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Fig.1: An overview of the proposed SubjectDrive framework and its effec-
tiveness in enhancing BEV perception tasks. (a) Traditional data generation
framework that uses the control sequence and sampling noise to generate synthetic
data. (b) Compared with the traditional framework, our SubjectDrive introduces ad-
ditional synthesis diversity by incorporating extra subject control. (c)-(d) Evaluation
of detection and tracking performance with data scaling. (e) Illustration of using the
SubjectDrive framework to produce perception training data in autonomous driving.
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Abstract. Autonomous driving progress relies on large-scale annotated
datasets. In this work, we explore the potential of generative models to
produce vast quantities of freely-labeled data for autonomous driving
applications and present SubjectDrive, the first model proven to scale
generative data production in a way that could continuously improve
autonomous driving applications. We investigate the impact of scaling
up the quantity of generative data on the performance of downstream
perception models and find that enhancing data diversity plays a cru-
cial role in effectively scaling generative data production. Therefore, we
have developed a novel model equipped with a subject control mech-
anism, which allows the generative model to leverage diverse external
data sources for producing varied and useful data. Extensive evaluations
confirm SubjectDrive’s efficacy in generating scalable autonomous driv-
ing training data, marking a significant step toward revolutionizing data
production methods in this field.

Keywords: Video Generation - Autonomous Driving - Data Scaling -
Subject Control

1 Introduction

Deep generative models [4, 15,34,37,47, 48] have made significant progress re-
cently, excelling in producing high-quality, realistic visual contents. Diffusion
models [15,37], a key contributor to this advancement, are noted for their stable
and superior-quality sample generation. Leveraging modern diffusion models, re-
cent breakthroughs in controllable technology [48] now enable precise, flexible
content customization. These advancements make it possible to create synthetic
samples nearly indistinguishable from human-annotated data, sparking increased
interest in using generative models for effective natural data synthesis in complex
discriminative tasks [2, 30, 30].

BEV (Bird’s Eye View) perception in autonomous driving is one of the most
crucial yet challenging discriminative tasks in computer vision. Training robust
BEV perception models, such as those for 3D object detection [23-25, 32, 40]
and tracking [9, 29, 32], demands large-scale annotated samples. However, ac-
quiring such datasets is not only costly and time-intensive but also encumbered
by significant concerns regarding data privacy and usage rights. These barriers
significantly hinder the processes of data collection, labeling, release, and ex-
change, ultimately slowing progress in the field. Amidst the significant strides
in deep generative models, a pressing question emerges: Could these innova-
tions transform the data production pipelines for autonomous driving, thereby
catalyzing its advancement?

There have been a few initial attempts at exploring generative data in au-
tonomous driving. Early studies focused on creating street-view images to en-
hance image-based BEV perception methods, introducing solutions such as BEV-
Gen [38], BEVControl [44], and MagicDrive [11]. More recent efforts have ven-
tured into generating driving scene videos [20,27,43], aiming to bolster more
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sophisticated temporal BEV perception models [23,40]. A notable example,
Panacea [13], excels in producing multi-view videos with BEV controlling ca-
pabilities, significantly aiding in the training of the advanced BEV perception
model [40].

Albeit promising, most existing works focus on small-scale training [20,27,43],
which fails to fully exploit the potential of generative data in producing an inex-
haustible supply of samples. Notably, early methods have yet to demonstrate su-
perior performance in supporting downstream perception tasks, especially when
compared to models pre-trained on large-scale, realistic datasets. For instance,
the advanced generative method Panacea achieves a nuScenes Detection Score
(NDS) of 49.2 in the 3D detection tasks. This score is lower than that of the
model pre-trained on the nulmages [5] dataset, as illustrated in Fig. 1(c).

In this paper, we tackle the challenge of scaling generative data for au-
tonomous driving. We present SubjectDrive, an advanced video generation frame-
work designed to enhance the scalability of generative models. Our initial findings
reveal that conventional video generation pipelines struggle to scale effectively
with increased data volumes. For instance, as shown in Fig. 1(c-d), tripling the
generative data via Panacea yields only a minor improvement. To overcome this
limitation, we propose a novel generation framework centered on augmenting
sampling diversity. Specifically, we integrate a feature termed subject control
into existing generation pipelines, as illustrated in Fig. 1(b). This feature em-
powers generative models to manipulate the diversity of the synthesis process
by providing a mechanism to dictate the visual appearance of foreground ele-
ments in generated samples. This innovative feature enables the blending of the
inherent stochastic nature of the generative process with the diversity drawn
from external data sources, thereby crafting a more powerful model capable of
producing scalable and diverse samples.

Specifically, SubjectDrive is designed around a trio of innovative modules that
collectively enable robust subject control capabilities. Initially, the model lever-
ages a subject prompt adapter, integrating subject control seamlessly with the
existing text-conditioned branch. Subsequently, to enhance the model’s ability
to inject spatial information, we introduce a subject visual adapter that directly
utilizes visual features, incorporating them into the existing diffusion U-Net ar-
chitecture. Lastly, to ensure consistent injection of these features over time, we
deploy augmented temporal attention that expands the model’s temporal-spatial
context. Together, these modules empower SubjectDrive to perform subject-
conditioned video generation with compelling efficacy, as demonstrated by the
visualizations in Fig. 1(e).

We have conducted extensive experiments to validate the effectiveness of our
proposed method on the widely used nuScenes [5] dataset. Compared to existing
methods, SubjectDrive not only achieves superior performance but also offers
improved scalability. Remarkably, our method represents the first generative ap-
proach capable of enhancing the performance of perception models beyond what
is possible with pre-trained models on the nulmages dataset. These outstanding
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results underscore the potential of generative data to revolutionize autonomous
driving technologies, marking a promising path forward in this field.

2 Related Work

2.1 Scalable Data Synthesis for Autonomous Driving

The use of synthetic data has been widely explored for visual perception tasks
that require great of efforts in labeled data collection. Examples include ap-
plications in image classification [2, 36], semantic segmentation [30], and visual
object tracking [19]. Recently, there has been a burgeoning interest in employ-
ing generative data for the challenging BEV perception tasks [23,40,49], which
demand precise geometric and appearance alignment from generative models.
Initial works aim at synthesizing street-view images [11,38,44], with subsequent
studies extending into the generation of driving scene videos [27,41,43]. Despite
these successful efforts, the majority of existing research has been limited to
producing a small quantity of training samples, not fully exploiting the gener-
ative models’ capacity to offer an unlimited reservoir of samples. Data scaling
efforts [2] are sparse and, thus far, not particularly successful. It’s imperative
to recognize that recent breakthroughs highlight the paramount importance of
data scaling in training sophisticated deep learning models, such as GPT [l],
SVD [3], and Sora [31]. Therefore, addressing the challenge of amplifying gen-
erative data volumes is of essence. This work delves into scalable data synthesis
for autonomous driving, providing analysis results and proposing an enhanced
framework.

2.2 Diffusion-based Generative Models with Subject Controls

Diffusion models with subject control are designed to embed target subjects into
generated visual content, guided by reference images [8]. These approaches [7,
,18,21,28] initially emerged in image generation research to facilitate identity-
preserving applications. Early methods [10, 12, 18,21, 35] adopted a fine-tuning
framework to adjust a specific model capable of generating images of the desired
subject. A notable example is DreamBooth [35], which fine-tunes a diffusion
model using a small set of subject images. While these fine-tuning methods
achieved high-quality results, they were limited by the significant resources re-
quired for model tuning, making them impractical for scenarios with numerous
target entities. To address these limitations, tuning-free methods [28,46] were de-
veloped. Subject Diffusion [28], for instance, achieved impressive customization
by introducing a subject conditioning module and training on a bespoke dataset
of subject pairs. Subsequent works, such as Cones2 [20] and others [7], have
expanded tuning-free subject control to scenarios involving multiple subjects.
In the video domain, there is also growing interest in subject-controllable
generation [6, 16,42]. For instance, VideoBooth [16] proposed a framework ca-
pable of generating consistent videos containing the subjects specified in image



Scaling Generative Data in Autonomous Driving via Subject Control 5

prompts. VideoDreamer [6] introduced the Disen-Mix Fine-tuning and Human-
in-the-Loop Refine-tuning strategy. Additionally, CustomVideo [42] introduced
a multi-subject-driven text-to-video model powered by a simple yet effective
co-occurrence and attention control mechanism.

Our work falls into the category of subject-driven video generation. However,
unlike previous efforts, we explore the significance of such subject-controlled
generation for data scaling, especially in the context of autonomous driving.

3 Method

3.1 Preliminary: Latent Diffusion Models

Diffusion Models (DMs) [15,37] iteratively denoise a random noise with Gaussion
distribution € ~ N(0,I) over T steps to generate target data according to Eq.
1, where the functions g and Xy are derived from the denoising model €¢g. The
training of DMs includes both a diffusion process and a denoising process. The
diffusion process begins by adding Gaussion noise to the original data sample
xo over t steps, controlled by the scheduled noise strength S;, which can be
simplified as Eq. 2 where a; = Hle (1 — ;). To learn the denoising process,
the denoising model €y, which aims to estimate the original noise € from the
noisy data xy, is optimized by minimizing the loss function as shown in Eq. 3.

po(zi—1lre) = N(xe—1; po (%, ), Bo(x¢, 1)) (1)

xt = Vauxo + V1 — aze, e ~ N(0,1),x0 ~ p(x) (2)

minEy . c[le — eq (v, )| (3)

Given the significant computational burden of diffusion models in generat-
ing high-resolution images or videos, Latent Diffusion Models (LDMs) [34] have
become popular in recent studies. With a pre-trained auto-encoder [17] to han-
dle the compression and reconstruction between high-dimensional visual data
and low-redundancy latent representations, the diffusion model can concentrate
exclusively on generation in latent space, significantly reducing computational
costs. Consequently, our method employs LDMs for video generation.

3.2 SubjectDrive

SubjectDrive is designed to enhance the scalability of generative data, thereby
promoting perception models for autonomous driving applications. Despite the
ability of advanced generative methods [43] to produce high-quality driving-scene
videos, they narrowly uplifts the performance on downstream perception tasks
as illustrated in Fig. 1(c)(d). We believe this is primarily due to the limited di-
versity of generated foreground elements, which are crucial for autonomous driv-
ing. Thus, different from tradition generation pipeline using control sequence to
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guide global scene generation, we innovatively integrate subject control mech-
anism into generation process, allowing for the injection of external subjects
from extensive open-source data. The integration of controlled subjects not only
boosts controllability but also effectively enhances the diversity of generated
foreground elements, which shows strong augmentation for autonomous driving
applications.

To inject subjects into generation process, we propose the novel Subject
Prompt Adapter (SPA) and Subject Visual Adapter (SVA) to augment expres-
sity of text embedding with regard to subjects and integrate subjects’ spatial
information into frames, respectively. To further improve the appearance con-
sistency of injected subjects across frames, the Augmented Temporal Atten-
tion (ATA) is introduced to effectively capture long-range movements in driving
videos.

Overview Our framework is built on a text-to-video diffusion model, i.e. Panacea
[43], which is a strong baseline for multi-view video generation. The overall train-
ing framework of SubjectDrive is illustrated in Fig. 2. The diffused noisy input
is fed into the trainable diffusion model to generate latent video under the guid-
ance of text, condition layout, and injected subjects. We inherit the guidance of
condition layout with ControlNet [48] from Panacea. For subjects guidance, we
first extend text prompt and augment the text embedding of subject part with
Subject Prompt Adapter. On the other hand, we insert the gated self-attention
layer into diffusion model to enhance the location guidance of subjects captured
by Subject Visual Adapter. Furthermore, we replace the conventional tempo-
ral 1D attention with proposed Augmented Temporal Attention to improve the
temporal consistency of injected subjects.

Subject Prompt Adapter Subject Prompt Adapter introduces an enhance-
ment to textual cues through the integration of subject attributes including the
category semantic, ID identifier, and visual semantic information.

To achieve this, we first extend the scene prompt with injected subject cat-
egory description. For example, the prompt for the Ny, frame that contains M
subjects is organised as " [Scene Prompt], including [Subject X1/, [Subject Xs]....
[Subject Xpr]." [Subject X;] here refers to the category word of subject X, e.g.,
car, bus. The extended prompt is input into the pre-trained CLIP [33] text en-
coder to obtain the original text embedding 2! € R¥*?, where L represents the
length of the text embedding and d is the dimension of the text embedding. To
further integrate subject attributes for better expressity, we extract the ID iden-
tifier of each subject from condition layout to ensure coherent trajectories across
frames, and encode it with a learnable codebook and an ID-adapter comprised
of MLP to get the ID embedding z:? € RY for subject X;. Similarly, we encode
the image of X; by the CLIP image encoder and an image-adapter to obtain the
corresponding visual semantic embeddings 2z} € R,

For the original text embedding z! at the index of subject X; in z!, we
successively enhance it with the corresponding ID embeddings zi¢ and visual
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Fig.2: Overview of SubjectDrive. (a) The pipeline of SubjectDrive involves a
frozen auto-encoder and a trainable UNet-based diffusion model. (b) Different control
signal sources including extended text prompt, condition layout, and subject bank. (c)
The Subject Prompt Adaptor which augments the original text embedding of extended
prompt with corresponding ID identifier and visual semantic information to enhance the
expressity of subjects. (d) The Subject Visual Adapter which injects location-enhanced
subject information into visual features cooperated with gated self-attention. (e) The
Augmented Temporal Attention integrates conventional temporal 1D attention with
decomposed attention on temporal-horizontal (TX) plane and temporal-vertical (TY)
plane to effectively capture long-range movements of subjects.

semantic embeddings z{ by

20 =MLP ([2f + 214, 27]), i€ {Index 12.. m} (4)
where [, ] represents the concatenation operation. The resulted subject-enhanced
text embedding 2? contains not only the semantic of whole scene, but also specific
identifying information for each subject. The subject-enhanced text embedding
is further injected into the UNet through the cross-attention layer to guide the
generation of frames.
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Subject Visual Adapter The Subject Visual Adapter is proposed to inject
subject spatial information into video feature to further enhance content align-
ment of generated video with provided visual clue and location of subjects.

Inspired by [22], the SVA first combines subject images and corresponding
locations to form location-enhanced subject embeddings, and then injects them
into frames with a control signal to guide the generation of subjects at specified
location. To obtain the location-enhanced subject embedding f*!, the location
of each subject, represented by its coordinates I = [Zyin, Ymin, Tmazs Ymaz] N
the current frame, is encoded with Fourier embedding, further integrated into
visual embedding f¥ of corresponding subject as

f' = MLP[f?, Fourier(1)]). (5)

To inject the location-enhanced subject embedding into generated frame, we
employ the gated self-attention layer [22] that locates between each paired self-
attention layer and cross-attention layer in the UNet. In the gated self-attention
layer, the location-enhanced subject embedding f! interacts with frame visual
tokens z by an attention operation to capture the dependency between subject
embedding and visual tokens, followed by a token selection operation T'S to
preserve only visual tokens. To adaptively adjust the guidance scale of location
information over frames, a gating factor is learned which is operated as

2 = z + tanh(y) - T'S(SelfAttn([z, f*1])), (6)

where v represents the gating factor, a learnable parameter initialized to 0 for
stable training.

Augmented Temporal Attention The Augmented Temporal Attention is
designed to effectively capture long-range movement of subjects with feasible
computation cost.

The conventional temporal attention layer utilized in video diffusion mod-
els solely incorporates self-attention operation within the temporal dimension.
However, due to the substantial movements typically involved with subjects in
autonomous driving videos, it becomes challenging for the temporal-dimension
attention to effectively capture the long-range dependency of inter-frame sub-
jects. Therefore, we propose the Augmented Temporal Attention which incorpo-
rates interaction within temporal-horizontal (TX) plane and temporal-vertical
(TY) plane to improve subject consistency across sequences.

Specifically, given input video feature z* € RT*HXWXC where T, H, W, and
C denote the video length, spatial height, width, and number of channels, respec-
tively, it is processed by 1D attention along temporal dimension (T) to obtain
2T, 2T is reshaped to respective 27X € REX(TXW)xC and ;7Y ¢ RWX(TxH)xC
to aggregate information from two decomposed planes by the parallel TX self-
attention and TY self-attention. In this way, the fused video feature not only
integrates small-range variation from temporal 1D attention, but also captures
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large-range movements by decomposed TX and TY attention, which can ef-
fectively enhance the temporal coherence of the generated video. The overall
operation of this layer can be written as

2° = SelfAttn(27X) + SelfAttn(z7Y) + 27 + 2. (7)

4 Experiment

4.1 Evaluation Datasets and Metrics

Datasets. We employ the nuScenes dataset to train SubjectDrive and utilize
it to evaluate the visual fidelity and controllability of the generated data. The
nuScenes dataset comprises 1,000 scenes, each lasting 20 seconds, with annota-
tions provided at a frequency of 2Hz and featuring a comprehensive 360° camera
field of view. It includes 1.4 million 3D bounding boxes, spanning 10 categories:
car, truck, bus, trailer, construction vehicle, pedestrian, motorcycle, bicycle, bar-
rier, and traffic cone.

Evaluation Metrics. Following Panacea, we employ perceptual model eval-
uation to validate two key objectives. First, we assess the controllability of
the generative model, specifically how closely the data generated aligns with
given BEV annotations. We utilize a pre-trained StreamPETR model to com-
pare the validation performance of our generated data with that of real data.
Second, we explore the extent to which the generative model’s data improves
the performance of the perceptual model. We conduct evaluations on both de-
tection and tracking tasks. For the detection task, we use the nuScenes Detection
Score (NDS), mean Average Precision (mAP), mean Average Orientation Error
(mAOE), and mean Average Velocity Error (mAVE) as metrics. For the tracking
task, our metrics include Average Multi-Object Tracking Accuracy (AMOTA),
Average Multi-Object Tracking Precision (AMOTP), Recall (RECALL), and
Multi-Object Tracking Accuracy (MOTA). Additionally, we verify the visual
fidelity of our synthesized samples using both the Fréchet Inception Distance
(FID) [14] and the Fréchet Video Distance (FVD) [39].

4.2 Implementation Details

SubjectDrive employs a two-stage video generation strategy: the first stage gen-
erates images, and the second stage generates videos. The first stage is optimized
for 56k steps, while the second stage is optimized for 84k steps. During sampling,
we utilize the Denoising Diffusion Implicit Models (DDIM) sampler, configured
to 25 steps, to yield video clips at a resolution of 256 x 512 across 8 frames.
Furthermore, we have chosen StreamPETR with a ResNet50 [13] backbone as
our evaluating perception model, which is trained at a resolution of 256 x 512.

To construct the subject bank, we draw from two distinct sources, catego-
rizing them into internal and external subject banks. The internal subject bank
is curated by collecting subjects from the training set of the nuScenes dataset.
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The external subject bank is established by integrating external vehicle datasets
from the open-source CompCars [45] dataset. The internal subject bank is used
during the training phase, while the external subject bank is mixed with the
internal one during the sampling phase to promote the generation of diverse
data.

4.3 Main Results

Analysis of Synthetic Data Scale-up. We investigate the impact of scaling
up the quantity of generative data on the performance of downstream perception
tasks and present the results in Table 1. Two interesting findings emerge. First,
increasing the quantity of synthetic data has a positive influence on
the performance of the perception model. Although using a small amount of
synthetic data is initially less effective than using real nulmages data, increasing
the data volume can boost the models to achieve superior performance in both
NDS and AMOTA. This demonstrates that scaling up generative data is essential
to unlock the potential of generative data production. Second, the integration
of external subjects can substantially improve scaling performance.
For instance, while tripling the generative data from Panacea yields a mere 0.2
improvement in NDS, incorporating SubjectDrive at the same data scale elevates
the NDS by 1.0. Similar trends are also observed in AMOTA. These results
demonstrate that utilizing external subjects is an effective way to enhance the
generative model’s scaling capability.

Analysis of Performance in 3D Object Detection Task. Next, we present
a quantitative analysis that compares SubjectDrive with other data generation
methods in the 3D detection task. We utilize SubjectDrive to generate novel
synthetic data as additional training source for the StreamPETR model, and
then evaluate its performance on the real nuScenes validation set. The results
are showcased in Table 2. When trained solely on the synthetic data, Subject-
Drive manages to outperform Panacea by 5.5 mAP and 5.0 NDS. Specifically,
SubjectDrive achieves an NDS of 41.1, reaching 88% of the performance com-
pared to that trained with real nuScenes data. Furthermore, when combining

Table 1: Evaluation of data scaling on detection and tracking tasks.

Trackin Detection
#Extra Samples  Source AMOTA Tg AMOTP | NDS T MAP T
0 nuScenes [5] 30.1 1.379 46.9 34.5
93k nulmages [5] 33.8 (+3.7%) 1.324 49.5 (+2.6%) 37.8
23k 33.7 (13.6%) 1.353 192 (12.3%) 37.1
46k Panacea [43] 35.0 (+4.9%) 1.346 49.3 (+2.4%) 37.3
69k 34.9 (+4.8%) 1.348 49.4 (+2.5%) 37.1
23k 33.7 (13.6%) 1.353 192 (12.3%) 371
46k SubjectDrive 36.0 (+5.9%) 1.322 49.5 (£2.6%) 37.7
69k 37.2 (+7.1%) 1.317 50.2 (+3.3%) 38.1
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Table 2: Comparison of performance on the 3D object detection task with other
generation methods. * indicates the evaluation of WoVoGen is only on the vehicle
classes of cars, trucks, and buses.

DataType Method MAP+ NDST  MAOE| MAVE]
Real Real Only 34.5 46.9 59.4 29.1
Generated Panacea [13] 22.5 36.1 2.7 46.9
SubjectDrive 28.0 (+5.5%) 41.1 (+5.0%) 69.5 37.0
DriveDreamer [41] 35.8 39.5 - -
WoVoGensx 36.2 18.1 15.7 123.4
RealGenerated y o Drive [[ ]] 35.4 39.8 . -
Panacea [13] 37.1 49.2 54.2 27.3
SubjectDrive 38.1 50.2 52.2 26.4

Table 3: Comparison of performance on the 3D object tracking task.

DataType Method AMOTA 1t MOTA 1 RECALL t+ AMOTP |
Real Real Only 30.1 27.1 41.8 1.379
Generated SubjectDrive 23.4 23.5 32.3 1.544
Real - Generated Panacea [13] 33.7 30.6 44.8 1.353

SubjectDrive 37.2 (+3.5%) 33.3 (+2.7%) 47.3 (+2.5%) 1.317

synthetic data with real data, SubjectDrive surpasses all other methods by a
significant margin.

Analysis of Performance in 3D Object Tracking Task. In addition to
the 3D object detection task, the 3D object tracking task is an important and
more challenging fundamental task in autonomous driving. As shown in Table 3,
using solely our synthetic data can produce a model with a 23.5 MOTA, attaining
86% of the performance compared to that trained with real nuScenes data. When
combining synthetic data with real data, SubjectDrive achieves a 37.2 AMOTA,
which is 3.5 points higher than the model trained with Panacea. It is worth noting
that the performance gain in tracking is notably higher than that in detection.
This is because our subject control mechanism not only improves data diversity
but also has a beneficial side effect of enhancing temporal coherency by ensuring
all generated objects across frames align with the given reference subjects.

Comparison of Generation Quality. In order to validate the visual quality
of our generated samples, we compared them with state-of-the-art methods for
driving scene generation. We generated the validation set of nuScenes without
applying any pre-processing or post-processing to the selected samples. As shown
in Table 4, our method achieves the best performance, with an FVD of 124 and
an FID of 15.98, compared to both video-level generation methods—WoVoGen,
Panacea, and DriveDreamer—and image-level generation methods, BEVGen ,
BEVControl and MagicDrive.
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Table 4: Comparison of FID and FVD metrics with state-of-the-art methods on the
validation set of the nuScenes dataset.

Method Multi-View Multi-Frame FVD| FID|
BEVGen [38] v - 25.54
BEVControl [44] v - 2485
MagicDrive [11] v - 16.20
DriveDreamer [411] v 452 52.6
WoVoGen [27] v v 418 27.6
Panacea [43] v v 139 16.96
SubjectDrive v v 124 15.98

Table 5: Ablation studies of different modules in SubjectDrive, with the last row
showing the alignment performance on the real validation data.

SVA SPA ATA mAP? NDS?t AMOTAT RECALL ?
— — — 18.8 32.1 114 21.3
v — — 20.0 34.3 15.6 24.5
v v — 22.1 36.1 17.4 27.1
v v v 228 (+4.0%) 36.3 (+4.2%) 18.1 (+6.7%) 28.1 (+6.8%)
Real Validation Data 34.5 46.9 30.1 41.8

4.4 Ablation Studies

The alignment between generated samples and the provided BEV conditional
labels is essential for evaluating generative models’ controllability. It also acts
as a key indicator of the synthetic data’s applicability. In this section, we will
conduct ablation studies to justify the design choices in SubjectDrive using this
metric.

Table 5 presents our detailed evaluation results for the Subject Visual Adapter
(SVA), Subject Prompt Adapter (SPA), and Augmented Temporal Attention
(ATA). First, compared to the baseline, introducing the SVA resulted in a sig-
nificant improvement of 2.2 in NDS and 4.2 in AMOTA, demonstrating its effec-
tiveness in enhancing label alignment. This improvement is achieved by injecting
extra subject control through visual features and their corresponding positional
embeddings. Second, by integrating the SPA with the SVA, we observed an ad-
ditional increase of 2.1 in mAP and 1.8 in AMOTA. These results indicate that
these two subject control modules are complementary, with each playing a cru-
cial role in the SubjectDrive framework. Third, the final model includes ATA,
complementing both SVA and SPA, and yields further improvements of 0.7 in
AMOTA and 1.0 in RECALL. These results underscore the efficacy of ATA in
enhancing alignment accuracy and temporal consistency across tasks.
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Fig. 3: Generate subject-controlled videos by SubjectDrive.

4.5 Visualisation results

Consistent Multi-View Video Generation. As illustrated in Fig. 4, for the
six-view, eight-frame generated video, SubjectDrive produces temporally and
view-consistent videos on the nuScenes validation set.

FRONT FRONT RIGHT BACK RIGHT BACK BACK LEFT FRONT LEFT

R e L
e R

Frames

Fig. 4: Multi-view videos generated by SubjectDrive.

Subject-controlled Video Generation. Fig. 3 shows the visualization of
subject-controlled driving video generation. Given the image of a reference sub-
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ject, SubjectDrive can generate layout-aligned driving videos featuring the de-
sired subject. By using reference subjects as control signals, SubjectDrive offers
a mechanism for incorporating external diversity into the generated data.
Controllable Video Generation. Fig. 5 illustrates the driving scene video
generated by our method, which adheres to the BEV layout conditions. From this
visualization, it is evident that our generated synthetic data closely aligns with
the specified BEV conditions, showcasing superior layout control and alignment
capabilities.

FRONT FRONT RIGHT BACK RIGHT BACK BACK LEFT FRONT LEFT

Frame 1

Frame 1 Frame 2

Frame 2

Fig. 5: Controllable multi-view videos generated by SubjectDrive.

5 Conclusion

In this work, we introduce SubjectDrive, a novel video generation framework
designed to enhance the scalability and sampling diversity of generative mod-
els. The architecture of SubjectDrive features three key innovations: a subject
prompt adapter, a subject visual adapter, and augmented temporal attention.
Collectively, these innovations enable a robust subject control capability. Empiri-
cally, we find that this subject control feature significantly enhances our model’s
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ability to produce diverse samples. Through extensive experimentation, Sub-
jectDrive not only demonstrates superior performance but also exhibits strong
scaling capabilities. Impressively, our model is the first generative approach to
improve the performance of perception models beyond the capabilities of pre-
trained models on the nulmages dataset. These results underscore the transfor-
mative potential of generative data in advancing autonomous driving technolo-
gies, pointing to a promising direction for future developments in the field.
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