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Abstract—While burst LR images are useful for improving
the SR image quality compared with a single LR image, prior
SR networks accepting the burst LR images are trained in a
deterministic manner, which is known to produce a blurry SR
image. In addition, it is difficult to perfectly align the burst LR
images, making the SR image more blurry. Since such blurry
images are perceptually degraded, we aim to reconstruct the
sharp high-fidelity boundaries. Such high-fidelity images can be
reconstructed by diffusion models. However, prior SR methods
using the diffusion model are not properly optimized for the burst
SR task. Specifically, the reverse process starting from a random
sample is not optimized for image enhancement and restoration
methods, including burst SR. In our proposed method, on the
other hand, burst LR features are used to reconstruct the initial
burst SR image that is fed into an intermediate step in the
diffusion model. This reverse process from the intermediate step
1) skips diffusion steps for reconstructing the global structure of
the image and 2) focuses on steps for refining detailed textures.
Our experimental results demonstrate that our method can
improve the scores of the perceptual quality metrics. Code:
https://github.com/placerkyo/BSRD.

Index Terms—Burst SR, Diffusion models, Perceptual quality

I. INTRODUCTION

Super-Resolution (SR) is a low-level vision task for super-
resolving a Low-Resolution (LR) image to its High-Resolution
(HR) image. SR is widely applicable to many real-world tasks,
such as image enhancement on consumer cameras and remote
sensing. SR for super-resolving an LR image is called Single-
Image Super-Resolution (SISR) [1]–[5]. However, SISR is not
an easy task due to its ill-posed nature. In particular, SR
for a degraded LR image is much more difficult in SISR.
Such degraded images are often captured by, for example,
commercially available smartphones.

To improve the SR quality, SR can accept multiple LR im-
ages. Assume that a quasi-static scene is captured many times.
Such a burst shot allows us to capture many burst images with
subtle differences, such as sub-pixel displacements and small
noise. By integrating all the burst images into one [6], the SR
quality can be improved compared with SISR. This type of
SR is called burst SR [7], [8]. Since the burst shot is allowed
in recent smartphones, burst SR is a promising technique.

As with many computer vision tasks, burst SR can be
improved by deep learning (e.g., [9]). In previous burst SR
methods using deep learning, an SR image is reconstructed
in a deterministic manner with a loss function based on the
Mean Squared Error (Fig. 1 (a)). However, such an MSE-based
loss function leads to blurred SR images because the MSE is
minimized by the average of training HR images [10].
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Fig. 1. Comparison between prior models and our model (i.e., BSRD).

To avoid this problem, this paper aims to improve the
perceptual quality of the SR image by probabilistic modeling.
Probabilistic modeling allows us to represent the probabilistic
distribution of sharp SR images corresponding to each LR
image. Among such probabilistic models, our method employs
diffusion models [11], [12] (Fig. 1 (b)) because of their
performance validated in various computer vision tasks.

While the diffusion model begins with a random noise for
image synthesis, the diffusion model should be conditioned
for an output image that fits with input images for image
enhancement and restoration, including SR. In SISR using
the diffusion model such as [13], [14], an input LR image
is used for conditioning the reverse process. Unlike SISR,
however, burst SR accepts multiple displaced LR images. If
such displaced images are directly fed into the diffusion model,
the reverse process may reconstruct the blurry SR image.

This paper proposes a burst SR method in which the
aforementioned burst images are appropriately employed for
improving the perceptual quality of the SR image. The core
contributions of this work are as follows (Fig. 1 (c)):

• To use the diffusion model for burst SR, features useful
for SR are extracted from input burst images and em-
ployed for conditioning the diffusion model.

• Since a diffusion model with between random noise and
output images is not optimized for the SR task, the initial
burst SR image reconstructed by simple burst SR is fed
into the intermediate step of the diffusion model to focus
on refining detailed textures on the burst SR image.
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II. RELATED WORK

A. Burst SR
While a RAW image consisting of RGGB channels with

high bits per pixel resolution (e.g., 14 bits, 16 bits) is captured
by a standard digital camera, the RAW image is converted by
an Image Signal Processing (ISP) to its 8-bit RGB image. Gen-
eral burst SR tasks accept a set of unprocessed RAW images
instead of their processed RGB images for the following two
reasons. 1) Since the function of ISP depends on the camera,
there is a domain gap between the RGB images processed by
different cameras [15], [16]. This domain gap makes it difficult
to apply a universal SR model to various camera images. We
expect that the domain gap between RAW images is smaller.
2) Image conversion from a raw image with high bits per pixel
to its 8-bit RGB image drops useful cues for burst SR.

Many burst SR methods generally consist of four processes:
feature extraction, alignment, fusion, and reconstruction. The
alignment process rectifies image features extracted by the
feature extraction process so that the features are spatially
consistent. This spatial rectification is achieved to align all
images to the reference frame. The aligned features are then
merged by the fusion process. The fused features are fed into
the reconstruction process to acquire the SR image.

Among the four processes, the alignment process is peculiar
and essential to burst SR. If non-aligned features are directly
used for SR, the SR image may be blurred. While the
alignment process is required also for video SR [17]–[20], the
properties of displacements in video frames and burst images
are different. Therefore, the alignment process optimized to
burst SR is required. For example, since simple optical flow
estimation is employed for the alignment process in DBSR [6],
its SR performance is limited because simple optical flow
estimation is not optimized for sub-pixel level flows. In [21],
[22], on the other hand, deformable convolution (DC) [23]
is used for implicit spatial alignment. Adaptively optimized
receptive fields in DC improve the alignment process for burst
SR. The two-step alignment with optical flow estimation and
DC is also proposed in [24].

However, all burst SR methods introduced in Sec. II-A
reconstruct SR images in a deterministic manner, which prones
to blurry SR images.

B. Diffusion Models
A diffusion model consists of the diffusion and reverse

processes. The diffusion process changes an original data (e.g.,
a noiseless image denoted by x0) towards its corresponding
random noise (denoted by xT ) by gradually giving noise
through T steps (e.g., T = 1000 steps). The reverse process,
on the other hand, gradually recovers the original data from
a random noise. Given xt−1 at (t − 1)-th step, t-th step in
the diffusion process predicts xt according to the conditional
probability q(xt|xt−1) as follows:

q(xt|xt−1) := N (xt;
√
αtxt−1, βt), (1)

where N (x;µ, σ) denotes a Gaussian distribution whose mean
and covariance matrix are µ and σ, respectively. 0 < β1 <

β2 < · · · < βT < 1 is a hyper-parameter that adjusts the
variance so that αt := 1− βt. On the other hand, the reverse
process in t-th step predicts xt−1 according to p(xt−1|xt).

Given xt−1, small noise, and xt that is xt−1 added by small
noise, the reverse process described above is trained so that
t-th step can predict this small noise from xt. The reverse
process is generally implemented with U-Net [25].

As mentioned in Sec. I, while the reverse process begins
from random noise for image synthesis, the reverse process
should be controlled to reconstruct an output image that fits
with an input image for SR, as described in what follows.

C. Image Conditioning for Diffusion Models

1) Image Enhancement and Restoration with Diffusion
Models: Diffusion models are applied to various image
enhancement and restoration tasks, such as image deblur-
ring [26], [27], image inpainting [28], [29], and image col-
orization [30], [31]. In all of these methods, input degraded
images are used to condition the diffusion model for each task.

Unlike these methods that begin with a random noise,
SDEdit [32] begins from an intermediate step. SDEdit is
designed for realistic image synthesis from sketches. While
the diffusion model is not trained with sketches, its reverse
process can convert a sketch to its realistic image by denoising
the appropriately-noised sketch from the intermediate step.
While SDEdit is originally proposed for sketch-to-image style
transfer, our proposed method applies the SDEdit-style reverse
process starting from the intermediate step to burst SR.

2) SISR with Diffusion Models: As with other image en-
hancement and restoration tasks mentioned above [26]–[31],
an input degraded image (i.e., LR image in the SR task) is
used for conditioning the diffusion model. In SR3 [13], the LR
image is upscaled by Bicubic interpolation and concatenated
with xt for conditioning. In LDMs [33], features extracted
from the LR image are fed into the middle layers of U-Net in
the reverse process through the cross attention mechanism. As
well as the features extracted from the LR image, the number
of the diffusion step is also used for step-aware conditioning
in Stable SR [14].

Unlike these SISR methods [13], [14], [33], this paper pro-
poses the diffusion model conditioned with burst LR images.

III. PROPOSED METHOD

The feature extraction and alignment modules borrowed
from the deterministic burst SR method (Burstormer [34]) are
explained in Sec. III-A. Our probabilistic burst SR method
(Burst Super-Resolution with Diffusion Model: BSRD) is
proposed in Sec. III-B1. BSRD is augmented by the reverse
process starting from an intermediate step (Sec. III-B2).

A. Feature Extraction and Alignment Modules

Burstormer [34] is one of the state-of-the-art deterministic
burst SR methods. The feature extraction and alignment net-
works in Burstormer are illustrated in Fig. 2. Given B input
burst raw LR images, each of which has four color channels
with W and H pixels, features with B×f×W ×H channels,
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Fig. 2. Feature extraction and alignment in Burstormer [34], which are colored by red and yellow, respectively. Different colors in the feature extraction
process mean spatial displacements.
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Fig. 3. Overview of the feature extraction, alignment, fusion, and reconstruction processes in BSRD. The feature extraction an alignment modules are borrowed
from those of Burstormer, which are shown in Fig. 2. In our proposed fusion module, SFT [35] is included in U-Net and used for conditioning with the LR
features. The reconstruction process is achieved by the reverse process of the diffusion model.

where f denotes the feature dimension, are extracted. Feature
channels colored by different colors mean that these chan-
nels are spatially displaced. These features are fed into the
Burst Feature Attention (BFA) modules for noise reduction
and downsampling. Since BFA is implemented by Trans-
former [36], noise is reduced based on the global structure of
the images. These noise reduction and downsampling can sim-
plify feature alignment. The alignment process consists of the
feature alignment and Reference-Based Feature Enrichment
(RBFE) modules. The hierarchically-aligned features are fed
into the RBFE modules in each of which the Burst Feature
Fusion (BFF) module merges the features of the reference
frame and other frames for feature alignment according to the

reference frame.

The output features of the four hierarchical feature align-
ment modules are fed into the fusion module in which the
features are merged by average pooling. The merged features
are fed into the reconstruction module for the final SR image.

Since the hierarchical feature representation is powerful for
image alignment in burst SR as well as for various computer
vision tasks, our method employs the feature extraction and
alignment processes used in Burstormer. On the other hand,
the fusion and reconstruction processes are achieved by the
diffusion model in our method described in what follows.
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Fig. 4. Reverse process from the intermediate step. Instead of the reverse process starting from T -th step, the initial burst SR image is appropriately noised
and fed into the diffusion model from t-th step.

B. BSRD: Burst Super-Resolution with Diffusion Model

1) Burst Feature Conditioning for Diffusion Models: As
mentioned in Sec. III-A, the feature extraction and alignment
modules are borrowed from those of Burstormer, which are
shown in Fig. 2. While the fusion and reconstruction processes
in Burstormer are deterministic, BSRD employs the diffusion
model for probabilistic burst SR, as illustrated in Fig. 3.

a) Fusion: In BSRD, features provided from burst LR
images by the feature extraction and alignment modules are
used for conditioning the diffusion model to reconstruct an
SR image that fits with input burst LR image. This condi-
tioning should be designed so that the conditioning features
are properly formatted according to the network architecture
of the reverse process in the diffusion model; inappropriate
conditioning decreases the effect of this conditioning. As well
as the reverse process of general diffusion models, that of
BSRD is implemented with U-Net. We assume that hierar-
chical layers in U-Net should be conditioned for better SR
reconstruction. For conditioning hierarchical layers in U-Net,
the output of the alignment module (which is depicted as the
orange cuboids with B × f × W × H channels in Fig. 3)
is rescaled to the xy dimensions of these hierarchical layers
by Bicubic interpolation as depicted by the purple arrows
in Fig. 3. The B channels in each rescaled feature map
are merged as done in Burstormer. For example, the feature
map with B × f × W × H channels is converted to the
one with 256 × W × H . The 256 channels are merged by
a convolutional layer. The merged feature map (denoted by
M ) is fed into U-Net for conditioning. This conditioning is
achieved through Spatial Feature Transformation (SFT) [35].
In SFT, the conditioning feature map with 256 × W × H
(i.e., M in BSRD) is transformed to two feature maps with
fU×W×H channels, where fU denotes the feature dimension
of each U-Net layer, by two independent convolutional layers.
Given these two feature maps (denoted by α and β) and the
original feature map in U-Net (denoted by F with fU×W×H
channels), SFT acquires the conditioned feature map denoted

by F ′ as follows:

F ′ = (1 +α)⊙ F + β (2)

The aforementioned fusion process is performed in all steps
in the diffusion model.

b) Reconstruction: While the reverse process of the
diffusion model in BSRD is conditioned as described above,
the continuous reverse steps are achieved in BSRD as with in
the original diffusion model. This reverse process is regarded
as the reconstruction process in BSRD.

2) Efficient and High-quality SR Reconstruction by the
Reverse Process from Intermediate Steps: In the reverse
process of the diffusion model for image synthesis, it is
known that different steps take on different roles [37]. During
steps handling noisy images (e.g., at and near T -th step),
overall color and structure are synthesized. The overall image
appearance is determined during these steps. In the middle
steps, contextual information is reconstructed. Finally, more
detailed textures and boundaries are synthesized during steps
handling less-noisy images. Such an iterative process with
many steps requires a huge computational cost, which is one of
the major drawbacks of the diffusion model [38]. Furthermore,
in the reverse process starting from a random sample, the
conditioning scheme is required to significantly adjust the
reverse process for SR (and other image enhancement and
restoration methods) compared with free image synthesis.

To suppress the difficulty in computational cost and SR
using the diffusion model, BSRD accepts an initial burst
SR image instead of a random noise. To start the reverse
process from the initial burst SR image, it is fed into an
intermediate step, instead of T -th step, following SDEdit [32].
With this reverse process from the intermediate step, the
number of execution steps is reduced, resulting in reducing
the computational cost. Furthermore, since the difficult steps
near T -th steps are skipped, the difficulty in reconstructing the
SR image close to the input LR image can be reduced, and
the reverse process can be trained to focus on reconstructing
fine details that are important for the SR task.
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Fig. 5. Comparison between the linear and sigmoid schedulers.

The aforementioned reverse process in BSRD is illustrated
in Fig. 4. Remember xt denotes the image at t-th step in the
diffusion model. In BSRD, xτ is replaced by the initial burst
SR image with noise (denoted by x′

τ ). This time step τ is
called the reverse start step. Any SoTA burst SR method can
be used for obtaining x′

τ . Let x′
0 denote the initial burst SR

image. While x′
0 corresponds to x0 with no diffusion noise, x′

0

may be more blurred than x0 because x′
0 is reconstructed in

a deterministic manner. However, x′
τ computed from x′

0 must
contain the diffusion noise that is included in xτ . We assume
that xτ can be approximated by x′

τ by giving the diffusion
noise at τ -th step to x′

0. That is, small differences caused
by the blur between x0 and x′

0 can be drowned out by the
diffusion noise if τ -th step is sufficiently apart from 0-th step.
x′
τ is computed from x′

0 as follows:

x′
τ =

√
ᾱτx

′
0 +

√
β̄τ ϵ, (3)

ᾱτ :=

τ∏
s=1

αs, (4)

β̄τ := 1− ᾱτ , (5)

where ϵ denotes the zero-mean Gaussian noise with σ = 1.
While the computational cost for computing the initial burst

SR image is required, its cost is much smaller than the iterative
steps in the diffusion model.

Since BSRD uses the diffusion steps between τ -th and 1-th
steps, (τ +1)-th and greater steps are not required. Therefore,
the diffusion model can be trained only between τ -th and 1-
th steps in the training stage. This training strategy allows
the diffusion model to focus only on reconstructing detailed
appearances represented near the 1-th step, resulting in better
SR.

IV. EXPERIMENTAL RESULTS

A. Details

a) Evaluation Metrics: As standard evaluation metrics,
LPIPS [39], FID [40], PSNR, and SSIM [41] are used. While
PSNR and SSIM are for image distortion-based evaluation,
LPIPS and FID are proposed for perceptual quality evaluation.
Lower scores are better in LPIPS and FID, while higher scores
are better in PSNR and SSIM.

b) Training Details: The number of diffusion steps is
T = 1000. As noise schedulers for the diffusion model, the
linear scheduler between β1 = 10−4 and βT = 0.02 and the
Sigmoid scheduler between β1 = 10−5 and βT = 0.02 are
used (Fig. 5). The mini-batch size is 50. The optimizer is
AdamW [42], and its learning rate is 1× 10−4.

Since our BSRD requires only early steps (i.e., between
1-th and τ -th steps) in the diffusion model, we can train it
only between 1-th and τ -th steps, as described at the end
of Sec. III-B2. For all experiments shown in Sec. IV-B and
Sec. IV-C, however, the diffusion model was trained between
1-th and 100-th steps for simplifying experiments (i.e., for
conducting experiments using different τ with one trained
model). Note that several models evaluated in Sec. IV-D are
trained between different steps to validate the effectiveness
of our proposed reverse process from intermediate steps; see
Table III for details.

c) Datasets: The SyntheticBurst and BurstSR datasets
are used [6]. On the SyntheticBurst dataset, each sRGB HR
image is degraded to its LR image. This degradation process,
including ISP, follows the one proposed in [6] as follows.
Burst LR images, except for the reference frame, are randomly
(1) translated up to 24 pixels along x and y axes and (2)
rotated up to one degree. The SyntheticBurst dataset has
46,839 training images and 300 test images. In the BurstSR
dataset, both LR and HR images are real images captured.
Each set of LR images was captured by a burst shot mode
of Samsung Galaxy S8. These LR images are subtly different
from each other due to hand shake effects. Each HR image
was captured by CANON 5D Mark IV. The BurstSR dataset
has 5,405 training images and 882 test images.

d) Burst SR Condition: In all experiments, the dimen-
sions of LR and HR images are 32×32×4 RAW images and
256×256×3 RGB images, respectively. The number of burst
LR images is eight. The dimension of the conditioning feature
is f = 48. For comparison, DBSR [6], BIPNet [43], and
Burstormer [34] are evaluated. While the authors’ pre-trained
weights are used for DBSR and BIPNet, the pre-trained weight
of Burstormer is further finetuned for better performance.

Initial burst SR images given to our method (BSRD) are
given by BIPNet and Burstormer. For BSRD, an intermediate
step (τ in Sec. III-B2) from which the reverse process starts
is an important hyperparameter. In our experiments, τ is
determined empirically. Since our goal is to improve the
perceptual quality such as LPIPS and FID, τ giving the best
perceptual score in LPIPS and FID is selected. LPIPS and FID
in different steps on the SyntheticBurst dataset are shown in
Fig. 6. In the tables in Fig. 6, the score at τ = 0 equals
that of each initial burst SR image. Based on the results
shown in Fig. 6, τ for “the linear scheduler for LPIPS,” “the
linear scheduler for FID,” “the sigmoid scheduler for LPIPS,”
and “the sigmoid scheduler for FID” are 1, 3, 3, and 100,
respectively, for BIPNet with BRSD. The results with these
parameters on the SyntheticBurst dataset are shown in Table I.
For Burstomer with BSRD, 1, 5, 30, and 100. For “BIPNet”
and “Burstomer” with BRSD in the BurstSR dataset, “6, 30,
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Fig. 6. Results on the SyntheticBurst dataset. The vertical and horizontal
axes indicate the reverse start step, τ , and the quality measures, respectively.
While the perceptual scores (i.e., LPIPS and FID) are important for our work,
PSNR and SSIM are also shown just for reference.

TABLE I
QUANTITATIVE COMPARISON RESULTS ON THE SYNTHETICBURST

DATASET. THE BEST AND SECOND BEST SCORES ARE COLORED RED AND
BLUE, RESPECTIVELY.

Methods τ
Noise
Schedule

LPIPS↓ FID↓ PSNR↑ SSIM↑

DBSR 0.07212 99.66 40.05 0.9482

BIPNet 0.03145 64.17 42.61 0.9682

BIPNet
+BSRD

1
linear

0.02934 51.92 41.69 0.9627
3 0.03013 45.32 42.00 0.9645
3

sigmoid
0.03077 47.88 42.26 0.9662

100 0.02915 50.26 40.53 0.9509

Burstormer 0.02954 70.76 43.21 0.9709

Burstormer
+BSRD

1
linear

0.02734 53.42 42.17 0.9653
5 0.02815 45.16 42.37 0.9660

30
sigmoid

0.02791 47.74 41.92 0.9628
100 0.02699 50.61 40.74 0.9524

60, and 70” and “6, 60, 70, and 80,” respectively, as shown in
Table II.

B. Results: SyntheticBurst Dataset

Quantitative comparison results on the SyntheticBurst
dataset are shown in Table I. Independently of the reverse start
step, the noise scheduler, and the base method (i.e., BIPNet
or Burstormer), both LPIPS and FID are improved by BSRD
from the base method. BSRD improves LPIPS up to about
8.6% with the sigmoid scheduler and τ = 100 compared
with the original Burstormer (i.e., 0.02954 in Burstormer
vs. 0.02699 in Burstormer + BSRD). Furthermore, BSRD
improves FID up to about 36% with the linear scheduler and
τ = 5 compared with the original Burstormer (i.e., 70.76 in
Burstormer vs. 45.16 in Burstormer + BSRD)

However, the performance change depending on τ differs
between the noise schedulers. With the linear scheduler, both
LPIPS and FID degrade from earlier steps (i.e., around 1 and
5 steps in LPIPS and FID, respectively). With the sigmoid
scheduler, on the other hand, these scores improve until later
steps. In particular, LPIPS improves until around 100 steps.

TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE BURSTSR DATASET.

Methods τ
Noise
Schedule

LPIPS↓ FID↓ PSNR↑ SSIM↑

DBSR 0.05467 90.34 50.72 0.9846

BIPNet 0.04975 75.43 51.55 0.9857

BIPNet
+BSRD

6
linear

0.04813 43.34 50.91 0.9850
30 0.04682 46.65 50.32 0.9836
60

sigmoid
0.04688 43.34 50.54 0.9835

70 0.04719 43.11 50.48 0.9839

Burstormer 0.05593 74.21 50.49 0.9845

Burstormer
+BSRD

6
linear

0.05445 46.85 50.11 0.9837
60 0.05017 48.51 49.45 0.9815
70

sigmoid
0.05238 44.54 49.94 0.9826

80 0.05178 45.20 49.91 0.9823

This is because the sigmoid scheduler finely changes the noise
at early steps, as shown in Fig. 5. This scheduling allows the
reverse process to focus on detailed textures and boundaries
optimized in early steps, as described in Sec. III-B2.

Different from the perceptual scores (i.e., LPIPS and FID),
the image distortion scores (i.e., PSNR and SSIM) are de-
graded by our method. This result is unavoidable due to the
tradeoff between the perceptual and image distortion scores,
as demonstrated in [44].

Visual results are shown in Fig. 7. The result of BRSD is
obtained with the sigmoid scheduler with τ = 100. In the
upper results, while the boundaries between white and red
pixels are blurred in the result of Burstormer, our method
can reconstruct the sharp boundaries. In the lower results,
the boundary between the different colors on the road is
blurred in the result of Burstormer, while our method can
reconstruct the clear boundary. In addition, the road surface
is flat and textureless in the result of Burstormer, while the
texture of the road surface is reconstructed by our method.
These results demonstrate that our method can improve the
perceptual quality with clear boundary lines.

C. Results: BurstSR dataset

Quantitative comparison results on the BurstSR dataset are
shown in Table II. As with the SyntheticBurst dataset, the
BurstSR dataset demonstrates that our method can improve the
perceptual quality. For example, our method improves LPIPS
and FID by 5.8% and 43%, respectively (i.e., 0.04975 with
BIPNet vs. 0.04642 with our method in LPIPS, and 75.43 with
BIPNet vs. 43.11 with our method in FID). With Burstormer,
our method can also improve the perceptual quality scores,
while its improvement is lower than that of BIPNet.

Visual results on the BurstSR dataset are shown in Fig. 8.
Our method (i.e., “BIPNet+BSRD” in Fig. 8) is combined with
BIPNet because this combination produces the best results
on the BurstSR dataset, as shown in Table II. Our method
outperforms all other methods, including its base method (i.e.,
BIPNet), regarding the sharpness of boundary lines.



Ground truth BurstLR DBSR BIPNet Burstormer Burstormer+BSRD
Fig. 7. Visual results on the SyntheticBurst dataset. In both the upper and lower results, a part of each image is zoomed in for detail.

Ground truth BurstLR DBSR Burstormer BIPNet BIPNet+BSRD
Fig. 8. Visual results on the BurstSR dataset.

TABLE III
DETAILED ANALYSIS ON THE SYNTHETICBURST DATASET FOR

VALIDATING THE EFFECTIVENESS OF EACH COMPONENT IN OUR BSRD.
RESULTS IN EACH ROW ARE ACQUIRED WITH THE DIFFUSION MODEL

TRAINED BETWEEN 1-TH AND τL-TH STEPS.

Methods τL τ LPIPS↓ FID↓ PSNR↑ SSIM↑
(a) From random noise 1000 1000 0.06679 85.02 33.86 0.8730

(b) From bicubic
upscaled image

1000 400 0.07164 85.79 35.60 0.8334
(c) 100 5 0.31882 206.37 31.03 0.8178

(d) From Burstormer
SR image

1000 5 0.02851 49.19 42.19 0.9649
(e) 100 5 0.02815 45.16 42.37 0.9660

D. Detailed Analysis

To validate the effectiveness of each implementation in our
proposed BSRD, the following experiments are conducted:

• (a) begins from random noise (i.e., τ = 1000) instead of
from the intermediate step.

• (b) and (c) use the initial image upscaled by bicubic
interpolation instead of the burst SR image reconstructed
by Burstormer.

• (d) and (e) use the burst SR image reconstructed by
Burstormer. (e) is our proposed implementation of BSRD.

We can see the following observations in Table III:

1) In comparison between (a) and (d,e), the reverse process
from the intermediate step is better.

2) In comparison between (b,c) and (d,e), the reverse
process with the initial burst SR image is better.

3) In comparison between (d) and (e), the model trained
only from τ -th step is better.



V. CONCLUDING REMARKS

This paper proposed a combination of burst SR and diffu-
sion models for improving the perceptual quality of burst SR.
Unlike prior diffusion-based burst SR methods, which start
from random noise, our BSRD starts the reverse process of
the diffusion model from an intermediate step. This allows the
diffusion model to efficiently focus on reconstructing detailed
textures and boundaries in earlier diffusion steps. Furthermore,
hierarchical burst SR features are employed to condition the
reverse process to optimize it for the burst SR task.

Future work includes more efficiency improvement. It is
validated that latent diffusion is useful for SISR as well as for
other computer vision tasks [33], [45]. For burst SR also, the
effectiveness of the latent diffusion should be explored.

This work is partly supported by JSPS KAKENHI
22H03618.
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