arXiv:2403.19421v1 [csLG] 28 Mar 2024

Scaling up ridge regression for brain encoding in a massive
individual fMRI dataset

Sana Ahmadi'®"¢, Pierre Bellec?¢, Tristan Glatard?®

?Department of Computer Science and Software Engineering, Concordia University, Montreal,
QC, Canada

b Université de Montréal, Montréal, QC, Canada

¢Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, Canada

Abstract

Brain encoding with neuroimaging data is an established analysis aimed at pre-
dicting human brain activity directly from complex stimuli features such as movie
frames. Typically, these features are the latent space representation from an ar-
tificial neural network, and the stimuli are image, audio or text inputs. Ridge
regression is a popular prediction model for brain encoding due to its good out-of-
sample generalization performance. However, training a ridge regression model
can be highly time-consuming when dealing with large-scale deep functional mag-
netic resonance imaging (fMRI) datasets that include many space-time samples
of brain activity. This paper evaluates different parallelization techniques to re-
duce the training time of brain encoding with ridge regression on the CNeuroMod
Friends dataset, one of the largest deep fMRI resource currently available. With
multi-threading, our results show that the Intel Math Kernel Library (MKL)
significantly outperforms the OpenBLAS library, being 1.9 times faster using 32
threads on a single machine. Yet, the performance benefits of multi-threading
are limited, and reached a plateau after 8 threads in our main experiment. We
then evaluated the Dask multi-CPU implementation of ridge regression readily
available in scikit-learn (MultiOutput), and we proposed a new “batch” version
of Dask parallelization, motivated by a time complexity analysis. With this
Batch-MultiOutput approach, batches of brain targets are processed in parallel
across multiple machines, and multi-threading is applied concurrently to further
accelerate computation within a batch. In line with our theoretical analysis,

!Corresponding author, sana.ahmadi@mail.concordia.ca
2pierre.bellec@criugm.qc.ca
3tristan.glatard@concordia.ca

March 29, 202/

MultiOutput parallelization was found to be impractical, i.e., slower than multi-
threading on a single machine. In contrast, the Batch-MultiOutput regression
scaled well across compute nodes and threads, providing speed-ups of up to 33x
with 8 compute nodes and 32 threads compared to a single-threaded scikit-learn
execution. Batch parallelization using Dask thus emerges as a scalable approach
for brain encoding with ridge regression on high-performance computing systems
using scikit-learn and large fMRI datasets. These conclusions likely apply as
well to many other applications featuring ridge regression with a large number of
targets.

Keywords: Brain Encoding, Ridge Regression, BLAS Libraries,
Multi-threading , Dask distributed system

1. Introduction

The human brain is a computing system with billions of neurons as computing
units. Cognitive neuroscience aims to discover functional principles of brain or-
ganization by leveraging large-scale neuroimaging data. One of the key methods
used for this purpose is brain encoding [1], in which a model predicts brain re-
sponses directly from rich stimuli such as natural images or videos, using the
internal representations of an artificial neural network as a feature space for pre-
diction.

Among the regression methods used in brain encoding to predict brain activity,
ridge regression [2] has become popular and well-accepted [3, 4, 5, 6, 7, 8, 9, 10,
11, 12] due to its two key features: 1) ridge regression tends to be generalizable
to new stimuli and avoids overfitting, and 2) efficient implementations of ridge
regression are available [13] which are less computationally intensive than other
approaches.

For brain encoding of visual tasks, ridge regression is often applied to the ac-
tivations produced by various neural networks architecturesin response to vi-
sual stimuli, such as convolutional neural networks (CNN) and transformers
(14, 15, 16, 17, 18, 19, 20]. For instance, in [12], the authors compared the
activation of CNN units with brain response to a dynamic visual stimulus (movie
frames) and found that these representations were able to accurately predict fMRI
data collected with human subjects watching movies.

Even though linear algebra optimizations exist for ridge regression [13], the train-
ing process still requires compute-intensive matrix computations over the whole
dataset. This computational cost is especially substantial for brain encoding mod-
els trained separately for each spatial measurement sample (voxel), as the num-

ber of voxels can range from tens to hundreds of thousands in a full brain fMRI
acquisition with high spatial resolution. Thus, full brain encoding using ridge
regression remains a challenge, even with modern computational resources.

Furthermore, the computational requirements of ridge regression are exacerbated
by the need to train brain encoding tasks on large datasets. Indeed, finding the
correlation between the huge feature space of natural images and brain activity
requires to explore a large space of visual stimuli [21]. Over the past few years,
the quantity and quality of fMRI datasets have increased rapidly in terms of
the number of human subjects, the number of scanning hours available for each
subject, as well as spatio-temporal resolution. In particular, datasets such as
BOLD5000 [22], Natural Scenes Dataset (NSD)[23] provide so-called deep fMRI
datasets, with long scanning time for a few subjects and an extensive stimuli
space to properly estimate the generalization of brain encoding to different types
of stimuli, e.g. images from many different categories. Training purely individual
brain models also by-pass the challenges of modelling inter-individual variations
in brain organization, which is substantial [24]. As a consequence of increased
spatial resolution and volume of time samples available for a single subject with
the advance of simultaneous multislice fMRI REF, there is thus an urgent need
to understand the efficiency of various implementations of ridge regression for
brain encoding with large fMRI datasets.

The CNeuroMod research group [25] has released the largest fMRI dataset for
individual brain modeling currently available, featuring up to 200 hours of fMRI
data per subject (N=6). The CNeuromod dataset provides an opportunity to
train complex brain encoding models based on artificial neural networks, but also
raises substantially the computational costs of brain encoding. This work investi-
gates several parallelization techniques for ridge regression, using the CNeuroMod
Friends dataset to predict brain activity from video stimuli. We focus on a stan-
dard brain encoding pipeline using an established pretrained network (VGG16),
and we used the scikit-learn library [26] for brain encoding, that provides effi-
cient implementations of various machine-learning models, including ridge regres-
sion.

We benchmarked the efficiency of different types of parallelization, namely multi-
threading (multiple cores on a single CPU) and multi-processing (distributing
computations across multiple CPUs in a high performance computing environ-
ment). For multi-threading, scikit-learn can leverage the BLAS (Basic Linear Al-
gebra Subprograms) specification for linear algebra implemented using the open-
source OpenBLAS library [27] or the proprietary Intel oneAPI Math Kernel Li-
brary (MKL) [28]. Both of these linear algebra libraries support multi-threading
on a single CPU. Moreover, scikit-learn models rely on the Joblib library to in-

https://joblib.readthedocs.io

terface with various parallelization backends including Dask [29], which can be
used to distribute computations across multiple compute nodes. Specifically, we
utilized scikit-learn’s MultiOutput regressor, which by default trains individual
ridge regression models for each target variable (here, each location in the brain)
independently. The MultiOutput however comes with substantial overhead, as
it introduces many redundant computations across brain targets. To reduce the
amount of redundant computations happening with MultiOutput ridge regres-
sion, we also modified MultiOutput to train a series of model on batches of brain
targets, using one compute node per batch and multi-threading execution within
each batch. We conducted a theoretical complexity analysis to motivate the
choice of this approach. We also repeated our benchmark for both MultiOut-
put and the batch MultiOutput by assessing the efficiency of parallelization with
varying number of threads per node and the number of compute nodes.

Taken together, this study will provide concrete guidelines for practitioners who
want to run brain encoding efficiently with ridge regression and large fMRI
datasets, using high-performance computing infrastructure and CPUs.

2. Materials and Methods

2.1. fMRI dataset

We used the 2020-alpha2 release of the Friends fMRI dataset collected by the
Courtois project on neuronal modeling, CNeuroMod [30]. Some of the text in
this section is adapted from the Courtois NeuroMod technical documentation
(https://docs.cneuromod.ca).

2.1.1. Friends TV show stimuli

Participants watched three seasons of the Friends TV show while their brain
activity was recorded using fMRI. Each episode was divided into two segments
(a/b) to provide shorter scanning runs and allow participants to take a break.
There was a slight overlap between the end of each video segment and the be-
ginning of the next video segment to provide an opportunity for participants to
catch up with the story line.

2.1.2. Participants

The Friends dataset includes fMRI time series collected on six participants in
good general health, 3 women (sub-03, sub-04, and sub-06) and 3 men (sub-01,
sub-02, and sub-05). Three of the participants reported being native francophone
speakers (sub-01, sub-02, and sub-04), one as being a native anglophone (sub-
06), and two as bilingual native speakers (sub-03 and sub-05). All subjects had a
good comprehension of English, which was used in the sound track of the Friends
videos. All subjects also provided written informed consent to participate in

4

https://docs.cneuromod.ca

this study, which was approved by the local research ethics review board (Aunder
project number CER VN 18-19-22) of the CIUSSS du Centre-Sud-de-I'Ile-de-
Montréal, Montréal, Canada.

2.1.3. Magnetic resonance imaging

Magnetic resonance imaging (MRI) was collected using a 3T Siemens Prisma
Fit scanner and a 64-channel head/neck coil, located at the Unit for Functional
Neuroimaging (UNF) of the Research Centre of the Montreal Geriatric Institute
(CRIUGM), Montréal, Canada. Functional MRI data were collected using an
accelerated simultaneous multi-slice, gradient echo-planar imaging sequence [31,
32] developed at the University of Minnesota, as part of the Human Connectome
(HCP) Project [33]. The fMRI sequence used the following parameters: slice
acceleration factor = 4, TR = 1.49s, TE = 37 ms, flip angle = 52 degrees, 2 mm
isotropic spatial resolution, 60 slices, acquisition matrix 96x96. The structural
data was acquired using a T1-weighted MPRAGE 3D sagittal and the following
parameters: duration 6:38 min, TR = 2.4 s, TE = 2.2 ms, flip angle = 8 deg,
voxel size = 0.8 mm isotropic, R=2 acceleration. For more information on the
sequences used or information on data acquisition (including fMRI setup), visit
the CNeuroMod technical documentation page.

2.1.4. Preprocessing

All fMRI data were preprocessed using the fMRIprep pipeline version 20.2.3 [34].
We applied a volume-based spatial normalization to standard space (MNI152
NLin2009cAsym). Furthermore, a denoising strategy was applied to regress out
the following basic confounds: (1) a 24-degrees of freedom expansion of the motion
parameters, (2) a basis of slow time drifts (slower than 0.01 Hz). This step
was implemented with the Nilearn maskers (see below) and the load_confounds
tool* (option Params24). A spatial smoothing with a 8 mm field-width-at-half-
maximum and a Gaussian kernel was also applied with Nilearn prior to time
series extraction. For each fMRI run, time series were also normalized to zero
mean and unit variance (over time, for each voxel independently).

2.1.5. Multiresolution time series extraction

Functional MRI data takes the form of a 3D+t array, where the 3D spatial dimen-
sions encode for different spatial locations on a regular 3D sampling grid (with
2 mm isotropic voxels for this dataset) within the field of view of acquisition,
and the time axis (t) encodes brain samples recorded at different times, again
on a regular sampling grid (with the time interval TR=1.49s for this dataset).
It is common practice to translate this 3D+t array into a 2D array, where the

“https://github.com/simexp/load_confounds

5

https://docs.cneuromod.ca/en/latest/MRI.html#sequences
https://github.com/simexp/load_confounds

Table 1: Brain datasets summary: number (n x t) of time x space samples and size (in MB or
GB) of fMRI time series in three resolutions.

Resolution Subject n t Size (float64)
Parcels sub-0(1-6) 69,202 444 244 MB
ROI sub-0(1-6) 76,728 2.6 GB
Whole-Brain sub-01 7 264,805 138 GB
sub-02 7 266,126 142 GB
sub-03 7 261,880 136 GB
sub-04 7 266,391 142 GB
sub-05 7 263,574 138 GB
sub-06 7 281,532 148 GB
Whole-Brain (B-MOR) sub-01 10,000 264,805 21 GB
sub-02 7 266,126 21.2 GB
sub-03 7 261,880 20.8 GB
sub-04 7 266,391 21.2 GB
sub-05 7 263,574 21 GB
sub-06 7 281,532 21.8 GB
Whole brain (MOR) sub-0(1-6) 1,000 2,000 16 MB

first dimension encodes time, and the second dimension encodes space. There are
multiple ways to perform this translation, which corresponds to different spatial
resolution choices for the analysis. In this work, we used the so-called maskers
of the Nilearn library [35] to perform this operation, and we considered three
common spatial resolutions to investigate the scalability of different implemen-
tations of ridge regression. These approaches vary markedly in the size of the
resulting spatial dimension: parcel-wise, ROI-wise, and whole brain. These three
resolutions are further described below:

1. Parcels: The preprocessed BOLD time series were averaged across all vox-
els in each parcel of a parcellation atlas, using the NiftiLabelsMasker
masker from Nilearn. We used the Multiresolution Intrinsic Segmentation
Template (MIST) [36]. MIST provides a hierarchical decomposition of func-
tional brain networks in nine levels (7 to 444), and we used here the largest
available resolution (444 brain parcels).

2. ROLI: In this approach, a binary mask of the visual network was extracted
from MIST at resolution 7. Voxel-wise time series were extracted for all
voxels present in this mask, using the NiftiMasker masker from Nilearn.
Note that the location of the mask was based on non-linear registration
only, and did not use subject-specific segmentation of the grey matter. The
exact same number of voxels (6728) was thus present in the mask for all
subjects’ data, after realignment in stereotaxic space.

3. Whole-Brain: In this approach, the brain mask generated by the fM-
RlIprep pipeline based on the structural scans of each participant was re-
sampled at the resolution of the fMRI data. This mask included both grey
matter, white matter, cerebro-spinal fluid but excluded all tissues surround-
ing the brain. Voxel-wise time series of all voxels included in the mask were
extracted, again using the NiftiMasker masker from Nilearn. As the brain
mask was subject specific, the number of voxels in the mask varied slightly
across subjects.

Table 1 presents the shape of the brain data array Y with these three levels of
resolution and six subjects, where the number of rows and columns indicate the
number of volumes (n time sample) and targets (¢ spatial targets) respectively.
The temporal dimension is identical for all three approaches, while the spatial
dimension of ROI is one order of magnitude larger than Parcels, and the spatial
dimension of Whole-Brain is three orders of magnitude larger than Parcels. We
also introduce two truncated versions of the whole-brain resolution, marked as
MOR and B-MOR in Table 1, which represent subsets of the dataset. We trun-
cated the number of time samples and brain target from the whole-brain data,
to accommodate memory requirements in the benchmark infrastructure. In this
table, memory sizes are presented in the float64 format used in Scikit-learn for
ridge regression.

2.2. Brain encoding

Figure 1 recapitulates the two main steps of brain encoding: extracting features
from movie frames through a pretrained artificial network (here VGG16) and pre-
dicting brain response using a regularized linear regression model, called ridge.
The ridge regression is trained through pairs of prediction targets (fMRI data Y)
and dynamic visual stimuli features (predictors X), and experiments are imple-
mented at several levels of resolution, see Table 1 to test the scaling efficiency of
different implementations of the ridge regression.

2.2.1. VGG16 artificial vision network

In this work, we used the approach of [12, 37|, and applied a VGG16 model
[38] pretrained for image classification to extract visual features from the movie
frames. The VGG16 model was trained on a dataset of over 2 million images
belonging to 1000 classes from the ImageNet database [39], and the weights of
the models were retrieved through TensorFlow. This model achieved 92.7% top-5
test accuracy for image-object classification. The VGG16 architecture [40] is a
widely-used convolutional neural network (CNN) known for its simplicity and
effectiveness in image classification tasks [37]. The network comprises 16 layers,
including 13 convolutional layers and 3 fully connected layers. The convolutional

https://www.tensorflow.org/

fRAEN-P 5
L] ..:; =

.
- ¥ g

Ridge regression

cccccc

' AT 22| =
&) €H &) € &D M N
\ - W\ L

Time

Figure 1: The two main steps of brain encoding: Extracting features from movie frames using
VGG16 pretrained model and predicting brain response using ridge regression.

layers use small 3x3 filters with a stride of 1 and employ rectified linear unit
(ReLU) activation functions. Max-pooling layers with 2x2 filters are applied for
spatial down-sampling. The architecture is characterized by a large number of
trainable parameters, summarized in Appendix 7.1 (based on the TensorFlow
summary of the model), making it suitable for various computer vision applica-
tions.

2.2.2. Eaxtracting VGG16 features of dynamic visual stimuli

For each of the n = 69,202 fMRI time samples, we extracted the stimulus video
frames corresponding to the 4 TRs immediately preceding each fMRI samples
(equivalent to a window of 4 x 1.49 = 5.96s duration). This operation was
done to take into account the known delayed, convolutional nature [41] of the
relationship between the visual stimulus and the hemodynamic response. Each
frame was resampled to a (224, 224, 3) array and fed into VGG16 to extract
4096 features from the last layer. The features of the 4 TRs were concatenated,
resulting into a single feature vector of length p = 16384. In total, the array of
features X used for brain encoding had a size of (n = 69202, p = 16384) (number
of time samples x number of features), or 8.5 GB (in float32 precision).

2.2.3. Ridge regression

Ridge regression was first proposed by Hoerl and Kennard [2] as a generaliza-
tion of ordinary least-square regression. In comparison with ordinary least mean
square regression, ridge regression provides better generalization to unseen data
through regularization of coefficient estimates, in particular in the presence of a

large number of predictor variables. The ridge regression is expressed as the fol-
lowing optimization problem solving for regression coefficients b* independently
at each spatial location:

b =arf;glin(|!y—XbH§+AIIb||§), (1)
cRP

where X € R™*P is the matrix of stimuli features with n time samples and p
features, ||. is the £* norm of a vector, and y € R™ is the target vector obtained
from fMRI data at a single spatial location (at either Parcels, ROI or Whole-
Brain resolutions). The hyper-parameter A is used to control the weighting of
the penalty in the loss function. The best value for A is estimated among a set of
candidate values through cross-validation, as explained below. If the value of A
is too low the training process may overfit and if the value of X is too high then
the brain encoder model may underfit [13].

2.2.4. Brain encoding performance and hyper-parameter optimization

For a given subject, the samples X were split into training (90% random) and test
(10% remaining) subsets. The coefficients of the ridge regression were selected
through Eq. 1 based on the training set only. Table 2 presents the memory size
and number of ridge training parameters with three levels of resolution across six
subjects.

Table 2: Number of training parameters (rounded to closest M) and size of weight matrices in
three resolutions for brain encoding

Resolution Subject # of training Size(float64)
parameters
Parcel sub-0(1-6) ™™ 58 MB
ROI sub-0(1-6) 110 M 1.2 GB
Whole brain and Whole brain (B-MOR) sub-01 4338 M 34.6 GB
sub-02 4360 M 34.8 GB
sub-03 4290 M 34.2 GB
sub-04 4364 M 34.6 GB
sub-05 4318 M 34.6 GB
sub-06 4612 M 34.8 GB
Whole brain (MOR) sub-0(1-6) 32.7 M 262.0 MB

We measured the final quality of brain encoding as the Pearson’s correlation
coefficient between the actual fMRI time series and the time series predicted by
the ridge regression model, on the test set. A leave-one-out validation was used
inside the training set to estimate the hyper-parameter value A\ with optimal
performance (based on cost function defined in Eq. 1), based on the grid:

A € {0.1, 1,100, 200, 300, 400, 600, 800, 900, 1000, 1200} .

9

The choice of A can either be made separately for each of the t brain targets,
or a common value can be selected for all brain targets based on the average
performance of the model across all ¢ brain targets. In this work, a single \ is
used for all targets.

2.3. Ridge regression implementations

2.8.1. Scikit-learn efficient ridge implementation

In large-scale brain encoding tasks, the computational cost of ridge regression in-
creases linearly with the increasing number of targets. To reduce computing time
when multiple targets are used, formulations of ridge regression have been pro-
posed to mutualize computations among the targets. The formulation described
below was presented in [13] and is implemented in the scikit-learn library.

In a multi-target regression problem, vector y in Equation 1 is now a matrix Y of
size n by t where t is the number of spatial targets. Matrix X is still of dimension
n by p. The weight matrix W can be calculated as follows:

W =MY (2)

where

M= (XTX +)" X" (3)

and I, is the identity matrix. The key point is that M is independent of Y and can
therefore be reused for all ¢ targets. This strategy reduces the time complexity
of multi-target ridge regression from O(p*t + p*nt) to O(p* + p?n + pnt) [13], see
Section 3 for details.

Scikit-learn also mutualizes computations among subsequent estimations of M for
different A values, typically encountered during hyper-parameter optimization.
To do so, it relies on the SVD decomposition of X:

X =USV7, (4)

where U € R™? and V € RP*P are orthonormal matrices, and S € RP*P is
diagonal. Then, the matrix M can be rewritten as:

M(X\) =V(S* + A\,)"'SU” (5)
Computing (S?+\I,) 'S is inexpensive as this matrix is diagonal. SVD decompo-
sition of feature matrix X reduces complexity of computing M from O(p3r +pnr)

to O(p*nr) [13], where r is the number of tested hyper-parameter values (see
Section 3 for details).

10

2.3.2. Computational environment

Brain encoding experiments were run on Beluga, a high-performance computing
(HPC) cluster of Canada Digital Alliance, providing researchers with a robust
infrastructure for advanced scientific computations. Beluga features numerous
compute nodes, high-speed interconnects, and parallel processing capabilities,
visit the Beluga technical documentation page for details.

All benchmarking experiments were run on a high-performance computing clus-
ter called “slashbin”, fully dedicated to benchmarking, without concurrent users
accessing the platform during tests. This cluster was located at Concordia Uni-
versity Montreal, and featured 8 compute nodes. Each compute node featured
an Intel®)Xeon®Gold 6130 CPU @ 2.10GHz with 32 physical cores (64 hyper-
threaded cores), 250 GB of RAM, Rocky Linux 8.9 with Linux kernel 4.18.0-
477.10.1.el8 lustre.x86_64. Input and output data were located on a 960GB
Serial-Attached SCSI (SAS) 12GBPS 512E Solid State Drive that was network
mounted to each compute node using NFS v4.

2.3.83. Multi-threading parallelism

Multi-threading is a mechanism to parallelize executions on multi-core CPUs. In
the case of ridge regression, multi-threading is available mainly for linear algebra
routines implemented through the Basic Linear Algebra Subprograms (BLAS)
specification. Two well-known BLAS libraries are Intel Math Kernel Library
(MKL) [28] and OpenBLAS [27]. These BLAS libraries incorporate optimized
implementations that leverage multi-threading parallelism for efficient execution.
In particular, the OpenBLAS and MKL libraries enable multithreaded execution
of ridge regression over the CPU cores in a single machine for a faster execution
time. Figure 2 summarizes the different parallelization modes benchmarked by
our experiments.

2.3.4. Distributed parallelism

In brain encoding, ridge regression independently fits a regression model on each
spatial target. Therefore, ridge regression can be easily parallelized into multi-
ple sub-models addressing different targets. For a given matrix X, scikit-learn’s
MultiOutputRegressor class subdivides the set of all target values Y into ¢ sub-
problems, each corresponding to a single spatial target. Ridge regression can
now be expressed into solving ¢ independent estimations of the weights matrix
W, as illustrated in Figure 3. This sub-division is repeated for each value of
the regularization parameter A. As all the targets and A values are independent,
no communication is required between the sub-problems. Scikit-learn’s Multi-
OutputRegressor class parallelizes the resolution of the sub-problems using a
configurable number of concurrent processes ¢ executed with the joblib library.

11

https://docs.alliancecan.ca/mediawiki/index.php?title=B%C3%A9luga/en

Single node Distributed
l l
RidgeCV MOR or B-MOR
l l
Multi-Threading Joblib
VAN l
MKL OpenBlas Dask
P N
Client Scheduler Workers
l
RidgeCV

l

Multi-Threading

l

MKL

Figure 2: Mutilthreading and Distributed parallelism in scikit-learn’s ridge regression

Joblib supports multiple execution backends including single-host thread-based
or process-based parallelism, and distributed parallelism using the Dask [29] or
Ray [42] engines. We used the Dask backend and launched its distributed sched-
uler that simultaneously manages the computation requests and tracks the com-
pute node statuses.

2.8.5. Proposed distributed ridge regression: Batch Multi-Output Regression (B-
MOR)

This approach reduces the amount of redundant computations by partitioning the
problem into a number of sub-problems equal to the number of available compute
nodes in the distributed system, denoted as ¢ (Figure 3). This strategy preserves
maximal parallelism while reducing computational overheads. Algorithm 1 de-
scribes the approach. It consists of a main parallel for loop where the target
output matrix (Y) is partitioned into n sub-problems, where n is the minimum
value between the number of targets and the number of compute nodes. Each
sub-problem represents a batch of targets Y;,---,Y,. The algorithm uses the
following helper functions:

12

Targets Features Weights Distributed

Multi-Output Regression Batch Multi-Output Regression
sub-problem 1 sub-problem 1
mtoonp PU Mylti-threaded . R

SVD decomposition of X

X |=|U |
B
n,p pp pp

il
T B

==

I xR

Figure 3: Matrix computations in Multi-threading ridgeCV, MOR and B-MOR, model fitting.
Assuming X € R"*P| Y € R™*! and X = USV7T then the weight matrix B € RP*? equals to
B=V(S?+ A, 1SUTY.

e split returns training and validation sets associated with a given cross-
validation split.

e svd computes the singular-value decomposition of a matrix.

e eval score computes the regression performance score from predicted and
true values. Higher scores denote better performance.

3. Complexity analysis
3.1. Ridge regression with a single thread

Ridge regression for a given hyper-parameter A is computed by:

Yy = X M,Y.

In this section, we outline the time complexity T, of computing M), as well as the
time complexity Ty of computing the multiplications X M,Y. Matrix notations
as well as their dimensions are summarized in Table 3. Time complexities are
expressed in the number of floating-point multiplications.

The cost Ty of computing X M,Y independently over r values of hyper-parameter
A s:
Tw = O(pntr).

Regarding T}, Equation 3 requires inverting a square matrix of size p —time
complexity O(p?)— and multiplying the resulting inverted matrix with matrix

13

Algorithm 1: Batch Multi-Output Regression (B-MOR)

© 0 N o s

10

11
12

13
14

input : X—Input stimuli feature matrix

input : Y—Target matrix

input :t—Number of targets

input : A—Candidate hyper-parameters

input : c—Number of concurrent jobs

output: B—List of trained weight matrices for each sub-problem
n < min(t, c);

//

Main parallel for loop

parfor i =0ton—1do

// Divide the target matrix Y into n sub-problems
Y; < Sub-matrix of Y with columns [%, (”1)'t];

for all cross-validation splits s do
Xtrain; Xval; Y;:raina Y:/al A Spht(sy X> Y;)a
USVT « svd(Xaim);
for all X do
My <+ V(S? + \IL,) "1 SUT;
}A/;zal — XvalM)\Y;;rain;

scoreli, s, \| < eval_score(Yeal, Yoal):

// Calculate mean score across cross-validation splits
for all A do
t mean_scoreli,] < ‘%‘ > scoreli, s, A;

// Find the best hyperparameter A for each sub-problem
best_A[i| «— arg max,{mean_scoreli, \|};
B[Z] — Mbest,)\[i]}/i;

15 return B;

14

XT of size p x n —time complexity O(p?n). Matrix M, is computed once for all
the targets. With a single hyper-parameter value (r=1), Equation 3 thus gives a
complexity of O(p?® + p*n).

If we were to naively iterate this approach for r hyper-parameter values, the
resulting time complexity would be O(p®r + p?nr). However, expressing matrix
M) from the SVD of matrix X as in Equation 5 reduces the time complexity of
computing M to:

Ty = O(p*nr + pr)

Indeed, computing the SVD of X has time complexity O(p?n) since p < n, the
computation of (5% + A,)7'SU” has time complexity O(p) since S is diago-
nal, and the multiplication of V with (S + AI,)"'SUT has time complexity
O(p*n).

Finally, the overall time complexity 7}iqge of ridge regression iterated on r hyper-
parameter values, including computation of M, and multiplication by matrix Y
is:

Triage = Tar + Tw = O(p*nr + pr + pntr)

Table 3: Matrix Sizes. n: number of time samples; p: number of ANN features; ¢: number of
brain targets. Other important notations include ¢: number of concurrent distributed execu-
tions and 7: number of hyper-parameters.

Matrix | Dimensions Description
X nxp Feature matrix
Y n xt Brain target matrix
M,y P Xn Resolution matrix
U nxp Left singular matrix
S PXDP Singular values matrix
Vv PXD Right singular matrix

3.2. Ridge regression with MOR

In the case of MOR, the matrix multiplication M,Y is replaced by ¢t multiplica-
tions of M with a vector y, which does not change the time complexity. Provided
that the number of targets ¢ is larger than the number of concurrent computing
nodes ¢ —which is the case in our application—, all these matrix-vector multipli-
cations happen in parallel, and the resulting time complexity on the application
critical path is ¢ Ty .

By contrast, the computation of matrix M, is repeated independently for each
brain target, resulting in a massive overhead computation t7), distributed over

15

c concurrent processes. Overall the computational cost of ridge regression imple-
mented with MOR is:
TMOR = C_l(TW + tTM) (6)

3.3. Ridge regression with B-MOR

B-MOR scales better than the previous approach due to the use of ¢ sub-problems
instead of . The computation of the matrix multiplication costs ¢~ Ty, similar to
MOR. However, the overhead of recomputing matrix M) for each sub-problem is
only T}, which is distributed across ¢ concurrent execution. The computational
cost of ridge implemented with B-MOR is thus:

TBMOR = C_ITW + Ty (7)

Comparing Equations 6 and 7, we observe that the time complexity of the B-MOR
implementation is much lower than for the MOR implementation, as Tyor —
Ts_nor = (¢7't — 1)Ty. This difference may be massive when ¢ << t. We also
observe that when ¢ > 1, B-MOR has lower time complexity than single-threaded
ridge regression. However, the parallel efficiency of B-MOR is limited by the term
Ty which is not reduced by c.

4. Results

We report on a series of benchmark experiments for brain encoding, using scikit-
learn’s multithreaded, MOR and B-MOR implementations of ridge regression
with hyper-parameter optimization across 11 values of A . The benchmarks were
applied to the Friends CNeuroMod dataset (N=6 subjects) at multiple spatial
resolutions to investigate the scalability of different implementations of ridge
regression (parcel-wise, ROI-wise, and truncated versions of whole-brain voxel-
wise time series).

4.1. Brain encoding models successfully captured brain activity in the visual cor-
tex

We first aimed to validate that our brain encoding model performed in line with
recent studies, at the individual level and for different resolutions of target brain
data.

We extracted features of dynamic visual stimuli, by selecting a subset of images
in the video, and feeding these images independently into an established vision
pretrained network called VGG16 [38]. We used 3 seasons of Friends TV show,
where 10% of data was set aside as the test data. Brain encoding was implemented
using ridge regression, and the best value of hyper-parameter A\ was selected
through cross-validation.

16

parcel-wise ROI-wise whole brain parcel-wise ROI-wise whole brain

TYXYYY R XYY Y Y
‘sevccee ‘Ssescee
TYITTTYY I Y PYYY
‘seccee ‘seccee
PXY YT YR Y Y YY ¥

PR DP9 OO

-05 0 05

Figure 4: Brain encoding results, with performance based on Pearson Correlation Coefficient
(r) between real and predicted time series in the friends dataset (N=6 subjects).

Figure 4 shows the functional alignment between the features of the last fully
connected layer (FC2) of VGG16 brain activities and brain activity for six sub-
jects. Brain encoding maps were highly consistent across subjects and resolutions
of analysis. In all cases, a moderate correlation, up to 0.5, was observed in the
visual cortex between the real fMRI time series and the time series predicted by
the brain encoding model. For the analysis that included the full brain, moder-
ate accuracy for brain encoding was observed in other brain areas as well, such
as temporal cortices involved in high level visual processing as well as language.
Analysis at the voxel level brought more anatomical details but were overall con-
sistent with brain encoding maps at the parcel level.

Overall, brain encoding models successfully predicted activity in expected brain
regions, for all subjects and resolutions.

4.2. Brain encoding was significant compared to a null distribution

Next, we wanted to assess the significance of the brain encoding, compared to a
null distribution were the movie frames used as input to the model did not cor-
respond with brain data time series. We repeated the brain encoding procedure
presented in the previous section for one subject (sub-01), after random shuffling
of the image features and brain images. Figure 5 compares the original brain
encoding results (panel a) with brain encoding based on shuffled features (panel
b). While the original brain encoding results reached moderate accuracy, up to
0.5 correlation between real and predicted brain activity, the performance using
shuffled features was dramatically lower. The correlation values were typically an

17

order of magnitude smaller, less than 0.05. The quality of brain encoding using
original image frames thus appeared as significant compared to a null distribution
where image features were randomly shuffled.

parcel-wise ROI-wise

whole brain

parcel-wise

ROI-wise

whole brain

P28 GORHOOS®
L L EelsX T B 1 Yeisy Y

-05 0 05

(a) Trained brain encoding

05 0 05

(b) Untrained brain encoding

Figure 5: Brain encoding predictions for a single individual (sub-01) in two cases. Panel a:
corresponding pairs of {fMRI time series and stimuli} were presented to the ridge regression
models. Panel b: random permutations of fMRI time series and stimuli data were presented to

the ridge regression model.

Parcel-wise brain encoding

Z 1000 - KL g 6000
5 = OPENBLAS | § 5000
3 3000 & 4000
o o
_g 2000 g 3000
£ 1000 g2000
< c
z 1000
= =
R 16 32 0
Number of threads
(a) Sub-01
Parcel-wise brain encodin
@ = MKL 7 6000
2 4000 j— E
g OPENBLAS | § 5000
& 3000 & 4000
1 o
£ 2000 E 3000
2 1000 22000
tlala
= =
O T4 s 16 32 0
Number of threads
(c) Sub-03
Parcel-wise brain encodin
o) - KL ¥ 6000
é 4000 =N OPENBLAS é 5000
& 3000 & 4000
g £ 3000
= 2000 =
2 1000 22000
£ £ 1000
E =

0

1 2 4 8 16 32
Number of threads

(e) Sub-05

ROl-wise brain encoding

1

1

R

R

. MKL
s OPENBLAS

16 32
Number of threads

Ol-wise brain encodin

. MKL
s OPENBLAS

Number of threads

Ol-wise brain encodin

. MKL
[OPENBLAS

2 16 32
Number of threads

w oo
S o
S o
S o

2000

‘€ 1000

Training time (Seconds)

=)

4000

3000

2000

=
o
S
=]

Training time (Seconds)

=)

Parcel-wise brain encoding

ROl-wise brain encoding

1

. VKL

I OPENBLAS

16
Number of threads

7 6000
2
S 5000
g
£ 4000
3
£ 3000
22000
£
£ 1000
£
32 °

(b) Sub-02

Parcel-wise brain encoding

. VKL

N OPENBLAS

Number of threads

26000

2

S 5000

3

£ 4000

3

£ 3000

-]

22000

=

& 1000
0

(d) Sub-04

ROl-wise brain encodin

1

. VKL

2 16
Number of threads

. OPENBLAS

N oW s
o o© o
S © o
S & o

Training time (Seconds)

32

(f) Sub-06

1

ROl-wise brain encodin

Parcel-wise brain encodin

1

. MKL
s OPENBLAS

8 16 32
Number of threads

. MKL
N OPENBLAS

Number of threads

. MKL
= OPENBLAS

2 16 32
Number of threads

Figure 6: Comparison of MKL and OpenBLAS implementations for multithreaded execution.

4.8. Multithreaded execution with Intel MKL provided significant speedup com-

pared to OpenBLAS

After establishing the quality of our multiresolution brain encoding benchmark,
we proceeded to compare the performance and scalability of ridge regression using

18

0 5 10 20 25 30 0 5 10 20 25 30

15 15
Number of Threads Number of Threads

(a) Parcel-wise (b) ROI-wise

Figure 7: Speed-up rates of ROI-wise ridgeCV execution time for MKL and OpenBLAS across
different number of threads. Each line on the plot corresponds to a specific subject. For each
subject, the solid lines represent MKL, and the dashed lines represent OpenBLAS.

scikit-learn on a 32-core compute node, and comparing the libraries underlying
multithreaded parallelization, i.e. MKL and OpenBLAS. Figure 6 illustrates the
comparison between OpenBLAS and MKL multi-threading for two different reso-
lutions (parcel-wise and ROI-wise), six subjects, and varying numbers of parallel
threads. The experiments with whole-brain resolution could not be completed
due to out-of-memory limitation with our benchmark system. The results consis-
tently demonstrated that the MKL library outperformed the OpenBLAS library
for all subjects and thread configurations. Specifically, when using 32 threads,
the MKL library exhibited a speedup factor of 1.90 and 1.98 compared Open-
BLAS for parcel-wise and ROI, respectively, on average across all subjects. This
indicates a substantial improvement in processing time with the MKL library
compared to OpenBLAS.

4.4. Speed-up of multi-threading quickly reached a plateau with an increasing
number of threads

We also observed a sharp decrease in the efficiency of parallelization with an
increasing number of threads. Figure 7 represents the speed-up performance of
two libraries MKL and OpenBLAS for parcel-wise and ROI-wise brain encoding
across different numbers of threads. The parallelization speed-up is calculated as
follows:

Tr

where SU is the speed-up, Tx is the execution time with 1 thread, and Tp is

the execution time with 2, 4, 8, 16, or 32 threads. The speed-up measures how
effectively the parallel resources are being used.

19

A consistent observation across subjects was that, as the number of threads in-
creased, the parallel efficiency decreased, as expected according to Amdhal’s law.
In other words, as more threads were employed, the incremental improvement
in speed-up rate was reduced. These diminishing returns in speed-up highlight
the need for careful selection of thread count to balance computational resources
with performance.

Bl #Dask_MKL threads=2 Bl #Dask_MKL threads=2
m 6000 mm #Dask_MKL threads=4 m 6000 mm #Dask_MKL threads=4
T BN #Dask_MKL threads=8 e BN #Dask_MKL threads=8
© 5000 B #Dask MKL threads=16 & 5000 W #Dask_MKL threads=16
] W #Dask_MKL threads=32 g mm #Dask_MKL threads=32
L4000 24000
[} o
£ 3000 £ 3000
- -
o o
£2000 £2000
c c
2 1000 2 1000
0 2 4 6 8 0 2 4 6 8
Number of Dask Compute Nodes Number of Dask Compute Nodes
(a) Sub-01 (b) Sub-02
mm #Dask_MKL threads=2 B #Dask_MKL threads=2
m 6000 I #Dask_MKL threads=4 m 6000 - #Dask_MKL threads=4
g Emm #Dask_MKL threads=8 -8 BN #Dask_MKL threads=8
S 5000 W #Dask_MKL threads=16 & 5000 mm #Dask_MKL threads=16
8 Bm #Dask_MKL threads=32 3 B #Dask_MKL threads=32
24000 24000
[} o
E 3000 E3000
=] =]
£2000 £2000
c c
2 1000 2 1000
0 2 4 6 8 0 2 4 6 8
Number of Dask Compute Nodes Number of Dask Compute Nodes
(¢) Sub-03 (d) Sub-04
s #Dask_MKL threads=2 B #Dask_MKL threads=2
m 6000 I #Dask_MKL threads=4 m 6000 - #Dask_MKL threads=4
g B #Dask_MKL threads=8 -g B #Dask_MKL threads=8
S 5000 = #Dask_MKL threads=16 & 5000 = #Dask_MKL threads=16
8 s #Dask_MKL threads=32 3 B #Dask_MKL threads=32
24000 Y4000
[}]
E 3000 E 3000
=] =]
£2000 £2000
c c
2 1000 h 2 1000 h
0 2 4 6 8 0 2 4 6 8
Number of Dask Compute Nodes Number of Dask Compute Nodes
(e) Sub-05 (f) Sub-06

Figure 8: MultiOutput ridgeCV training time for 6 subjects using whole brain (MOR) data
described in Table 1. The MOR implementation scales across threads and Dask compute nodes,
however, it has a massive overhead: multi-threaded scikit-learn implementation with a single
compute node and 32 threads takes approximately 1s.

4.5. MultiOutput ridge regression scales across compute nodes and threads, but
is much slower than multi-threading with RidgeCV

In this next experiment, we implemented scikit-learn’s original MultiOutput ridge

regression (MOR) within a Dask-based distributed parallelism setting for brain

20

encoding tasks. We chose to focus on whole-brain resolution for this experiment,
as lower resolutions failed to show the advantage of parallelization with MOR.
However, whole-brain resolution was too slow to run as is with MultiOutput
ridge regression. Therefore, we created a custom truncated version of whole-brain
resolution, called whole-brain (MOR), as seen in Table 1. Figure 8 reports on the
parallelization of MultiOutput across six subjects using this dataset, where the
training process was distributed across multiple compute nodes and threads.

Figure 8 shows a substantial reduction in training time with an increasing num-
ber of threads and compute nodes, for all subjects, which illustrates the good
scalability of MOR parallelization. However, compute time was massively in-
creased compared to the multi-threaded scikit-learn implementation on a single
compute node. For example, using 8 compute nodes and 32 threads, compute
time with MOR is in the order of 1000s, whereas the multi-threaded scikit-learn
implementation with a single compute node and 32 threads takes approximately
1s. This overhead directly results from the increase in time complexity reflected
in Equation 6.

4.6. Batch multi-output regression leads to efficient speed-up across multiple com-
pute nodes and threads

In the next experiment, we benchmarked our B-MOR implementation of ridgeCV,
that divides the brain targets into batches, and runs scikit-learn’s multi-threaded
RidgeCV on each batch independently with different compute nodes. Figure 9
shows that, as the number of threads and compute nodes increased, substantial
speed-up in training time was achieved compared to scikit-learn’s multithreaded
implementation (labelled “RidgeCV” in the figure), which demonstrates the prac-
tical value of the B-MOR implementation. To quantify this observation, we com-
puted the distributed speed-up ratio as follows:

where Tg indicates the execution time of scikit-learn original ridge regression on
a single compute node and 1 thread, and Tp indicates computation time with B-
MOR for a given number of compute nodes and threads. Overall, the distributed
speed-up ratio increased as the number of threads or compute nodes increased
(Figure 10). The training time for B-MOR was approximately 30 — 33 times
less than the original scikit-learn ridge regression with 1 thread and 1 compute
node. As it was the case with the multi-threaded implementation, the DSU
reached a plateau beyond a certain number of compute nodes and threads, with
diminishing performance returns as parallelization overheads and the time spent
in unparallelized code sections started to outweigh parallelization benefits.

21

4000

s #MKL threads=2 N #MKL threads=2
3 3500 mm #Dask_MKL threads=2 = #Dask_MKL threads=2
el mms #MKL threads=4 HEE #MKL threads=4
S 3000 mm #Dask_MKL threads=4 = #Dask_MKL threads=4
8 mmm #MKL threads=8 mmm #MKL threads=8
312500 mm #Dask_MKL threads=8 = #Dask_MKL threads=8
mmm #MKL threads=16 mmm #MKL threads=16
gZOOO mmm #Dask_MKL threads=16 B #Dask_MKL threads=16
= B #MKL threads=32 mmm #MKL threads=32
&>1500 = #Dask_MKL threads=32 = #Dask_MKL threads=32
C
‘€ 1000
o
= 500
O “RidgeCV 2 4 6 8 RidgeCV 4 6 8
Number of Dask Compute Nodes Number of Dask Compute Nodes
(a) Sub-01 (b) Sub-02
4000
4000 mEE #MKL threads=2 mE #MKL threads=2
mmm #Dask_MKL threads=2 3500 mm #Dask_MKL threads=2
T 3500 mi #MKL threads=4 ° mE #MKL threads=4
o mm #Dask_MKL threads=4 g 3000 mm #Dask_MKL threads=4
0 3000 mE #MKL threads=8 g mmm #MKL threads=8
) mm #Dask_MKL threads=8 »n 2500 mm #Dask_MKL threads=8
=2500 mm #MKL threads=16 Tv’ mm #MKL threads=16
£ 2000 mmm #Dask_MKL threads=16 £ 2000 mmm #Dask_MKL threads=16
mm #MKL threads=32 = m #MKL threads=32
@1500 mmm #Dask_MKL threads=32 ;’,1500 m #Dask_MKL threads=32
c
< 1000 £1000
° °
= 500 = 500
0 Ridgecv 2 4 6 0" “Ridgecv 2 4 6
Number of Dask Compute Nodes Number of Dask Compute Nodes
(c¢) Sub-03 (d) Sub-04
HE #MKL threads=2 4000 HEE #MKL threads=2
o 3500 mmm #Dask_MKL threads=2 m mmm #Dask MKL threads=2
m #MKL threads=4 © 3500 mEE #MKL threads=4
<3000 mem #Dask_MKL threads=4 < e #Dask_MKL threads=4
o o
¢ = #MKL threads=8 g 3000 = #MKL threads=8
«» 2500 mm #Dask_MKL threads=8 92500 = #Dask_MKL threads=8
mmm #MKL threads=16 mmm #MKL threads=16
£ 2000 mmm #Dask_MKL threads=16 g 2000 mm #Dask_MKL threads=16
=l mm #MKL threads=32 mm #MKL threads=32
&>1500 = #Dask_MKLthreads=32 | 1500 = #Dask_MKL threads=32
C C
£ 1000 € 1000
° o
= 500 = 500
0 ; 0 p
RidgeCV 4 6 8 RidgeCV 6 8
Number of Dask Compute Nodes Number of Dask Compute Nodes
(e) Sub-05 (f) Sub-06

Figure 9: B-MOR ridgeCV training time 6 subjects with whole brain (B-MOR) data described
in Table 1. B-MOR scales across compute nodes and threads, and provides substantial speed-up
compared to scikit-learn’s multi-threaded implementation (labelled as “RidgeCV”).

5. Conclusion

In this paper, we evaluated the efficiency of different implementations of ridge re-
gression for a specific application: brain encoding using a vision model (VGG16)
during movie watching. We found that the multithreaded parallelization avail-
able in scikit-learn could be used to reduce substantially computation time, and
that the BLAS implementation provided by the proprietary Intel oneAPI Math
Kernel Library (MKL) substantially outperforms the open-source OpenBLAS
implementation. For increased scalability, the Dask-based scikit-learn MultiOut-
put implementation can parallelize computations across multiple compute nodes,
but this comes with massive redundancy in some of the computations, which we

22

1 2 4 6 8 2 4 8 16 32
Number of Compute Nodes Number of MKL thraeds

(a) Speed-Up vs Number of Threads (b) Speed-Up vs Number of Compute Nodes

Figure 10: Speed up in B-MOR training time for truncated B-MOR data across 6 subjects with
varying numbers of threads and compute nodes in the Dask distributed system.

found to be impractical when using high-resolution brain targets (tens to hun-
dreds of thousands). Therefore, we implemented a more efficient version of the
MultiOutput method (B-MOR), that parallelizes ridge regression across batches
of brain targets. Our B-MOR method scales well, both in terms of the number of
compute nodes and the number of threads used by nodes. This approach allowed
us to generate brain encoding maps with high spatial resolution and whithin a
reasonable time. Our method could be useful for fMRI researchers who want to
process high-resolution deep datasets with high-performance computing clusters.
Our conclusion likely applies to any ridge regression for data arrays with a very
large number of targets (up to the order of 100k) and a large number of predic-
tors (in the order of thousands). As our proposed method is straightforward to
implement, it may become available in scikit-learn in the future.

6. Availability of code and data

The code to reproduce our experiments is available at https://github.com/
Sana3883/Scaling-up-Ridge. The CNeuroMod dataset is available at https:
//www.cneuromod.ca/gallery/datasets.

7. Acknowledgments

The computing platform used in the experiments was obtained with funding from
the Canada Foundation for Innovation. The Courtois project on neural mod-
elling was made possible by a generous donation from the Courtois foundation,
administered by the Fondation Institut Gériatrie Montréal at CIUSSS du Centre-
Sud-de-I'1le-de-Montréal and University of Montreal. The Courtois NeuroMod
team is based at “Centre de Recherche de I'Institut Universitaire de Gériatrie

23

https://github.com/Sana3883/Scaling-up-Ridge
https://github.com/Sana3883/Scaling-up-Ridge
https://www.cneuromod.ca/gallery/datasets
https://www.cneuromod.ca/gallery/datasets

de Montréal”, with several other institutions involved. See the cneuromod doc-
umentation for an up-to-date list of contributors (https://docs.cneuromod.ca).
PB is a senior fellow (chercheur boursier) from Fonds de Recherche du Québec
(Santé).

References

1]

2]

[10]

T. Naselaris, K. Kay, S. Nishimoto, J. Gallant, Encoding and decoding in
fmri. neuroimage, Technometrics 56 (2011) 400-410.

A. Hoerl, R. Kennard, Ridge regression: applications to nonorthogonal
problems, Technometrics 12 (1970) 69-82.

L. Wehbe, A. Ramdas, R. Steorts, C. Shalizi, Regularized brain reading with
shrinkage and smoothing., The annals of applied statistics (2015) 1997.

A. Pasquiou, Y. Lakretz, J. Hale, B. Thirion, C. Pallier, Neural language
models are not born equal to fit brain data, but training helps, arXiv preprint
arXiv:2207.03380 (2022).

C. Conwell, J. Prince, A. G., T. Konkle, Large-scale benchmarking of diverse
artificial vision models in prediction of 7t human neuroimaging data, bioRxiv
(2022).

A. Goldstein, E. Ham, S. Nastase, Z. Zada, A. Dabush, B. Aubrey,
M. Schain, H. Gazula, A. Feder, W. Doyle, S. Devore, Correspondence be-
tween the layered structure of deep language models and temporal structure
of natural language processing in the human brain., bioRxiv (2022).

S. Oota, J. Arora, V. Rowtula, M. Gupta, R. Bapi, Visio-linguistic brain
encoding., preprint arXiv:2204.08261 (2022).

S. Kumar, T. Sumers, T.R.and Yamakoshi, A. Goldstein, U. Hasson, K. Nor-
man, T. Griffiths, R. Hawkins, S. Nastase, Reconstructing the cascade
of language processing in the brain using the internal computations of a
transformer-based language model., bioRxiv (2022).

M. Lescroart, J. Gallant, Human scene-selective areas represent 3d configu-
rations of surfaces, Neuron 101 (2019) 178-192.

A. Kell, D. Yamins, E. Shook, S. Norman-Haignere, J. McDermott, A task-
optimized neural network replicates human auditory behavior, predicts brain

responses, and reveals a cortical processing hierarchy., Neuron 98 (2018)
630-644.

24

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

S. Jain, A. Huth, Incorporating context into language encoding models for
fmri, Advances in neural information processing systems (2018) 31.

H. Wen, J. Shi, Y. Zhang, K. Lu, J. Cao, Z. Liu, Neural encoding and
decoding with deep learning for dynamic natural vision, Cerebral Cortex
28(12)) (2018) 4136-4160.

T. D. la Tour, M. Eickenberg, A. O. Nunez-Elizalde, J. L. Gallant, Feature-
space selection with banded ridge regression, Neurolmage 264 (2022) 119728.

K. Seeliger, L. Ambrogioni, Y. Giiclitiirk, L. van den Bulk, U. Giicli, M. van
Gerven, End-to-end neural system identification with neural information
flow., PLOS Computational Biology 17(2) (2021).

K. Kay, T. Naselaris, R. Prenger, J. Gallant, Identifying natural images
from human brain activity, Nature 452 (2008) 352-355.

K. Kay, T. Naselaris, R. Prenger, J. Gallant, Reconstructing visual expe-
riences from brain activity evoked by natural movies., Current Biology 21
(2011) 1641-1646.

T. Horikawa, S. Aoki, M. Tsukamoto, Y. Kamitani, Characterization of
deep neural network features by decodability from human brain activity.,
Scientific data (2019) 190012.

R. Beliy, G. Gaziv, A. Hoogi, F. Strappini, T. Golan, M. Irani, From voxels
to pixels and back: Self-supervision in natural-image reconstruction from
fmri., In Advances in Neural Information Processing Systems (2019) 6517
6527.

K. Qiao, J. Chen, L. Wang, C. Zhang, L. Zeng, L.. Tong, B. Yan, Category
decoding of visual stimuli from human brain activity using a bidirectional re-
current neural network to simulate bidirectional information flows in human
visual cortices, Frontiers in neuroscience (2019).

G. Shen, K. Dwivedi, K. Majima, T. Horikawa, Y. Kamitani, End-to-end
deep image reconstruction from human brain activity., Frontiers in compu-
tational neuroscience 13 (2019) 21.

T. Naselaris, E. Allen, K. Kay, Extensive sampling for complete models of
individual brains. current opinion in behavioral sciences, bioRxiv 40 (2021)
45-51.

25

[22]

[23]

[24]

[25]

[26]

[27]

28]

[30]

[31]

[32]

N. Chang, J. Pyles, A. Marcus, A. Gupta, M. Tarr, E. Aminoff, Bold5000: a
public fmri dataset while viewing 5000 visual images., Scientific data (2019)
1-18.

E. Allen, G. St-Yves, Y. Wu, J. Breedlove, L. Dowdle, B. Caron, F. Pestilli,
I. Charest, J. Hutchinson, T. Naselaris, K. Kay, A massive 7t fmri dataset
to bridge cognitive and computational neuroscience., bioRxiv (2021).

C. ratton, T. Laumann, A. Nielsen, D. Greene, E. Gordon, A. Gilmore,
S. Nelson, R. Coalson, A. Snyder, B. Schlaggar, N. Dosenbach, Functional
brain networks are dominated by stable group and individual factors, not
cognitive or daily variation., Neuron (2018) 439-452.

Cneuromod, Cneuromod dataset, https://www.cneuromod.ca/gallery/
datasets/, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn:

Machine learning in python, the Journal of machine Learning research 12
(2011) 2825-2830.

Z. Xianyi, W. Qian, Z. Yunquan, Model-driven level 3 blas performance
optimization on loongson 3a processor., IEEE 18th international conference
on parallel and distributed systems (2012) 1-18.

E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, Y. Wang, Intel math
kernel library. in high-performance, Computing on the Intel®) Xeon Phi™
(2014) 167-188.

M. Rocklin, Dask: Parallel computation with blocked algorithms and task
scheduling, In Proceedings of the 14th python in science conferenc 130 (2015)
136.

J. Boyle, e. a. Pinsard, B., The courtois project on neuronal modeling - 2021
data release, Poster 2224 was presented at the 2021 Annual Meeting of the
Organization for Human Brain Mapping held virtually (2021).

K. Setsompop, J. Cohen-Adad, B. Gagoski, T. Raij, A. Yendiki, B. Keil,
V. Wedeen, L. Wald, Improving diffusion mri using simultaneous multi-slice
echo planar imaging., Neuroimage 63 (2012) 569-580.

J. Xu, S. Moeller, E. Auerbach, J. Strupp, S. Smith, D. Feinberg, E. Yacoub,
K. Ugurbil, Improving diffusion mri using simultaneous multi-slice echo
planar imaging., NeuroimageT 83 (2013) 991-1001.

26

https://www.cneuromod.ca/gallery/datasets/
https://www.cneuromod.ca/gallery/datasets/

[33]

[34]

7.1.

D. Van Essen, M. Glasser, The human connectome project: Progress and
prospects. in cerebrum: the dana forum on brain science, Dana Foundation
63 (2016).

O. Esteban, C. Markiewicz, R. Blair, C. Moodie, A. Isik, A. Erramuzpe,
J. Kent, M. Goncalves, E. DuPre, M. Snyder, H. Oya, fmriprep: a robust
preprocessing pipeline for functional mri. nature methods, Neuroimage 16
(2019) 111-116.

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kos-
saifi, A. Gramfort, B. Thirion, G. Varoquaux, Machine learning for neu-
roimaging with scikit-learn, Frontiers in neuroinformatics (2014) 14.

S. Urchs, J. Armoza, C. Moreau, Y. Benhajali, J. St-Aubin, P. Orban, P. Bel-
lec, Mist: A multi-resolution parcellation of functional brain networks, MNI
Open Research 1 (2019) 3.

C. Conwell, J. S. Prince, K. N. Kay, G. A. Alvarez, T. Konkle, What can
1.8 billion regressions tell us about the pressures shaping high-level visual
representation in brains and machines?, BioRxiv (2022).

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv (2014).

J. Deng, W. Dong, R. L. Socher, L. Fei-Fei, Imagenet: A large-scale hier-
archical image database., IEEE conference on computer vision and pattern
recognition (2009) 248-255.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv (2014).

N. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophys-
iological investigation of the basis of the fmri signal, nature (2001) 150-157.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. 1. Jordan, et al., Ray: A distributed framework for
emerging {Al} applications, in: 13th USENIX symposium on operating
systems design and implementation (OSDI 18), pp. 561-577.

Appendix

27

Table 4: Key Parameters of VGG16 (Keras Model)

Layer Num. of Activation Size of Parameters
Kernels Size Kernels (M)
Input - 224x224x3 - -
block1_convl 64 224x224x64 3x3 1792
block1_conv2 64 224x224x64 3x3 36928
block1_pool - 112x112x64 2x2 -
block2_convl 128 112x112x128 3x3 73856
block2_conv2 128 112x112x128 3x3 147584
block2_pool - 56x56x128 2x2 -
block3_convl 256 56x56x256 3x3 295168
block3_conv2 256 56x56x256 3x3 590080
block3_conv3 256 56x56x256 3x3 590080
block3_pool - 28x28x256 2x2 -
block4_convl 512 28x28x512 3x3 1180160
block4_conv2 512 28x28x512 3x3 2359808
block4_conv3 512 28x28x512 3x3 2359808
block4 _pool - 14x14x512 2x2 -
blockb5_convl 512 14x14x512 3x3 2359808
block5_conv2 512 14x14x512 3x3 2359808
block5_conv3 512 14x14x512 3x3 2359808
block5_pool - Tx7x512 2x2 -
Flatten - 25088 - -
FC1 - 4096 - 102764544
FC2 - 4096 - 16781312
predictions - 1000 (output) - 4097000
Total - - - 138,357,544

28

	Introduction
	Materials and Methods
	fMRI dataset
	Friends TV show stimuli
	Participants
	Magnetic resonance imaging
	Preprocessing
	Multiresolution time series extraction

	Brain encoding
	VGG16 artificial vision network
	Extracting VGG16 features of dynamic visual stimuli
	Ridge regression
	Brain encoding performance and hyper-parameter optimization

	Ridge regression implementations
	Scikit-learn efficient ridge implementation
	Computational environment
	Multi-threading parallelism
	Distributed parallelism
	Proposed distributed ridge regression: Batch Multi-Output Regression (B-MOR)

	Complexity analysis
	Ridge regression with a single thread
	Ridge regression with MOR
	Ridge regression with B-MOR

	Results
	Brain encoding models successfully captured brain activity in the visual cortex
	Brain encoding was significant compared to a null distribution
	Multithreaded execution with Intel MKL provided significant speedup compared to OpenBLAS
	Speed-up of multi-threading quickly reached a plateau with an increasing number of threads
	MultiOutput ridge regression scales across compute nodes and threads, but is much slower than multi-threading with RidgeCV
	Batch multi-output regression leads to efficient speed-up across multiple compute nodes and threads

	Conclusion
	Availability of code and data
	Acknowledgments
	Appendix

