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Abstract 

Superconducting diode effects have recently attracted much attention for their potential 

applications in superconducting logic circuits. Several mechanisms such as magneto-chiral effects, 

finite momentum Cooper pairing, asymmetric edge currents have been proposed to give rise to a 

supercurrent diode effect in different materials. In this work, we establish the presence of a large 

intrinsic Josephson diode effect in a type-II Dirac semimetal 1T-PtTe2 facilitated by its helical 

spin-momentum locking and distinguish it from other extrinsic effects. The magnitude of the 

Josephson diode effect is shown to be directly correlated to the large second-harmonic component 

of the supercurrent that is induced by the significant contribution of the topological spin-

momentum locked states that promote coherent Andreev processes in the junction. We denote such 

junctions, where the relative phase between the two harmonics corresponding to charge transfers 

of 2e and 4e can be tuned by a magnetic field, as ‘second order -junctions’. The direct 

correspondence between the second harmonic supercurrent component and the diode effect in 1T-

PtTe2 junctions makes topological semimetals with high transparency an ideal platform to study 

and implement the Josephson diode effect, while also enabling further research on higher order 

supercurrent transport in Josephson junctions. 
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Introduction 

Over the past few years, there has been much interest in creating and understanding 

superconducting and Josephson diodes, from both a fundamental and technological perspective1-

10. These devices exhibit non-reciprocal superconducting critical currents and allow for 

unidirectional propagation of supercurrents and normal currents in the opposite direction, which 

is quite promising for the creation of novel low dissipative technologies. The observation of a 

supercurrent diode effect requires the breaking of both inversion and time-reversal symmetries 

(TRS)11, which makes it also interesting in itself as a useful ‘tool’ providing insights into a 

material’s properties in the superconducting state such as the nature of spin-orbit coupling8 and in 

the determination of a chiral superconducting state that breaks time-reversal symmetry12.  

In this paper, we perform a detailed study of the Josephson diode effect (JDE or ∆𝐼𝑐) in a 

transition metal dichalcogenide and Dirac semimetal system (1T-PtTe2) in different current and 

magnetic field geometries. This allows for distinguishing between intrinsic contributions to the 

JDE arising from the band structure and extrinsic junction geometric effects and establish the 

presence of helical spin-momentum locking in the system. The supercurrent behavior in the 

junction is studied in detail by considering a current-phase relationship (CPR) with a second 

harmonic term that we refer to as a ‘second order 𝜑0-junction’ CPR. The observations from this 

CPR are verified by measuring the evolution of critical currents in PtTe2 junctions in the presence 

of a magnetic flux and a magnetic field that is needed to induce the JDE. These measurements are 

used to provide direct evidence that the oscillations in ∆𝐼𝑐 are second harmonic in nature with 

nodes occurring at every half-magnetic flux quantum (
𝛷0

2
) and that the magnitude of ∆𝐼𝑐 is closely 

related to the magnitude of second harmonic supercurrents in the system and a phase difference 

(𝛿) between the first and second harmonic components, as predicted from the CPR. This CPR 

combined with the tunability of 𝛿 with a magnetic field provides the interesting possibility of 

controlling the relative magnitudes and direction of first- and second-harmonic supercurrents. 

Finally, the role of the helical spin-momentum locked topological states in the formation of high 

transparency interfaces and phase coherent higher order Andreev reflections in PtTe2 junctions 

that leads to the presence of a strong second harmonic term and hence a large JDE in the system 

is discussed. 
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Results 

Lateral Josephson junctions of PtTe2 

1T-PtTe2 is an air stable two-dimensional Van der Waals transition metal dichalcogenide 

(TMDC) that crystallizes in the centrosymmetric 𝑃3̅𝑚1 crystal structure [Fig. 1(a)]. Though 1T 

structures in which the transition metal atom has an octahedral coordination are centrosymmetric 

down to the monolayer limit, they have local inversion symmetry breaking within a single layer at 

the chalcogenide sites, giving the transition metal atom a D3d point group symmetry and the 

chalcogenide atom a C3v point group symmetry. This local inversion symmetry breaking gives rise 

to a series of band inversions and topological surface states13 in these materials along with Rashba 

spin-orbit coupling of equal magnitude on each of the chalcogenide layers within each monolayer, 

with the top and bottom chalcogenide atomic layers having opposite spin-orbit coupling strengths. 

These differences in point group symmetry are predicted to give rise to a layer dependent ‘local 

Rashba effect’ with helical spin-momentum locking of opposite helicities on alternating 

chalcogenide layers as has been observed through spin-polarization measured through spin- and 

angle-resolved photoemission measurements in certain group-X transition metal dichalcogenides 

including PtTe2
14, but also, for example, PtSe2

15 and PdTe2
13 as well as in the cuprate 

superconductor Bi2Sr2CaCu2O8+x
16. This helical spin-momentum locking in 1T structures is 

analogous to Ising spin-momentum locking in 2H TMDCs17,18. In the case of PtTe2, Dirac cone-

like dispersions with helical spin texture and net spin polarization have been observed near the 

Fermi level through angle- and spin-resolved photoemission14. 

Thin PtTe2 flakes are exfoliated from a single crystal on a Si/SiO2 substrate and lateral 

Josephson junctions are fabricated by depositing Ti/Nb/Au electrodes on top of them with varying 

separations as described in the Methods section of the Supplementary Information (SI). The optical 

image of one such PtTe2 flake of around 17.5 𝑛𝑚 thickness (33-34 layers) with multiple Josephson 

junctions of varying separations (L1-L4) is shown in the inset to Fig. 1(b) which also shows the 

defined Cartesian coordinate axes for the device. The direction of current bias in these devices is 

fixed along the 𝑥-axis. The shortest separation between the Nb electrodes is around 390 𝑛𝑚, and 

the device is roughly 5 𝜇𝑚 in width. The results presented in the main text are from this device 

(referred to as L1 hereafter) unless specified otherwise. The resistance of this junction is measured 
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with a small current as the junction is cooled down [Fig. 1(c)]. A drop in resistance is observed 

around 4.5 𝐾 corresponding to the superconducting transition of the Nb electrodes and another 

drop at 2.7 𝐾 [Fig. 1(c) inset], below which the junction becomes fully superconducting (𝑇𝑗). 

After cooling the sample to the base temperature of the dilution refrigerator(20 𝑚𝐾), 

current-voltage curves are measured in zero field. The critical currents on sweeping the current 

from zero bias in the positive (𝐼𝑐
+) and negative (𝐼𝑐

−) directions are obtained at zero magnetic field 

[Fig. 1(d)] and a negligible difference in their magnitude (∆𝐼𝑐 = 𝐼𝑐
+ − |𝐼𝑐

−|) or JDE is observed. As 

the in-plane magnetic field perpendicular to the direction of current (𝐵𝑦) is increased, the 

appearance of a non-zero ∆𝐼𝑐 is seen as shown in Fig. 1(e). Previously, such a ∆𝐼𝑐 has also been 

observed in similar lateral junctions formed with 1T-NiTe2
4, a transition metal dichalcogenide 

material with the same crystal symmetry and large spin-orbit splitting close to the Fermi level. The 

JDE has been attributed to the finite momentum Cooper pairing11 induced by either the topological 

surface states with large Rashba spin-splitting or the Meissner screening currents within the 

electrodes.  

It is important to note that in contrast to NiTe2 junctions used in previous studies4, the width 

(𝑊, lateral dimension perpendicular to the direction of current flow) of the PtTe2 flake forming 

the Josephson junction L1 is comparable to the Josephson penetration depth (𝑊~𝜆𝐽). In this limit, 

the effect of current-induced magnetic field, also known as ‘self-field effect’ (SFE) becomes 

significant and the geometry of the current source configuration can play a significant role in the 

current distribution across the junction. The SFE modifies the critical current of the junction, which 

can result in skewed Fraunhofer pattern under an out of plane magnetic field. It is shown that in 

such junctions, it is possible to obtain extraneous JDE just by choosing the current bias electrodes 

to be on the same side and that this can be avoided by choosing a ‘criss-crossed’ current bias 

geometry that gives a rather uniform current bias distribution across the junction and minimizes 

the effect of the self-field. Detailed discussion on SFE and the extrinsic JDE resulting from it is 

provided in the supplementary information (Refer SI, section 4). The remarkable match between 

our experimental data and simulations in both bias configurations reinforces the validity of our 

supposition.  All measurements henceforth, presented on lateral junctions of PtTe2 to determine 

the spin-momentum locking, were carried out in the criss-crossed geometry to minimize the 

influence of SFE.  
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Helical spin-momentum locking induced JDE in PtTe2 

 As stated earlier, PtTe2 has helical spin-momentum locked states close to the Fermi level14. 

This helical spin-momentum locking is expected to give rise to a finite-momentum Cooper pairing 

(FMCP) and a ∆𝐼𝑐 in the presence of an in-plane magnetic field perpendicular to the 

current (𝐵𝑦)4,11. To establish the presence of Rashba helical spin-momentum locking and rule out 

the presence of three-dimensional spin-orbit coupling in PtTe2, two different configurations of 

devices were used: lateral junction (L1) as discussed above and a vertical Josephson junction (VJJ) 

with a PtTe2 flake sandwiched by NbSe2 flakes on top and bottom (that is labelled V1). Fig. 2(a) 

shows 𝐼𝑐
+ and 𝐼𝑐

− as a function of 𝐵𝑦 in L1 and the corresponding ∆𝐼𝑐 is shown in Fig. 2(b).  It can 

be seen that  ∆𝐼𝑐 increases linearly with 𝐵𝑦 at low fields and then starts to fluctuate and decrease 

non-monotonously. This effect is due to the finite thickness of the sample, which means that 𝐵𝑦 

provides an additional magnetic flux to the sample and creates a phase difference across the 

electrodes (Refer SI). This effect can be corrected for and the actual  ∆𝐼𝑐 obtained from the 

Fraunhofer pattern as will be discussed. To minimize flux effects, lower 𝐵𝑦 values smaller than 30 

𝑚𝑇 are used in the measurements. 

On measuring the critical currents 𝐼𝑐
+ and 𝐼𝑐

− of L1 at 20 𝑚𝐾 as a function of the in-plane 

magnetic field angle [Fig. 2(d)], it is seen that ∆𝐼𝑐 is maximized when the magnetic field is applied 

perpendicular to the direction of current (𝐵𝑦) and vanishes when the magnetic field is along the 

direction of current (𝐵𝑥). ∆𝐼𝑐 also decreases as a function of temperature at higher temperatures 

with a quadratic (𝑇 − 𝑇𝑗)
2

 dependence as expected for a finite momentum Cooper pairing 

scenario4,11, as shown in Fig. 2(c). Furthermore, there is no clear evidence of a ∆𝐼𝑐 in vertical 

Josephson junctions of PtTe2 with an in-plane magnetic field along different directions (Refer SI, 

section 5), as opposed to that in vertical junctions of Td-WTe2 where a clear ∆𝐼𝑐 is observed19. 

Thus, this result shows the absence of net spin-momentum locking or any other finite momentum 

pairing mechanism when the current flows along the c-axis of PtTe2 and, together with the results 

on L1, point to the existence of a two-dimensional helical spin-momentum locking in PtTe2.  

 



 6 

Tunable second-order supercurrents and Current-Phase relationship (CPR) 

induced by Finite Momentum Cooper Pairing (FMCP) in PtTe2  

Having established the existence of a helical spin-momentum locking in PtTe2, the 

evolution of the Fraunhofer pattern in lateral PtTe2 junctions in the presence of ∆𝐼𝑐 is studied to 

gain insight into the CPR of the system. While superconducting quantum interference devices 

(SQUIDs) are the preferred platforms to deduce the current-phase relationship in a system, 

Josephson junctions have the advantage that the distribution of supercurrents in the system may 

also be obtained by analyzing the Fourier transform of the Fraunhofer pattern. The Fraunhofer 

patterns for the critical currents, 𝐼𝑐
+ and 𝐼𝑐

− are measured as the function of the magnetic flux Ф 

along the z-direction, under various 𝐵𝑦 is shown in Fig. 3(a)-(d) after correcting for flux focusing 

effects20,21 and the finite thickness effect22,23 of the sample as discussed in detail in the SI. When 

𝐵𝑦 = 0, 𝐼𝑐
+ and 𝐼𝑐

− lie on top of each other leading to a negligible ∆𝐼𝑐 and the period of oscillations 

is close to a single magnetic flux quantum (Ф0 =
ℎ

2𝑒
) as expected [Fig. 2(f)]. As 𝐵𝑦 is increased 

in the negative direction to −8 𝑚𝑇 and the Fraunhofer pattern is measured again [Fig. 3(a)], it is 

observed that the central maxima of 𝐼𝑐
− increases slightly in magnitude while the magnitude of the 

central peak of 𝐼𝑐
+ starts to decrease. As the magnetic field is increased further from −12 𝑚𝑇 to 

−24 𝑚𝑇, [Fig. 3(b-d)] the central peak of 𝐼𝑐
− doesn’t decrease much in magnitude while the 

magnitude of the central peak of 𝐼𝑐
+ has a sharp decrease in the middle leading to the formation of 

a sharp noticeable dip in critical current where maximum ∆𝐼𝑐 is observed. It is to be noted that in 

these experiments, the roles of 𝐼𝑐
+ and 𝐼𝑐

− are reversed when 𝐵𝑦 is swept in the opposite direction 

and that corresponds to 𝐼𝑐
+(𝐵𝑦, 𝐵𝑧) = −𝐼𝑐

−(−𝐵𝑦, −𝐵𝑧), indicating that the total time-reversal 

symmetry of the system is maintained and there is no other external sources of magnetic flux, like 

vortices trapped in the system (Refer SI). 

The appearance of ∆𝐼𝑐 in PtTe2 can be understood using a simple model starting from a 

general current-phase relationship (CPR) written as a Fourier series of sine functions, which 

includes higher harmonics and additional phase shifts 𝜑𝑛 that may be present in the system when 

time-reversal symmetry is broken. 

𝐼(𝜑) = ∑  𝐼𝑛 sin (𝑛𝜑 + 𝜑𝑛)∞
𝑛=1                                              (1) 
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This CPR can be expanded up to the second order as higher order supercurrents contribute 

negligibly to the total current. This gives us:  

               𝐼(𝜑) = 𝐼1 sin (𝜑 + 𝜑1)  + 𝐼2 sin (2𝜑 + 𝜑2)                                          (2) 

Certain well-known cases of unconventional CPR can be derived from this generic CPR. For 

example, having 𝜑1 = 𝜑2 = 0, gives a CPR that contains only the first and second harmonic terms 

without any additional phases corresponding to typical 𝜑-junctions24,25 with a skewed current-

phase relationship and furthermore setting 𝐼2 = 0 in Eq. (2) gives us anomalous Josephson 

junctions or 𝜑0-junctions with a sinusoidal current phase relationship shifted from zero by a phase 

𝜑1. Such CPRs have been observed typically in ferromagnetic Josephson junctions and systems 

with high spin-orbit coupling26-31. Now, without any loss of generality 𝜑 may be replaced with 

(𝜑 − 𝜑1) and the CPR can be rewritten as: 

        𝐼(𝜑) = 𝐼1 sin 𝜑 + 𝐼2 sin (2𝜑 + 𝛿)                                      (3) 

introducing 𝛿 = 𝜑2 − 2𝜑1, the relative phase between the first and second harmonic terms. Such 

a Josephson junction with a CPR as that in equation (3) is dubbed as a ‘second order 𝜑0-junction’. 

This CPR is identical to that derived from the Ginzburg-Landau formalism4, in which 𝛿 

corresponds to the phase shift induced by a finite momentum Cooper pairing in the system. The 

phase, 𝛿, may be controlled by an in-plane Zeeman field perpendicular to the direction of current 

(𝛿 ∝ 𝐵𝑦). We note that, in addition to NiTe2
4, similar CPRs have been used to explain the presence 

of a ∆𝐼𝑐 in InAs-based superconducting junctions 9,32 and InSb nanowire junctions33.  

∆𝐼𝑐 may be determined by examining 𝐼𝑐
+ and 𝐼𝑐

− from the CPR in Eq. (3). For non-sinusoidal 

CPRs, such as that in Eq. (3), that are composed of higher order Fourier harmonics, critical currents 

may not occur at 𝜑 = ±
𝜋

2
 and need to be solved numerically to obtain the exact values of 𝐼𝑐

+ and 

𝐼𝑐
− for different values of 𝛿. We obtain the critical currents as  

𝐼𝑐
+(Φ, 𝛿) = max

𝜑
[𝐼𝑡𝑜𝑡(𝜑, Φ, δ)] 

𝐼𝑐
−(Φ, 𝛿) = min

𝜑
[𝐼𝑡𝑜𝑡(𝜑, Φ, δ)] 

where 𝐼𝑡𝑜𝑡(𝜑, Φ, δ) denotes the total current given by  



 8 

𝐼𝑡𝑜𝑡(𝜑, Φ, δ) =
1

𝑊
∫ 𝑑𝑦

𝑊
2

−
𝑊
2

 𝐼 (𝜑 + 2𝜋
Φ

Φ0

𝑦

𝑊
 )

= (𝐼1 sin 𝜑 + 𝐼2 cos (𝜋
Φ

Φ0
) sin(2𝜑 + 𝛿))

sin(πΦ/Φ0)

𝜋Φ/Φ0
 

For  
𝐼2

𝐼1
≪ 1, the critical currents 𝐼𝑐

± occur at 𝜑 = ±
𝜋

2
, so that  

       ∆𝐼𝑐(Φ, 𝛿) = −2𝐼2(𝐵) sin 𝛿  
sin(

2πΦ

Φ0
)

2𝜋Φ

Φ0

              (4) 

where 𝐼𝑖(𝐵) = 𝐼𝑖(0) (1 −
𝐵2

𝐵𝑐
2)

𝑖

 accounts for the suppression in the critical current 

components due to 𝐵. We note that ∆𝐼𝑐 can serve as a probe for second harmonic supercurrent in 

the junction because the first harmonic term does not have any direct contribution to ∆𝐼𝑐. From 

Eq. (4), we infer three important conclusions on the nature of the CPR and ∆𝐼𝑐. First, we find that 

the existence of a second-harmonic term (𝐼2 ≠ 0) and 𝛿 ≠ 𝑛𝜋, 𝑛 ∈ ℤ is necessary for the existence 

of a non-zero ∆𝐼𝑐. So, the presence of a ∆𝐼𝑐 acts as an indicator for the existence of a second 

harmonic term in the current-phase relationship while the converse is not true. Second, control 

over 𝛿 leads to the possibility of tuning the relative phase between the first and second harmonic 

components, which leads to control of specific harmonics. For example, substituting 𝛿 = 𝜋 in Eq. 

(3) gives: 

                           𝐼(𝜑)𝛿=𝜋 = 𝐼1 sin 𝜑 + 𝐼2 sin (2𝜑 + 𝜋) = 𝐼1 sin 𝜑 − 𝐼2 sin 2𝜑                      (5) 

In this CPR, the first and second harmonics of supercurrents have opposite signs and can flow in 

opposite directions. Hence by tuning the magnetic flux and choosing a suitable value of 𝛿 and 𝜑, 

the magnitude and flow direction of pure second or first order supercurrents across the junction 

can be controlled. Third, the magnitude of ∆𝐼𝑐 is modulated by sin 𝛿, which implies that ∆𝐼𝑐 

reaches its largest magnitude when 𝛿 = ±
𝜋

2
. In a system with FMCP such as 1T-PtTe2, 𝛿 may be 

tuned precisely with an in-plane magnetic field (𝐵𝑦). Assuming that 𝐼2 and 𝐼1 are both positive, 

the value of 𝐵𝑦 at which ∆𝐼𝑐 reaches the maximum (minimum) value ∆𝐼𝑐
𝑚𝑎𝑥 (∆𝐼𝑐

𝑚𝑖𝑛) corresponds 

to 𝛿 = −
𝜋

2
 (𝛿 =

𝜋

2
) from Eq. (4). Using the value of ∆𝐼𝑐

𝑚𝑖𝑛 in Eq. (4), we observe that the 

magnitude of second harmonic supercurrent flowing through the junction is 𝐼2(𝐵𝑦) = −
∆𝐼𝑐

𝑚𝑖𝑛

2
 , in 
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the limit of Φ going to zero. For junction L1, the minimum value of ∆𝐼𝑐 is around −34 𝜇𝐴 at 𝐵𝑦 =

−24 𝑚𝑇 [Fig. 3(l)], this would produce  𝐼2(−24 𝑚𝑇) ≈ 17 𝜇𝐴 and the actual value of  
𝐼2(0)

𝐼1(0)
≈

0.37. The value of 
𝐼2

𝐼1
 obtained from this analysis is larger than that measured in some 

semiconductor junctions with high transparency such as Sn-InSb nanowire junctions33 and 

comparable to that observed in Al-InAs planar Josephson junctions34. Calculating the Josephson 

diode efficiency 𝜂 =
∆𝐼𝑐

𝐼𝑐
++𝐼𝑐

− for this junction at maximum ∆𝐼𝑐 gives a value of around 32 % at 

−24 𝑚𝑇, which is one of the largest values reported so far and close to the theoretical limit of 

40 % (Refer SI, section 15 for comparison).  

In order to corroborate the validity of values estimated from the model, the Fraunhofer 

patterns for 𝐼𝑐
+, 𝐼𝑐

− and, consequently, ∆𝐼𝑐 corresponding to different values of 𝛿 are simulated with 

𝐼2

𝐼1
≈ 0.4 in Figs. 3(e)-(h) and Figs. 3(m)-(p), respectively. We observe that the CPR captures the 

main features of the experimental data such as the magnitude of ∆𝐼𝑐 and the oscillation period of 

it. Some additional features for small 𝐵𝑧 such as lifted nodes in ∆𝐼𝑐 and the formation of a dip in 

the critical currents at zero 𝐵𝑧 can be captured by introducing an additional term to the phase 

difference such that 𝜑 → 𝜑 + 𝛽
𝐼𝑡𝑜𝑡

𝐼1
|

𝑦

𝑊
|, which is due to a small remnant self-field in the junction. 

In the SI (section 3), we provide a derivation of 𝛽 and show that 𝛽 =
1

2
 (

𝑊

𝜆𝐽
)

2

. This term directly 

shows the influence of junction geometry (wide junction) on the phase gradient. The corresponding 

CPRs for negative and positive 𝐵𝑦 are shown in Fig. 3(q) and Fig. 3(r) respectively, where the non-

reciprocal nature of the critical currents can be seen clearly. The details of the simulations are 

relegated to the SI (section 3). It is seen that the features of  𝐼𝑐
+ and 𝐼𝑐

− from the simulation are in 

qualitative agreement with the experimentally measured curves. We note that the features of the 

simulation that are also observed in experiment such as the sharp peak in 𝐼𝑐
+ around −12 𝑚𝑇 and 

the observed dip in 𝐼𝑐
+ beyond −16 𝑚𝑇 are quite sensitive to the value of 

𝐼2

𝐼1
 and the origin of these 

features are reflected in the calculated CPR curves [Fig. 3(q)]. It can be seen in the CPR curves 

that as |𝐵𝑦| is increased, the critical current in the negative direction (𝐼𝑐
−) first increases in 

magnitude and then starts to decrease gradually with a steady shift in the value of 𝜑 at which it 
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occurs, while in the case of 𝐼𝑐
+ there is initially a gradual decrease in its value as 𝐵𝑦 is increased 

with a shift in the value of 𝜑.  

Further, the evolution of 𝐼𝑐
+ and 𝐼𝑐

− as a function of 𝐵𝑦 plotted in Fig. 4(a) is well replicated 

by the corresponding simulation presented in Fig. 4(b). The absence of nodes in the experimental 

observation of ∆𝐼𝑐 versus 𝛿 can be explained by the presence of a small magnetic flux induced by 

𝐵𝑦 as shown in SI (section 13). The intimate correlation between the observed features in 

experiment and the simulations demonstrates the accuracy of the assumed CPR. Fig. 4(c) shows 

∆𝐼𝑐 as a function of 𝐵𝑦 as derived from the Fraunhofer interference pattern at zero net magnetic 

flux. ∆𝐼𝑐 deviates from the expected sinusoidal behavior and increases in magnitude linearly with 

𝐵𝑦 till ±24 𝑚𝑇 and then decreases linearly towards zero. This behavior can also be reproduced 

successfully in the simulations by tuning the |
𝐼2

𝐼1
| ratio as shown in Fig. 4(d). While  ∆𝐼𝑐 vs 𝐵𝑦 

remains sinusoidal for lower values of |
𝐼2

𝐼1
|, it gradually turns triangular for larger values of |

𝐼2

𝐼1
| for 

wide junctions. This deviation of ∆𝐼𝑐 from the sinusoidal behavior expected from Eq. (4) also 

confirms the presence of large second-harmonic supercurrents. The absence of nodes in the 

experimental observation of ∆𝐼𝑐 versus 𝛿 in Fig. 4(a) and Fig. 4(c) can be explained by the presence 

of a small magnetic flux induced by 𝐵𝑦 as shown in SI (section 13). 

One of the main observations from Eq. (4) is that ∆𝐼𝑐 is expected to oscillate with the 

magnetic flux Φ with nodes at every half-flux quantum (
𝛷0

2
) due to the presence of the second-

harmonic term in the CPR. The oscillations in ∆𝐼𝑐 as a function of Φ at 𝐵𝑦 = 20 𝑚𝑇 are presented 

in Fig. 4(e). Though the oscillations are expected to vanish, the first few nodes in ∆𝐼𝑐 occur at 

finite values, which is similar to the observed in the Fraunhofer patterns for 𝐼𝑐
+ and 𝐼𝑐

− [Fig. 2(f)]. 

Lifted nodes in Fraunhofer patterns may be due to several mechanisms, such as the junction 

geometry35, current asymmetry, or a remnant of an unconventional CPR due to topological 

superconductivity36,37. The lifted nodes encountered in our case can be accounted for in the 

simulations by the presence of a self-field related to the junction geometry that results in non-zero 

𝛽. 𝐼𝑐
+ simulated for different values of 𝛽 is shown in Fig. 4(g). Interestingly, it can be seen that the 

appearance of a dip in 𝐼𝑐
+ upon increasing 𝛿 [Fig. 4(f)] can be captured by increasing 𝛽, suggesting 

the intimate correlation between these two parameters as assumed. The variations in the magnetic 
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flux at which these features can be observed experimentally can be possibly due to a varying flux-

focusing factor close to zero magnetic flux and the first lifted node in 𝐼𝑐
+, which masks the dip 

close to the first magnetic flux quantum. The oscillations are observed to have nodes that are 

roughly spaced every (
𝛷0

2
) strongly indicating that the major component in ∆𝐼𝑐 is close to second 

harmonic as expected in a second order 𝜑0-junction. The second harmonic component extracted 

from other junctions (L3 and L4) together with L1 is observed to scale quadratically with the 𝐼𝑐 of 

the junctions, as shown in Fig. 5(f), which is expected from a Ginzburg-Landau analysis4, further 

confirming our hypothesis. The junction L2 that is accidentally shorted by another flake and forms 

an asymmetric SQUID displays skewed, non-sinusoidal oscillations of the critical current, also 

indicating the presence of a large second-harmonic term in the CPR of the junction38 (Refer SI, 

section 14). 

 

Discussion 

Now, we turn our attention to the physical origin of a large second-harmonic term in PtTe2 

Josephson junctions. The presence of such a large second harmonic component in a Josephson 

junction with a large electron density made over such long separations is quite unanticipated as it 

indicates a large transparency of the interface between the superconducting electrodes and PtTe2, 

and the presence of resonant Andreev bound states due to phase coherent transport across the 

junction39. The band structure studies of multilayer PtTe2 have shown the formation of high 

mobility Fermi pockets at the Fermi level40,41. This means that the difference between the Fermi 

level and the edges of these bands is small. As a result, a relatively large external magnetic field 

can lead to significant warping and even the (dis)appearance of the Fermi pockets, i.e., a Lifshitz 

transition42, which could strongly affect the density of states and velocity at the Fermi level. A 

large density of states available for Cooper pair transfer, as a result, can enhance the critical 

currents associated with single (𝐼1) and double Cooper pair transfer (𝐼2) in the junction.  

Moreover, we note that large transparencies and consequently higher harmonics are 

observed in high-mobility semiconducting43 and semi-metallic junctions44 with low electron 

densities and pristine interfaces but it is not so in metallic junctions due to short mean-free paths 

and scattering at the interface. The mean-free path (𝑙𝑒) reported in literature for single crystals of 
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PtTe2 is around 180 𝑛𝑚 in the 𝑎𝑏 plane45, which is large in comparison with a normal metal with 

similar carrier densities, where it is typically of the order of 1 − 50 𝑛𝑚46. Josephson junctions 

made with metallic barriers have large critical currents owing to large density of states available 

for Cooper pair tunneling. As discussed earlier, since the second harmonic supercurrent (𝐼2) scales 

roughly as the square of 𝐼𝑐, 𝐼2 is typically larger in metallic Josephson junctions with larger 𝐼𝑐 as 

in our case (~73 𝜇𝐴) as compared to semiconductor Josephson junctions with much lower 

electron densities10 (~1 𝜇𝐴). This enhancement in 𝐼𝑐 is advantageous for easier and clear 

observation of higher order effects in the junction like the oscillations in ∆𝐼𝑐 that we observe.  

The superconducting coherence length (𝜉 =
ħ𝑣𝐹

𝜋∆0
) of L1 is calculated to be around 200 𝑛𝑚 

at zero temperature using the average value of 𝑣𝐹 ≈ 3.3 × 105 𝑚𝑠−1 reported in literature45 for 

PtTe2. It is neither clearly in the short or long junction limit when compared to the junction 

separation (390 𝑛𝑚) and thus is not straight forward to determine the transparency of the junction 

by fitting 𝐼𝑐(𝑇) using a standard model for a long junction. Instead, the transparency of this 

junction is obtained by examining excess currents (𝐼𝑒) that are obtained by linear extrapolation of 

the 𝐼 − 𝑉 curve above the critical current back to zero voltage, as shown in Fig. 5(a). The existence 

of 𝐼𝑒 in a highly transparent junction with long-range phase-coherent Andreev reflections is 

explained by the Octavio-Tinkham-Blonder-Klapwijk (OTBK) model47,48. The 𝐼𝑒 for L1 at 20 𝑚𝐾 

is around 9 𝜇𝐴 which corresponds to a transparency parameter of around 0.45.  

The transparency of the other junctions L3 and L4, which are in the long junction limit 

(𝑑 ≫ 𝜉), is obtained by fitting the critical current over the entire temperature range in the long 

junction limit49,50 given by 𝐼𝑐(𝑇) = 𝜂
𝑎𝐸𝑇

𝑒𝑅𝑛
[1 − 𝑏𝑒

−𝑎𝐸𝑇
3.2𝑘𝐵𝑇]. 𝑎 and 𝑏 are fitting parameters. 𝐸𝑇 is the 

Thouless energy and 𝑅𝑛 is the normal state resistance. The details of the fit can be found in the SI. 

The extracted transparency from the fits for L3 and L4 (Fig. 5b and 5c) is around 0.436 and 0.428 

respectively, which is consistent with the values from excess currents.  

The transparency of the junctions is not as large as that found in semiconductor junctions, 

which is closer to unity in ballistic transport. In the case of PtTe2, we argue the decrease in 

transparency to the contribution of the diffusive channels in parallel to transparent ballistic 

channels. The presence of ballistic channels can be attributed to the high quality of the interface 
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between the superconductor and surface of PtTe2 and to the significant contribution of the states 

with helical spin-momentum locking to the transport of supercurrents. These states with helical 

spin-momentum locking protect the charge carriers from backscattering as depicted in Fig. 5g and 

lead to coherent processes over long distances such as multiple Andreev reflections leading to 

strong second harmonic supercurrents. Similar protection to backscattering has been reported 

previously in some other topological semimetals and other systems51-53.  

The large spin-orbit coupling effect at small magnetic fields as evidenced from the non-

zero momentum of the Cooper pairs indicates a large (
𝑔

𝑣𝐹
) ratio in PtTe2. Large 𝑔-factors of similar 

order have been reported in some topological semimetals54 and semiconductor 

heterostructures55,56. The large spin-orbit coupling and Zeeman splitting with small magnetic fields 

coupled with the relatively long mean free paths in PtTe2 provides an interesting alternative 

platform to engineer topological superconductivity in planar Josephson junctions57,58 as has been 

demonstrated before in Josephson junctions of HgTe59 and InAs60 quantum well structures. One 

of the major challenges in the current existing platforms for realizing topological 

superconductivity is the engineering of high quality interfaces61,62. The complete air stability of 

PtTe2 and the states with strong helical spin-momentum locking allow for creation of high quality 

interfaces with superconductors without many complications.  

In summary, we have shown through measurements of ∆𝐼𝑐 that the Dirac semimetal 1T-

PtTe2 has a large JDE that arises from its helical spin-momentum locked states under a Zeeman 

field. While extrinsic effects such as SFE can be present in wide Josephson junctions that can also 

lead to a JDE, it is shown that such extrinsic effects can be eliminated by using a criss-crossed 

measurement geometry. The junctions are shown to behave as ‘second-order 𝜑0-junctions’, in 

which the supercurrent transport can be tuned between Cooper pairs and Cooper quartets of 

charges 2e and 4e respectively, through the analysis of  ∆𝐼𝑐 in the Fraunhofer interference pattern 

and comparison with the proposed 𝛿-dependent CPR. The simulated ∆𝐼𝑐 with a strong second 

harmonic term (
𝐼2

𝐼1
≈ 0.4), as inferred from the CPR analysis well replicates the experimental 

behavior. ∆𝐼𝑐 is also shown to have nodes at every (
𝛷0

2
), further confirming the validity of the 

proposed 𝛿-dependent CPR. Besides being important for the observation of a JDE, this CPR has 

unique properties such as the controlling the relative phase difference between the two harmonics 
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in the junction and controlling the relative direction of supercurrent flow by tuning the (𝛿, 𝜑) phase 

space. Josephson junctions of topological materials have been explored largely in the context of 

topological superconductivity59,60 and though the protection against backscattering offered by the 

topological states leading to higher order Andreev processes has been reported in junctions prior 

to this work38,51,63, their role in the creation of a large JDE and controlling its magnitude has been 

unambiguously identified and explored in this work, making them more relevant in creating 

supercurrent diodes of much larger efficiencies. Moreover, they would also be useful in the study 

of the 4e Cooper quartet transport without the need for multiple superconducting terminals64,65, 

which have also been predicted to be useful in the creation of parity protected superconducting 

qubits66,67. We would also like to note the recent observation of 4e supercurrents in 

superconducting quantum interference devices (SQUIDs) consisting of InAs-Al heterostructure68.  
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Figures 

 

Fig.1 Josephson junctions of PtTe2 and non-reciprocal critical currents. (a) A schematic of 

the 1T-PtTe2 crystal, which shows the structure of five layers of platinum ditelluride with a trigonal 

prismatic coordination. Purple color indicates platinum atoms and green color indicates tellurium 

atoms. The structure comprises two dimensional, centrosymmetric layers of PtTe2 stacked on top 

of each other separated by a Van der Waals gap. (b) An optical image of Josephson junction 

devices fabricated on a single 17 nm thick PtTe2 flake. Inset shows a close up of devices with 

niobium electrodes with increasing separations labelled L1 to L4. The cartesian coordinate axes 

that are used are shown. The white scale bar represents 2 μm. (c) Resistance curve of junction L1 

measured while cooling down in zero field. Two transitions at around 4.5 K and 2.7 K (inset) 

corresponding to the superconductivity of niobium (𝑇𝑐) and the junction (𝑇𝑗) are observed. (d) 

Current-Voltage characteristics of L1 measured in the absence of any external magnetic field after 

cooling down in zero magnetic field. The critical currents in the positive (𝐼𝑐
+) and negative (𝐼𝑐

−) 

directions are the same within the limit of error, making ∆𝐼𝑐 = 0. The retrapping currents in both 

directions (𝐼𝑟
+ and 𝐼𝑟

−) are also equal. (e) Current-Voltage characteristics of L1 measured in the 

presence of an 8 mT magnetic field applied along 𝐵𝑦. In addition to a suppression of the energy 
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gap of the junction, we also observe that there is a significant difference in 𝐼𝑐
+ and 𝐼𝑐

− leading to a 

∆𝐼𝑐. (f) The non-reciprocal behavior of supercurrents measured under the same 8 mT magnetic 

field with a 37 μA current shows that the device is superconducting along one direction but 

resistive in the other direction. The switching was measured over a period of one hour and showed 

robust behavior. 

 

Fig. 2 Analysis of ∆𝑰𝒄 with magnetic field magnitude, angle and temperature for junction L1. 

(a) 𝐼𝑐
+ and 𝐼𝑐

− measured as a function of the magnetic field 𝐵𝑦 swept from 150 mT to -150 mT at 

20 mK temperature. (b) ∆𝐼𝑐 measured by sweeping 𝐵𝑦 from 150 mT to -150 mT, shows that it is 

maximum around 10 mT. (c) The maximum value of  ∆𝐼𝑐 plotted as a function of temperature. 

Inset shows that it follows a quadratic (𝑇 − 𝑇𝑗)
2

 dependence at higher temperatures, as expected 

for a finite momentum Cooper pairing scenario4. (d) The angular dependence of ∆𝐼𝑐 at various 

magnetic fields measured at 20 mK shows that ∆𝐼𝑐 is maximized when the magnetic field is 

perpendicular to the direction of current and zero when the magnetic field is parallel to the direction 

of current indicating a helical spin-momentum locking in the system. (e) The angular dependence 

of ∆𝐼𝑐 with the magnetic field 𝐵𝑦 = 8 mT measured at various temperatures. (f) 𝐼𝑐
+ and 𝐼𝑐

− measured 

as a function of the magnetic field 𝐵𝑧 measured in a criss-crossed configuration shows negligible 

∆𝐼𝑐. 
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Fig. 3 Evolution of the Fraunhofer pattern in the presence of ∆𝑰𝒄 for junction L1.  (a)-(d) 

shows the experimentally measured Fraunhofer patterns for 𝐼𝑐
+ and 𝐼𝑐

− in the presence of a negative 

𝐵𝑦 of different magnitudes up to −24 𝑚𝑇. A 0-π junction-like dip is observed in 𝐼𝑐
+ upon 

increasing the magnitude of 𝐵𝑦. (e)-(h) shows the simulated Fraunhofer patterns using a self-

consistent treatment (as described in the SI) for  
𝐼2

𝐼1
= 0.4. A behavior similar to that in experiment 

with increasing 𝛿 in the CPR is observed. (i)-(l) shows the increasing ∆𝐼𝑐 with the increasing 

magnitude of 𝐵𝑦 reaching maximum value around −24 𝑚𝑇. (m)-(p) Simulated ∆𝐼𝑐 using the CPR 

in equation (3) for similar magnetic fields as in experiment. The experimentally observed features 

including the dip are captured well by the simulation. (q), (r) shows the CPRs corresponding to 

negative and positive 𝐵𝑦 used in the simulations for 
𝐼2

𝐼1
= 0.4. The non-reciprocal response of 𝐼𝑐

+ 

and 𝐼𝑐
− under |𝐵𝑦| is evident from these simulations. 
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Fig. 4 Evolution of ∆𝑰𝒄 with δ and φ in junction L1. (a) The evolution of 𝐼𝑐
+ and 𝐼𝑐

− of the central 

peak in the Fraunhofer pattern at positive and negative 𝐵𝑦 after correcting for finite thickness 

shifts. (b) Simulated evolution of 𝐼𝑐
+ and 𝐼𝑐

− using the CPR in equation (3). It is found to fairly 

replicate the experimentally observed features. The absence of nodes in (a) can be replicated by 

the presence of an additional magnetic flux (Details in SI, section 13). (c) ∆𝐼𝑐 from the Fraunhofer 

patterns calculated after correcting for finite thickness effects in the junction. (d) ∆𝐼𝑐 calculated 

from the simulated Fraunhofer patterns for a wide junction, where |
𝐼2

𝐼1
| increases in increments of 

0.1. The maxima (minima) corresponds to 𝛿 = −
𝜋

2
  (

𝜋

2
). ∆𝐼𝑐 evolves from a sinusoidal dependence 

at low values of |
𝐼2

𝐼1
| to a nearly triangular behavior at higher values of |

𝐼2

𝐼1
|. (e) The evolution of ∆𝐼𝑐 

with Φ with 𝐵𝑦 = 20 𝑚𝑇. Inset displays clearly the oscillations in ∆𝐼𝑐 with nodes appearing 

roughly at half magnetic flux quantum (
𝛷0

2
) frequency and is almost double the frequency 

compared to the nodes in critical current (𝐼𝑐
+ and 𝐼𝑐

−) interference pattern that happens at every 

magnetic flux quantum (𝛷0). (f) The experimental evolution of 𝐼𝑐
+ with Φ for different values of 

𝛿 shows the appearance of a dip with increasing 𝛿(−𝐵𝑦 ). (g) Similar appearance of a dip-like 

feature in 𝐼𝑐
+ is captured in the simulations by tuning the parameter 𝛽. 
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Fig. 5 Transparency of PtTe2 Josephson junctions. (a) The 𝐼 − 𝑉 curve for L1 junction 

measured at 20 𝑚𝐾 shows the presence of excess currents around 9 𝜇𝐴 indicating coherent 

transport across the junction and a transparency of around 0.45 derived from the OTBK model. 

(b), (c) 𝐼𝑐(𝑇) for junctions L3 and L4 are fit with an equation corresponding to the long junction 

limit yielding a transparency of around 0.436 and 0.428 respectively. (d) 𝐼𝑐(𝑇) for junction L1 

with 𝐼𝑐 starting to saturate below 500 𝑚𝐾. (e) 𝐼𝑐(𝑇) for 𝐼𝑐
+ and 𝐼𝑐

− at −24 𝑚𝑇 for L1 shows that 

𝐼𝑐
− has a larger energy gap at low temperatures (∆0) in comparison with 𝐼𝑐

+ for which ∆0 is strongly 

suppressed by the magnetic field.  (f) The log-log plot of the evolution of I2 extracted from ∆Ic 

with Ic for junctions L1, L3 and L4 shows that the extracted second-harmonic supercurrents scale 
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quadratically (slope ~ 2) with the critical current as expected4 (I2 ∝ Ic
2, for I2 ≪ I1), further 

validating the CPR. (g) Schematic of helical spin-momentum locking in PtTe2 that prevents the 

backscattering of electrons due to non-availability of spin states, while simultaneously enhancing 

phase coherent Andreev processes leading to higher harmonics in the supercurrent. 
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1. Methods 

a. Exfoliation 

Thin flakes of PtTe2 were exfoliated from a single crystal of 1T-PtTe2 (purchased from HQ 

Graphene) under ambient conditions on a Si/SiO2 substrate using a Nitto adhesive tape (SPV 224) 

and standard exfoliation techniques. Very thin flakes of few layer thicknesses are hard to obtain 

due to stronger interlayer attraction present in PtTe2. A thin flake of around 17.5 𝑛𝑚 thickness 

with a relatively large area was identified with the help of an optical microscope and its thickness 

was determined using an atomic force microscope (AFM). This flake was then used to fabricate 

the Josephson junctions presented in the main text.  

 

b. Device fabrication 

The Josephson junctions were fabricated on this flake using electron-beam lithography. 

The substrate containing the flake was spin-coated at 4000 rpm with a positive resist AR-P 669.04 

and annealed at 150 oC for 60 seconds followed by the same procedure for AR-P 679.03 (purchased 

from Allresist GmBH). The substrate was then exposed to the electron beam at 10 kV energy and 

developed using AR 600-56 for 90 seconds. After development and gentle ion milling to remove 

residual resist on top surface, superconducting electrodes Ti (2𝑛𝑚) / Nb (40𝑛𝑚) / Au (4𝑛𝑚) 

substrate was sputtered on the substrate. The lift-off was performed by immersing the substrate in 

acetone overnight. 



 32 

 

Fig. S1 AFM image and thickness of PtTe2 flake used.  (a) AFM image of the as exfoliated 

PtTe2 flake on Si/SiO2 substrate. The scale bar corresponds to 1µm. (b) shows the height of the 

PtTe2 flake measured from AFM measurement at the position marked with a blue line in (a). 

 

c. Electrical Measurements 

 Electrical measurements were performed in a Bluefors LD-400 dilution refrigerator with a 

bottom-loading probe and a base temperature of 20 mK. The fridge is equipped with RF and RC 

filters (from QDevil Aps) that help decrease the electron temperature during measurements. DC 

measurements were performed to obtain the current-voltage characteristics of the Josephson 

junctions. The current bias was applied through a Keithley 6221 current source and the voltage 

was measured using a Keithley 2182A nanovoltmeter. A two-dimensional superconducting vector 

magnet attached to the system was used to control the magnetic field and measure the Fraunhofer 

oscillations under different in-plane magnetic fields.  
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2. Electrical transport properties of PtTe2 in the normal 

state 

A separate Hall bar device with Ti (2 𝑛𝑚) / Au (40 𝑛𝑚) contacts was fabricated on a 

30 𝑛𝑚 thick PtTe2 flake using a similar method as described above to measure its electrical 

properties in the normal state as shown in Fig. S2. Electrical measurements are performed using a 

current source (Keithley 6221) with a constant current bias of 10 𝜇𝐴 and the voltage measured 

using a nanovoltmeter (Keithley 2182A). It is found that PtTe2 remains metallic down to 20 𝑚𝐾 

temperature and does not turn superconducting. It can also be seen from the positive 

magnetoresistance and linear Hall effect that PtTe2 is non-magnetic down to the base temperature 

and hence time-reversal symmetric. The mobility of the flake as estimated from the 

magnetoresistance is 𝜇𝑀𝑅 = 835 𝑐𝑚2𝑉−1𝑠−1 and the carrier concentration calculated from the Hall 

resistance is 𝑛 = 1.424 × 1028 𝑚−3. 
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Fig. S2 Electrical transport properties of an exfoliated PtTe2 flake.  (a) Optical image of a Hall 

bar device with gold electrodes fabricated on a 30 𝑛𝑚 thick PtTe2 flake exfoliated on Si/SiO2 

substrate. (b) Resistance of the PtTe2 flake measured as a function of temperature shows that it 

remains metallic down to 20 𝑚𝐾. (c) Magnetoresistance of the PtTe2 flake is positive and shows 

quadratic behavior indicating the absence of magnetism in the system. (d) The Hall resistance of 

the PtTe2 flake is linear with a negative slope indicating the transport is hole-like with a carrier 

density of 𝑛 = 1.424 × 1028 𝑚−3. 

 

3. Self-consistent treatment of the wide Josephson junction 

Consider the Josephson junction under a uniform external magnetic field. Since the junction 

thickness in the 𝑧 direction 𝑡 ≈ 17 𝑛𝑚 is much less than the London penetration depth 𝜆𝐿, as result, 

we expect a large self-inductance influencing the phase 𝜑, and 𝐵𝑦 penetrates the junction without 

distortion. In the presence of out-of-plane filed 𝐵𝑧, the phase 𝜑 obeys the differential equation  

                          𝜇0𝐽𝑐𝜆𝐽
2 𝜕𝜑

𝜕𝑦
= 𝐵𝑧,                                                        (1) 

where 𝜇0 is the permeability of free space, 𝐽𝑐 ≡ 𝐽1 is the critical density, 𝜆𝐽 is the Josephson 

penetration length. Since 𝜆𝐽 depends on the details of the junction 68-70 as we discuss below, we 

use different current bias configurations to directly obtain 𝜆𝐽. When the current density is 

sufficiently strong, the supercurrent flow in the junction tends to screen the magnetic field from 

the interior of the junction71, and the magnetic field satisfies the Maxwell equation  

                                                           
𝜕𝐵𝑧

𝜕𝑦
= 𝜇0 𝐽𝑥(𝑦)                                                                (2) 

Now, combining Eqs. (1) and (2), we write 

                                                        
𝜕2𝜑

𝜕𝑦2 =
1

𝜆𝐽
2 (sin 𝜑 +

𝐽2

𝐽1
sin 2𝜑 + 𝛿)                                        (3) 
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We note that when 𝐽2 = 0,   Eq. (3) reduces to the usual wide junction limit with a sinusoidal CPR, 

the so-called (static) sine-Gordon equation72. However when 𝐽2 ≠ 0, Eq. (3) is known as the 

(static) double sine-Gordon equation. Note that in the main text, when we discuss the CPR we use 

𝐼2 ≡ 𝐽2𝑡𝑊, and 𝐼1 ≡ 𝐽1𝑡𝑊. The DC limit of our junction is well captured by solutions of this 

equation, which corroborates the validity of our CPR. Converting to dimensionless equations, we 

adopt the boundary conditions73,  for the phase gradient as 

𝑊
𝜕𝜑

𝜕𝑦
|

𝑦=−
𝑊
2

≈ 𝛼2𝜋
Φ

Φ0
+ 𝑎1 (

𝑊

𝜆𝐽
)

2
𝐼

𝐼𝑐
 

𝑊
𝜕𝜑

𝜕𝑦
|

𝑦=
𝑊
2

≈ 𝛼2𝜋
Φ

Φ0
+ 𝑎2 (

𝑊

𝜆𝐽
)

2
𝐼

𝐼𝑐
 

where 𝐼𝑐 = 𝐽𝑐𝑡𝑊,  𝛼 = Φ0/(2𝜋𝜇0𝑑eff𝐽𝑐𝜆𝐽
2)  is a dimensionless constant parameter which we 

determine from our simulation to be 𝛼 ≈ 1, with 𝑑eff = 𝑑 + 2𝜆𝐿, and 𝐼 = 𝑡 ∫ 𝐽𝑥(𝑦)𝑑𝑦
𝑊/2

−𝑊/2
 is the 

total supercurrent flowing in the junction. Here Φ is the external magnetic field’s flux threading 

the junction. The same-side and opposite-side (criss-crossed) biasing can now be easily adopted 

by (𝑎1, 𝑎2) = (0,1) and (−1/2, 1/2), respectively. It is clear that total current affects the solutions 

of the phase, and, in turn, the phase determines the current density 𝐽𝑥(𝑦). As a result, these 

equations are solved self-consistently. In order to obtain the Fraunhofer patterns, we find the 

maximum and minimum total supercurrents, 𝐼𝑐
+ = max[𝐼] and 𝐼𝑐

− = min[𝐼], that satisfy the 

boundary conditions. . At zero in-plane field 𝐵𝑦 = 0, Fig. S3c and S3f present our simulated 

Fraunhofer patterns with 𝜆𝐽 = 𝑊/2 for same-side and opposite side biasing, respectively. We 

point out that, depending on the value of 
𝐽2

𝐽1
, our simulations with the penetration length within the 

range 1 < 𝑊/𝜆𝐽 < 4 can match well with the experimental results.  

For the opposite-side bias boundary conditions, one can check that a self-consistent (numerical) 

solution of Eq. (3) produces the main features of Fraunhofer patterns, such as lifted nodes and a 

local minimum (dip) in 𝐼𝑐
−. However, for simplicity we consider a simple solution 𝜑 = 2𝜋

Φ

Φ0

𝑦

𝑊
+
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1

2
(

𝑊

𝜆𝐽
)

2
𝐼

𝐼𝑐
|

𝑦−𝑦0

𝑊
| that satisfies the boundary conditions and captures the central local minimum 

feature in the Fraunhofer patterns. While our simulations in the main text are for 𝑦0 = 0, a nonzero 

𝑦0 can lead to an asymmetry in Fraunhofer patterns as 𝐼𝑐
±(𝐵) ≠ 𝐼𝑐

±(−𝐵). 

 

4. Identification and Minimization of JDE induced by self-

field effects in wide PtTe2 Josephson junctions  

In a Josephson junction, when the junction width (𝑊) is smaller than the Josephson 

penetration depth (𝜆𝐽), which is a characteristic length scale in the junction over which magnetic 

flux variation can take place, the magnetic field due to the current flow through the junction can 

be neglected. Such a junction is said to be in the ‘short junction limit’. In contrast when the width 

of the junction is larger in comparison to the Josephson penetration depth (𝑊 > 𝜆𝐽), the effect of 

current-induced magnetic field becomes significant. In such limit, the geometry of the current 

source configuration can play a significant role in the current distribution across the junction. In a 

lateral junction as here, when the current source is connected to leads on the same side of the 

device and the voltage probes are connected to the leads on the other side (as in Fig. S3a), this can 

lead to a non-uniform current distribution in the junction. This consequently creates local 

inhomogeneous magnetic fields in the junction that can break the time reversal symmetry of the 

junction. This is known in the literature as a ‘self-field effect (SFE)’74-76 and is dictated purely by 

the geometry of the junction and the magnitude of the critical current. While measuring the current-

phase relationship of the junction by applying a magnetic field perpendicular to the plane of the 

sample (𝐵𝑧), this SFE can lead to the creation of Fraunhofer oscillations that are skewed to one 

side and which alternates with the current direction. Such a skewed Fraunhofer pattern has been 

depicted in Fig. S3c. It is clear that there is a difference in the critical currents that is induced by 

skewing of this interference pattern, which leads to a ∆𝐼𝑐 as shown in the inset to Fig. S3c. This 

∆𝐼𝑐 induced by SFE looks very similar to those induced by finite momentum Cooper pairing in the 

system4 but arises purely due to the extrinsic SFE and has little to do with the intrinsic properties 

of the junction material. Hence, it is important to make sure that the skewedness and JDE arising 
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due to such geometric effects are completely nullified while measuring ∆𝐼𝑐 and deriving 

conclusions about the material properties based on it. We note that even though the SFE evidently 

breaks time-reversal symmetry upon application of a current, there is no spontaneous time-reversal 

symmetry breaking in the absence of a current and the inhomogeneous magnetic fields induced by 

the currents in positive and negative directions are the same in magnitude. Hence, there is no ∆𝐼𝑐 at 

zero magnetic field in the presence of SFE-inducing currents. 

 

Fig. S3 Self-field effects in wide PtTe2 junctions. (a) Measurement schematic for a wide lateral 

Josephson junction in which self-field effects were observed in the Fraunhofer pattern. (b) Skewed 

Fraunhofer pattern with large ∆𝐼𝑐 (inset) measured with the current leads on the same side. (c) 

Simulated Fraunhofer patterns for same-side biasing with 𝑊~𝜆𝐽. The self-field effects gives rise 

to skewed Fraunhofer patterns as in experiments. The calculated ∆𝐼𝑐 are shown in the inset. (d) 

Measurement schematic in which the current bias is sourced in the “criss-crossed” configuration, 

wherein the current leads are located on opposite sides of the superconducting electrodes. (e) The 

Fraunhofer pattern for  𝐼𝑐
+ and 𝐼𝑐

− measured in the criss-crossed configuration is symmetric with 

respect to the magnetic field with negligible ∆𝐼𝑐 (inset) indicating the near uniform flow of 

supercurrents. (f) Simulated Fraunhofer patterns for criss-crossed biasing with 𝑊 = 2𝜆𝐽. In this 
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case, self-field effects are symmetric and lead to symmetric Fraunhofer patterns where ∆𝐼𝑐 =

0 (inset). In (c) and (f), we plot the normalized critical currents as a function of normalized 

magnetic flux Φ/Φ0.  

 

 In L1, the junction channel is between 5 − 6 𝜇𝑚 wide while the estimated 𝜆𝐽 for the 

junction is 𝜆𝐽 ≈ 3 𝜇𝑚 for 𝐵𝑦 = 0, which makes L1 lie in the wide junction limit (𝑊 > 𝜆𝐽). The 

evolution of the critical current in the presence of 𝐵𝑧 is first measured in a geometry where the 

current source is connected to leads located on the same side of the junction as in Fig. S3a. It 

displays a skewed critical current behavior (Fig. S3b), which is not symmetric with the magnetic 

field direction and deviates strongly from the expected behavior for Fraunhofer patterns. 𝐼𝑐
+ and 

𝐼𝑐
− are found to be skewed along opposite directions leading to a large ∆𝐼𝑐, as shown in the inset 

to Fig. S3b. The observed ∆𝐼𝑐 reaches a maximum value of around 40 𝜇A, when the total maximum 

critical current is only 73 𝜇A with a very large diode efficiency (𝜂 =
∆𝐼𝑐

𝐼𝑐
++𝐼𝑐

−) of around 47 %. The 

simulated Fraunhofer pattern for a wide Josephson junction with SFE is also shown for comparison 

in Fig. S3c. This result shows the presence of a strong SFE and a non-uniform current distribution 

when the current bias is applied in the geometrical configuration as in Fig. S3a. The ∆𝐼𝑐 observed 

has a large magnitude and strongly mimics that created by spin-momentum locking, including the 

oscillatory behavior with magnetic field4. If not analyzed carefully, this would lead to the possible 

conclusion that there is a Zeeman-type out-of-plane spin-momentum locking in the system that 

leads to a large ∆𝐼𝑐 with a magnetic field along z-axis as in Ising superconductors such as 2H-

NbSe2
8. However, this is not true in our case. To remove the skewedness of critical currents, we 

use a ‘criss-crossed geometry’ of the current source. In the criss-crossed configuration (Fig. S3d), 

for which the current source is connected to the leads on opposite sides of the device, the skewed 

nature of the Fraunhofer pattern vanishes completely and 𝐼𝑐
+ and 𝐼𝑐

− fall on top of each other, as 

shown in Fig. S3e with a negligible ∆𝐼𝑐 (in the inset to Fig. S3e). The Fraunhofer pattern displays 

periodic oscillations of the critical current and is quite symmetric with respect to the direction of 

magnetic field. This indicates that the distribution of supercurrents, when the current bias is applied 

in the criss-crossed configuration, is rather uniform and there is negligible extrinsic JDE in the 

system due to the junction geometry. 
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5. Josephson diode effect in a vertical Josephson junction 

of PtTe2 

 A vertical Josephson junction (V1) of a 60 𝑛𝑚 thick PtTe2 flake was fabricated using 

NbSe2 as the superconducting electrode on the top and bottom using a dry transfer technique with 

a polycarbonate (PC) film coated on a dome-shaped polydimethylsiloxane (PDMS) stamp as 

described in the literature77, to look for a Josephson diode effect (∆𝐼𝑐) by passing supercurrents 

along the c-axis (as shown in Fig. S4a). The vertical heterostructure formed is then dropped on 

pre-sputtered gold electrodes at 200 ℃ and immersed in chloroform to remove any PC residue. 

The vertical stack is then annealed in vacuum at 300 ℃ for an hour to improve the electrical 

contact to the flakes. No apparent ∆𝐼𝑐 was observed, when a magnetic field was applied in the 

plane of the flakes along different directions as shown in Fig. S4b and Fig. S4c even though the 

Josephson energy and the magnitude of the maximum critical current is quite similar in both the 

L1 and V1 junctions. This demonstrates that possibly there is no spin-momentum locking in the 

bulk of the sample and the observation of a ∆𝐼𝑐 in the presence of a magnetic field is confined to 

current flow along the two-dimensional 𝑎𝑏 plane of the sample. 

 

Fig. S4 Absence of Josephson diode effect in a vertical junction of PtTe2.  (a) Optical image of 

a vertical PtTe2 Josephson junction with superconducting NbSe2 electrodes in the top and bottom. 

(b) and (c) Critical currents 𝐼𝑐
+ (black) and 𝐼𝑐

−(red) of the vertical junction measured as a function 

of the in-plane magnetic field at 20 𝑚𝐾 with magnetic field applied along two perpendicular 

directions show that ∆𝐼𝑐 (blue) is almost zero and has no apparent trend. 
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6. ∆𝑰𝒄 due to the geometric shape inversion asymmetry in 

PtTe2 junctions 

 The trapezoidal shape and tapering edges of the PtTe2 flake in Josephson junctions L1-L4 

naturally break the inversion symmetry of the system and might be considered as the origin for the 

observed ∆𝐼𝑐 in these junctions. If this is indeed the case, then junctions L1 and L3, which taper in 

opposite directions should show opposite signs of ∆𝐼𝑐 when the current and magnetic field are 

applied along the same direction in both these devices. We show below that this is not the case and 

we observe ∆𝐼𝑐 for L1 and L3 is of the same sign when measured under the same conditions, hence 

ruling out the likelihood of geometric asymmetry contributing significantly to the observed ∆𝐼𝑐. 

 

Fig. S5 Josephson diode effect in junctions of different geometry.  (a) and (b) Scanning electron 

microscope (SEM) image of lateral PtTe2 Josephson junctions L1 and L3 (described in the main 

text) with an outline of their trapezoidal shapes and a measurement of their dimensions. (c) and 
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(d) ∆𝐼𝑐 for L1 and L3 measured for a positive 𝐵𝑦 with the same direction of current bias show that 

both these junctions have the same sign of ∆𝐼𝑐 under these conditions. 

 

7. Effect of finite thickness of PtTe2 flake on the 

interference pattern 

When the critical current of the junction is measured as a function of the magnetic flux 

along the 𝑧-axis (𝐵𝑧) which induces a phase difference between the superconducting electrodes, 

we see the expected Fraunhofer interference pattern. When the Fraunhofer pattern is mapped as a 

function of different in-plane magnetic fields along the 𝑦-axis (𝐵𝑦), we observe that there is a 

uniform shift of the whole Fraunhofer pattern along the 𝐵𝑧 with increasing 𝐵𝑦, which can be 

identified by tracking the position of the central maxima. This shift can be effectively modeled by 

replacing 𝐵𝑧 with 𝐵𝑧 + 𝛾𝐵𝑦, where 𝛾 is a small fitting parameter introduced when 𝐵𝑦 deviates 

from the y-direction. This shift has also been observed previously as a tilt of the entire Fraunhofer 

map in similar measurements used to estimate finite-momentum of the Cooper pairs in Josephson 

junctions4,22,23. This tilt is then corrected by subtracting a linear slope that brings the central 

Fraunhofer maxima back to zero 𝐵𝑧.  

In our measurements to track the evolution of 𝐼𝑐
+ and 𝐼𝑐

− in the Fraunhofer oscillations with 

𝐵𝑦, we employ a similar procedure to correct for the observed shift of the Fraunhofer pattern by 

fixing the position of the central maxima at 𝐵𝑧 = 0 𝑚𝑇. Below we show the Fraunhofer patterns 

as measured at different values of 𝐵𝑦 (Fig. S6a-d) and after performing the shift correction (Fig. 

S6e-h) for junction L1. When 𝐵𝑦 is increased beyond 30 mT it becomes hard to track the central 

peak, so the slope of the peak shift with 𝐵𝑦 at lower values of 𝐵𝑦 can be used to do the shift 

correction.  All Fraunhofer pattern analyses presented in the main text are done after performing 

this correction.  

We note that, despite the correction via a uniform shift, the Fraunhofer patterns are 

observed to be asymmetric with respect to Φ. We believe this asymmetry is due to the geometric 

asymmetry in the width of the two leads22, i.e., 𝑊1 and 𝑊2 (the trapezoidal shape of the junction). 
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Fig. S6 Evolution of Fraunhofer pattern for L1 under an in-plane magnetic field and shift 

correction.  (a)-(d) The Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− are found to shift towards the right 

side along positive 𝐵𝑧 values for increasing positive values of 𝐵𝑦 and similarly along negative 𝐵𝑧 

values for negative values of 𝐵𝑦. (e)-(h) The Fraunhofer patterns for different positive 𝐵𝑦 values 

after performing the shift correction setting the central maxima of 𝐼𝑐
+ to be at 𝐵𝑧 = 0 𝑚𝑇. (i) Plot 

showing the linear shift of the Fraunhofer pattern with an in-plane magnetic field 𝐵𝑦. 
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.8. Flux focusing and Estimation of effective junction area 

for diffraction pattern calculations 

 In order to properly estimate the period of oscillations in the observed diffraction pattern, 

it is important to precisely calculate the effective area of the junction through which the Josephson 

current flows and the effective magnetic flux through the junction. First, the effective area of the 

junction including the London penetration depth is calculated and then the effective flux through 

the junction including flux focusing effects is calculated. 

Since the junctions on the PtTe2 flake are shaped like a trapezoid, which is a regular 

quadrilateral, it makes the calculation of the effective junction area easier. While calculating the 

area of the junction, it is important to take into account the London penetration depth (𝜆) of the 

niobium electrodes that can increase the effective separation between the two superconducting 

electrodes. The London penetration depth for thin films of niobium can vary from 37 𝑛𝑚, which 

is the bulk value up to 200 𝑛𝑚 for different thicknesses and temperatures78-80. We use a 𝜆 value 

of ~ 100 𝑛𝑚 as reported in literature78 for films of thicknesses used in our junctions. That would 

make the effective junction separation to be 𝑑𝑒𝑓𝑓 = (2𝜆 + 𝑑). Then the area of the junction is 

calculated by using the formula for area of a trapezium 𝐴 = (
𝑎+𝑏

2
) . 𝑑𝑒𝑓𝑓, where 𝑎 and 𝑏 are lengths 

of the edges of the junction along the electrodes. Using the values estimated from the SEM image 

in Fig. S5a, this would give an effective junction area of around 3.5665 𝜇𝑚2 for L1. If we use this 

as the area of the junction, the magnetic flux through the junction can be calculated as Ф = 𝐵𝑧 . 𝐴 

and this magnetic flux normalized to the magnetic flux quantum (Ф0 =
ℎ

2𝑒
) would be (

Ф

Ф0
). The 

Fraunhofer pattern in these units in presented in Fig. S8a. As it can be observed, the period of 

oscillations seem to be around (
Ф0

2
). Ideally, this would only be possible in the case where the 

second harmonic term in the current-phase relationship (CPR) is the dominant term and the first 

harmonic component is virtually non-existent in the junction. The expected Fraunhofer patterns 

for various ratios of the second and first-harmonic components (
𝐼2

𝐼1
) is presented in Fig.S7. It can 

be seen that in order to obtain prominent second harmonic oscillations, as we do in our 

measurements the second-order term (𝐼2) needs to much larger than the first-order term (𝐼1). 
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However, we argue that this is not the case in our junctions as the second-order term stems as a 

perturbation only because of high transparency in the junction and can’t be larger than the first-

order term. We also argue that the observed period is due to the effect of flux focusing that is very 

well known to occur in lateral Josephson junctions.20,21 

 

Fig. S7 The calculated Fraunhofer interference pattern for various values of 𝐈𝟐 𝐈𝟏⁄ .  (a) The 

simulated Fraunhofer patterns expected for various values of 𝐼2 𝐼1⁄  with 𝛿 = 0. It can be seen that 

in order to get prominent (
Ф0

2
) −periodic oscillations as we observe in our measurements, the ratio 

of 𝐼2 𝐼1⁄  needs to be very large. 

When a magnetic field is applied to a lateral Josephson junction, the Meissner screening 

currents in the superconducting electrodes deflect a portion of the magnetic flux towards the 

junction that results in an increased effective magnetic flux than that expected. This is known as 

the flux focusing effect, which modifies the expected spacing of nodes in Fraunhofer pattern from 

Φ to some ΓΦ, where the flux scaling factor Γ is given by21: 
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Γ =
𝑛Φ0

𝐵𝑧
(𝑛)

𝐿𝑊
, 

where 𝐿 = 590 𝑛𝑚, 𝑊 ≈  6 𝜇𝑚 are the junction length and width (for junction L1). 𝐵𝑧
(𝑛)

is the out 

of the plane magnetic field at node 𝑛. A uniform spacing of the nodes are observed as the niobium 

electrodes are deep in the superconducting state at 20 𝑚𝐾 and the Meissner screening effects are 

constant over the scanned range of 𝐵𝑧. For 𝑛 = 1, we have 𝐵𝑧
(𝑛)

= 0.3 𝑚𝑇, which gives Γ ≈ 1.9 

that accounts for the observed ~(
Ф0

2
) period of the oscillation in the measurements. The Fraunhofer 

pattern after flux focusing correction is presented in Fig. S8b. The period of oscillations matches 

well with the expected Ф0 after accounting for flux focusing effects. 

 

Fig. S8 The Fraunhofer interference pattern for L1 under before and after correcting for 

flux focusing.  (a) The as-plotted Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− are found to have a (
Ф0

2
) 

period before flux focusing correction (Γ = 1). (b) The Fraunhofer pattern after correcting the 

applied magnetic flux with the calculated flux scaling factor (Γ~1.9) matches well with the 

expected Ф0 period. 

 

 



 46 

9. Evolution of Fraunhofer patterns in positive and 

negative magnetic fields for L1 

 

Fig. S9 The Fraunhofer interference pattern for L1 under positive and negative magnetic 

fields after shift correction.  (a)-(d) The Fraunhofer patterns for 𝐼𝑐
+ and 𝐼𝑐

− measured in the 

presence of a positive 𝐵𝑦 magnetic field as shown in the main text. (e)-(h) The Fraunhofer pattern 

for 𝐼𝑐
+ and 𝐼𝑐

− measured in the presence of a negative 𝐵𝑦 magnetic field. The behavior of 𝐼𝑐
+ and 𝐼𝑐

− 

are reversed under opposite 𝐵𝑦 but maintain the symmetry 𝐼𝑐
± (𝐵𝑦, 𝐵𝑧) = 𝐼𝑐

∓ (−𝐵𝑦 , −𝐵𝑧). 
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10. ∆𝑰𝒄 from device L3 

 

Fig. S11 Evolution of the Fraunhofer pattern in the presence of ∆𝑰𝒄 for L3. (a)-(d) The 

Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− for L3 with increasing 𝐵𝑦. (e)-(h) Corresponding ∆𝐼𝑐 for 

the Fraunhofer patterns. ∆𝐼𝑐 for L3 is much smaller compared to L1 as the critical current is also 

smaller but the (
Ф0

2
) period of the oscillations can still be distinguished. (i),(j) Larger image of the 

−10 𝑚𝑇 data with only a couple of oscillations visible in ∆𝐼𝑐. 
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11. ∆𝑰𝒄 from device L4 

 

Fig. S12 Evolution of the Fraunhofer pattern in the presence of ∆𝑰𝒄 for L4. (a)-(d) The 

Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− for L4 with increasing 𝐵𝑦. (e)-(h) Corresponding ∆𝐼𝑐 for 

the Fraunhofer patterns. ∆𝐼𝑐 in this case is very small and the oscillations are barely discernible. 

 

12. Table of parameters for all measured devices  

PtTe2 

device 

Separation 

𝒅 (𝒏𝒎) 

Critical 

current 

𝑰𝒄 (𝛍𝐀)  

𝑹𝑵 (𝛀) 𝑰𝒄𝑹𝑵 (𝛍𝐕) Second 

harmonic 

𝑰𝟐 (𝛍𝐀) 

Transparency 

𝝉 

L1 390 73 0.37 27.156 19.7 0.45 (from 𝐼𝑒) 

L3 466 24 1.2 28.8 1.898 0.435 

L4 597 13.4 1.72 23.04 0.52 0.427 
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13. Effect of magnetic flux on ∆𝑰𝒄 

 

Fig. S13 Evolution of ∆𝑰𝒄 in the presence of a small magnetic flux (𝜱). (a), (b) show the 

simulated behavior of ∆𝐼𝑐, 𝐼𝑐
+ and 𝐼𝑐

− using the CPR in equation (3) of the main text.  (c),(d) show 

the simulated behavior of ∆𝐼𝑐 in the presence of a magnetic flux (𝛷) inside the sample that can 

modify the behavior and lead to a shift in the position of the nodes in ∆𝐼𝑐 expected from the CPR. 

The figures are simulated with an additional flux of Φ = 0.08 𝛿, 𝛿 → 0.8 𝛿  and 𝛽 = 3. The circled 

areas display the lifted nodes. The evolution of ∆𝐼𝑐 shown in (c) with a shift in the position of the 

node in ∆𝐼𝑐 from occurring at 𝛿 = ±𝜋 is consistent with the experimental observation in Fig. 4c, 

indicating the presence of a small flux resulting from the application of 𝐵𝑦. 
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14. Accidental SQUID in junction L2 

(a)                                             (b)  

 

Fig. S14 Accidental SQUID in junction L2. Junction L2 is shorted by another flake of PtTe2 by 

accident forming an asymmetric SQUID loop. (a) The asymmetric SQUID also shows non-

reciprocal critical currents with By and highly skewed non-sinusoidal oscillations providing further 

evidence of the presence of higher harmonics in the CPR. (b) Optical image of the shorted junction. 

Inset shows a close-up SEM image of the flake shorting L2. 
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15. Josephson diode efficiency in PtTe2 junctions 

 

Fig. S15 Evolution of Josephson diode efficiency in PtTe2. The efficiency for various Josephson 

junction based diodes are presented2,4,6,10, including the current work calculated using the formula 

𝜂 =
∆𝐼𝑐

𝐼𝑐
++|𝐼𝑐

−|
 is presented. The efficiency of ∆𝐼𝑐 in PtTe2 goes up drastically with decreasing 

separation and increasing the width of the PtTe2 junctions. 
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