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Abstract

The storage of renewable hydrogen in salt caverns requires fast injection and production rates to cope with the
imbalance between energy production and consumption. Such operational conditions raise concerns about
the mechanical stability of salt caverns. Choosing an appropriate constitutive model for salt mechanics is an
important step in investigating this issue, and many constitutive models with several parameters have been
presented in the literature. However, a robust calibration strategy to reliably determine which model and
which parameter set represent the given rock, based on stress-strain data, remains an unsolved challenge. For
the first time in the community, we present a multi-step strategy to determine a single parameter set based
on many deformation datasets for salt rocks. Towards this end, we first develop a comprehensive constitutive
model able to capture all relevant nonlinear deformation physics of transient, reverse, and steady-state creep.
The determination of the single set of representative material parameters is then achieved by framing the
calibration process as an optimization problem, for which the global Particle Swarm Optimization algorithm
is employed. Dynamic data integration is achieved by a multi-step calibration strategy for a situation where
experiments are included one at a time, as they become available. Additionally, our calibration strategy is
made flexible to account for mild heterogeneity between rock samples, resulting in a single set of parameters
that is representative of the deformation datasets. As a rigorous mathematical analysis for the presented
method and the lack of relevant experimental datasets, we consider a wide range of synthetic experimental
data, inspired by the existing sparse relevant data in the literature. The results of our performance analyses
show that the proposed calibration strategy is robust. Moreover, the model accuracy becomes increasingly
better as more data is included for calibration.

Keywords: Salt rock, Transient creep, Particle swarm, Viscoplasticity, Model calibration, Underground
hydrogen Storage

1. Introduction

Solution-mined salt caverns have been used for storage of hydrocarbons [1, 2, 3, 4], compressed air [5], and
even feed-stock hydrogen mainly for chemical industry [6, 7]. More recently, salt caverns are being considered
as viable options for large-scale (e.g., in the orders of TWh) storage of renewable hydrogen to support energy
transition [8]. However, due to the intermittent nature of renewable sources and variable consumption rates,
injections and productions of renewable hydrogen are expected to occur at much more unpredictable patterns
than the current feed-stock-based storage systems. This can result in fast pressure fluctuations inside the
caverns, which naturally increases the associated uncertainties related to the mechanical stability of the
caverns. To perform stability analyses, selecting an appropriate constitutive model is the first crucial step.
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The constitutive model, used in the numerical simulation framework, is expected to allow for accurate
prediction of the mechanical behavior of salt rock [9]. Constitutive models entail many parameters, which
are expected to be tuned for a specific scenario. Therefore, an equally important step is the calibration
of these material parameters such that the combination of the appropriate model and parameters leads to
reliable safety assessments. Model calibration becomes especially challenging when many experimental data
sets are available, for which the determination of a single representative set of parameters is required. This
particular point is the main focus of this study.

Salt rocks entail a complex mechanical behavior, with different yet co-existing time-dependent deforma-
tion mechanisms [10]. Capturing all these complexities in a single constitutive model is not a trivial task.
In this category, the Hou/Lux [11] and CDM [12] models are developed for both transient and steady-state
creep. In addition, they are also developed for tertiary creep in the dilatancy zone and damage healing in the
compressibility zone. Conversely, other models disregard the compressibility/dilatancy regions and focus on
specific deformation mechanisms, such as transient, steady-state, and tertiary creep [13, 14, 15, 16, 17, 18, 19].
However, as pointed out in the literature [20], full constitutive models are not always necessary depending
on the specific application and the stress regimes. For instance, transient creep might be disregarded for
disposal operations, since internal pressure is expected to be fairly stable. However, this is not the case
for hydrogen storage operations, where fast cyclic injections and productions are expected to take place.
Although some researchers consider transient creep as a viscoelastic process [14, 13, 17], others develop con-
stitutive models that assume time-dependent inelastic deformations [21, 22, 11, 23]. When rapid pressure
swings are expected to occur, some studies in the literature also include reverse creep in their modeling
framework [24, 9].

The complexity of salt rock mechanics is often reflected in the constitutive models, which tend to depend
on many material parameters. As an example, the viscoplastic part of the Hou/Lux-ODS and Hou/Lux-MDS
[11] models depend on 11 and 18 material parameters, respectively. This makes the calibration strategy a very
challenging task, which also requires many experimental data sets to characterize the material behavior. The
viscoplastic model of Desai, for instance, requires a set of at least six experiments for determining all material
parameters [21]. An additional challenge appears by recognizing the potential inherent differences between
samples and difficulties in experimental controls [25]. In other words, different material parameters might
be found for the same batch of samples, thus requiring many sets of experiments for an ideal calibration
procedure. In this case, a set of material parameters that is representative of all experiments should be
pursued through the calibration process. Moreover, it should be noted that performing creep experiments
in salt rocks is a time-consuming task [26, 27, 28], which means that the size of the dataset increases at
a low pace. Therefore, it would be convenient to perform partial calibrations with the experimental data
currently available and include new experiments as they become available. During this process, the quality
of the model results should increase as more experiments are used for calibration, and it should stabilize
when a sufficient number of experiments is reached.

There are different approaches for determining the material parameters of a constitutive model, some of
which are complementary. As pointed out in [29], some material parameters, such as Young’s modulus and
Poisson’s ratio, can be determined by well-defined procedures, while others are obtained either by manual
(trial and error) or automated procedures, with the latter being preferred in face of a large number of
parameters. A common approach for automated calibration consists of defining an appropriate objective
function to be minimized in an optimization process. This is called direct calibration [30], and although
some researchers choose gradient-based algorithms [29], meta-heuristic optimization approaches [25, 31] are
more common choices as they are more likely to avoid local minima. The direct calibration approach treats
the constitutive model as a black-box, so the optimization process is agnostic to the field of application.
Nevertheless, such an approach is not found in the literature for constitutive models related to salt rocks.
Furthermore, a procedure for incrementally including new experiments in the calibration process is also not
reported in the literature.

In this context, the present work proposes a calibration strategy for a salt rock constitutive model that
includes deformation mechanisms relevant to cyclic operations in salt caverns, such as transient, steady-
state, and reverse creep. The calibration of the material parameters related to each deformation mechanism
is presented. A multi-step direct calibration procedure is developed to include one experiment at a time
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by properly adjusting the objective (loss) function and solving it as a multi-objective function optimization
problem. Moreover, a regularization term is added to the loss function to roughly favor the same fitting
quality for all experiments. The Particle Swarm Optimization (PSO) algorithm is employed for solving the
optimization problems. Moreover, we investigate a situation where each experiment is performed on salt
samples with slightly different material properties. As discussed before, the goal is to obtain a single set of
representative material parameters. For this purpose, synthetic experiments are employed, such that quality
assessment of the proposed calibration strategy is possible. Finally, a sensibility analysis is carried out to
investigate the influence of some material parameters and to clarify the possible difficulties when performing
the optimization process.

The remainder of this paper is organized as follows. Section 2 presents experimental results obtained
from a triaxial test on a salt rock. The experimental results serve as a guide for the choice of our constitutive
model, which is presented in Section 3. Once the model is defined, the calibration strategy adopted in this
work is discussed in Section 4. In Section 5, the model validation against an experimental result is presented,
and the calibration strategy is tested and investigated in different situations. Finally, Section 7 closes our
presentation.

2. Experimental methodology and results

To give additional insights into the mechanical behavior of salt rock and to provide a benchmark for the
constitutive model employed in this work, we briefly discuss in this section a triaxial test performed on a salt
rock. The experiment was performed on the Z3 Leine rock salt provided by the Institut fur Gebrismechanik
GMBH (IFG), Germany. The Z3 Leine rock salt originated from the Bernburg mine in Germany, it is very
homogeneous (> 98% NaCl), colorless, and no obvious layering is visible. The grain size is less than 10 mm
and the core sample was prepared as a 1-inch diameter and 2-inch long cylindrical shape. Additionally, the
sample was stored inside an airtight bag and kept in a watertight container.

We show here the methods and results of a cyclic loading test on the Z3 Leine rock salt. The experimental
data is generated as testing data to assess the ability of our constitutive computer model to describe salt
behavior under cyclic loading conditions. The experiment was carried out in a standard triaxial cell operating
at room temperature (21°C). The choice for room temperature testing was made to keep the experiment
as simple as possible. The triaxial cell was built in-house (Energy Transition Campus Amsterdam, ETCA)
with an axial and radial stress limit of 95 MPa. The axial and radial displacements were measured during
the test. We first loaded the cylindrical sample isostatically to 12.9 MPa and let the samples consolidate
until the measured axial and radial strain equilibrated. After equilibrium, the radial stress was kept at 12.9
MPa for the duration of the experiment, whereas the axial stress was increased to 23.5 MPa (at 2.0 MPa/hr)
and kept at this stress for 4 days and thereafter, decreased back down to 12.9 MPa (at 2.0 MPa/hr) followed
by a consolidation for another 2 days. The 4 days of high axial stress and 2 days of low axial stress were
repeated for other four axial stress steps, namely, 26.0/12.9 MPa, 27.5/12.9 MPa, 31.0/12.9 MPa, 33.5/12.9
MPa (see Fig. 1). Figure 1 also shows axial and radial strains, both measured during the experiment, and
volumetric strain (calculated) versus time. In this case, all five differential stress steps show axial shortening
and volumetric shrinkage, whereas the radial strain shows dilation in all differential stress steps.

A closer look at this experiment can provide valuable insights into the modeling of salt mechanics. For
this purpose, the left graph of Fig. 2 shows a zoomed view of the last loading stage (i.e. from 12.9 to 33.5
MPa). Notice that the black dashed line indicates the previous maximum stress of 31.0 MPa. When the
axial stress goes from point A to point B, the corresponding strain goes from point A’ to B’, as indicated
by the dashed red curve. As can be seen, the strain increment is relatively small along the stress path
A-B. However, when the axial stress exceeds the maximum stress ever applied to the sample during the
experiment, which at this point is 31.0 MPa, an abrupt increase in strain is observed from point B’ to C’.
This suggests that an additional inelastic strain has been triggered during the stress path B-C. This can be
also concluded from the right graph of Fig. 2, which shows the corresponding stress-strain relation during
the loading path A-B-C. To facilitate the visualization, notice that the light and dark gray areas in the two
graphs of Fig. 2 correspond. The right graph shows that from point A” to B”, the salt sample behaves as a
(visco)elastic material. However, from point B” to C” there is a large increase in strain for a relatively small
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Figure 1: Experimental results obtained from a triaxial test performed on the Z3 Leine salt rock sample.

stress increment. This is a characteristic of plastic (or viscoplastic) deformation, and it can be observed in
every unloading/reloading cycle during the experiment.

33.5 MPa

31.0 MPa

Figure 2: Zoomed-in view of a reloading step of the experiment that allows for identification of both viscoplastic and viscoelastic
deformations.

Finally, the right graph of Fig. 2 shows a hysteretic effect during the unload/reload path. The unload
path goes from point B” to point A” and the load path goes from point A” back to B”. The fact that
these two paths are not the same is an indication of the hysteretic effect. It is well-known that viscoelastic
materials present this type of behavior during loading/unloading cycles. This indicates that, in addition
to viscoplasticity, the salt rock also presents a viscoelastic behavior. This hysteretic effect is actually a
manifestation of the well-known reverse creep.

3. Model formulation

Following the infinitesimal deformation assumption, the total strain can be decomposed into different
independent contributions by different mechanisms. The first contribution accounts for the instantaneous
elastic response. Reverse creep, which is observed after an unloading step, is interpreted as a time-dependent
recoverable strain (i.e. viscoelastic) and is described by a Kelvin-Voigt element [24]. Transient creep, on the
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other hand, is regarded as a time-dependent inelastic deformation (i.e., viscoplastic) [23]. Finally, steady-
state dislocation creep is captured by a dashpot element following a power-law function. In this manner,
the total strain can be written as

εεε = εεεe + εεεve + εεεvp + εεεcr, (1)

where εεεe, εεεve, εεεvp and εεεcr denote the elastic, viscoelastic, viscoplastic and steady-state creep strain tensors,
respectively. Next, the specific models for each of these contributions are described.

3.1. Elastic strain

For convenience, we define a function of Poisson’s ratio, ν, as C = C(ν), such that C : R→ R3×3×3×3 is
a 4th-order tensor with elements given by

Cijkl(ν) =
ν

(1 + ν)(1− 2ν)
δijδkl +

1

2(1 + ν)
(δikδjl + δilδjk). (2)

The time-independent elastic strain tensor at any time ti can be calculated with the linear elasticity,
assuming isotropic properties, i.e.,

εεεe(ti) = C−1
1 : σσσ(ti), (3)

where C1 is the constitutive 4th-order tensor, defined as

C1 = E1C(ν1). (4)

Here, E1 and ν1 denote the Young’s modulus and Poisson’s ratio associated to the elastic deformation,
respectively.

3.2. Viscoelastic strain

The solution for the time-dependent elastic (i.e. viscoelastic) strain, represented by a Kelvin-Voigt
element, for continuous stress functions has been studied in the literature [32]. However, experimental data
sets are discrete, not continuous. Therefore, in this work, we present a solution strategy for discrete stress
conditions.

Towards this end, consider a discrete stress function as depicted in Fig. 3. The viscoelastic strain (i.e.,
for the Kelvin-Voigt element) subjected to this discrete stress condition reads

εεεve(ti) = C−1
2 (ti) : σσσ0 +

i−1∑
j=0

C−1
2 (ti − tj) : ∆σσσj+1, (5)

where

C−1
2 (t) =

1

E2

(
1− e−

E2
η2

t
)
C−1(ν2) (6)

holds. Here, σσσ0 represents the stress tensor at t = t0 and C(ν2) is defined by Eq. (2). Moreover, E2 and
ν2 denote the Young’s modulus and Poisson’s ratio of the spring in the Kelvin-Voigt element, and η2 is the
dashpot viscosity of the same element.

σ(t)
Δσi

σ0

t1t0 t2 ti-1 ti ti+1

Δti

Figure 3: Discrete stress path in time.
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3.3. Viscoplastic strain

Following Perzyna’s theory [21, 23], the viscoplastic strain rate is expressed as

ε̇εεvp = µ1

〈
Fvp

F0

〉N1 ∂Qvp

∂σσσ
, (7)

where µ1 and N1 are material parameters, F0 is a reference value, and the operator ⟨·⟩ denotes the ramp
function. The yield function [21] is given by

Fvp(α,σσσ) = J2 − (−αIn1
1 + γI21 )

[
exp (β1I1) + β

√
27J3

2
√
J3
2

]m

(8)

in which n1, γ, β1, β and m are material parameters. In addition, an associative viscoplastic deformation
mechanism is considered, implying that the potential function Qvp in Eq. (7) is equal to the yield function
Fvp of Eq. (8).

Moreover, denoting the deviatoric stress tensor as s, the stress invariants in Eq. (8) can be written as

I1 = tr(σσσ) + σt, J2 =
1

2
s : s, and J3 = det(σσσ), (9)

where σt is the tensile strength of the rock.
The hardening parameter in Eq. (8) characterizes the behavior of the yield function. The hardening rule

adopted in this work is

α =
a1[(

a1
α0

) 1
η

+ ξ

]η , (10)

where η, a1, α0 are material parameters. In particular, α0 denotes the initial configuration of the yield
surface. Additionally, ξ is the accumulated viscoplastic strain, which is given by

ξ =

∫ t

t0

√
ε̇εεvp : ε̇εεvpdt. (11)

Note that, before any viscoplastic deformation takes place, Eq. (11) results in ξ = 0 and Eq. (10) leads
to α = α0, as expected. Furthermore, α → 0 when ξ → ∞, which causes the yield surface to assume the
position of the short-term failure boundary. Figure 4 shows the yield surface (i.e. Fvp(α,σσσ) = 0) for different
values of hardening parameter α.
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40

J 2
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= 0.0007

= 0.0004

= 0.0

Failure boundary

Figure 4: Yield function for the viscoplastic model for different hardening parameters.
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Once the viscoplastic strain rate is obtained, the viscoplastic strain at time ti is obtained by performing
a time integration and using backward Euler scheme, i.e.,

εεεvp(ti) = εεεvp(ti−1) + ∆tε̇εεvp(ti), (12)

in which ∆t = ti − ti−1. Note that the viscoplastic strain rate is also computed at ti due to the implicit
formulation.

3.4. Dislocation creep strain

In this study, we neglect pressure solution creep and consider dislocation creep only, as most of the
available data in the literature are conducted under deviatoric stresses exceeding 5 MPa [33]. Dislocation
creep is often modeled as using a power law [34], which reads

ε̇εεcr = A exp

(
− Q

RT

)
qn−1s, (13)

where A and n are material parameters, Q is the activation energy, T is temperature and R is the universal
gas constant (R = 8.32 JK−1mol−1).
Similar to the viscoplastic strain, the creep strain at time ti is obtained by

εεεcr(ti) = εεεcr(ti−1) + ∆tε̇εεcr(ti), (14)

where implicit time integration is also employed.

4. The model calibration strategy based on ensemble of data sets

In this section, we present the developed calibration strategy adopted to determine the material param-
eters of the multi-physics constitutive model. As summarized in Table 1, the multi-physics model entails 19
material parameters2 in total. Any manual strategy to fit them would be certainly inapplicable. Moreover,
performing optimization in a 19th-dimensional space is cumbersome and prone to suffer from the local opti-
mum traps or too many possibilities to match the given data set. As a remedy to this significant challenge,
in this study, we propose a strategy to adjust the material parameters separately in three different groups
as follows. The first group, i.e., group 1, comprises the parameters associated with the dislocation creep
model. The second group, i.e., group 2, is the union of the material parameters representing both elastic
and viscoelastic models. Finally, the parameters related to the viscoplastic model are considered in the third
group, i.e., group 3. The sequence of calibration goes from group 1 to 3. A brief discussion of the calibration
steps of each group is provided below.

Table 1: Material parameters to be calibrated.

Group Model Parameters
1 Dislocation creep A, n

2
Elastic E1, ν1
Viscoelastic E2, ν2, η2

3 Viscoplastic
µ1, η, N1, n1, β, m
a1, β1, γ, α0, k, σt

2The variable α0 defines the initial position of the yield surface. Therefore, it is not strictly a material parameter but rather
an initial condition. Nevertheless, for the purposes of this work, α0 is also regarded as a material parameter.
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4.1. Group 1: Dislocation creep model

As expressed in Eq. (13), the creep model depends on 2 material parameters: A and n. Typical values
of n for dislocation creep range between 3 to 7 [35]. Based on this information, we adjust parameters A
and n such that the slopes of the creep strain curve match those from the experimental data. For example,
Figure (5) shows the axial strain measured from the experimental results and the target slopes (stationary
creep strain rates) represented by the magenta lines. For this step, only the solution provided by Eq. (14)
is necessary, since only the slopes of the curves are required.
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Figure 5: Steady state creep rates (slopes) represented by the magenta lines.

The material parameters found for the dislocation creep model are summarized in Table 2.

4.2. Group 2: Elastic and viscoelastic models

For the elastic model, the material parameters are the Young modulus and Poisson’s ratio. The latter can
be determined by the ratio between radial and axial strains. Additionally, is it assumed that the Poisson’s
ratio for elastic and viscoelastic elements are the same, i.e., ν1 = ν2. The Young’s modulus, E1, can be
obtained by the slope Ψ of the unloading/loading path, as illustrated in Fig. 6. Finally, the values of E2

and η2 are adjusted all together to match the distance D and the angle ϕ of the average unloading/loading
slope.

For the elastic and viscoelastic contributions of the constitutive model, the material parameters obtained
based on the above described procedure are shown in Table 3.

4.3. Group 3: Viscoplastic model

As summarized in Table 1, the viscoplastic model requires the definition of 12 parameters. Although
different types of salt rocks and the presence of impurities may produce different values for these material
properties, typical values for salt rocks can be found in the literature [23, 21]. The parameter γ is associated
with the short-term failure boundary, whereas β, β1 and m account for the influence of Lode’s angle. The
position of the dilatancy boundary can be adjusted mainly through parameters β1 and n1. Also, F0 is a
reference value and k is regarded as zero, meaning that an associative flow rule is adopted in this work.
These parameters are summarized in Table 4.

The remaining parameters µ1 and N1 relate to the rate-dependent behavior of the salt rock and should
be calibrated for specific samples. Similarly, the hardening rule described by Eq. (10) depends on a1 and

Table 2: Material parameters for Group 1.

Parameter Value Unit
n 3.0 -
A 1.1× 10−21 Pa−ns−1
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Figure 6: Features (ϕ and D) observed when adjusting the elastic and viscoelastic parameters.

Table 3: Material parameters for Group 2.

Parameter Value Unit
E1 102 GPa
ν1 0.32 -
E2 42 GPa
ν2 0.32 -
η2 2.5× 105 GPa.s

η, which should also be calibrated. Additionally, the initial position of the yield surface is defined by the
parameter α0, which depends on the stress history of the rock sample. The definition of α0 is very important
for the accuracy of the predictions, in the presence of viscoplasticity.

Based on the above discussion, from the 12 material parameters associated with the viscoplastic model,
only µ1, N1, a1, η and α0 are to be determined. The remaining parameters are taken from typical values
found in the literature. Next, the strategy developed in this work for obtaining these sets of parameters is
described.

Table 4: Fixed material parameters for the viscoplastic element.

Parameter Value Unit
n1 3 −
β1 4.8× 10−3 MPa−1

β 0.995 −
m −0.5 −
γ 0.095 −
F0 1.0 MPa2

k 0.0 −

4.4. Optimization strategy

As shown in the previous subsections, the constitutive model depends on 19 material parameters. Let us
denote the entire set of material parameters as m ∈ Rd×1, where d = 19. Furthermore, for the purpose of
the optimization procedure, let us split m in two subsets: w ∈ Rw×1, denoting the material parameters to
be optimized; and k ∈ Rk×1 comprising the material parameters that are fixed. Mathematically, m = w∪k,
which implies that w + k = d. As discussed before, the material parameters to be optimized are

w =
[
µ1 N1 a1 η α0

]T
, (15)
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whereas k comprises all the remaining material parameters, which are fixed (Table 4). Note that the
set of material parameters to be optimized (w) belong exclusively to the viscoplastic contribution of the
constitutive model.

The strain tensor for a certain experiment i is then obtained by

εεεi(w, t) = f(w,k,σσσi(t)) for i ∈ [1, · · · , N ], (16)

where N is the number of experiments and σσσi(t) is the specific stress condition applied to experiment number
i.

For each experiment i, we define a loss function Fi(w) by taking the Mean Absolute Percentage Error
(MAPE) of the axial (εa) and radial (εr) strains, i.e.,

Fi(w) =
1

Nt

Nt∑
j=1

(∣∣∣∣∣∣∣∣εa,i(w, tj)− ε∗a(tj)

ε∗a(tj)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣εr,i(w, tj)− ε∗r(tj)

ε∗r(tj)

∣∣∣∣∣∣∣∣) , (17)

where || · || represents the absolute value, Nt is the number of time steps in experiment i, and εεε∗(tj) is the
true deformation measured at time tj . The MAPE metric represents an average of the percentage error at
each time ti. By considering the percentage error, the same importance is given to the errors in both the
beginning and the end of the experiment.

When more than one experiment is considered, say i experiments, the loss functions associated with each
experiment are combined by taking the Mean Squared Error (MSE) plus a regularization term, i.e.,

Li(w) =
1

i

i∑
j=1

F 2
j (w) + ϕσ2, (18)

in which ϕ is the regularization factor and σ2 is the variance of the errors in all i experiments. The
incorporation of a regularization term is designed to mitigate the risk of the optimization process becoming
overly specialized to a single experiment, thereby compromising its generalizability to other experiments.
This is further discussed in subsection 4.4.2.

Every time a new experiment is added, an optimization problem is solved to obtain the best set of
material properties for that particular experiment only. For a given experiment #i, for example, this is
achieved by minimizing the corresponding loss function Fi. In other words, the set of material parameters
resulting from this process is defined as

wF
i ≈ argminFi(w) ∀ w ∈ P, (19)

where P ⊂ Rw×n is the initial population distribution, with n denoting the initial population (swarm) size.
The approximate sign “≈” is used in Eq. 19 to admit the possibility of obtaining sub-optimal or, at least,
approximate solutions.

Once the single experiment optimization has been performed for experiment #i, the set of parameters
wF

i is added to the population of the next full optimization, which considers all experiments from 1 to i.
That is,

wL
i ≈ argminLi(w) ∀ w ∈ P ∪ Fi ∪ Li. (20)

Here, Fi and Li represent the union of the solutions obtained from optimizing Equations (19) and (20),
respectively. In other words,

Fi =

i⋃
j=1

wF
j and Li =

i−1⋃
j=1

wL
j . (21)
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Notice that the full optimization (Eq. 20) is performed with the initial population plus the individuals
contained in sets Fi and Li. This means that the set of parameters obtained from the previous full opti-
mizations is also considered for the current full optimization. In this manner, the calibrations of subsequent
experiments do not start from scratch, as they consider the results from previous calibrations.

The complete procedure is described in Algorithm 1. Notice that F and L are initially empty sets.
Moreover, when only one experiment is available (i = 1), there is no full optimization, so L remains empty.
After the second experiment has been added, full optimizations are performed and w̄L

i are added to L. The
algorithm loops over N experiments, including them one by one to the calibration process.

Algorithm 1 Strategy for simultaneous calibration of a set of experiments.

F = ∅
L = ∅
for i← 1 · · ·N do

wF
i ≈ argminFi(w) ∀ w ∈ P

F← F ∪wF
i

if i > 1 then
w̄L

i ≈ argminLi(w) ∀ w ∈ P ∪ F ∪ L
L← L ∪wL

i

end if
end for

4.4.1. Optimization algorithm

The solutions of the optimization problems (Equations 19 and 20) are obtained by the Particle Swarm
Optimization (PSO) algorithm [36, 37]. The PSO is a meta-heuristic optimization algorithm based on
population intelligence. An initial population is created within the search space, and each member of the
population represents a possible solution. Each individual is assigned an initial velocity so that they can
move. For each time step (iteration), the velocity of a certain particle i is computed as

vt+1
i = ωvt

i + c1r1
(
pt
i − xt

i

)
+ c2r2

(
gt
i − xt

i

)
, (22)

where ω, c1 and c2 are weights given to the previous velocity (inertia), particle’s best position (pt
i) and

swarm’s best position (gt
i), respectively. Moreover, r1 and r2 are random vectors between 0 and 1. With

this new velocity, the position of particle i is updated by

xt+1
i = xt

i + vt+1
i . (23)

Once all particles have their positions updated, the algorithm proceeds to the next iteration. This process
is repeated until a stop criterion is reached.

4.4.2. Multi-objective function optimization

Solving an optimization problem for multiple experiments simultaneously (Eq. 20) consists of multi-
objective function optimization, since the goal is to minimize the loss functions Fi for all experiments. This
type of problem admits an infinite number of solutions that are not dominated by other feasible solutions,
which means that they are all acceptable solutions to the minimization problem. This set of solutions is
called the Pareto optimal front and is illustrated in Fig. 7 for a situation where only two experiments are
considered.

Although all solutions along the Pareto front are admissible, we notice that the solution at point A
provides a good fit for experiment #1 and a sub-optimal solution for experiment #2. Similarly, point C
provides a better fit for experiment #2 than for #1. On the other hand, point B provides a solution that is
equally good for both experiments, since F1 ≈ F2, and therefore should be preferred.
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Figure 7: Multi-objective optimization and Pareto front. Experiments #1 and #2 in this figure are only meant for illustration
purposes.

To “encourage” the solution to stay along the dashed line of Fig. 7 we penalize the loss function Li when
F1 · · · FN are too different from each other, that is, when the variance is high (see Fig. 8). Mathematically,
this can be written as

Li(w) =
1

i

i∑
j=1

F 2
j (w) + ϕ

1

i

i∑
j=1

[
Fj(w)− F̃ (w)

]
︸ ︷︷ ︸

σ2

=
1

i

i∑
j=1

F 2
j (w) + ϕσ2, (24)

where F̃ (w) is the average error of all experiments, as indicated in Fig. 8, and ϕ is an arbitrary regularization
factor. When variance is high (Fig. 8-a), the regularization term is large, thus penalizing the loss function
Li. When variance is close to zero (Fig. 8-b), which means that the fit quality for all experiments is about
the same, the regularization term tends to vanish from Eq. (24).

Exp#1

M
A
P
E

Exp#2 Exp#N

F1(w) F2(w) FN(w)

σ2

Exp#1

M
A
P
E

Exp#2 Exp#N
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F2(w)

FN(w)
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F(w)
~

F(w)
~

Figure 8: Variance of Fi. (a) High variance, (b) low variance.

5. Results

In the first part of this section, we investigate the capabilities of the proposed constitutive model in
describing the mechanical behavior of salt rocks observed in the laboratory. In the sequence, the optimiza-
tion procedure proposed for the model calibration is explored. We first start by presenting the synthetic
data employed throughout our analysis. Sensitivity analysis is performed to identify the impact of each
material parameter on the model behavior. The PSO algorithm is first employed to calibrate each synthetic
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experiment individually. Then, the calibration strategy is tested for fitting the entire set of experiments as
they become available, as described in Algorithm 1.

5.1. Model validation
The primary purpose of this subsection is to show that the constitutive model presented in Section 3

is able to accurately capture the time-dependent behavior of salt rocks operating in the compressibility
zone (i.e., no tertiary creep) and under cyclic loading conditions. Additionally, we intend to highlight
the importance of each term considered in the proposed constitutive model. Of particular interest is the
description of transient creep, as it is permanently present during cyclic operations. For this purpose, we
consider three models with different characteristics regarding the transient creep description, as shown in
Figure 9. In Model 1, the transient creep deformations are considered to be fully recoverable (elastic).
They thus can be described by the Kelvin-Voigt element presented in subsection 3.2 (see Fig. 9). On the
other extreme, the hypothesis that all the deformation observed during the primary stage of creep is fully
inelastic is assumed by Model 3, in which the viscoplastic model presented in subsection 3.3 is employed.
Finally, a combination of both hypotheses is assumed by Model 2, where the viscoelastic element (Voigt
element) is combined with the viscoplastic element. It should be stressed that the terminologies “fully-
elastic”, “hybrid” and “fully-inelastic”, employed in Fig. 9 to designate the models, refer exclusively to the
underlying assumption of each model regarding the transient creep stage. For instance, Model 1 is not fully
elastic as a whole, but the transient creep stage is regarded as such.

σ

σ

σ

Fully
inelastic

Fully
elastic (Model 1)

(Model 2)

(Model 3)

Hybrid

Figure 9: Models with different assumptions regarding the transient creep.

The models illustrated in Fig. 9 are now used to fit laboratory experimental data. The experimental
setup and salt rock details are presented in Section 2. It can be verified from Fig. 10 that Model 1 can
be calibrated to properly describe the transient creep during the first step load. However, the assumption
that transient creep strains are fully recoverable implies that most of the deformation should be reversed
when the load is removed. This is precisely what we observe in the zoomed-in graph on the left of Fig. 10,
where the unloading takes place at around 100 hours. As expected, the total strain obtained with Model 1
is almost fully recovered after unloading, but this is not observed in the experimental results. In fact, only
a small strain decrease is observed when the load is removed. Furthermore, the stress-strain graph in Fig.
11 shows that Model 1 provides a completely wrong behavior. This shows that transient creep is not fully
elastic, and therefore cannot be described by a simple Kelvin-Voigt element.

It can be verified in Fig. 11 that Models 2 and 3 provide almost identical results, and both of them are
able to describe the experimental data. In spite of that, the zoomed-in graph in Fig. 11 clearly shows that
Model 3 is unable to capture the reverse creep (hysteretic effect) observed during the unloading/reloading
step. By contrast, the Kelvin-Voigt element of Model 2 can be tuned to properly describe reverse creep.

6. Calibration procedure

In this section, we investigate the calibration procedure described in Section 4. A set of synthetic
experiments is designed to test the proposed strategy. The idea is to simulate a situation in which the
experiments are provided one at a time, and the number of experiments available is not sufficient for a
proper model calibration. In this context of high uncertainty, the goal is to perform a model calibration as
good as possible with the experiments available and also to quantify the associated uncertainties.
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Figure 10: Total strain curves obtained with three different models.

6.1. Synthetic experiments

To overcome the lack of available laboratory experiments, in this work we consider 6 synthetic experiments
in which the correct model parameters are known, thus providing the possibility of quantifying the calibration
accuracy. The idea is to simulate a situation, where the experiments are made available one at a time, and
the calibration takes place with the available data. This means that the calibration is first performed on
Exp. #1. Then, Exp. #2 is made available and calibration is performed considering experiments #1 and
#2. This is repeated until all six synthetic experiments are available.

The synthetic experiments are shown in Fig. 12. The stress conditions were chosen as shown in the
left column of the figure. The graphs in the middle column show the stress path of each experiment with
the colors representing time. In these same graphs, the initial yield surface of the viscoplastic model is also
plotted for reference, according to Eq. (8). Finally, the corresponding strain responses are shown in the
right column of Fig. 12. In all stress conditions shown in Fig. 12, the axial load is larger than the confining
pressure, which means that the same Lode angle (θ = 60o) was considered in all experiments.

All experiments shown in Fig. 12 use the same set of material properties. The dislocation creep (Group
1) and viscoelastic (Group 2) parameters are shown in Tables 2 and 3, respectively. For the viscoplastic
element, the material parameters that are fixed (i.e., not obtained by calibration) are shown in Table 4.
Finally, Table 5 presents the material parameters meant to be obtained through the calibration process.
Even though these values are known, they are regarded as unknown so that we can test the optimization
procedure.
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Figure 11: Stress-strain curves showing the unloading/loading step (reverse creep).
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Figure 12: Synthetic experiments. Graphs on the left show the axial and radial stresses for each experiment. The middle
column shows the corresponding stress path in the I1 −

√
J2 plane, and the initial yield surface is also indicated according to

Eq. (8) for α = α0. The right column presents the resulting deformations of the synthetic sample.

6.2. Global sensitivity analysis (GSA)

Before proceeding with the model calibration, we investigate how the material parameters presented in
Table 5 affect the model results. For this purpose, we perform global sensitivity analysis (GSA), where all
parameters are varied at the same time so that we can identify not just how each parameter affects the
results individually, but also the interactions between them [38].
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Table 5: Material properties for the synthetic experiments.

Parameter Value Unit
µ1 6.898× 10−12 s−1

N1 3 −
a1 1.8× 10−5 MPa2−n

η 0.82 −
α0 0.002 −

1 N1 a1 0

Spearman

Pearson

Mutual Info.

F-test
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0.02 0.03 0.3 0.2 0.2

0.03 0.03 0.7 0.4 1

0.04 0.03 1 0.5 0.9 0.2

0.4

0.6

0.8

1.0

Figure 13: Table of correlation of each material parameter with the loss function. Darker and lighter colors refer to weaker and
stronger correlations, respectively.

The strategy consists of generating a large population (∼40 thousand) of material parameter sets. We
build random uniform distributions for each material parameter within specified ranges, as shown in Table
6. For each set of parameters, we compute a loss function by comparing the resulting strains with a base
solution. The loss function is computed as in Eq. (17), with the set of parameters summarized in Table 5
regarded as the base solution. In this manner, we can analyze how the changes in the material parameters
affect the values of the loss function.

Table 6: Ranges of variation of each material property for the uniform distributions.

Parameter logµ1 N1 log a1 η logα0

Max. -10 4 -4 1.5 -1.9
Min. -12 2 -6 0.6 -2.8

There are many ways GSA can be performed. One of them is computing statistical correlations between
the material parameters and the loss function3. The Pearson and Spearman correlations are commonly
applied to identify linear and non-linear relationships, respectively, between variables [39]. Additionally,
univariate F-test is also able to capture linear relations, whereas mutual information can capture any type of
dependency. It is important to stress that both Pearson’s correlation and F-test assume normal distributions,
which is not the case here. Nevertheless, the four methodologies are employed to identify relationships
between the material parameters and the loss function. According to these methodologies, Fig. 13 reveals
a strong relationship between the loss function and parameters a1, η and α0, the first two related to the
hardening rule, and the last one defining the initial yield surface. All four methodologies point to a weak
dependency on the rate-dependent parameters µ1 and N1. These results are also confirmed by analyzing
feature importance through a machine learning model and column permutation, as presented in Appendix
A.

The dataset is created by choosing random values within the ranges specified in Table 6. As a conse-
quence, the correlation between the material parameters is strictly zero. When the simulations are performed
on the dataset, the resulting probability distribution of loss function values is shown in the left graph of
Fig. 14. We can see that there is a high probability of loss function values between 0.1 and 1.0, which

3We actually use the logarithm of the loss function as it spans many different orders of magnitude.
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suggests the existence of local minima. To further investigate this issue, we filter the loss function values
larger than 0.1 out of our dataset and compute Spearman’s correlations between all material parameters.
In this manner, we only consider parameter sets that produce reasonably good results (loss function values
smaller than 0.1). These correlations are shown in the right graph of Fig. 14, where a strong relationship
between a1 and η is identified. Weaker dependencies are also revealed between µ1, N1 and α0. This shows
that certain combinations between these variables can produce relatively good results.

A better way to visualize this effect is by computing Spearman’s coefficient as we continuously filter out
the loss function values from 105 down to 10−2. This is shown in Fig. 15, which clearly shows a significant
increment of dependency between a1 and η for loss function values smaller than 1.0. To a lesser degree,
similar behavior can be verified for the pairs µ1−N1 and µ1−α0, as already revealed by the right graph of
Fig. 14. It is important to emphasize that all combinations of material parameters were obtained by random
sampling, thus ensuring zero correlation between them. What the results of Figures 14 and 15 reveal is that
all sets of parameters that produce a relatively good solution present a certain (still unknown) correlation
between a1 and η. The sets of material parameters that do not present this correlation do not produce good
results compared to the base case.

To understand the origin of the correlation between a1 and η we use the hardening rule expressed by Eq.
(10). In this equation, we consider α0 = 0.02, η = 0.82 and a1 = 1.8× 10−5. Then we vary the accumulated
viscoplastic strain (ξ) from 0 to 0.0075, which are typical values. The obtained values for the hardening
parameter are shown by the black curve on the left graph of Fig. 16. This curve is regarded as a base case.
Then we can choose different values of a1 and η and check how it affects the hardening parameter α with
respect to ξ. For each pair a1 − η we compute the MAPE and plot the color surface shown in the right
graph of Fig. 16. The true a1 − η pair is indicated by P ∗ in both graphs of Fig. 16. We can see a region in
which the values of a1 and η (P1 to P6) produce hardening curves very similar to the original P ∗. In other
words, whichever pair of values we take in this region, a good result may be produced by the constitutive
model. Moreover, the existence of this region explains the high correlation between a1 and η in the right
graph of Fig. 14 and Fig. 15.

The results obtained from the global sensitivity analysis, particularly the ones in Fig. 16, give an idea
about the behavior of the loss functions for the optimization procedure. These results show the presence of
many local minima in which the optimization algorithm might be trapped, which allows the possibility of
obtaining sub-optimal solutions.

6.3. Single calibrations

The goal of this subsection is to test the Particle Swarm Optimization (PSO) algorithm for finding the
true material parameters of the synthetic experiments presented in Subsection 6.1 (Fig. 12). The idea is
to run individual optimizations for each synthetic experiment and check whether the calibration process
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Figure 14: (Left) Loss function distribution. (Right) Spearman correlations for loss function values lesser than 0.1.
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Figure 16: The left graph presents the behavior of α as a function of ξ for different values of η and a1. The right graph shows
the MAPE for each pair η − a1 compared to the true value P ∗.

can indeed find the global solution, which is shown in Table 5. The hyperparameters used in the PSO
algorithm (Eq. 22) are ω = 0.8, c1 = 0.8 and c2 = 0.4, the algorithm is set to perform 100 iterations, and
the population size is 1280. To maximize coverage of the search domain, Latin Hypercube Sampling (LHS)
is adopted and the ranges of each material property are those presented in Table 6.

The calibration outcomes obtained for each synthetic experiment are shown in Fig. 17. The left column
of this figure shows a cobweb representation of the material properties. The gray lines represent the initial
population, the red line denotes the set of properties obtained from the optimization process, and the
true values are plotted in blue for comparison. The rightmost vertical bar in the cobwebs represents the
loss function Fi (MAPE), according to Eq. 17, and its corresponding values for the best solution are
also indicated. The right column shows the total strains obtained with the calibrated properties for each
experiment, and they all agree very well with the (synthetic) experimental results. For experiments #3 and
#5 the values of a1 and N1 obtained from optimization differ from the true values. However, as revealed by
the GSA, these two parameters have a secondary importance compared to the others, so these disparities do
not have much impact on the behavior of the constitutive model. The values obtained from the calibrations
of each experiment are summarized in Table 7, along with the corresponding errors.

6.4. Full calibrations

In this test case, we aim to test the proposed calibration strategy in a more realistic scenario. In
laboratory conditions, even if the rock samples are taken from the same region with a similar appearance,
it is not possible to guarantee they will present exactly the same mechanical properties. Additionally, in
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Figure 17: Synthetic experiments. (Left) Cobweb representation of the material parameters. (Right) Comparison between the
true synthetic experiments and the calibrated model.

general, the experiments are performed sequentially, meaning that they are not all available simultaneously.
Considering that each creep experiment takes at least 20 to 30 days, approximately, it would be convenient
to have partially calibrated models with the experiments at hand and include new experiments to the
calibration as they become available.

To reproduce such a scenario, we take the reference values presented in Table 5 and randomly disturb the
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Table 7: Material parameters obtained from the calibration process.

logµ1 N1 log a1 η logα0 Loss (Fi)
Reference -11.1613 3.0000 -4.7447 0.8200 -2.6990 0.0
Exp. #1 -11.1414 2.9815 -4.7450 0.8201 -2.6991 6.02× 10−8

Exp. #2 -11.3425 3.1648 -4.8521 0.8772 -2.6993 1.47× 10−5

Exp. #3 -11.9118 3.9593 -4.7436 0.8202 -2.6951 2.39× 10−4

Exp. #4 -11.1942 2.9800 -4.7543 0.8256 -2.6987 7.13× 10−6

Exp. #5 -11.6245 3.4175 -4.8789 0.8925 -2.6972 7.54× 10−5

Exp. #6 -11.2350 3.0760 -4.6827 0.7875 -2.6978 1.33× 10−6

material properties of each rock sample. In this manner, all experiments are performed with rock samples
with slightly different material properties. The levels of perturbations are ±5% for logµ1 and N1, ±2%
for log a1 and η, and ±1% for logα0. The material properties for the rock samples of each experiment are
presented in Fig. 18. The graphs in this same figure show the total strains obtained with the reference
properties (i.e. those of Table 5) and the modified properties. It can be verified by visual comparison that
the strain curves do not differ much from the reference case, but those small property variations do cause
noticeable differences. Since the material properties of each experiment are different from each other, it is
impossible to perfectly fit all experiments. Nevertheless, the goal of the calibration is to find a single set of
material properties that fits the experiments as good as possible. Additionally, the calibration is performed
in steps, including one new experiment at a time, according to Algorithm 1.
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Figure 18: The black curves (Ref.) are obtained with the reference properties of Table 5, whereas the blue curves (Mod.) are
created by perturbing (modifying) the reference properties. The modified material parameters are indicated below each graph.

The result of the calibration procedure is presented in Fig. 19. The first line of this figure represents step
1, in which only experiment #1 is available for calibration. Once the model is calibrated against experiment
#1, the model is used to predict the behaviors of the other experiments4. Above each graph is indicated the
Fi error, as in Eq. (17), for each experiment. The loss function values Li, given by Eq. (18), are presented
on the left for the calibrated (blue) and predicted (red) experiments. In the first step, only experiment #1 is
available, so a single optimization (Eq. 19) is performed using the initial population P to obtain wF

1 . When
experiment #2 is available in the second step, another single optimization, with P as the initial population, is
performed on it, which provides the set of parameters wF

2 . Still on the second step, a combined optimization
(Eq. 20) is performed upon experiments #1 and #2 including wF

1 and wF
2 among the initial population P.

The combined optimization between experiments #1 and #2 provides wL
2 , which should be included in the

4Even though this would never be possible in real life, we use the remaining experiments for prediction in order to check
predictability.
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Lcal : 0.018
Lpred : 3.243

F1 : 0.018

Exp. Prediction Calibration

F2 : 1.936 F3 : 1.033 F4 : 0.059 F5 : 0.102 F6 : 0.005

Lcal : 0.029
Lpred : 2.936

F1 : 0.028 F2 : 0.030 F3 : 1.691 F4 : 1.389 F5 : 0.284 F6 : 0.059

Lcal : 0.210
Lpred : 0.268

F1 : 0.151 F2 : 0.119 F3 : 0.077 F4 : 0.002 F5 : 0.150 F6 : 0.024

Lcal : 0.220
Lpred : 0.180

F1 : 0.115 F2 : 0.136 F3 : 0.044 F4 : 0.021 F5 : 0.114 F6 : 0.015

Lcal : 0.206
Lpred : 0.014

F1 : 0.110 F2 : 0.158 F3 : 0.051 F4 : 0.024 F5 : 0.109 F6 : 0.014

Lcal : 0.150

F1 : 0.126 F2 : 0.106 F3 : 0.037 F4 : 0.021 F5 : 0.068 F6 : 0.023

Figure 19: Calibration process including one experiment at a time.

combined optimization of the subsequent steps as well. This whole process is summarized in Table 8 for all
calibration steps.

Table 8: Population sets P, F and L during the calibration steps.

Step Initial population F L Output
#1 P ∅ ∅ wF

1

#2 P wF
1 ∅ wF

2 , w
L
2

#3 P wF
1 , w

F
2 wL

2 wF
3 , w

L
3

#4 P wF
1 , w

F
2 , w

F
3 wL

2 , w
L
3 wF

4 , w
L
4

#5 P wF
1 , w

F
2 , w

F
3 , w

F
4 wL

2 , w
L
3 , w

L
4 wF

5 , w
L
5

#6 P wF
1 , w

F
2 , w

F
3 , w

F
4 , w

F
5 wL

2 , w
L
3 , w

L
4 , w

L
5 wF

6 , w
L
6

It can be verified from Fig. 19 that the combined loss function for the calibrated experiments, Lcal,
substantially increases as more experiments are included in the calibration procedure. At the same time,
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the Lpred is observed to decrease, which suggests that the predictability of the calibrated constitutive model
improves by adding new experiments. Figure 20 plots these two quantities by the number of experiments
available for calibration. On the left graph of this figure, we see that the loss function indeed increases in
the beginning but it remains more or less constant as more experiments are added to the calibration. The
reason for this is, as mentioned before, it is impossible to simultaneously fit all experiments since they have
different material properties, so after a certain point the error is expected to stabilize at a constant level.
On the left graph, however, we see that the more experiments we consider for calibration, the better the
predictions of the constitutive model.
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Figure 20: Loss function values for calibration and predictions.

Equation (18) includes the parameter ϕ as a regularization in the loss function for the combined op-
timization. The results presented in Fig. 19 were obtained with a regularization factor of ϕ = 10. To
investigate how the regularization term affects the calibration process, the same test case is run considering
ϕ = 0, ϕ = 10 and ϕ = 100. The loss function values Li are shown in Fig. 20 as a function of the number
of experiments considered for calibration. The left graph shows the results of the calibration experiments,
where the loss function increases until the third experiment is added and stabilizes at approximately con-
stant values. As expected, the larger ϕ the larger Li since the regularization term becomes larger. The
graph on the right shows the loss function values for the experiments left for prediction. It can be seen
that the loss function values decrease as more experiments are considered for calibration. In other words,
it shows that the constitutive model can make better predictions when more experiments are considered
during calibration. Additionally, it can be verified that for 5 experiments considered during calibration, the
prediction of the 6th experiment is better when ϕ = 10. Since it might be difficult to compare the different
curves in Fig. 20 because of the regularization term, in Fig. 21 only the MSE is shown. In this case, the
comparisons are unambiguously and we can see from the right graph that indeed better predictions are
obtained with ϕ = 10.

As explained before, the sets of properties chosen for each experiment were obtained by randomly dis-
turbing the reference properties of Table 5. Therefore, it would be reasonable to expect that the reference
properties themselves would also provide good performance in fitting all six experiments as well. In Fig. 22
we compare the total strains for all experiments considering the calibrated (red curves) and the reference
(blue curves) set of material properties. The curves in black represent the true values of the synthetic
experiments. It can be verified that experiments #2, #3 and #4 are better fitted by the calibrated parame-
ters, whereas the reference properties perform slightly better for experiments #1, #5 and #6. However, the
mean squared errors (MSE) shown at the bottom of this figure reveal that the calibrated material parameters
present an overall better fit.

The calibrated results presented in Fig. 22 are obtained with a regularization parameter of ϕ = 100.
Different regularization parameters, however, may lead to different calibrated material properties. The
obtained values for ϕ equals to 0, 10 and 100 are summarized in Table 9, along with the reference properties
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Figure 21: Mean squared errors (MSE) for calibration and predictions.
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Figure 22: Constitutive model results obtained with the material properties obtained from calibration and the reference values
from Table 5. The overbar refers to the quantities related to the reference parameters.

for comparison. As shown in this table, the MSE values of the calibrated properties are always smaller than
the reference properties. Interestingly, the material properties obtained through the calibration process are
significantly different from each other and the reference values. Apart from α0, the other material properties
even lie outside the limits of the perturbed properties, as it can be verified in Fig. 18. This can be attributed
to the non-linearity of the viscoplastic model.
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Table 9: Calibrated material properties obtained with different values of ϕ, and the reference properties from Table 5 for
comparison. The last line shows the mean squared error (MSE) for each set of properties.

ϕ = 0 ϕ = 10 ϕ = 100 Reference
µ1 4.51× 10−12 1.83× 10−12 9.77× 10−12 6.89× 10−12

N1 2.98 3.99 3.47 3.00
a1 4.33× 10−5 3.12× 10−6 2.19× 10−5 1.80× 10−5

η 0.60 1.19 0.74 0.82
α0 0.00207 0.00205 0.00202 0.0020

MSE 0.0615 0.0635 0.0609 0.5167

7. Conclusion

Geomechanics of salt caverns for safe cyclic hydrogen storage requires a detailed investigation of the
associated creep mechanisms. For this purpose, we assemble a constitutive model able to capture transient
creep, reverse creep and steady-state dislocation creep. This is achieved by including elastic, viscoelastic,
viscoplastic, and power-law contributions to the constitutive model. The viscoelastic contribution can
capture the hysteretic effect that appears during unloading/reloading stages, also known as reverse creep.
Moreover, it is shown that the viscoelastic element alone is not able to appropriately describe transient
creep, for which a viscoplastic model is indispensable. With this constitutive model, the experimental
results presented in this paper can be successfully described.

An important step in devising and deploying a constitutive model relates to model calibration. Due
to the time scales involved in creep deformations, laboratory experiments in salt rocks are usually very
time-consuming (approximately one month long or even more). Additionally, it takes a lot of experiments
to properly calibrate a constitutive model. There is also the possibility that mechanical properties might
vary from sample to sample, making the calibration process more challenging. In this context, the main
contribution of this paper is to devise a multi-step calibration strategy that takes place on the fly, in the
sense that the constitutive model is calibrated against experiments as they are made available. Determi-
nation of the material parameters corresponding to the elastic, viscoelastic, and dislocation creep can be
done independently because the presented procedure is general and flexible. Another significant contribu-
tion of the present study is on the calibration of the viscoplastic material parameters, which have to be
all tuned simultaneously. Moreover, the choice of the material parameters to be calibrated is discussed,
and a systematic analysis for the impact of these parameters on the constitutive model behavior is also
presented. The calibration strategy consists of sequentially solving multi-objective optimization problems
as new experiments are included.

It is shown that the proposed strategy provides increasingly better results as more experiments are
incorporated into the calibration process. In this manner, calibrated constitutive models are provided
much more efficiently and reliably than the existing procedures in the literature. Additionally, it is shown
that including a regularization term into the loss function is beneficial to promote equal quality fit of the
constitutive model against all experimental data sets. The proposed methodology can be applied to any
constitutive model, and it provides representative material parameters for salt rocks. As such, this work
contributes to improving the accuracy of constructing a suitable constitutive model with reliable material
parameter sets to study the mechanics of salt caverns under cyclic operations. Future studies will incorporate
this characterization procedure in field-scale 3D cavern simulations.

CRediT authorship contribution statement

H.T.H.: Conceptualization, Methodology, Software, Validation, Formal analysis, Visualization, Writing
– Original Draft. M.H.: Conceptualization, Investigation, Writing – Review & Editing. K.B.: Conceptu-
alization, Writing – Review & Editing. A.L.: Investigation. K.B.: Conceptualization, Writing – Review
& Editing. L.S: Conceptualization, Methodology, Writing – Review & Editing H.H.: Conceptualization,
Methodology, Writing – Review & Editing.

24



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

Digital datasets of the results and input data are available upon request.

Acknowledgments

This research was partly supported by Shell Global Solutions International B.V within the project
‘SafeInCave’. The authors also acknowledge members of the ADMIRE and DARSim research groups at TU
Delft for the fruitful discussions during the development of this work. Additionally, the authors acknowledge
the fruitful discussions with the technical staff of Shell Global Solutions International B.V and for providing
the experimental data set used in this work.

Appendix A. Feature importance for sensitivity analysis

Another interesting strategy to measure the influence of each material parameter on the model behavior
is through feature importance, as usually performed in machine learning (ML) applications. Some ML
models, such as linear regression and decision trees, naturally provide feature importance rankings. A more
general approach can be achieved by column permutation. This strategy consists of training a ML model to
predict the target variable (in our case, the loss function). After the training step, the model performance is
evaluated according to a certain metric (e.g. MSE). This establishes a base metric for the ML model. Then,
we shuffle the values of a certain feature (i.e., material parameter), run the model again without retraining,
and check the new metric. Based on how much the new metric is reduced compared to the base metric
we can infer the importance of that feature. A great reduction means the ML model heavily relies on that
feature. Conversely, if the metric barely changes, it means the ML model does not find that feature very
useful. This procedure is performed using the Random Forest algorithm and the results are shown in Fig.
A.23. We can see that parameters µ1 and N1 are of less importance compared to a1, η and α0. This is in
complete agreement with the correlations found in Figure 13.
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Figure A.23: Feature importance according to the column permutation method.
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