
EDA-Driven Preprocessing for SAT Solving
Zhengyuan Shi #

The Chinese University of Hong Kong, Hong Kong S.A.R.

Tiebing Tang #

The Chinese University of Hong Kong, Hong Kong S.A.R.

Sadaf Khan #

The Chinese University of Hong Kong, Hong Kong S.A.R.

Hui-Ling Zhen #

Noah’s Ark Lab, Huawei, Hong Kong S.A.R.

Mingxuan Yuan #

Noah’s Ark Lab, Huawei, Hong Kong S.A.R.

Zhufei Chu #

Ningbo University, China

Qiang Xu #

The Chinese University of Hong Kong, Hong Kong S.A.R.

Abstract
Effective formulation of problems into Conjunctive Normal Form (CNF) is critical in modern
Boolean Satisfiability (SAT) solving for optimizing solver performance. Addressing the limitations
of existing methods, our Electronic Design Automation (EDA)-driven preprocessing framework
introduces a novel methodology for preparing SAT instances, leveraging both circuit and CNF
formats for enhanced flexibility and efficiency. Central to our approach is the integration of a new
logic synthesis technique, guided by a reinforcement learning agent, and a novel cost-customized
LUT mapping strategy, enabling efficient handling of diverse SAT challenges. By transforming
the SAT competition benchmarks into circuit instances, our framework demonstrates substantial
performance improvements, as evidenced by a 52.42% reduction on average compared to solving
directly. Moreover, our framework achieves a remarkable 96.14% runtime reduction on average for a
set of logic equivalence checking problems that exhibit inherent circuit structures. These results
highlight the effectiveness and versatility of our approach in handling both CNF and circuit instances.
The code is available at https://github.com/cure-lab/EDA4SAT.

Keywords and phrases SAT Preprocessing, Logic Synthesis, Circuit Learning

1 Introduction

In the realm of computational problem-solving, the Boolean Satisfiability (SAT) problem
holds a pivotal position, which involves determining the truth of a Boolean formula under
variable assignments. Identified as the first NP-complete problem [10], SAT’s complexity and
versatility have captivated researchers for decades. SAT solvers [36, 16], central in addressing
these problems, predominantly rely on Conjunctive Normal Form (CNF). CNF represents
problems as an intersection of simpler clauses, a format that both challenges and drives
innovation in SAT solving.

The dominance of CNF in SAT solving necessitates the conversion of diverse SAT
problems into this format, be they graph-based, circuit-based, or pure Boolean formulas.
Research spanning decades highlights the profound impact of CNF representation on problem-
solving efficiency [41, 38]. A variety of preprocessing methods have emerged to refine
CNF construction and transformation, optimizing the initial stages of the SAT solving
process [12, 3, 39, 9]. Despite these developments, current SAT solving approaches continue
to encounter significant challenges, underscoring the need for further innovation.

ar
X

iv
:2

40
3.

19
44

6v
1 

 [
cs

.L
O

] 
 2

8 
M

ar
 2

02
4

mailto:zyshi21@cse.cuhk.edu.hk
mailto:1155157286@link.cuhk.edu.hk
mailto:skhan@cse.cuhk.edu.hk
mailto:zhenhuiling2@huawei.com
mailto:Yuan.Mingxuan@huawei.com
mailto:chuzhufei@nbu.edu.cn
mailto:qxu@cse.cuhk.edu.hk
https://github.com/cure-lab/EDA4SAT


2 EDA-Driven Preprocessing for SAT Solving

A major challenge within the existing SAT solving framework is the absence of a universally
efficient formulation mechanism. In practical scenarios, SAT problems are often directly
transformed into SAT instances, bypassing optimized constructions. This unrefined mapping
often results in significantly larger problem sizes [3]. While various preprocessing techniques
have been developed to compress the CNF formulae [30, 14, 37, 15], their effectiveness is
not guaranteed. For instance, even seemingly small verification tasks can require hours to
resolve [27], suggesting that simple CNF reduction may not suffice for efficient problem
solving [9].

Moreover, several SAT preprocessing methods have been tailored for specific applications,
such as microprocessor verification [39] and scheduling problems [12]. Although these methods
perform well within their respective domains, their lack of adaptability to other problem
types reveals a significant gap in the current approach to SAT preprocessing, highlighting
the need for more universally applicable solutions.

To address these challenges, we introduce an Electronic Design Automation (EDA)-driven
preprocessing framework, a novel integration into the standard SAT solving pipeline. This
framework begins by converting CNF into a circuit format and then strategically reformulates
the circuit representation. The process culminates in reverting the circuit back to an optimized
CNF format, tailored for more efficient solving. This method’s flexibility in transitioning
between circuit and CNF formats enables the application of advanced circuit transformation
techniques across diverse SAT problems.

In our framework, we leverage EDA solutions to harness the detailed structural information
of circuits for SAT problem reformulation. Central to this approach is the use of logic synthesis,
augmented by a reinforcement learning (RL) agent dedicated to identifying optimal logic
synthesis strategies. In contrast to traditional methods [15] focusing primarily on size
reduction, our RL agent is specifically trained to minimize overall SAT solving complexity.
The RL agent utilizes DeepGate [34], a sophisticated gate-level representation technique,
for capturing rich information from initial problem instances. Additionally, we integrate
a cost-customized look-up table (LUT) mapping strategy. Again, our approach maps the
circuit into a format that is inherently easier to solve, diverging from conventional mappings
aimed at compact design.

By integrating this EDA-driven preprocessing framework with the baseline SAT solver
Kissat [16], we have achieved a remarkable average solving time reduction of 96.14% for a set
of circuit equivalence checking problems, compared to applying the baseline solver directly.
Furthermore, we convert the CNF instances into circuits and then process circuits by our
framework. Our framework demonstrates impressive versatility in effectively accelerating
the solving process for a variety of problems in the SAT competition benchmarks with an
average reduction in runtime of 52.42%.

We summarize the contributions of this work as follows:
Introduction of an innovative EDA-driven preprocessing framework that seamlessly
integrates into the SAT solving pipeline, efficiently reformulating SAT problems by
converting standard CNF formulas into circuits and optimizing them for easier solving.
Additionally, the proposed framework is not mutually exclusive with the existing CNF-
based preprocessing strategy.
Implementation of logic synthesis techniques guided by an RL agent, designed to explore
optimal logic synthesis strategies and directly minimize the solving complexity.
Integration of a cost-customized LUT mapping approach that not only conceals redundant
logic during solving, but also significantly enhances the reduction of solving complexity.



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 3

…
…

¬𝑥! ¬𝑥"𝑥"𝑥! 𝑥# ¬𝑥#

𝐶1 𝐶2 𝐶$

Logic 
Synthesis

RL-based
Agent

…
 …

AI
G

 N
et

lis
t

In
iti

al
 C

N
F

…
 …

LU
T N

etlist

𝑥% ¬𝑥%

…
…

¬𝑥! ¬𝑥"𝑥"𝑥!

𝐶1 𝐶&

Sim
plified CN

F
SAT Solver

w/o Preprocessing w/ Preprocessing

LUT 
Mapping

Customized 
Cost

Figure 1 Overview of EDA-Driven SAT preprocessing framework

2 Related Work

2.1 SAT Preprocessing
Conjunctive Normal Form (CNF) has become a standard format in modern SAT solvers,
capable of representing arbitrary Boolean formulas. It is structured as a conjunction of
clauses, denoted by ϕ = (C1 ∧ C2 ∧ . . .), with each clause being a disjunction of variables
or their negations, e.g., Ci = (x1 ∨ ¬x2 ∨ . . .). Over recent decades, numerous CNF-based
heuristics have been developed to enhance SAT solving efficiency, including advanced clause
management strategies [1] and innovative branching heuristics [29, 33].

While some studies [39, 12] have successfully modeled practical problems into CNFs,
their specificity often limits generalizability to diverse problem sets. Commonly, real-world
problems are converted directly into CNF, leading to redundant clauses and increased
complexity. For example, a tournament scheduling problem with n teams can escalate to n6

clauses [3].
There are some works dedicated to CNF reformulation [14, 37], but the flattened structure

and the lack of semantic information of CNF often require repetitively resolving clauses to
establish logical relationships, which is time-intensive. Efforts like [30, 15] target recovering
structures from CNF and minimizing the instances, but they cannot promise to reduce SAT
solving time. In our work, we introduce a comprehensive preprocessing framework designed
to directly reduce solving time.

2.2 Boolean Circuit Optimization
Boolean circuits, representable as directed acyclic graphs (DAGs) G(V, E) with logic gates
and wires serving as nodes V and edges E , respectively, are pivotal in computational logic. In
EDA community, a wealth of efficient algorithms has been developed for circuit optimization.
Logic synthesis is a prime example, involving DAG-based transformation techniques to modify
circuit’s local structure for the optimization of performance, power, and area (PPA).

We provide the examples of two logic synthesis methods that are supported by common
EDA tools [7, 40]: rewrite and balance (see Figure 2). Logic rewrite (rewrite) is a circuit
optimization technique that aims to minimize the overall circuit structure [6, 26]. The
rewrite tools pre-compute and store all optimal circuits within 4 inputs. When applied
to an arbitrary circuit, the tools iteratively identify sub-graph and subsequently replace it
with functionally-equivalent but smaller sub-graph. Balance (balance) [11] creates an



4 EDA-Driven Preprocessing for SAT Solving

A

B

C

A
B
C

A

C
B

D
E
F

A

C
B

D

F
E

1

(b) Logic balancing (a) Logic rewriting 

Level 2 3 4 1Level 2 3

Figure 2 Example of logic rewrite and balance

equivalent circuit with the minimum possible delay, i.e., the minimum number of logic levels.
As suggested by its name, this method achieves optimization by balancing the fan-in regions
of multi-input gates within the circuit.

Besides, technology mapping, a key component in EDA flow, fine-tunes performance
metrics under specific constraints [4] and maps the intermediate circuits into standard cells
pre-defined in technology library. One widely used technique for technology mapping is
Look-Up Table (LUT) mapping [17]. LUT mapping involves the transformation of gate
combinations into k-LUTs, where each k-LUT represents a configurable memory unit capable
of implementing arbitrary Boolean functions with k variables.

In this work, we introduce a novel approach where logic synthesis techniques are employed
to simplify the solving complexity of circuit instances, rather than conventional goal of
optimizing area or delay. Our proposed framework integrates with open-source EDA tool
ABC [7] to perform logic synthesis and utilize customized LUT mapping to generate simplified
circuit instances composed of LUTs.

2.3 Circuit Representation Learning

Training a pre-trained model to learn general representations and subsequently fine-tuning it
for specific tasks has become a prominent trend across various domains. Recently, there has
been a growing focus on developing pre-trained models capable of deriving circuit general
representations. DeepGate family [21, 34] is a series of circuit representation learning models.
The first version DeepGate [21] proposes to introduce strong inductive bias into circuit
data through logic synthesis and is supervised by the statistic random simulation results,
which effectively reflect structural and functional features of circuits. DeepGate2 [34] further
advances circuit representation learning by disentangling the structural and functional
representations. Moreover, DeepGate2 showcases significantly faster inference runtimes
compared to the predecessor while even learning better circuit representations. The gate-level
representation vectors derived from the DeepGate model encapsulate the general circuit
information, which proves instrumental in facilitating various EDA applications, such as
testability analysis [32] and power estimation [20]. In this work, we tailor existing EDA
tools for specific requirements, utilizing circuit knowledge learning capabilities of pre-trained
DeepGate2 to inform our circuit optimization decisions.



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 5

3 Methodology

3.1 Overview of the Proposed Framework

Figure 1 shows the overview of proposed EDA-Driven SAT Preprocessing. Firstly, we convert
the initial CNFs into And-Inverter Graph (AIGs) [5], which represent any logic behaviours
only with three gate types: AND Gate, NOT Gate and Primary Input (PI). Then, we apply
a predetermined sequence of AIG transformation operations to unify the distribution of input
circuit [22].

Secondly, we utilize logic synthesis technique to reformulate SAT instance. Since the logic
synthesis process can be considered as a sequential decision-making task, we train an agent
to minimize the solving complexity by reinforcement learning (RL). In the RL framework,
the state comprises embeddings of the initial AIG netlist and features of intermediate
circuits. Additionally, the RL agent operates within a discrete action space, where each
action corresponds to executing a synthesis operation. We approximate the complexity of
SAT solving based on the number of variable branching times and define the reduction in
branching times as the reward for RL agent.

Thirdly, we employ the LUT mapping technique to hide the internal logic of circuits. To
further decrease the solving time, we design a cost-customized mapping operation with the
objective of minimizing the branching times during SAT solving, rather than solely focusing
on reducing the problem size. After the LUT mapping, we obtain the LUT netlist with
a relatively small number of cells. To ensure compatibility with modern SAT solvers, we
transform the LUT netlist back into a simplified CNF.

3.2 Logic Synthesis Recipe Exploration

We formulate logic synthesis as a Markov Decision Process (MDP) process, with the optimiz-
ation objective of reducing the solving time for a given input instance. Consequently, such
sequence decision-making process entails iteratively selecting a logic synthesis operation as
an action according to the current circuit state.

3.2.1 Reinforcement Learning Formulation

To explore the optimal logic synthesis sequence (i.e. logic synthesis recipe), we employ Deep
Q-learning algorithm in this section to train an reinforcement learning (RL) agent. The RL
agent is trained to make informed decisions to minimize solving time by learning from its
interactions with the circuit environment.

As shown in Figure 3, at each step t (where t = 0, 1, ..., T − 1), the features of the current
netlist Gt are extracted to form the state st. Subsequently, the Q-learning agent utilizes
st as input and selects an action at. Then, the environment including the logic synthesis
tool performs the synthesis operation based on at and transforms the netlist Gt into a new
netlist Gt+1. At the end of this step, the environment provides RL agent with a reward rt.
The above process is repeated for subsequent steps until t = T − 1. During the training
process, the objective of RL agent is to maximize the cumulative sum of the reward values.
As a result, the trained RL agent is able to select logic synthesis operations step by step to
achieve the optimal solving time reduction.



6 EDA-Driven Preprocessing for SAT Solving

…
 …Logic 

Synthesis

…
 …

Q-Learning 
Agent

N
et

lis
t 𝒢

!
N

etlist 𝒢
!"
#

① State 𝑠! ② Action 𝑎!

③ State Transition

④ Reward 𝑟!

Environment

RL Agent

Figure 3 RL Agent-Environment interaction

3.2.2 State
Inspired by [19, 42], we extract the following representative features E(Gt) of the netlist Gt

into state st:
The ratio between the area of netlist Gt and netlist G0.
The ratio between the depth of netlist Gt and netlist G0.
The ratio between the wire counts of netlist Gt and netlist G0.
The proportion of AND gates in the total gates of netlist Gt.
The proportion of NOT gates in the total gates of netlist Gt.
The average balance ratio of netlist Gt. We formally define the average balance ratio br

in Eq. (1), where Pi1, Pi2 are predecessors of two fanin AND gate i, and d denotes the
depth.

br =
∑

i∈AND

abs(dPi1 − dPi2)
max(dPi1 , dPi2) / #AND (1)

The above features exhibit characteristics that can be effectively optimized by various
logic synthesis operations. Consequently, the RL agent can intelligently select appropriate
operations based on these features. For example, when a netlist shows a higher average
balance ratio, indicating an imbalanced structure in DAG, the agent is more inclined to
select the action of operation balance. Additionally, a large area ratio prompts the agent to
opt for operations that aim to minimize the circuit area, such as rewrite.

Besides, the state st is incorporated with the primary output embeddings of the initial
netlist obtained by pretrained DeepGate2 [34] (denoted as D(G0)), which contains rich
structural and functional information of the initial problem instance.

st = Concatenate(E(Gt), D(G0)) (2)

3.2.3 Action
The action space A of agent is discrete and encompasses logic synthesis operations. In this
paper, we set the available operations as follows: rewrite [26], refactor [8], balance [11],
resub [7] and end (marking the end of the logic synthesis process). The selection of these
operations does not imply that the proposed framework lacks support for additional synthesis
operations beyond this set. Instead, these operations are chosen due to their widespread



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 7

usage and commonality. If there is a need to include additional optional operations, it can
be accomplished by expanding the action space within the framework.

3.2.4 State Transition
The state transition function is implemented by the logic synthesis tool. We call the tool
with a specific logic synthesis operation determined by RL agent to transform current netlist
Gt to another functional-equivalent but simplified netlist. More formally, we note the given
netlist as Gt and RL action as at at step t. The state transition function is denoted as:
Gt+1 = F(Gt, at), where Gt+1 is the updated netlist by tool. The updated netlist, Gt+1, is
then considered as the input for the subsequent decision step at time t + 1.

3.2.5 Reward
We consider the reduction of variable branching times during SAT solving as the reward.
The reward function is shown as Eq. (3), where ∆#Branching is the difference in branching
times between the final instance and the initial instance during solving. We opt for the
terminated reward, which has only one non-zero reward value at the terminated step, i.e.
after performing the entire sequence of synthesis operations.

rt =
{

0, t = 0, · · · , T − 2,

-∆#Branching, t = T − 1 or at = end
(3)

Prior to solving the SAT instance in circuit format, we employ the LUT mapping technique
to convert the AIG netlist into an LUT netlist. Subsequently, the transformed netlist is
converted into Conjunctive Normal Form (CNF), which will be elaborated in the following
section. Additionally, we choose not to minimize the solver runtime based on two primary
reasons. Firstly, determining the solver runtime for hard SAT instances is significantly
time-consuming. Secondly, the solver runtime is challenging to calculate accurately due to
the fluctuating CPU status in the case of easy SAT instances. We utilize variable branching
times to approximate solving time. This approach allows us to include easy cases with short
solver runtime in the training dataset, thereby enhancing the efficiency of training the RL
agent.

3.2.6 Policy
In the Q-learning framework [28], the policy for maximizing the total reward entails selecting
the action with the highest expected value. We implement the action-value function Q using
multilayer perceptron (MLP) to estimate the sum of future rewards after taking a certain
action under current state. The policy π(st) and action-value function Qθ(st, a) are shown
in Eq. (4), where the θ parametrizes the function Q.

π(st) = arg max
a,a∈A

(Q(st, a))

Qθ(st, a) = Index(MLP (st), a) (4)

We create the target function Qθ̂(st, a) to stabilize the training process. The parameter
θ̂ are copied from θ after k steps. The parameter θ of action-value function Q is updated
iteratively by loss function in Eq. (5), where γ is a hyperparameter and represents discount
factor.

l = ||Qθ(st, at) − rt − γ arg max
a∈A

Qθ̂(st+1, a)||2 (5)



8 EDA-Driven Preprocessing for SAT Solving

A B C
0 0 0
0 1 0
1 0 0
1 1 1

A B C
0 0 0
0 1 1
1 0 1
1 1 0

A
B

C𝐿!

C = 0
A = 0, B = X

A = X, B = 0

C = 1 A = 1, B = 1

C = 0
A = 0, B = 0

A = 1, B = 1

C = 1
A = 1, B = 0

A = 0, B = 1

A
B

C𝐿"

Figure 4 LUTs with different branching complexity

3.3 Cost-Customized LUT Mapping
We present a cost-customized LUT mapping approach that not only hides the internal nodes
during solving, but also forms an easy-to-solve CNF instance. Unlike conventional mapping
tools that focus on constructing circuits with low area or delay, our approach aims to create
circuits that are easier to solve. Specifically, we begin by defining a cost metric to quantify
the branching complexity of SAT solving and compute the cost values for all 4-input LUTs.
Next, we modify the cost function in the existing mapping tool to enable minimizing the
overall branching complexity. Lastly, we apply the cost-customized mapper to map AIG
netlist to LUT netlist and convert the LUT netlist into CNF.

3.3.1 Branching Complexity of LUT
The SAT solving process involves iteratively making variable branching decisions, where the
solver selects variable assignments as either true or false. We formulate the solving process
within the circuit domain. Specifically, given the logic value of a certain gate, the SAT solver
is required to make decisions by selecting assignments for its fanin gates. We consider two
2-fanin LUTs, denoted as L1 (representing an AND gate) and L2 (representing an XOR
gate), and list the truth tables for these LUTs in Figure 4.

We observe that both L1 and L2 have two possible combinations when the fanout pin
(C) is logic-0. However, when the fanout pin is logic-1, L2 has two possible combinations
while L1 has only one unique branch. We define the branching complexity C as the total
number of possible fanin combinations. In this example, the LUT L1 has CL1 = 3 and LUT
L2 has CL2 = 4. Therefore, L2 is more hard to be solved than L1.

3.3.2 Cost-Customized Mapper
Since a large number of possible branches result in an exponential search space, various
heuristics [23, 25] are employed to reduce the number of potential branches and improve the
efficiency of the solving process. Besides, utilizing techinque mapping tools facilitates the
concealment of intermediate gates and decreases the overall number of branches [15].

In contrast to [15] that minimizes the size of the post-mapping netlist, our approach
prioritizes mapping the logic into cells with lower branching complexity. Our approach is



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 9

Algorithm 1 EDA-Driven preprocessing framework for SAT solving

Input: The input CNF instance ϕin or Circuit instance Gin

Output: The output simplified CNF instance ϕout

/* Initialize circuit graph G0 in AIG */
1 if input instance is in CNF then
2 G0 = cnf2aig(ϕin);
3 else
4 G0 = aigmap(Gin);
5 end

/* Explore logic synthesis recipe by RL-agent (see Section 3.2) */
6 Define maximum step count: T ;
7 t = 0;
8 while t < T do

/* Prepare the state of current circuit */
9 st = Concatenate(E(Gt), D(G0));

/* Make decision to choose a logic synthesis operation */
10 at = π(st) = arg maxa,a∈A(Q(st, a));
11 if at is end then
12 break;
13 end

/* Perform logic synthesis for state transition */
14 Gt+1 = F(Gt, at);
15 t = t + 1;
16 end

/* Perform cost-customized LUT mapping (see Section 3.3) */
17 Define LUT costs: C ;
18 GLUT = mapper(Gt, C);

/* Convert back to CNF */
19 ϕout = lut2cnf(GLUT );
20 return ϕout;

motivated by the observations that instances containing a significant proportion of XOR
gates often require more time to be solved [18, 13], where the the branching complexity of
XOR gate (L2 in Figure 4) is higher than other gates.

To prioritize the LUTs during mapping process, we employ a strategy whereby we
enumerate all 4-LUTs and integrate their branching complexity into the cost function.
We implement a cost-customized mapper based on mockturtle [35] by modifying the area
cost to reflect the branching complexity of each LUT and fixing the the delay cost as a
constraint. By executing a sequence of operations aimed at minimizing the total cost, the
resulting post-mapping netlists exhibit minimal overall branching complexity. To ensure the
compatibility of CNF-based SAT solver, our preprocessing strategy ends with a LUT to CNF
transformation [24].

As a result, we formally depict our overall EDA-driven preprocessing framework coupled
with RL-based logic synthesis exploration and cost-customized LUT mapping in Algorithm 1.
The framework begins by transforming the input CNF instance ϕin or circuit instance Gin

into AIG format, using either cnf2aig tool [31] or aigmap technique in ABC [7]. Then, the
RL agent (elaborated in Section 3.2) proceeds to select logic synthesis operations step by



10 EDA-Driven Preprocessing for SAT Solving

Table 1 Statistics of training dataset

Avg. Std. Min. Max.

# Gates 4,299.06 4,328.16 60 24,178
# PIs 43.66 25.17 6 102
Depth 66.43 19.98 18 138
# Clauses 10,687.28 10,801.96 131 60,294
Time (s) 2.01 1.96 6.68 0.04

step through making action at. During this process (line 6-16), the circuit is synthesized
multiple times to create a simplified circuit. Next, the framework continues to perform
cost-customized LUT mapping on the AIG netlist Gt, resulting in a compact LUT netlist G.
Finally, the LUT netlist is encoded into CNF as output ϕout. Due to these simplification
approaches, ϕout has a lower solving complexity than ϕin and the subsequent SAT solving
procedures can be more efficiently. We will assess the effectiveness of our preprocessing by
the following experiments.

4 Experiments

4.1 Experiment Settings

We collect 200 industrial instances in AIG format into the RL training dataset. These AIG
instances are derived from logic equivalence checking (LEC) problems and only contain a
single primary output. The statistics of these instances are shown in Table 1, where #
Clauses shows the number of clauses after transforming the AIG instances into CNFs and
Time represents the solving time without any preprocessing.

We set the maximum number of steps per episode as T = 10 and the discount factor
γ = 0.98. During each training episode, the agent randomly selects an instance and makes
decisions aimed at transforming the instance to minimize the number of branching times in
SAT solving. We conduct a total of 10, 000 episodes, i.e., the RL agent preprocesses instances
for 10, 000 times during RL training. The batch size is 32 and learning rate is 10−5.

We opt for the ABC tool [7] to synthesis circuit and build a cost-customized mapper
based on mockturtle [35] to map circuit into LUT netlists. Besides, we use Kissat SAT
solver [16] to produce rewards in the RL environment and get the solving results in the
following experiments. The solver runtime limitation is 1, 000s. Any cases that exceed this
time limit are marked with TO (Time-out) and are considered to have a solving time of
1, 000 seconds (Tsolve = 1, 000).

As shown in Table 2, we randomly collect 5 industrial LEC cases (I1-I5) and 8 SAT
competition benchmark cases (C1-C8) as testing data. These LEC cases share the same
distribution as training samples but are not seen by the RL agent during training. We
conduct the ablation study with these LEC cases in the following sections. Additionally,
we list the number of gates (# Gates), the number of variables (# Vars), clauses (# Clas)
and solving time Tsolve. It should be noted that Cases C1-C8 do not have natural circuit
structures.



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 11

Table 2 Characteristics of testing cases

Case # Gates # Vars # Clas Tsolve

I1 43,865 42,069 105,711 322.46
I2 46,867 44,949 112,954 708.97
I3 43,825 42,038 105,629 531.94
I4 38,939 37,275 93,678 289.89
I5 31,337 30,087 75,537 172.79

C1 121,718 324,889 968.73
C2 164,084 434,279 TO
C3 27,154 70,968 153.96
C4 47,894 127,757 190.79
C5 4,435 9,814 50.69
C6 5,605 12,432 TO
C7 46,347 120,843 118.47
C8

N/A

38,921 102,787 324.97

Table 3 Solving time comparison between Ours and [15] on LEC cases

Baseline [15] Ours
Tsolve # Vars # Clas Ttrans Tsolve Tall Red. # Vars # Clas Tagent Ttrans Tsolve Tall Red.

I1 322.46 5,616 54,529 5.31 51.49 56.80 82.39% 3,623 29,053 9.22 5.92 3.21 18.34 94.31%
I2 708.97 6,052 60,573 5.61 147.85 153.46 78.35% 4,488 38,245 10.28 6.22 2.20 18.70 97.36%
I3 531.94 5,612 54,825 5.21 109.89 115.10 78.36% 4,216 34,533 9.04 5.92 1.46 16.42 96.91%
I4 289.89 5,038 49,805 4.61 90.05 94.66 67.35% 3,791 31,633 7.39 5.11 1.77 14.28 95.08%
I5 172.79 4,006 38,069 3.91 38.77 42.67 75.30% 2,649 20,929 5.09 4.41 0.89 10.39 93.99%

Avg. 405.21 92.54 77.16% 15.63 96.14%

4.2 Solving Time Comparison on LEC Cases
To showcase the efficiency of our preprocessing framework, we compare the solving time
with another circuit-based approach1 [15]. To the best of our knowledge, this is the only
circuit-based SAT preprocessing technique.

Table 3 shows the solving time for 5 industrial logic equivalence checking instances I1-I5.
In the Baseline setting, the instances are solved directly. We denote the agent runtime,
transformation time and solving time as Tagent, Ttrans and Tsolve, respectively, measured in
seconds. The overall runtime, which sums up all three components, is denoted as Tall.

From Table 3, we have two observations. First, our proposed framework shows remarkable
performance in reducing the solving time. For instance I2, the baseline solving time is 708.97
seconds, which significantly decreases to only 2.20 seconds after applying our preprocessing
framework. Second, our framework achieves overall solving time reduction by 96.14% on
average, surpassing the performance of another circuit-based preprocessing approach [15] by

1 We do not include comparisons with CNF-based preprocessing approaches because our framework is not
mutually exclusive with them and can be used in conjunction. In our experiment, we keep the default
CNF-based preprocessing in Kissat solver.



12 EDA-Driven Preprocessing for SAT Solving

Table 4 Solving time comparison between w/ and w/o RL agent

Baseline w/o RL w/ RL
Tsolve # Vars # Clas Ttrans Tsolve Tall Tsolve Tall

I1 322.46 6,139 50,665 3.71 46.08 49.79 3.21 18.34
I2 708.97 6,581 55,185 4.01 73.03 77.04 2.20 18.70
I3 531.94 6,145 50,845 3.71 57.70 61.41 1.46 16.42
I4 289.89 5,444 45,545 3.21 46.98 50.19 1.77 14.28
I5 172.79 4,376 36,089 2.61 28.85 31.46 0.89 10.39

Avg. 53.98 15.63

83.11%, which only achieves an average reduction of 77.16%.

4.3 Effectiveness of Logic Synthesis Agent
To investigate the effectiveness of the RL agent, we conduct an ablation study by introducing
another agent that randomly selects logic synthesis operations for T = 10 times (noted as
w/o RL). The original setting with RL agent is noted as w/ RL. We test these two settings
using the above 5 industrial LEC cases and summarized the results in Table 4.

According to these results, we observe that although the agent with a random policy is
capable of employing logic synthesis operations to simplify the circuit, it still falls short in
terms of achieving optimal solving time reduction. Specifically, the average overall runtime
(T all) for the w/o RL setting is 53.98s, which is about 2.45x longer than that for w/ RL
setting (Tall=15.63 on average).

4.4 Effectiveness of Cost-Customized Mapper
To showcase the effectiveness of our proposed cost-customized mapper, we replace our cost-
customized mapper with a mapper with conventional cost metrics. We refer to the new
setting as Conventional Mapper and our original setting as Our Mapper. It is worth noting
that both settings utilize the same RL agent with same parameters, and thus, we disregard
the agent runtime (Tagent) in the reported results. The remaining results, including the
transformation time and solving time, are presented in Table 5.

First, there is a minor difference in the transformation time between two settings,
suggesting that our cost-customized mapper does not increase the LUT mapping time.
Second, the instances processed by the conventional mapper require 3.07 seconds to solve on
average, which is 60.73% longer than the solving time of Our Mapper. We attribute this
difference to the diverged optimization objectives in two mappers. The conventional mapper
focuses on minimizing area and delay, while our cost-customized mapper directly targets
the optimization of solving complexity. By prioritizing solving complexity reduction as the
objective, our mapper achieves superior solving times compared to the conventional mapper.

4.5 Extrapolating on Novel Distributed Problems
To further investigate the generalization ability of our proposed framework, we perform an
evaluation using 8 instances (C1-C8) collected from SAT competition benchmarks [2]. These
instances are originally represented as CNF and exhibit diverse distributions.



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 13

Table 5 Solving time comparison between different mappers

Baseline Conventional Mapper Our Mapper
Tsolve # Vars # Clas Ttrans Tsolve Ttrans Tsolve

I1 322.46 3,160 31,281 5.62 4.43 5.92 3.21
I2 708.97 4,112 41,873 6.12 4.41 6.22 2.20
I3 531.94 3,849 37,329 5.61 2.91 5.92 1.46
I4 289.89 3,478 34,013 5.11 2.50 5.11 1.77
I5 172.79 2,311 22,473 4.31 1.10 4.41 0.89

Avg. 5.35 3.07 5.51 1.91

Table 6 Solving time comparison between Ours and [15] on SAT competition benchmarks

Case Baseline [15] Ours
Tsolve # Vars # Clas Ttrans Tsolve Tall Red. # Vars # Clas Tagent Ttrans Tsolve Tall Red.

C1 968.73 31,343 373,249 18.03 815.72 833.76 13.93% 40,565 429,333 100.16 21.74 148.15 270.05 72.12%
C2 TO 32,075 352,309 49.99 TO TO 0.00% 42,732 428,121 215.76 17.93 531.15 764.84 23.52%
C3 153.96 5,891 84,689 2.71 122.20 124.91 18.87% 6,102 85,101 5.54 4.71 106.88 117.13 23.92%
C4 190.79 6,146 83,589 17.13 199.03 216.16 -13.30% 9,955 123,797 10.03 6.11 136.13 152.27 20.19%
C5 50.69 1,298 9,701 0.70 46.58 47.29 6.72% 1,295 9,813 2.84 1.60 31.16 35.60 29.77%
C6 TO 1,629 12,293 0.50 592.06 592.56 40.74% 1,658 12,493 4.15 1.61 380.75 386.51 61.35%
C7 118.47 6,107 71,285 20.84 194.05 214.89 -81.39% 10,222 118,981 15.03 6.12 18.93 40.08 66.17%
C8 324.97 10,063 136,713 7.79 144.00 151.79 53.29% 9,417 114,337 14.10 5.91 25.24 45.26 86.07%

Avg. 475.95 397.67 16.45% 226.47 52.42%

The solving results compared with [15] are listed in Table 6. We have two observations
based on this table. Firstly, our preprocessing framework demonstrates an average reduction
in Tall of 52.42%. In contrast, [15] only achieves an average reduction of 16.45% on Tall,
making our framework 2.19x more efficient in comparison. It is noteworthy that the compared
approach fails to solve instance C2 within the time limit, while the same instance requires
only 764.84s to be solved after processing by our framework.

Secondly, the instances transformed by our framework may exhibit a larger number of
clauses (# Clas) compared to the another preprocessing [15]. For example, after being
processed by our framework, instance C1 contains 429, 333 clauses, significantly exceeding
the # Clas of 373, 249 in [15]. We argue that the size of the problem does not always
correlate with solving time. Despite the increase in problem size, we effectively reformulate
the instance using EDA tools, resulting in a simplified CNF that is easy to solve.

To sum up, our EDA-driven SAT preprocessing can be generalized to other novel instances
derived from diverse problem sets.

4.6 Discussion of CNF to Circuit Transformation
While our proposed EDA-driven preprocessing framework achieves an average reduction in
solving time of 52.42% for the CNF-based SAT benchmarks, there are still performance
gaps compared to the LEC cases, which shows a higher solving time reduction of 96.14%.
We attribute the observation to the absence of topological structure in the flatten CNF



14 EDA-Driven Preprocessing for SAT Solving

Table 7 Circuit size after and before preprocessing

Case Before Preprocessing After Preprocessing
# Gates # Levs Gates / Lev # LUTs # Levs LUTs / Lev

I1 43,865 194 226.11 3,623 47 77.09
I2 46,867 200 234.34 4,488 51 88.00
I3 43,825 192 228.26 4,216 48 87.83
I4 38,939 184 211.63 3,791 47 80.66
I5 31,337 168 186.53 2,649 42 63.07

Avg. 217.37 79.33

C1 181,714 48,122 3.78 40,565 17 2386.18
C2 243,360 65,742 3.70 42,732 17 2513.65
C3 36,078 17,340 2.08 6,102 12 508.50
C4 66,960 27,036 2.48 9,955 16 622.19
C5 5,642 1,978 2.85 1,295 10 129.50
C6 7,140 2,506 2.85 1,658 11 150.73
C7 63,280 27,126 2.33 10,222 13 786.31
C8 55,882 19,964 2.80 9,417 13 724.38

Avg. 2.66 482.62

representations and the limitations of existing CNF-to-circuit transformation techniques.
According to Algorithm 1, if the input instance is in CNF, it is required to be transformed

into circuit by recovering topological information. To the best of our knowledge, the only
available tool for this transformation is cnf2aig [31] (part of AIGER [5]), which iteratively
selects the maximum set of clauses to match the behavior of a logic gate. From Table. 7, we
list the number of gates (# Gates), logic levels (# Levs) before preprocessing and the number
of LUTs (# LUTs) after preprocessing. First, the CNF-based cases (C1-C8) lacking natural
topological structures are transformed into narrow AIG circuits before preprocessing, which
have thousands of logic levels but only 2.66 gates per level. Consequently, there is a significant
disparity between the transformed AIG circuits and real circuit designs, rendering the former
unsuitable for conventional logic synthesis operations. Second, after the transformation from
CNF to circuit, the LUT netlists of the CNF-based instances exhibit a higher degree of
flattening. On average, these transformed instances have approximately 482.62 LUTs per
level, which is significantly larger compared to the circuit-based instances (I1-I5) that have
an average of 79.33 LUTs per level.

To address these challenges and bridge the performance gaps, future research will focus
on improving CNF-to-circuit transformation tool. Such tool should involve more effective
algorithms that can formulate more realistic circuit structures from pure CNF instances.

5 Conclusion

This paper introduces an innovative EDA-driven preprocessing framework designed to
optimize SAT instances prior to solving. Our approach begins by transforming CNF into
circuit format, enabling the application of circuit optimization techniques to SAT problems.
We employ advanced logic synthesis methods to reformulate the circuit, focusing on identifying
the most effective strategies for minimizing solving time. Additionally, our framework



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 15

customizes cost metrics in technology mapping tools and leverages LUT mapping to produce
instances that are easier to solve. Seamlessly integrating as a plug-in within the existing SAT
solving pipeline, our framework ensures compatibility and enhances efficiency. Experimental
results demonstrate a significant reduction in solving time for both circuit-based and novel
distributed CNF instances, showcasing the framework’s effectiveness and versatility.

References
1 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers.

In International joint conference on artificial intelligence, 2009.
2 Tomás Balyo, Marijn JH Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Sat competition

2022, 2022.
3 Ramón Béjar and Felip Manya. Solving the round robin problem using propositional logic. In

AAAI/IAAI, pages 262–266, 2000.
4 Michel RCM Berkelaar and Jochen AG Jess. Technology mapping for standard-cell generators.

In ICCAD, pages 470–473, 1988.
5 Armin Biere. Aiger (aiger is a format, library and set of utilities for and-inverter graphs (aigs)).

https://fmv.jku.at/aiger/, 2006.
6 Per Bjesse and Arne Boralv. Dag-aware circuit compression for formal verification. In

IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., pages
42–49. IEEE, 2004.

7 Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.
In Computer Aided Verification, pages 24–40. Springer, 2010.

8 Robert K Brayton. The decomposition and factorization of boolean expressions. ISCA-82,
pages 49–54, 1982.

9 Christopher Condrat and Priyank Kalla. A gröbner basis approach to cnf-formulae pre-
processing. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 618–631. Springer, 2007.

10 Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
ACM symposium on Theory of computing, pages 151–158, 1971.

11 Jordi Cortadella. Timing-driven logic bi-decomposition. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 22(6):675–685, 2003.

12 Steve Dai, Gai Liu, and Zhiru Zhang. A scalable approach to exact resource-constrained
scheduling based on a joint sdc and sat formulation. In Proceedings of 2018 FPGA, pages
137–146, 2018.

13 Jeffrey M Dudek, Kuldeep S Meel, and Moshe Y Vardi. The hard problems are almost
everywhere for random cnf-xor formulas. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 600–606, 2017.

14 Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and clause
elimination. In International conference on theory and applications of satisfiability testing,
pages 61–75. Springer, 2005.

15 Niklas Eén, Alan Mishchenko, and Niklas Sörensson. Applying logic synthesis for speeding up
sat. In Theory and Applications of Satisfiability Testing, pages 272–286. Springer, 2007.

16 ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treen-
geling entering the sat competition 2020. SAT COMPETITION, 2020:50, 2020.

17 Robert J Francis, Jonathan Rose, and Kevin Chung. Chortle: A technology mapping program
for lookup table-based field programmable gate arrays. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 613–619, 1991.

18 Harri Haanpää, Matti Järvisalo, Petteri Kaski, and Ilkka Niemelä. Hard satisfiable clause
sets for benchmarking equivalence reasoning techniques. Journal on Satisfiability, Boolean
Modeling and Computation, 2(1-4):27–46, 2006.

https://fmv.jku.at/aiger/


16 EDA-Driven Preprocessing for SAT Solving

19 Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep
reinforcement learning for logic synthesis. In ASP-DAC, pages 581–586. IEEE, 2020.

20 Sadaf Khan, Zhengyuan Shi, Min Li, and Qiang Xu. Deepseq: Deep sequential circuit learning.
arXiv preprint arXiv:2302.13608, 2023.

21 Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate:
Learning neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design
Automation Conference, pages 667–672, 2022.

22 Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, Shaowei Cai, and Qiang Xu. On eda-driven
learning for sat solving. In 2023 60th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2023.

23 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for sat solvers. In Theory and Applications of Satisfiability Testing, pages
123–140. Springer, 2016.

24 Andrew Ling, Deshanand P Singh, and Stephen D Brown. Fpga technology mapping: a
study of optimality. In Proceedings of the 42nd annual Design Automation Conference, pages
427–432, 2005.

25 Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers.
In Handbook of satisfiability, pages 133–182. IOS press, 2021.

26 Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting a fresh
look at combinational logic synthesis. In Proceedings of the 43rd annual Design Automation
Conference, pages 532–535, 2006.

27 Alan Mishchenko, Satrajit Chatterjee, Robert Brayton, and Niklas Een. Improvements to
combinational equivalence checking. In Proceedings of the 2006 IEEE/ACM international
conference on Computer-aided design, pages 836–843, 2006.

28 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

29 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation
Conference, pages 530–535, 2001.

30 Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. Recovering and
exploiting structural knowledge from cnf formulas. In Principles and Practice of Constraint
Programming, pages 185–199. Springer, 2002.

31 Harald Seltner. Extracting hardware circuits from cnf formulas. Master’s thesis, 2014.
32 Zhengyuan Shi, Min Li, Sadaf Khan, Liuzheng Wang, Naixing Wang, Yu Huang, and Qiang Xu.

Deeptpi: Test point insertion with deep reinforcement learning. In 2022 IEEE International
Test Conference (ITC), pages 194–203. IEEE, 2022.

33 Zhengyuan Shi, Min Li, Sadaf Khan, Hui-Ling Zhen, Mingxuan Yuan, and Qiang Xu. Satformer:
Transformers for sat solving. In Proceedings of the 2023 IEEE/ACM international conference
on Computer-aided design, 2023.

34 Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling
Zhen, Mingxuan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit
representation learning. In Proceedings of the 2023 IEEE/ACM international conference on
Computer-aided design, 2023.

35 Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt, Giulia
Meuli, Fereshte Mozafari, Siang-Yun Lee, Alessandro Tempia Calvino, Dewmini Sudara
Marakkalage, et al. The epfl logic synthesis libraries. arXiv preprint arXiv:1805.05121, 2018.

36 Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-clause minimization.
SAT, 2005(53):1–2, 2005.

37 Sathiamoorthy Subbarayan and Dhiraj K Pradhan. Niver: Non-increasing variable elimination
resolution for preprocessing sat instances. In Theory and Applications of Satisfiability Testing,
pages 276–291. Springer, 2005.



Z. Shi, T. Tang, S. Khan, H. Zhen, M. Yuan, Z. Chu, and Q. Xu 17

38 Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-clausal formulas with dpll
search. In International Conference on Principles and Practice of Constraint Programming,
pages 663–678. Springer, 2004.

39 Miroslav N Velev and Randal E Bryant. Effective use of boolean satisfiability procedures
in the formal verification of superscalar and vliw. In Proceedings of the 38th annual design
automation conference, pages 226–231, 2001.

40 Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In
Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), page 97, 2013.

41 Hui Xu, Rob A Rutenbar, and Karem Sakallah. sub-sat: a formulation for relaxed boolean
satisfiability with applications in routing. In Proceedings of the 2002 international symposium
on Physical design, pages 182–187, 2002.

42 Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z Pan. Exploring logic optimiza-
tions with reinforcement learning and graph convolutional network. In ACM/IEEE Workshop
on Machine Learning for CAD, pages 145–150, 2020.


	1 Introduction
	2 Related Work
	2.1 SAT Preprocessing
	2.2 Boolean Circuit Optimization
	2.3 Circuit Representation Learning

	3 Methodology
	3.1 Overview of the Proposed Framework
	3.2 Logic Synthesis Recipe Exploration
	3.2.1 Reinforcement Learning Formulation
	3.2.2 State
	3.2.3 Action
	3.2.4 State Transition
	3.2.5 Reward
	3.2.6 Policy

	3.3 Cost-Customized LUT Mapping
	3.3.1 Branching Complexity of LUT
	3.3.2 Cost-Customized Mapper


	4 Experiments
	4.1 Experiment Settings
	4.2 Solving Time Comparison on LEC Cases
	4.3 Effectiveness of Logic Synthesis Agent
	4.4 Effectiveness of Cost-Customized Mapper
	4.5 Extrapolating on Novel Distributed Problems
	4.6 Discussion of CNF to Circuit Transformation

	5 Conclusion

