long-
horizon manipulation. arXiv preprint arXiv:2309.00987,
2023. 3

[10] Shuo Cheng and Danfei Xu. LEAGUE: Guided skill learn-
ing and abstraction for long-horizon manipulation. IEEE
Robotics and Automation Letters, 2023. 3

[11] Open X-Embodiment Collaboration, Abby O’Neill, Abdul
Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek
Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex
Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, An-
chit Gupta, Andrew Wang, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, An-
tonin Raffin, Archit Sharma, Arefeh Yavary, Arhan Jain,
Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick,
Beomjoon Kim, Bernhard Schölkopf, Blake Wulfe, Brian
Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea Finn,
Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang,
Christine Chan, Christopher Agia, Chuer Pan, Chuyuan Fu,
Coline Devin, Danfei Xu, Daniel Morton, Danny Driess,
Daphne Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler,
Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Ed-
ward Johns, Ethan Foster, Fangchen Liu, Federico Ceola,
Fei Xia, Feiyu Zhao, Freek Stulp, Gaoyue Zhou, Gaurav S.
Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio
Schiavi, Glen Berseth, Gregory Kahn, Guanzhi Wang, Hao
Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben
Amor, Henrik I Christensen, Hiroki Furuta, Homer Walke,
Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic,
Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim,
Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jean-
nette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jia-
heng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo,
Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu,
Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna,
Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi
Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang,
Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go,
Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne,
Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin
Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty El-
lis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Ku-
nal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu,
Laurent Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-
Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel,
Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Cas-
tro, Max Spero, Maximilian Du, Michael Ahn, Michael C.
Yip, Mingtong Zhang, Mingyu Ding, Minho Heo, Mo-

9

han Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki
Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi,
Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur Muham-
mad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert
Bastani, Pannag R Sanketi, Patrick ”Tree” Miller, Patrick
Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter
Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundare-
san, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian,
Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan
Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan
Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine,
Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shub-
ham Sonawani, Shuran Song, Sichun Xu, Siddhant Hal-
dar, Siddharth Karamcheti, Simeon Adebola, Simon Guist,
Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen
Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani,
Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Mat-
sushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding,
Todor Davchev, Tony Z. Zhao, Travis Armstrong, Trevor
Darrell, Trinity Chung, Vidhi Jain, Vincent Vanhoucke, Wei
Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liang-
wei, Xuanlin Li, Yao Lu, Yecheng Jason Ma, Yejin Kim,
Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yoonyoung Cho, Young-
woon Lee, Yuchen Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang,
Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yun-
zhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo
Xu, Zichen Jeff Cui, Zichen Zhang, and Zipeng Lin. Open
X-Embodiment: Robotic learning datasets and RT-X mod-
els. https://arxiv.org/abs/2310.08864, 2023.
3

[12] Enric Corona, Albert Pumarola, Guillem Alenya, Francesc
Moreno-Noguer, and Grégory Rogez. GanHand: Predicting
human grasp affordances in multi-object scenes. In Com-
puter Vision and Pattern Recognition (CVPR), 2020. 2, 3,
15

[13] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Rescaling egocentric vision: Collection, pipeline and chal-
lenges for epic-kitchens-100. International Journal of Com-
puter Vision, 2022. 15

[14] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David
Crandall. HOPE-Net: A graph-based model for hand-object
pose estimation. In Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[15] Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed
Kocabas, Manuel Kaufmann, Michael J Black, and Otmar
Hilliges. ARCTIC: A dataset for dexterous bimanual hand-
object manipulation. In Computer Vision and Pattern Recog-
nition (CVPR), 2023. 2, 3, 6, 13, 15

[16] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul
Baek, and Tae-Kyun Kim. First-person hand action bench-
mark with rgb-d videos and 3D hand pose annotations. In
Computer Vision and Pattern Recognition (CVPR), 2018. 15

[17] Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Chris-
tian Theobalt, and Philipp Slusallek. IMoS: Intent-driven
full-body motion synthesis for human-object interactions. In
Computer Graphics Forum, 2023. 2, 3

[18] James J Gibson. The ecological approach to visual percep-
tion: classic edition. Psychology Press, 2014. 2

[19] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson
Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:
Around the world in 3,000 hours of egocentric video. In
Computer Vision and Pattern Recognition (CVPR), 2022. 6,
15

[20] Kristen Grauman, Andrew Westbury, Lorenzo Torresani,
Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar
Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote,
et al. Ego-exo4d: Understanding skilled human activ-
ity from first-and third-person perspectives. arXiv preprint
arXiv:2311.18259, 2023. 6, 15

[21] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. Honnotate: A method for 3D annotation of
hand and object poses. In Computer Vision and Pattern
Recognition (CVPR), 2020. 2, 3, 6, 15

[22] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vin-
cent Lepetit. Keypoint transformer: Solving joint identifica-
tion in challenging hands and object interactions for accurate
3D pose estimation. In Computer Vision and Pattern Recog-
nition (CVPR), 2022. 2

[23] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang, Yu-
Wei Chao, Qian Wan, Stan Birchfield, Nathan Ratliff, and
Dieter Fox. DexPilot: Vision-based teleoperation of dex-
terous robotic hand-arm system. In International Confer-
ence on Robotics and Automation (ICRA), pages 9164–9170.
IEEE, 2020. 8

[24] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In Computer Vision and Pattern Recognition (CVPR),
2019. 2, 3, 15

[25] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,
Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-
ric consistency over time for sparsely supervised hand-object
reconstruction. In Computer Vision and Pattern Recognition
(CVPR), 2020.

[26] Yana Hasson, Gül Varol, Ivan Laptev, and Cordelia Schmid.
Towards unconstrained joint hand-object reconstruction
from rgb videos. In International Conference on 3D Vision
(3DV), 2021. 2

[27] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh
Garg, Li Fei-Fei, Silvio Savarese, and Juan Carlos Niebles.
Neural task graphs: Generalizing to unseen tasks from a sin-
gle video demonstration. In Computer Vision and Pattern
Recognition (CVPR), 2019. 3

[28] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Extract-
ing actionable knowledge for embodied agents. In Inter-
national Conference on Machine Learning (ICML). PMLR,
2022. 3

10

https://arxiv.org/abs/2310.08864

[29] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li,
Jiajun Wu, and Li Fei-Fei. VoxPoser: Composable 3D value
maps for robotic manipulation with language models. arXiv
preprint arXiv:2307.05973, 2023. 3

[30] Juntao Jian, Xiuping Liu, Manyi Li, Ruizhen Hu, and Jian
Liu. AffordPose: A large-scale dataset of hand-object in-
teractions with affordance-driven hand pose. arXiv preprint
arXiv:2309.08942, 2023. 2, 3, 15

[31] Hanwen Jiang, Shaowei Liu, Jiashun Wang, and Xiaolong
Wang. Hand-object contact consistency reasoning for human
grasps generation. In International Conference on Computer
Vision (ICCV), 2021. 2

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 14

[33] Christopher A Kurby and Jeffrey M Zacks. Segmentation in
the perception and memory of events. Trends in cognitive
sciences, 2008. 2

[34] Taein Kwon, Bugra Tekin, Jan Stuhmer, Federica Bogo, and
Marc Pollefeys. H2O: Two hands manipulating objects for
first person interaction recognition. In International Confer-
ence on Computer Vision (ICCV), 2021. 2, 3, 6, 15

[35] Jiefeng Li, Siyuan Bian, Ailing Zeng, Can Wang, Bo Pang,
Wentao Liu, and Cewu Lu. Human pose regression with
residual log-likelihood estimation. In International Confer-
ence on Computer Vision (ICCV), 2021. 6

[36] Jiaman Li, Jiajun Wu, and C Karen Liu. Object motion
guided human motion synthesis. ACM Transactions on
Graphics (TOG), 2023. 3

[37] Kailin Li, Lixin Yang, Zenan Lin, Jian Xu, Xinyu Zhan,
Yifei Zhao, Pengxiang Zhu, Wenxiong Kang, Kejian Wu,
and Cewu Lu. FAVOR: Full-body ar-driven virtual object
rearrangement guided by instruction text. In AAAI Confer-
ence on Artificial Intelligence, 2024. 3, 17, 18

[38] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In
Computer Vision and Pattern Recognition (CVPR), 2021. 6,
16

[39] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xi-
aolong Wang. Semi-supervised 3D hand-object poses esti-
mation with interactions in time. In Computer Vision and
Pattern Recognition (CVPR), 2021. 2

[40] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan,
Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang, and Li Yi.
HOI4D: A 4d egocentric dataset for category-level human-
object interaction. In Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2, 6, 15

[41] Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang
Zhang, Yebin Liu, and Li Yi. TACO: Benchmarking gen-
eralizable bimanual tool-action-object understanding. arXiv
preprint arXiv:2401.08399, 2024. 3, 15

[42] Jun Lv, Wenqiang Xu, Lixin Yang, Sucheng Qian,
Chongzhao Mao, and Cewu Lu. HandTailor: Towards high-
precision monocular 3D hand recovery. In British Machine
Vision Conference (BMVC), 2021. 6

[43] Steven Macenski, Tully Foote, Brian Gerkey, Chris
Lalancette, and William Woodall. Robot operating system 2:

Design, architecture, and uses in the wild. Science Robotics,
7(66):eabm6074, 2022. 13

[44] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. AMASS: Archive of
motion capture as surface shapes. In Computer Vision and
Pattern Recognition (CVPR), 2019. 5, 13, 14

[45] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac
gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021. 8

[46] Andrew T Miller and Peter K Allen. Graspit!: A versatile
simulator for robotic grasping. IEEE Robotics & Automation
Magazine, 11(4):110–122, 2004. 15

[47] Takehiko Ohkawa, Kun He, Fadime Sener, Tomas Hodan,
Luan Tran, and Cem Keskin. AssemblyHands: Towards ego-
centric activity understanding via 3D hand pose estimation.
In Computer Vision and Pattern Recognition (CVPR), 2023.
2, 6, 15

[48] OpenAI. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 5, 7, 17

[49] OptiTrack. Motive: Optical motion capture software.
https://optitrack.com/software/motive/.
13

[50] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive Body Capture: 3D hands, face,
and body from a single image. In Computer Vision and Pat-
tern Recognition (CVPR), 2019. 5, 13

[51] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3D human motion synthesis with transformer
VAE. In International Conference on Computer Vision
(ICCV), 2021. 3

[52] Mathis Petrovich, Michael J Black, and Gül Varol. TEMOS:
Generating diverse human motions from textual descriptions.
In European Conference on Computer Vision (ECCV), 2022.
3

[53] Yuzhe Qin, Hao Su, and Xiaolong Wang. From one hand to
multiple hands: Imitation learning for dexterous manipula-
tion from single-camera teleoperation. IEEE Robotics and
Automation Letters, 2022. 2, 8

[54] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui-
han Yang, Yang Fu, and Xiaolong Wang. DexMV: Imitation
learning for dexterous manipulation from human videos. In
European Conference on Computer Vision (ECCV), 2022. 2,
8

[55] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal,
Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason,
and Animesh Garg. ProgPrompt: Generating situated robot
task plans using large language models. In International
Conference on Robotics and Automation (ICRA), 2023. 3

[56] Omid Taheri, Nima Ghorbani, Michael J Black, and Dim-
itrios Tzionas. GRAB: A dataset of whole-body human
grasping of objects. In European Conference on Computer
Vision (ECCV), 2020. 2, 3, 6, 13, 15

[57] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim-
itrios Tzionas. GOAL: Generating 4d whole-body motion

11

https://optitrack.com/software/motive/

for hand-object grasping. In Computer Vision and Pattern
Recognition (CVPR), 2022. 2, 3, 18

[58] Omid Taheri, Yi Zhou, Dimitrios Tzionas, Yang Zhou,
Duygu Ceylan, Soren Pirk, and Michael J Black. Grip: Gen-
erating interaction poses using spatial cues and latent con-
sistency. In International Conference on 3D Vision (3DV),
2024. 3

[59] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion dif-
fusion model. International Conference on Learning Repre-
sentations (ICLR), 2023. 3, 7

[60] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2012. 8

[61] Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan,
Yaodong Yang, Li Yi, and He Wang. UniDexGrasp++: Im-
proving dexterous grasping policy learning via geometry-
aware curriculum and iterative generalist-specialist learning.
arXiv preprint arXiv:2304.00464, 2023. 8

[62] Yan Wu, Jiahao Wang, Yan Zhang, Siwei Zhang, Otmar
Hilliges, Fisher Yu, and Siyu Tang. SAGA: Stochastic
whole-body grasping with contact. In European Conference
on Computer Vision (ECCV), 2022. 2, 3, 17

[63] Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg,
Li Fei-Fei, and Silvio Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In Inter-
national Conference on Robotics and Automation (ICRA),
2018. 3

[64] Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu,
Zikang Shan, Hao Shen, Ruicheng Wang, Haoran Geng, Yi-
jia Weng, Jiayi Chen, et al. Unidexgrasp: Universal robotic
dexterous grasping via learning diverse proposal generation
and goal-conditioned policy. In Computer Vision and Pattern
Recognition (CVPR), 2023. 8

[65] Lixin Yang, Xinyu Zhan, Kailin Li, Wenqiang Xu, Jiefeng
Li, and Cewu Lu. CPF: Learning a contact potential field to
model the hand-object interaction. In Computer Vision and
Pattern Recognition (CVPR), 2021. 14

[66] Lixin Yang, Kailin Li, Xinyu Zhan, Jun Lv, Wenqiang Xu,
Jiefeng Li, and Cewu Lu. ArtiBoost: Boosting articulated 3D
hand-object pose estimation via online exploration and syn-
thesis. In Computer Vision and Pattern Recognition (CVPR),
2022. 2

[67] Lixin Yang, Kailin Li, Xinyu Zhan, Fei Wu, Anran Xu, Liu
Liu, and Cewu Lu. OakInk: A large-scale knowledge reposi-
tory for understanding hand-object interaction. In Computer
Vision and Pattern Recognition (CVPR), 2022. 2, 3, 6, 15,
16

[68] Lixin Yang, Jian Xu, Licheng Zhong, Xinyu Zhan, Zhicheng
Wang, Kejian Wu, and Cewu Lu. POEM: Reconstructing
hand in a point embedded multi-view stereo. In Computer
Vision and Pattern Recognition (CVPR), 2023. 6

[69] Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang,
Xin Yan, Yilun Du, Yining Hong, and Chuang Gan. 3D-
VLA: A 3D vision-language-action generative world model.
arXiv preprint arXiv:2403.09631, 2024. 7, 8

[70] Hao Zheng, Regina Lee, and Yuqian Lu. HA-ViD: A human
assembly video dataset for comprehensive assembly knowl-
edge understanding. arXiv preprint arXiv:2307.05721, 2023.
15

[71] Juntian Zheng, Qingyuan Zheng, Lixing Fang, Yun Liu,
and Li Yi. CAMS: Canonicalized manipulation spaces for
category-level functional hand-object manipulation synthe-
sis. In Computer Vision and Pattern Recognition (CVPR),
2023. 2

[72] Zehao Zhu, Jiashun Wang, Yuzhe Qin, Deqing Sun, Varun
Jampani, and Xiaolong Wang. ContactArt: Learning 3D in-
teraction priors for category-level articulated object and hand
poses estimation. arXiv preprint arXiv:2305.01618, 2023. 2,
3, 15

[73] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. FreiHAND: A
dataset for markerless capture of hand pose and shape from
single rgb images. In International Conference on Computer
Vision (ICCV), 2019. 16

12

Supplementary Materials
Table of Contents
A Annotation Details

A.1 Platform Calibration & Synchronization
A.2 Data Cleaning
A.3 Human Pose and Surface

B Dataset Meta Information
B.1 Task-specific Subsets

C Dataset Evaluation
C.1 Cross-Dataset Validation
C.2 Physical Property Assessment

D Tasks and Benchmarks
D.1 Task-aware Motion Fulfillment

E Application: Complex Task Completion
F Dataset Inspection

F.1 Task List
F.2 Visualization

A. Annotation Details
A.1. Platform Calibration & Synchronization

The MoCap system is calibrated via a specialized wand pro-
vided by the vendor. The cameras in the multi-camera sys-
tem are calibrated using ArUco cubes. These cameras are
attached with reflective markers to be tracked by the Mo-
Cap system. These calibration tools are shown in Fig. 9.
The two systems are time synchronized with software syn-
chronization tools bundled in the ROS2 [43].

A.2. Data Cleaning

In this section, we present a brief description of the pro-
cess used to clean the reflective marker positions captured
by the MoCap system, in preparation for subsequent ob-
ject pose and human pose computations. Inherent limita-
tions of the MoCap system inevitably lead to errors in the
reflective marker positions obtained: in extreme cases of
occlusion, the system may fail to detect and record some
markers; ghost markers may be included due to unwanted
environmental reflections; when two or more markers come
into close proximity, the system may incorrectly assign their
labels or falsely identify them as a single marker. These lim-
itations lead to the introducing of a manual mechanism for
cleaning and post-processing captured data.

The data cleaning procedure is composed of two compo-
nents: 1) the MoCap post-processing software; 2) a multi-
-view interactive editor. We invite three professional an-
notators for data cleaning. The annotators first sequen-
tially check the location of the captured reflective mark-
ers in the MoCap post-processing software [49]. They then
proceed to eliminate ghost points, split overlapping mark-
ers, correct mislabeled markers, and fill short gaps in the

Figure 9. Illustration of Platform Calibration Tools. The top is
the vender-provided calibration wand for the MoCap system. The
bottom are the ArUco cubes attached with reflective markers (cir-
cled in red). The ArUco patterns are for unifying the camera in the
multi-camera system, while the surface-attached reflective mark-
ers are used for unifying the cameras with the MoCap system.

marker trajectories. The annotators, following the order
from articulated parts to rigid bodies, human bodies, and
both hands, systematically clean the results of the collected
markers. Subsequently, the sequences are exported to the
multi-view interactive editor. In the editor, annotators verify
the cleaned MoCap results and recover the marker positions
in extreme occlusion cases through triangulation-based an-
notations from 2D point locations in multiple views. The
results are combined to get the cleaned captured reflective
marker positions in the capture volume.

A.3. Human Pose and Surface

We employ a two-stage fitting approach inspired by the ap-
plication of the MoSH++ algorithm in [15, 44, 56] for the
SMPL-X [50] annotations. The first stage registers the sub-
ject’s SMPL-X shape parameters and establishes correspon-
dence mapping from the markerset to the surface of SMPL-
X model. The second stage registers SMPL-X pose param-
eters for each frame in the sequence. The two-stage fitting
pipeline is implemented on PyTorch for its automatic dif-
ferentiation support and common gradient descent based al-
gorithms are used to solve for both stages.

The first stage. Let β̄ be shape parameters. Let P (c)
M ∈

RNM×3 be surface marker positions lying in SMPL-X
canonical space, where NM is the number of markers in
the target markerset. Let θ = {θi} be SMPL-X pose pa-
rameters for each frame i when the subject is in T-pose.
The first stage could be formulated as an optimization pro-
cess to minimize the distance between the observed markers

13

and the reconstructed markers derived from surface marker
positions lying in SMPL-X canonical space, as shown in
Eq. (1).

min
θ,β,P

(c)
M

E = λ1Erecon
(
θ, β, P

(c)
M

)
+ λ2Eprior(b)

(
θ
)
+

λ3Eplau(h)
(
θ
)
+ λ4Ereg

(
θ, β, P

(c)
M

) (1)

The main cost is Erecon, which is the distance between the
observed markers PM and the reconstructed markers P̂M
derived from surface marker positions. Let V (c) be the sur-
face vertices in the canonical space of SMPL-X, V be the
reconstructed surface vertices. The markerset correspon-
dence function C(·) uses markerset position P

(c)
M and sur-

face vertices V (c) in canonical space to recover the mark-
erset positions P̂M from the current reconstructed surface
vertices V . It first projects the markers in canonical space
P

(c)
M into local frames formed by the surface vertices to get

the vertex index IM and coefficients in local frames CM.
Then it uses the index to recover frames on posed vertices
V and the coefficients in local frames to recover marker
positions on the posed SMPL-X bodies. Erecon can then be
expressed as in Eq. (2).

V (c) = SMPL-X
(
0, β̄

)
V = SMPL-X

(
θ, β̄

)
Erecon =

∥∥PM − P̂M
∥∥2 =

∥∥∥PM − C
(
V , P

(c)
M ;V (c)

)∥∥∥2
(2)

Eprior(b)
(
θ
)
, Eplau(h)

(
θ
)
, and Ereg

(
θ, β, P

(c)
M

)
are auxiliary

cost terms. Eprior(b)
(
θ
)

is an auxiliary term that minimizes
negative log-likelihood of human body poses computed by
prior from pre-existing datasets following the practice in
[44]. Eplau(h)

(
θ
)

is an implementation of anatomy loss in
[65] on the SMPLX model, designed to prevent distortion
in the pose of the human body during the fitting process,
enhancing its physical plausibility. Ereg

(
θ, β, P

(c)
M

)
is an

auxiliary term that regularize the optimization variables.

The second stage. In the second stage, we fit the subject’s
pose θ = {θt} throughout the interaction process based on
the shape β̄ and marker correspondence C(·) obtained in the
first stage.

For each frame t in the sequence, we optimize the
subject’s SMPL-X pose parameter θt to minimize a com-
bination cost composed of observed marker reconstruc-
tion error Erecon

(
θt
)
, body pose prior Eprior(b)

(
θt
)
, hand

anatomy abnormality Eplau(h)
(
θt
)
, hand-object intersection

Eplau(ho)
(
θt
)

and other auxiliary regularization costs.

min
θt

E = λ1Erecon
(
θt
)
+ λ2Eprior(b)

(
θt
)
+ λ3Eplau(h)

(
θt
)

+ λ4Eplau(ho)
(
θt
)
+ λ5Ereg

(
θt
)

(3)

Eplau(h)
(
θt
)
, Eprior(b)

(
θt
)
, and Eplau(h)

(
θt
)

are the same cost
terms as in the first stage. Eplau(ho) penalizes the penetration

and intersection between the interacting hands and objects
by sampling internal points inside hand meshes and com-
puting the sum of their signed distance function values of
the objects. Ereg

(
θt
)

not only includes regularization terms
for the optimization variables but also contains velocity reg-
ularization terms to keep the smoothness of the annotated
trajectories.

Optimization We implement the two-stage fitting pipeline
on PyTorch for its automatic differentiation support. We
adopt Adam [32] as the optimizer to solve for both stages, as
it is widely applied and suitable for non-convex cost terms
introduced in both stages. We propose an early stopping
mechanism for better running speed of the second stage:
if there is no significant reduction in the fitting cost over
a number of consecutive frames that exceeds a specific
threshold, the optimization process will be terminated.

B. Dataset Meta Information
B.1. Task-specific Subsets

Since OAKINK2 is intended for various types of tasks, we
create multiple subsets with different strategies for sam-
ple selection and data organization tailored to each specific
task. To obtain these subsets, we apply a few heuristics to
determine whether each sample meets the requirements of
the task it needs to support. For instance, the visibility of
hands or objects in image samples is essential for support-
ing related vision tasks. We verify the individual and com-
bined segmentation masks for hands and objects in the im-
ages. If the proportion of the combined segmentation mask
to its individual counterpart exceeds a certain threshold, we
consider the instance as visible in the current frame. We re-
gard the object to interact as grasped if it is close enough
to hands (minimal distance ≤ 5mm) and lifted (height dis-
placement to the initial state ≥ 5mm).

We show the features and the construction methods for
task-specific subsets in the following list.

OAKINK2-H-SV Subset for hand reconstruction from
single-view images. We select views that the subjects’
hands are visible to form this subset. This subset supports
task single-view Hand Mesh Recovery.

OAKINK2-H-MV Subset for hand reconstruction from
multi-view images. We select combined views from differ-
ent cameras as a single sample in this subset if the subjects’
hands are visible in a majority of camera views. This subset
supports task multi-view Hand Mesh Recovery.

OAKINK2-HO Subset for hand-object pose estimation or
reconstruction from images. We select views that the sub-
jects’ hands are visible and the object is grasped to form
this subset.

OAKINK2-Grasp Subset for grasps on the objects. We

14

Dataset image
mod. resolution #frame #views #subj #obj 3D

gnd.
real /
syn.

label
method

hand
pose

obj
pose

afford.
inter.

dynamic
inter.

long-
horizon

task
decomp.

EPIC-KITCHEN-100 [13] ✓ ∼ 20M† 1 37 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
Ego4D [19] ✓ ∼‡ ∼† 1 931 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
HA-ViD [70] ✓ 1280× 720 1.5M 3 30 40 ✗ – – ✗ ✗ ✗ ✗ ✓ ✓

FPHAB [16] ✓ 1920× 1080 105K 1 6 4 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
ObMan [24] ✓ 256× 256 154K 1 20 3K ✓ syn simulate ✓ ✓ ✗ ✗ ✗ ✗
YCBAfford [12] ✓ – 133K 1 1 21 ✓ syn manual ✓ ✗ ✗ ✗ ✗ ✗
HO3D [21] ✓ 640× 480 78K 1-5 10 10 ✓ real auto ✓ ✓ ✗ ✓ ✗ ✗
ContactPose [3] ✓ 960× 540 2.99M 3 50 25 ✓ real auto ✓ ✓ ✓ ✗ ✗ ✗
GRAB [56] ✗ – 1.62M – 10 51 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
DexYCB [8] ✓ 640× 480 582K 8 10 20 ✓ real crowd ✓ ✓ ✗ ✓ ✗ ✗
H2O [34] ✓ 1280× 720 571K 5 4 8 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗
HOI4D [40] ✓ 1280× 800 3M 1 9 1000 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
ARCTIC [15] ✓ 2800× 2000 2.1M 9 10 11 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
ContactArt [72] ✓ – 332K – – 80 ✓ real transfer ✓ ✓ ✗ ✓ ✗ ✗
AssemblyHands [47] ✓ 1920× 1080 3.03M 12 34 – ✓ real semi-auto ✓ ✗ ✓ ✓ ✓ ✓
AffordPose [30] ✗ – – – – 641 ✓ syn manual ✓ ✓ ✓ ✗ ✗ ✗

TACO [41] ✓ 4096× 3000‡ 5.2M 13 14 196 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗

Ego-Exo4D [20] ✓ ∼‡ ∼† 5-6 839 – ✓ real semi-auto ✓ ✗ ✗ ✓ ✓ ✓
OakInk-Image [67] ✓ 848× 480 230K 4 12 100 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
OakInk-Shape [67] ✗ – – – – 1700 ✓ real transfer ✓ ✓ ✓ ✗ ✗ ✗

OAKINK2 ✓ 848× 480 4.01M 4 9 75 ✓ real mocap ✓ ✓ ✓ ✓ ✓ ✓

Table 4. A cross-comparison among various public datasets. ∼: The value is either not provided on the paper or measured in a different
unit. †: Datasets measure in record time rather than number of captured frames. In particular, EPIC-KITCHEN-100 contains more than
100 hours of video, Ego4D 3670 hours, and Ego-Exo4D 1422 hours. They are larger in scale than any other dataset listed in the table. ‡:
Dataset has a mixed resolution.
Legend:
image mod. : Image Modality. ✓ means real image captures; ✓ means synthetic (rendered) images; ✗ means no image modality provided.
3D gnd. : 3D grounding. ✓ means the dataset contains 3D grounding annotations; ✗ means the dataset is 2D only.
real / syn. : Interaction is real / synthetic. Here syn indicates the interactions come from certain grasp/interaction synthesizer.
label method : Label Method of 3D grounding information. For synthetic interactions, “simulate” indicates interactions are retrieved from
physical-based grasp simulators, e.g. GraspIt! [46]; “manual” indicates interactions are labeled with human labor. For real interactions,
“mocap” indicates the interactions are captured by MoCap systems; “crowd” indicates the interactions are derived from crowd-source
keypoint annotations; “auto” indicates the interactions are retrieved from automatic annotation pipelines; “semi-auto” indicates a hybrid of
“crowd” and “auto” methods.
afford. inter. : Affordace-based Interaction. ✓ means the interactions captured are affordance-aware and explicitly labeled; ✓ means the
interactions are afforance-aware but grouped in coarse-grained labels like intentions; ✗ means the interactions are not organized by object
afforances.
dynamic inter. : Dynamic Interaction. ✓ means the dataset captures dynamic sequence of hand-object interactions; ✗ means the dataset
captures static grasps that do not change during the interaction process.
long-horizon : Long-horizon Tasks. As in the main text, ✓ means the dataset contains captured interactions that involved more than one
object afforances; ✗ vice versa.
task decomp. : Task Decomposition. As in the main text, ✓ means the dataset contains annotations that decomposition a complex task
into multiple segments; ✗ vice versa.

select frames that the object is grasped to form this subset.

OAKINK2-Motion-Approach&Retreat Subset for the in-
teraction process that the subjects approach and grab the
object for future tasks. We select frames from the sequence
in one Primitive Task that cover the process of approach
and grasp the object are collected to form this subset. This
subset provides auxiliary information in Task-aware Motion
Fulfillment and Object Trajectories Retrieval from Oracle
Queries in Complex Task Completion.

OAKINK2-Motion-Task Subset for the interaction pro-

cess that the subjects complete a task and fulfill one ob-
ject affordance. We select frames from the sequence in
one Primitive Task that cover the process from the grasp
of the object to the completion of the task are collected to
form this subset. This subset supports Task-aware Motion-
Fulfillment.

C. Dataset Evaluation

Annotation on 3D hand keypoints undergo cross-dataset
validation with a reconstruction model, while the 3D poses

15

Figure 10. Distribution of Primitive Task demonstrations. The
sub-figure above displays the proportion of Primitive Task demon-
strations across various scenarios within the entire OAKINK2
dataset, with frequently occurring Primitive Tasks highlighted.
The sub-figure below presents a list of Primitive Tasks recorded
in OAKINK2, along with the illustration of their corresponding
quantity distribution. A list of all recorded Primitive Tasks and
Complex Tasks can be found at Tab. 7 and Tab. 8.

associated with grasping actions are examined for their
physical property integrity.

C.1. Cross-Dataset Validation

We perform cross-dataset validation to verify the consis-
tency of 3D hand keypoint annotations in OAKINK2 with
pre-existing datasets. We train a single-view hand mesh
recovery model [38] separately on three different train-
ing schemes: FreiHAND [73] only, OAKINK2-H-SV only,
and a mixture of these two sets. We evaluate MPJPE and
MPVPE after Procrustes analysis on OakInk-image (SP2)
[67], and the results shown in Tab. 5 indicates a consistent

improvement on these metrics, verifying that OAKINK2
complements existing datasets and boosts existing models.

Train Test PA-MPJPE (mm) ↓ PA-MPVPE (mm) ↓

1) FreiHAND OakInk-image (SP2) 12.07 11.96
2) OAKINK2-H-SV OakInk-image (SP2) 12.60 11.04
1) & 2) mixture OakInk-image (SP2) 10.94 9.67

Table 5. Cross dataset validation for OAKINK2.

C.2. Physical Property Assessment

To evaluate the quality of the 3D poses associated with
grasping actions in OAKINK2, we inspect several physical-
based metrics that assess the feasibility and stability of cap-
tured hand-object interactions. We restrict the samples to
be evaluated based on certain rules (the objects in inter-
action need to be grasped and lifted), ensuring that these
physics-based quality metrics accurately reflect the qual-
ity of the dataset during the interaction process. We com-
pare OAKINK2-Grasp (-G.) with two subsets of OakInk:
OakInk-Core and OakInk-Shape (Tab. 6). We observe that,
despite the use of the mocap system as the primary an-
notation method for easily scaling up the capture process,
OAKINK2 still achieved annotation quality on par with
OakInk built upon the hybrid of manual and mocap annota-
tion. More qualitative visualizations of OAKINK2 are pro-
vided in Fig. 14.

Metrics OAKINK2-G. OakInk-Core OakInk-Shape

Penet. Depth. cm↓ 0.25 0.18 0.11
Solid Intsec. Vol. cm3↓ 0.61 1.03 0.62
Sim. Disp. Mean cm↓ 1.83 0.98 0.94
Sim. Disp. Std cm↓ 1.16 1.74 1.62

Table 6. Quality assessment of OAKINK2.

D. Tasks and Benchmarks
D.1. Task-aware Motion Fulfillment

Train-Val-Test Split Following the same practice as
HMR, we partition the subsets at the sequence level, main-
taining the proportion of samples in train/val/test sets at ap-
proximately 70%, 5%, and 25%, in alignment with OakInk.

Evaluation Metric Details
CR, Contact Ratio. This metric measures the ratio of the
frames within the motion trajectories where the hand-object
contact (minimum distance) is within a 5mm threshold.
SIV, Solid Intersection Volume. This metric measures
how much space intersection occurs during estimation. We
voxelize the object mesh into 1003 voxels, and calculate
the sum of the voxel volume inside the hand surface.
PSKL-J, Power Spectrum KL divergence of Joints.
This metric reflects the smoothness of the generated

16

motion. It measures the acceleration distribution variance
between predicted and g.t. joint sequences, reporting
results in both directions. We reference our implementation
on [37, 62]. The notable difference is that we use hand
joints for measurement, resulting in a distinct range of
metric values compared to full-body joints.
FID, Fréchet Inception Distance score. This metric eval-
uates the realism of the generated motion trajectory. We de-
velop a motion feature extractor based on the transformer
encoder architecture. The embedding is obtained by ap-
pending a trailing token to hand motion trajectories. The
embedding we use for each motion is of 64 dimensions.
The encoder is trained by the classifying motion trajectories
into their corresponding categories. We apply the encoder
to both ground-truth trajectories and generated trajectories
and compute Fréchet Inception Distance between them for
motion realism evaluation.

E. Application: Complex Task Completion

Test Scene Generation. To evaluate the ability of the
oracle-facilitated three-stage method described in the main
text to accomplish complex tasks, we derive a set of test
environments by perturbing the object positions within the
complex scenarios contained in OAKINK2 dataset without
altering the task objectives textgoal and the descriptions of
the objects’ states {textobj}.

We utilize ground truth annotations to generate varia-
tions in the test scenes. We treat specific object sets as
clusters and place them in randomized locations. Objects
within the same cluster share a unified offset to ensure col-
lective randomization. This is crucial when groups of ob-
jects must maintain coherence in their movements. The pro-
cess of randomization comprises four distinct wander steps.
This helps prevent obstruction caused by other objects when
an object ventures in a random direction. Hence, each ob-
ject gains an enhanced opportunity to navigate around other
structures within its environment. Each object’s final loca-
tion results from the cumulative effect of these four wander
steps. Within each wander step, a maximum of eight itera-
tions are employed for collision prevention between objects
by reducing the step length to half.

Prompt Generation. We implement Primitive Planning by
tweaking the Large Language Model – GPT-4 [48] in this
study – so that it can generate Python code based on narra-
tive prompts describing the current scenario and task objec-
tives. The language model’s role is to interpret this descrip-
tion, identify key objects involved in the task, determine the
appropriate object affordance and trajectory, and generate
suitable instances of Primitives execution organized into a
feasible sequence.

Our approach to overcoming these challenges involves
the design of a prompt template that incorporates both scene

and task descriptions as referenced earlier. This template
not only explicates the underlying code framework but also
provides a sample of scenario-independent code. We further
prompt the Language Learning Model (LLM) to produce a
code implementation as a response, as opposed to providing
an explanatory narrative of coding procedures.

Concerning the underlying code framework, to ensure
robust and coherent code generation, we propose an Entity-
Component-System (ECS) architecture. This structure en-
courages a decoupling of components, here referred to as
data or state, from the system, representing the Primitives in
our context. This approach endows us with the capability of
generating uniformly styled code implementations, where
the layout involves instantiating object entities, loading the
affordance as a component, and submitting the Primitives
to the execution system.

Evaluations of Primitive Planning. We employ a checker
based on the Primitive Dependency Graph provided along
with the Complex Tasks to be planned to benchmark the
success rate of the program that is supposed to complete
the task target. We analyze the checker results and ob-
serve an overall success rate of 36% in the generation of
Planning codes. Concerning the number of Primitives in-
corporated within the Complex Tasks, we observed differ-
ing success rates. Specifically, in those Complex Tasks in-
corporating equal to or less than three Primitives, a suc-
cess rate of 44% was obtained Conversely, in the Complex
Tasks category incorporating between three and five Primi-
tives, the success rate dropped to 20%. Notably, no success
was recorded in Complex Tasks incorporating more than five
Primitives. The results demonstrate that in the current set-
ting, the Large Language Model (LLM) is adequate to han-
dle relatively simpler Complex Tasks. However, in contexts
of highly complex Complex Tasks, the LLM struggles to
accurately comprehend the relationships and dependencies
between objects’ affordances and the corresponding Primi-
tives.

Demo Planning Result. We provide a review of the results
of a completed Complex Task within one of the constructed
test scenes. The python programs generated are listed as
Listing 2. This code joins all the relevant objects and their
associated affordances, proceeding to execute the Primi-
tives in the precise required order. We have also included
an example of a failed case, presented as Listing 3, which
highlights a failure in the execution of Primitive Planning.
This failure is characterized by a superfluous Primitive that
fulfills an unnecessary object affordance that blocks the ex-
ecution path.

Alternative Motion Generation for Complex Task Com-
pletion. In addition to the TaMF-based motion generation
approach presented in the main text, we explore an alterna-
tive strategy that leverages keyframe generation and motion

17

Figure 11. Oracle Trajectories and Motion Generation This
figure illustrates the successful Complex Task completion of two
Primitive Tasks. The top pair of images depict the oracle trajecto-
ries, while the bottom pair represents the sequential motion gener-
ated.

in-betweening as motion generator for Complex Task Com-
pletion. We adopt GNet and MNet in GOAL [57] and INet
in FAVOR [37]. These models follow the pattern of first
generating hand-object interactions in key frames, and then
generating intermediary interaction trajectories within these
frames. The generation contains three stages. In the first
stage, GNet generates static grasps based on the object’s
initial and terminal poses. Subsequently, MNet generates
motion trajectories to reach the object and retreat from the
object. In the final stage, INet is fed with alternating ob-
ject poses from the object motion trajectory to generate the
in-between motion during the interaction process. The ob-
ject oracle trajectories result in a sequence of human body
movements depicted in Fig. 11. The left-hand images of
Fig. 11 illustrate the sequential actions of approaching and
utilizing a knife to cut a pear, representing the affordance
cut associated with the knife under the Primitive Task cate-
gory. The right-hand images illustrate the sequence of lift-
ing a bottle and pouring its contents into a pan, indicative of
the Primitive Task affordance, pour, as related to the bottle.

18

F. Dataset Inspection
F.1. Task List

Table 7. Collected Affordances and Designed Primitive Tasks.

Scenario Affordance Affordance Instantiation Primitive Task
kitchen table <be rearranged, > rearrange

<store securely, sth>
<contain, sth>

<flow in, sth> pour
<pour, sth> pour
<shake, sth> shake

<secure, sth>
<screw into, sth> screw
<unscrew from, sth> unscrew
<cap onto, sth> cap
<uncap from, sth> uncap

<grip, sth> grip
<scoop, sth> scoop
<scrape, sth> scrape
<cut, sth> cut
<stir, sth> stir
<spread, sth> spread
<assemble into, sth> assemble
<wipe, sth> wipe
<heat with microwave, sth>

<contain, sth>
<place inside, sth> place inside
<take outside, sth> take outside

<secure, sth>
<shut, sth> close gate
<open, sth> open gate

<control, sth>
<be pressed, > press button
<trigger, sth> trigger lever

<weigh, sth>
<support, sth> place onto

study room table <be rearranged, > rearrange
<store securely, sth>

<contain, sth>
<place inside, sth>
<take outside, sth>

<secure, sth>
<cover, sth> put on lid
<uncover, sth> remove lid
<shut, sth> pull out drawer
<open, sth> push in drawer

<illuminate, sth>
<connect to, sth>

<connect to, power socket> plug in power plug
<deconnect from, power socket> remove power plug
<connect to, usb> insert usb
<deconnect from, usb> remove usb
<connect to, lightbulb socket> insert lightbulb
<deconnect from, lightbulb socket> remove lightbulb

<shear, paper>
<secure, sth>

<cap, pen tip> cap the pen
<uncap, pen tip> remove the pen cap

<write/draw, sth> write on paper
write on whiteboard

<brush, whiteboard> brush whiteboard
<be sharpen by, sth> sharpen pencil
<sharpen, pencil> sharpen pencil
<staple together, paper> staple paper together
<be written/drawn by, pen/pencil> write on paper

write on whiteboard
<be sheared by, scissors> shear paper
<be stapled together by, stapler> staple paper together
<be turn, > close book

open book
<display, sth>

<protect, sth>
<open, laptop lid> open laptop lid
<close, laptop lid> close laptop lid

<control, sth> use keyboard
use mouse

19

Table 7. Collected Affordances and Designed Primitive Tasks.

Scenario Affordance Affordance Instantiation Primitive Task
use gamecontroller

<cultivate, flowers> put flower into vase
<be cultivated in, sth> put flower into vase

demo chem lab <be rearranged, > rearrange
<store securely, experiment
substances>

<contain, experiment substances>
<flow in, experiment substances> pour in lab
<pour, experiment substances> pour in lab
<shake, experiment substances> shake lab container

<secure, experiment substances>
<screw into, lab container> screw
<unscrew from, lab container> unscrew
<cap onto, lab container> cap
<uncap from, lab container> uncap

<contain, experiment substances>
<flow in, experiment substances> pour in lab
<pour, experiment substances> pour in lab
<shake, experiment substances> shake lab container

<be heated by, alcohol lamp> heat beaker/flask
heat test tube

<stir, experiment substances> stir experiment
substances

<be ignited, > ignite alcohol lamp
<heat, lab container> heat beaker/flask

heat test tube
<put off, alcohol lamp> put off alcohol lamp
<ignite, alcohol lamp> ignite alcohol lamp
<clamp, test tube> hold test tube
<conduct heat to, lab container> place asbestos mesh
<support, lab container> place asbestos mesh

bathroom table <be rearranged, > rearrange
<contain, sth>

<squeeze out, sth> squeeze tooth paste
<secure, sth>

<shut, sth> flip open tooth paste
cap

<open, sth> flip close tooth paste
cap

Table 7. Collected Affordances and Designed Primitive Tasks. The first column records the manipulation scenarios. The second column lists
collected affordances of object instances and parts. The affordances of object parts are indented below their parent instance-level affordance.
The third column lists the instantiations of object affordances. These instantiations are bound to certain object attributes, e.g. <screw,
sth> is bound to actual screws on the bottle’s opening and cap. The fourth column lists the designed Primitives corresponding to the
affordances. Some Primitives are set to gray for these Primitives are difficult to demonstrate and capture in individual. Demonstrations of
these tasks are embedded within Complex Task demonstrations.

Scenario Complex Task
kitchen table heat with microwave oven; weigh with scale; scoop and pour; scoop and grip; scoop and wipe; scoop and scrape; pour and

stir; grip and pour; pour and arrange; weigh with scale and pour; pour and scrape; grip and arrange; weigh with scale and
grip; grip and wipe; pour and grip; clean the kitchen table; prepare a cup of hot sweet drink; prepare a bowl of hot soup with
salt; prepare a cup of hot sweet fruit tea; prepare a chilled apple platter; prepare a savory fruit salad; prepare a baked sweet
donut with sauce; prepare a baked sweet donut with apple slices and jam; prepare a savory baked sweet donut; prepare a
cheese-baked sweet donut with tomato sauce; prepare savory baked apple slices with cheese; prepare a chilled fruit platter;
make a baked sandwich with a filling of donut and salt; make a sandwich with a filling of tomato sauce and sugar; make a
sandwich with a filling of apple slices and donut, adding tomato sauce, mustard sauce, salt, and sugar; make a baked sandwich
with a filling of cheese and donut, adding tomato sauce; scoop, unscrew, pour, and screw; grip and scoop; scoop and scoop;
scoop and arrange; weigh with scale and scoop; cut and scoop; cut and pour; grip and stir; grip and scrape; cut and grip; grip
and assemble; stir and arrange; stir and scrape; scrape and arrange; weigh with scale and assemble; unscrew and pour; pour
and screw; uncap and scrape; scrape and cap; uncap, scrape, and cap; scrape and assemble; assemble and arrange; unscrew
and heat with microwave; pour and heat with microwave; heat with microwave and pour; heat with microwave and stir; heat
with microwave and assemble; cut and heat with microwave; uncap, pour, and cap; prepare a cup of chilled green tea; prepare
a cup of apple green tea; prepare a cup of mixed flavor fruit juice; prepare a cup of savory fruit juice milk tea; prepare a cup
of pear milk tea with fruit jam; prepare a cup of savory honey fruit juice milk tea; prepare a cup of savory strawberry orange
juice mixed with milk; uncap and scoop; prepare a cup of wine; prepare a cup of milk tea; prepare a cup of chilled fruit tea;
prepare a cup of honey coffee; prepare a cup of chilled juice milk with jam; prepare a cup of chilled sweet milk tea;

20

Scenario Complex Task
study room table put into box; take out of box; put into drawer; take out of drawer; ready the laptop on the desktop for work; tidy up the

desktop with the laptop after work; ready the laptop on the desktop for entertainment; illuminate the desktop; sharpen the
pencil and write; tidy up the desktop with the laptop after entertainment; tidy up the desktop after paper-cutting; write and
bind the paper; design and cut out rectangle shape on the paper; press button and open laptop; press button and close laptop;
press button and put into box; press button and take out of box; press button and remove power plug; insert usb and plug
in power plug; tidy up the desktop after writing; plug in power plug and press button; design and cut out flower shape on
the paper; design and draw on the paper; ready the laptop and the lamp on the desktop for work; design, write and bind the
paper; ready the desktop for drawing; take out of drawer, insert usb, and open laptop; put into drawer and put into box; put
into drawer, put into box, and close laptop; remove usb, close laptop, and put into drawer; tidy up the desktop after drawing;
cut and bind paper; ready the laptop and the lamp on the desktop for entertainment; design, draw and cut out flower shape on
the paper; design, draw and bind the paper; tidy up the desktop after binding paper;

demo chem lab transfer and heat liquid in beaker; transfer and heat liquid in conical flask; heat liquid in beaker and transfer liquid; heat
liquid in conical flask and transfer liquid; transfer and heat liquid in beaker and transfer liquid out; heat liquid in test tube and
transfer liquid; prepare solution through heating; mix liquid; pour in lab and shake in lab; pour in lab and pour in lab; pour in
lab and heat test tube; pour in lab and light lamp; stir in lab and pour in lab; stir in lab and heat beaker; shake in lab and pour
in lab; shake in lab and heat test tube; shake in lab and heat beaker; heat beaker and put off lamp; heat test tube and put off
lamp; light lamp and put off lamp; put off lamp and pour in lab; put off lamp and stir in lab; put off lamp and shake in lab;
heat beaker and stir in lab; stack mesh and heat beaker; light lamp and heat beaker; light lamp and heat test tube; pour in lab,
shake in lab, and heat test tube; stir in lab, pour in lab, and shake in lab; light lamp, heat beaker, and put off lamp; light lamp,
heat test tube, and put off lamp; stack mesh, light lamp, and heat beaker; light lamp, heat beaker, and stir in lab; light lamp,
heat test tube, and shake in lab; pour in lab, pour in lab, and pour in lab; pour in lab, shake in lab, and pour in lab; stir in lab,
stack mesh, and heat beaker; shake in lab, pour in lab, and heat test tube; shake in lab, heat test tube, and pour in lab; heat
beaker, stir in lab, and pour in lab; heat beaker, put off lamp, and pour in lab; heat beaker, put off lamp, and stir in lab; heat
test tube, put off lamp, and shake in lab; pour in lab, stir in lab, and pour in lab; pour in lab, pour in lab, pour in lab, pour in
lab, and pour in lab; stir and transfer liquid; heat liquid in beaker; heat liquid in test tube; put off lamp, pour in lab, and shake
in lab; put off lamp, stir in lab, and pour in lab; prepare solution in beaker;

bathroom table squeeze tooth paste tube to tooth brush; squeeze tooth paste and stack tooth brush; prepare for teeth brushing.

Table 8. Recorded Complex Tasks. We list the names of the recorded Complex Tasks here.

F.2. Visualization

21

����

�������� ����

�����

������

��� ���� ������������

������������ �����������

������������ ����������� ������������ �����������

������������������� ������������

������������

������������

���������� ����������

�����������������������������

����������������������������������� �������������������� ���������������� ����������������

����������������������������� ��������������

������������������� ����������������

��������������

��������������������� �������������������������� ����������������

����
��������������

������	�������������������

������������������ �����������
�� ��������������

������	�������������������������������������� �������������������

��������������

�������������������

�������������������
�����������������������
������������������������

������

������������

Figure 12. Primitives visualization.
22

Figure 13. Object visualization.

23

Figure 14. Dataset visualization. Human bodies and objects within the scene are rendered onto the captured raw images for visualization.

24

1 You are a python programming expert and you are asked to finish a certain bimanual robotics task.
2
3 Scene Description:
4 {scene_desc}
5
6 Task Description:
7 {task_desc}
8
9 The Structure of the code is a ECS architecture defined as

10 ECS File
11
12 The entities are defined as
13 Entity File
14
15 The components are defined as
16 Component File
17
18 The systems are defined as
19 System File
20
21 The task is to finish the methods called "exec_task" in this class {read_from_file(scene_path)}
22
23 You need to query the raw 3d object from the scene which contains object name as keys in scene description and you can

use them to query different type of information from the scene. Build them into Objects and instantiate
PrimitiveTasks to finish the job.

24 Leave the objects not mentioned in the task description as they are.
25 Avoid using any methods with underscore prefix. Explicitly specify the keyword arguments instead of using **kwargs.
26 For example:
27
28 an_object = Object(’object_name’,
29 geometry=self.query_geometry_info(’object_name’),
30 ...
31)
32
33 a_primitive_task = PrimitiveTask(an_object.affordance.get_primitive_task_info(’primitive_task_name’))
34
35 a_primitive_task.execute(src_object=an_object, tgt_object=another_object, trajectory=oracle.generate(a_primitive_task)

)
36
37 Explanation of the code is unnecessary. Putting everything in method implementation would be admired. Respond with

exec_task(self) itself.

Listing 1. Prompt Template. Entity marks object instances present in the scene. Component accommodates information of objects’ initial
status and affordances. System accommodates the interface of motion generators for Primitives. The example code incorporated in the
prompt demonstrates the interface of oracle queries for object motion trajectories.

1 # Task
2 # The task is to cut the pear into pieces which to be put in the pan and add some season.
3
4 # Scene
5 # In a kitchen, on a table, these objects are placed: [knife, pear, bottle, pan]
6 def exec_task(self):
7 # making an object for knife
8 knife = Object(’knife’,
9 geometry=self.query_geometry_info(’knife’),

10 state=self.query_state_info(’knife’),
11 affordance=self.query_affordance_info(’knife’)
12)
13
14 # making an object for pear
15 pear = Object(’pear’,
16 geometry=self.query_geometry_info(’pear’),
17 state=self.query_state_info(’pear’),
18 affordance=self.query_affordance_info(’pear’)
19)
20
21 # making an object for pan
22 pan = Object(’pan’,
23 geometry=self.query_geometry_info(’pan’),
24 state=self.query_state_info(’pan’),
25 affordance=self.query_affordance_info(’pan’)
26)
27
28 # making an object for bottle
29 bottle = Object(’bottle’,
30 geometry=self.query_geometry_info(’bottle’),
31 state=self.query_state_info(’bottle’),
32 affordance=self.query_affordance_info(’bottle’)
33)
34
35 # creating primitive task for cutting
36 cut_pear = PrimitiveTask(knife.affordance.get_primitive_task_info(’cut’))
37 cut_pear.execute(src_object=knife, tgt_object=pear, trajectory=oracle.generate(cut_pear))
38
39 # creating primitive task for placing pear inside the pan
40 put_task = PrimitiveTask(pear.affordance.get_primitive_task_info(’put_inside’))
41 put_task.execute(src_object=pear, tgt_object=pan)
42
43 # create primitive task for adding season
44 add_season = PrimitiveTask(bottle.affordance.get_primitive_task_info(’pour’))
45 add_season.execute(src_object=bottle, tgt_object=pan, trajectory=oracle.generate(add_season))

Listing 2. Primitive Task Planning Success Example.

25

1 # Task
2 # The task is to light the alcohol lamp to heat the compound in the beaker. The lamp is capped at the beginning. Put

the beaker on the support with mesh when heating
3
4 # Scene
5 # In a chemistry laboratory, on a table, these objects are placed: [lighter, alcohol_lamp, beaker, heat_support, mesh]
6 def exec_task(self):
7 # Uncap
8 alcohol_lamp = Object(’alcohol_lamp’,
9 geometry=self.query_geometry_info(’alcohol_lamp’),

10 affordance=self.query_affordance_info(’alcohol_lamp’),
11 state=self.query_state_info(’alcohol_lamp’)
12)
13 uncap_alcohol_lamp_task = PrimitiveTask(alcohol_lamp.affordance.get_primitive_task_info(’uncap’))
14 uncap_alcohol_lamp_task.execute(src_object=alcohol_lamp, trajectory=oracle.generate(uncap_alcohol_lamp_task))
15
16 # Light
17 lighter = Object(’lighter’,
18 geometry=self.query_geometry_info(’lighter’),
19 affordance=self.query_affordance_info(’lighter’),
20 state=self.query_state_info(’lighter’)
21)
22 light_alcohol_lamp_task = PrimitiveTask(lighter.affordance.get_primitive_task_info(’light_lamp’))
23 light_alcohol_lamp_task.execute(src_object=lighter, tgt_object=alcohol_lamp, trajectory=oracle.generate(

light_alcohol_lamp_task))
24
25 # Arrange (put on the mesh support)
26 beaker = Object(’beaker’,
27 geometry=self.query_geometry_info(’beaker’),
28 affordance=self.query_affordance_info(’beaker’),
29 state=self.query_state_info(’beaker’)
30)
31 heat_support = Object(’heat_support’,
32 geometry=self.query_geometry_info(’heat_support’),
33 affordance=self.query_affordance_info(’heat_support’),
34 state=self.query_state_info(’heat_support’)
35)
36 mesh = Object(’mesh’,
37 geometry=self.query_geometry_info(’mesh’),
38 affordance=self.query_affordance_info(’mesh’),
39 state=self.query_state_info(’mesh’)
40)
41 put_beaker_on_mesh_task = PrimitiveTask(beaker.affordance.get_primitive_task_info(’arrange’))
42 put_beaker_on_mesh_task.execute(src_object=beaker, tgt_object=heat_support, trajectory=oracle.generate(

put_beaker_on_mesh_task))
43
44 # Stack mesh to heat
45 stack_mesh_task = PrimitiveTask(mesh.affordance.get_primitive_task_info(’stack_mesh’))
46 stack_mesh_task.execute(src_object=mesh, tgt_object=beaker, trajectory=oracle.generate(stack_mesh_task))
47
48 # Heat
49 heat_beaker = PrimitiveTask(alcohol_lamp.affordance.get_primitive_task_info(’heat_beaker’))
50 heat_beaker.execute(src_object=alcohol_lamp, tgt_object=beaker, trajectory=oracle.generate(heat_beaker))

Listing 3. Primitive Task Planning Fail Example. One violation of dependency occurs (line 41): the extra place onto primitive
erroneously positions the beaker upon the support prior to the asbestos mesh’s placement on the support. This blocks the correct execution
path that requires placing the asbestos mesh before heating the beaker.

26

	. Introduction
	. Related Works
	. Construction of OakInk2
	. Complex Task Acquisition
	Object Affordance Analysis
	Primitive Task Design
	Complex Task Decomposition

	. Data Collection and Annotation
	Capture Setup
	Data Annotation

	. The OakInk2 Dataset
	. Data and Annotation List
	. Dataset Statistics

	. Selected Applications
	. Hand Mesh Reconstruction
	. Task-aware Motion Fulfillment (TaMF)
	. Complex Task Completion (CTC)

	. Future Works
	Appendices
	. Annotation Details
	. Platform Calibration & Synchronization
	. Data Cleaning
	. Human Pose and Surface

	. Dataset Meta Information
	. Task-specific Subsets

	. Dataset Evaluation
	. Cross-Dataset Validation
	. Physical Property Assessment

	. Tasks and Benchmarks
	. Task-aware Motion Fulfillment

	. Application: Complex Task Completion
	. Dataset Inspection
	. Task List
	. Visualization

