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Stabilization of a Class of Large-Scale Systems
of Linear Hyperbolic PDEs via Continuum

Approximation of Exact Backstepping Kernels∗
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Abstract—We establish that stabilization of a class of
linear, hyperbolic partial differential equations (PDEs) with
a large (nevertheless finite) number of components, can be
achieved via employment of a backstepping-based control
law, which is constructed for stabilization of a continuum
version (i.e., as the number of components tends to infinity)
of the PDE system. This is achieved by proving that the
exact backstepping kernels, constructed for stabilization
of the large-scale system, can be approximated (in cer-
tain sense such that exponential stability is preserved) by
the backstepping kernels constructed for stabilization of a
continuum version (essentially an infinite ensemble) of the
original PDE system. The proof relies on construction of
a convergent sequence of backstepping kernels that is de-
fined such that each kernel matches the exact backstepping
kernels (derived based on the original, large-scale system),
in a piecewise constant manner with respect to an ensem-
ble variable; while showing that they satisfy the continuum
backstepping kernel equations. We present a numerical
example that reveals that complexity of computation of
stabilizing backstepping kernels may not scale with the
number of components of the PDE state, when the kernels
are constructed on the basis of the continuum version, in
contrast to the case in which they are constructed on the
basis of the original, large-scale system. In addition, we for-
mally establish the connection between the solutions to the
large-scale system and its continuum counterpart. Thus,
this approach can be useful for design of computationally
tractable, stabilizing backstepping-based control laws for
large-scale PDE systems.

Index Terms— Backstepping control, hyperbolic PDEs,
large-scale systems, PDE continua.

I. INTRODUCTION

A. Motivation

L
ARGE-SCALE systems of 1-D hyperbolic PDEs appear

in a variety of applications involving transport phe-

nomena and which incorporate different, interconnected com-

ponents. Among them, large-scale interconnected hyperbolic

systems may be used to describe the dynamics of blood flow,

from the location of the heart all the way through to points

∗Funded by the European Union (ERC, C-NORA, 101088147). Views
and opinions expressed are however those of the authors only and do
not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor
the granting authority can be held responsible for them.

1The authors are with the Department of Electrical and Computer
Engineering, Technical University of Crete, Chania, Greece. Emails:
jhumaloja@tuc.gr and nlimperis@tuc.gr.

where non-invasive measurements can be obtained [1], [2], of

epidemics spreading, to describe transport of epidemics among

different geographical regions [3], and of traffic flows, to

model density and speed dynamics in interconnected highway

segments [4], [5] and in urban networks [6], to name a

few [7]. Backstepping is a systematic design approach to

construction of explicit feedback laws for general classes

of such systems [8]–[14]. Due to potentially large number

of interacting components, incorporated in such systems,

computational complexity of exact backstepping-based control

designs may increase significantly, in a manner proportional

with the number of state components. Motivated by this, in the

present paper we aim at developing an approach to computing

backstepping kernels for large-scale hyperbolic PDE systems,

such that computational complexity remains tractable, even

when the number of state components becomes very large,

while at the same time, provably retaining the stability guar-

antees of backstepping. We achieve this via approximating the

exact backstepping kernels, computed based on a large number

of PDEs, utilizing a single kernel that is derived based on a

continuum version of the exact kernels PDEs, and capitalizing

on the robustness properties1 of backstepping for the class of

systems considered, to additive control gain errors.

B. Literature

The approach of design of feedback laws for large-scale sys-

tems based on a continuum version of the system considered

has been utilized for large-scale ordinary differential equation

(ODE) systems, such as, for example, in [16]–[23]. However,

such an approach has not been utilized so far for large-scale

systems whose state components are PDEs. The main goals of

the approach developed here, may be viewed also as related

to control design approaches that aim at providing computa-

tional means towards implementation of PDE backstepping-

based control laws with provable stability guarantees, such

as, for example, neural operators-based [24], late-lumping-

based [25], and power series-based [26], backstepping control

laws. Our approach may be viewed as complementary and

different from these results, in that the main goal is to address

1Such robustness properties have been also reported within the framework
of, e.g., robust output regulation for abstract, infinite-dimensional systems
[15]. Thus, the approach presented here could be, in principle, also combined
with other types of stabilizing feedback laws.

http://arxiv.org/abs/2403.19455v1
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complexity due to a potential radical increase in the number of

state components, instead of complexity of actual numerical

implementation (even though these existing results can be

combined with the approach presented here, for numerical

implementation of the controllers).

C. Contributions

In the present paper, we provide backstepping-based feed-

back laws for a class of large-scale systems of 1-D hyperbolic

PDEs, which are described by the class of systems considered

in [13], when the number of state components n is large.

The key idea of our approach is to construct approximate

backstepping kernels for stabilization of the large-scale (nev-

ertheless, with a finite number of components) system relying

on the continuum backstepping kernels developed in [27]

for a continuum version of the original, large-scale system.

We establish stability of the closed-loop system consisting of

the original, large-scale PDE system under a backstepping-

based feedback law that employs the approximate kernels,

constructed based on the continuum version of the PDE

system. The stability proof consists of three main steps.

In the first, we construct a sequence of backstepping kernels

that is defined such that each kernel matches with the exact

backstepping kernel (derived based on the original, large-

scale system) in a piecewise constant manner with respect

to an ensemble variable; while showing that the kernels in

the sequence satisfy the continuum kernel equation. For the

proof we rely on a transformation that maps functions (the

exact backstepping kernels) on a 2-D domain, to functions

(the approximate kernels derived based on the continuum) on

a 3-D domain in a piecewise constant manner in L2 sense.

In the second step, we show that this sequence converges

to the continuum backstepping kernel, obtained from a di-

rect application of backstepping to a continuum version of

the large-scale system. For the proof we rely on the well-

posedness of the backstepping kernels (both the continuum

and exact kernels) and density arguments. In the third step,

we establish stability of the closed-loop system employing

an abstract systems framework. For the proof we recast the

closed-loop system’s dynamics as perturbed dynamics of the

nominal (based on employment of the exact kernels) closed-

loop system, showing that the size of the perturbation, due to

the additive error that originates from the approximation error

of the exact stabilizing control gains, can be made arbitrarily

small (in L2) for sufficiently large n.

We also provide an alternative stability proof employing

a Lyapunov functional, which allows quantification of over-

shoot and decay rate of the closed-loop system’s response.

Furthermore, for enabling generalization of the approach in-

troduced, for computation of stabilizing control gains based

on continuum approximations, to other classes of large-scale

PDE systems, we also establish the formal connection between

the solutions to the original n + 1 system and the solutions

to its continuum counterpart. In particular, we show that

when the number of state components is sufficiently large, the

solutions to the large-scale system can be approximated by the

solutions to the continuum system, provided that the data (i.e.,

parameters, initial conditions, and inputs) of the n + 1 PDE

problem can be approximated by the respective data of the

continuum PDE problem. The proof relies on construction of a

sequence of solutions, obtained in a piecewise constant manner

(with respect to an ensemble variable) from the solutions to the

n+1 system, which is subsequently shown (via utilization of

the well-posedness property of the continuum that we prove)

to converge to the solution of the continuum system.

We then present a numerical example that illustrates that

computation of (approximate) stabilizing kernels based on the

continuum kernel may provide flexibility in computation, as

well as it may significantly improve computational complexity.

In particular, in this specific example, although computation of

the exact backstepping kernels may require to solve implicitly

the corresponding n+ 1 hyperbolic kernels PDEs, as closed-

form solutions may not be available, the approximate kernels

can be computed with only algebraic computations, since

the continuum kernel is available in closed form. We also

present respective simulation investigations, which validate the

theoretical developments, showing that as the number of com-

ponents of the large-scale system increases the performance of

the closed-loop systems, under the approximate control laws,

is improved. In particular, we illustrate that the approximate

control kernels converge to the exact kernels, and thus, as n
increases, the performance of the closed-loop system becomes

similar to the performance under the exact control gain kernels.

D. Organization

We start in Sections II and III presenting both the large-scale

PDE system and its continuum counterpart, together with the

respective exact and continuum backstepping kernels PDEs. In

Section IV we establish stability of the large-scale, closed-loop

system under the approximate control law. In Section V we

present a numerical example and consistent simulation results.

In Section VI we study the connection between the solutions

to the large-scale system and its continuum counterpart. In

Section VII we discuss separately the case n → ∞. In

Section VIII we provide concluding remarks and discuss

related topics of our current research.

E. Notation

We use the standard notation L2(Ω;R) for real-valued

Lebesque integrable functions on a domain Ω, and on one

dimensional domains H1 denotes the corresponding Sobolev

space. Similarly, L∞(Ω;R), C(Ω;R), C1(Ω;R) denote essen-

tially bounded, continuous, and continuously differentiable

functions, respectively, on Ω. Moreover, f ∈ L2
loc([0,+∞);R)

means that f ∈ L2([0,m];R) for any m ∈ N. We denote

vectors and matrices by bold symbols, and ‖ · ‖∞ denotes the

maximum absolute row sum of a matrix (or a vector). For any

n ∈ N, we denote by E the Hilbert space L2([0, 1];Rn+1)
equipped with the inner product

〈( u1
v1 ) , (

u2
v2 )〉E =

1∫

0

(
1

n

n∑

i=1

ui
1(x)u

i
2(x) + v1(x)v2(x)

)
dx,

(1)
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which induces the norm ‖·‖E =
√
〈·, ·〉E . We also define the

continuum version of E as Ec = L2([0, 1];L2([0, 1];R)) ×
L2([0, 1];R), (i.e., Rn becomes L2([0, 1];R) as n → ∞)

equipped with the inner product

〈( u1
v1 ) , (

u2
v2 )〉Ec

=

1∫

0




1∫

0

u1(x, y)u2(x, y)dy + v1(x)v2(x)


 dx, (2)

which coincides with L2([0, 1]2;R)×L2([0, 1];R). Moreover,

L(E,R) denotes the space of bounded linear operators from

E to R, and ‖ · ‖L(E,R) is the corresponding operator norm.

For L(E,E), we denote L(E). Finally, we say that a system

is exponentially stable (on E; resp. on Ec) if for any initial

condition z0 ∈ E (resp. z0 ∈ Ec) the (weak) solution

z(t) of the system satisfies ‖z(t)‖E ≤ Me−ct‖z0‖E (resp.

‖z(t)‖Ec
≤ Me−ct‖z0‖Ec

) for some M, c > 0.

II. STABILIZATION OF LARGE-SCALE SYSTEMS OF

LINEAR HYPERBOLIC PDES VIA EXACT BACKSTEPPING

KERNELS

For n ≥ 1 consider the following set of n + 1 transport

PDEs on x ∈ [0, 1] for i = 1, . . . , n

ui
t(t, x) + λi(x)u

i
x(t, x) =

1

n

n∑

j=1

σi,j(x)u
j(t, x)

+Wi(x)v(t, x), (3a)

vt(t, x)− µ(x)vx(t, x) =
1

n

n∑

j=1

θj(x)u
j(t, x), (3b)

with boundary conditions

ui(t, 0) = qiv(t, 0), v(t, 1) = U(t), (4)

where U ∈ L2
loc([0,+∞);R) is the control input. The initial

conditions of (3) are ui(0, x) = ui
0(x), v(0, x) = v0(x), where

ui
0, v0 ∈ L2([0, 1];R). The parameters of the system (3), (4)

satisfy the following assumption.

Assumption 2.1: We assume that µ, λi ∈ C1([0, 1];R),
σi,j ,Wi, θi ∈ C([0, 1];R) and qi ∈ R for all i, j = 1, 2, . . . , n.

Moreover, the transport velocities are assumed to satisfy

−µ(x) < 0 < λi(x), for all x ∈ [0, 1] and i = 1, 2, . . . , n.

Remark 2.2: The presentation of the system (3), (4) is mo-

tivated from [13]. However, here we also make the following

modifications. Most notably, the factor 1/n appears in (3).

This is equivalent to equipping the n-part of the system with

the scaled inner product n−1〈·, ·〉Rn . With the scaling, we

guarantee that the sums remain bounded and convergent as

n → ∞ without having to pose any additional constraints

on the parameters of (3), (4). If one wishes to proceed with-

out scaling the sums, then some additional assumptions are

needed, e.g., that the respective parameters form ℓp sequences

for some p ∈ [1,+∞], such that the sums are well-defined

as n → ∞. The other noteworthy modification has to do

with Assumption 2.1. In [13], the transport velocities are

assumed to satisfy −µ(x) < 0 < λ1(x) < λ2(x) < . . . <

λn(x), ∀x ∈ [0, 1] to guarantee strict hyperbolicity and well-

posedness of (3), (4)2. Nevertheless, well-posedness can be

guaranteed under Assumption 2.1, e.g., based on [30, Sect.

13.2] as we show in Proposition A.1 in Appendix A. Due to

well-posedness, the system (3), (4) has a well-defined, unique,

weak solution
((
ui(t, x)

)n
i=1

, v(t, x)
)

on E, where ui, v ∈
C([0,+∞);L2([0, 1];R)) [31, Prop. 4.2.5, Rem. 4.1.2].

It follows from [13, Thm 3.2] that the system (3), (4) is

exponentially stabilizable by a state feedback law of the form

U(t) =

1∫

0

[
1

n

n∑

i=1

ki(1, ξ)ui(t, ξ) + kn+1(1, ξ)v(t, ξ)

]
dξ,

(5)

where, for i = 1, . . . , n+ 1, ki satisfy

µ(x)kix(x, ξ) − λi(ξ)k
i
ξ(x, ξ) =

λ′
i(ξ)k

i(x, ξ) +
1

n

n∑

j=1

σj,i(ξ)k
j(x, ξ) + θi(ξ)k

n+1(x, ξ),

(6a)

µ(x)kn+1
x (x, ξ) + µ(ξ)kn+1

ξ (x, ξ) =

−µ′(ξ)kn+1(x, ξ) +
1

n

n∑

j=1

Wj(ξ)k
j(x, ξ),

(6b)

on a triangular domain 0 ≤ ξ ≤ x ≤ 1 with boundary

conditions

ki(x, x) = − θi(x)

λi(x) + µ(x)
, (7a)

µ(0)kn+1(x, 0) =
1

n

n∑

j=1

qjλj(0)k
j(x, 0), (7b)

for all x ∈ [0, 1]. Note the scaling of the sums by 1/n as per

Remark 2.2.

III. STABILIZATION OF A CONTINUUM OF LINEAR

HYPERBOLIC PDES VIA CONTINUUM BACKSTEPPING

While large-scale, yet, consisting of a finite-number of

components, systems of hyperbolic PDEs can be studied in

the framework of Section II, we also consider the continuum

limit case as n → ∞, for which we present the generic

framework of a continuum of hyperbolic PDEs studied in [27]

and sketched in Fig. 1. That is, instead of having n rightward

transport PDEs as in Section II, consider a continuum of such

2In specific cases, such an assumption may not be required, for example,
for constructing a Lyapunov functional, see, e.g., [28], [29].



4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

u(t, x, y)

v(t, x)
U(t)

q(y)

W (x, y)

∫
θ(x, y) · dy

∫
σ(x, y, η) · dη

y

x

Fig. 1. Schematic view of the continuum PDE system (8), (9). Boundary
terms are denoted in magenta and in-domain terms are denoted in blue.

PDEs as in [27] with y ∈ [0, 1] being the index variable3

ut(t, x, y) + λ(x, y)ux(t, x, y) =

1∫

0

σ(x, y, η)u(t, x, η)dη

+W (x, y)v(t, x), (8a)

vt(t, x) − µ(x)vx(t, x) =

1∫

0

θ(x, y)u(t, x, y)dy,

(8b)

with boundary conditions

u(t, 0, y) = q(y)v(t, 0), v(t, 1) = U(t), (9)

for almost every y ∈ [0, 1], i.e., the continuum variables and

parameters are considered L2([0, 1];R) functions in y. The

following assumption is needed, for the parameters involved

in (8), (9), to guarantee the existence of a continuum back-

stepping control law [27, Thm 3].

Assumption 3.1: We assume that µ ∈ C1([0, 1];R), λ ∈
C1
(
[0, 1]2;R

)
,W, θ ∈ C([0, 1];L2([0, 1];R)), σ ∈

C
(
[0, 1];L2([0, 1]2;R)

)
, and q ∈ C([0, 1];R). Moreover,

λ(x, y) > 0 uniformly for all x ∈ [0, 1] and almost every

y ∈ [0, 1], and −µ(x) < 0 for all x ∈ [0, 1].

By [27, Thm 1], the system (8), (9) is exponentially stabi-

lizable by a state feedback law of the form

U(t) =

1∫

0




1∫

0

k(1, ξ, y)u(t, ξ, y)dy + k̄(1, ξ)v(t, ξ)


 dξ,

(10)

3Note that we have not yet formally proved that the continuum limit of
system (3) as n → ∞ is system (8). However, we use (8) here as an educated
guess of such a continuum version (see also [27]) to obtain a continuum
version of the respective backstepping kernels ki, i = 1, . . . , n, given in (6).
In Section VI we, in fact, formally prove that (8), (9) is the continuum limit
of (3), (4).

where k, k̄ satisfy

µ(x)kx(x, ξ, y)− λ(ξ, y)kξ(x, ξ, y)− θ(ξ, y)k̄(x, ξ) =

λξ(ξ, y)k(x, ξ, y) +

1∫

0

σ(ξ, η, y)k(x, ξ, η)dη, (11a)

µ(x)k̄x(x, ξ) + µ(ξ)k̄ξ(x, ξ) =

−µ′(ξ)k̄(x, ξ) +

1∫

0

W (ξ, y)k(x, ξ, y)dy, (11b)

on a triangular domain 0 ≤ ξ ≤ x ≤ 1 with boundary

conditions

k(x, x, y) = − θ(x, y)

λ(x, y) + µ(x)
, (12a)

µ(0)k̄(x, 0) =

1∫

0

q(y)λ(0, y)k(x, 0, y)dy, (12b)

for almost every y ∈ [0, 1].

IV. STABILIZATION OF THE FINITE LARGE-SCALE

SYSTEM VIA CONTINUUM APPROXIMATION OF EXACT

KERNELS

A. Statement of the Main Result

The core idea of the continuum approximation that we

present here is that we approximate n + 1 kernel equations

by a continuum of kernel equations. Provided that the approx-

imation is sufficiently accurate, we show that the backstepping

controller derived from the continuum kernel equations expo-

nentially stabilizes the n+1 system associated with the original

finite system of n+ 1 PDEs.

Thus, consider an n + 1 system (3), (4) with parameters

λi,Wi, θi, σi,j , qi for i, j = 1, 2, . . . , n satisfying Assump-

tion 2.1 and consider any continuous functions λ,W, θ, σ, q
that satisfy Assumption 3.1 with

λ(x, i/n) = λi(x), (13a)

W (x, i/n) = Wi(x), (13b)

θ(x, i/n) = θi(x), (13c)

σ(x, i/n, j/n) = σi,j(x), (13d)

q(i/n) = qi, (13e)

for all x ∈ [0, 1] and i, j = 1, 2, . . . , n. There are infinitely

many functions satisfying (13) and Assumption 3.1, as well as

ways to construct them, e.g., by utilizing auxiliary functions

{pi}ni=1 that satisfy pi(i/n) = 1 and pℓ(i/n) = 0 for ℓ 6= i.4

The relations in (13) could as well be defined in other ways,

e.g., using (i−1)/n in place of i/n, but we find (13) the most

4We demonstrate this by constructing σ(x, y, η) satisfying (13d) of the
form σ(x, y, η) =

∑n
i=1

∑n
j=1 σi,j(x)pi(y)pj(η), where

pi(y) =
n∏

k=1,k 6=i

(k/n− y)

(k/n− i/n)
+ b sin(nπy), (14)

satisfies pi(i/n) = 1, pℓ(i/n) = 0 for ℓ 6= i, and pi ∈ C∞([0, 1];R) for
any i =, 1, 2, . . . , n and any b ∈ R. Similar constructions can be obtained
for λ,W, θ, and q.
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convenient option for our developments. The continuum kernel

equations (11), (12) with parameters λ, µ,W, θ, σ, q, satisfying

(13) and Assumption 3.1 have a unique, continuous solution

(k, k̄) by [27, Thm 3]. Thus, construct the following functions

for all 0 ≤ ξ ≤ x ≤ 1

k̃i(x, ξ) = k(x, ξ, i/n), i = 1, 2, . . . , n, (15a)

k̃n+1(x, ξ) = k̄(x, ξ). (15b)

Our main result is the following.

Theorem 4.1: Consider an n + 1 system (3), (4) with

parameters λi, µ,Wi, θi, σi,j , q for i, j = 1, 2, . . . , n satisfying

Assumption 2.1. Let the parameters λ, µ,W, θ, σ, q satisfy

Assumption 3.1 and relations (13). Then

U(t) =

1∫

0

[
1

n

n∑

i=1

k̃i(1, ξ)ui(t, ξ) + k̃n+1(1, ξ)v(t, ξ)

]
dξ,

(16)

where
(
k̃i
)n+1

i=1
are given in (15), with

(
k, k̄
)

being the

solution to (11), (12), exponentially stabilizes system (3), (4).

B. Proof of Theorem 4.1

The proof of Theorem 4.1 relies on Lemmas 4.2 and 4.3

presented below. We show first that the functions defined in

(15) approximate the solutions to the n+ 1 kernel equations

(6), (7) to arbitrary accuracy as n increases. In order to do this,

we first interpret the solutions to the n+ 1 kernels equations

(6), (7) as piecewise constant solutions with respect to y, to

the continuum kernels equations (11), (12). One way to do this

is highlighted in the following lemma, which is to transform

the Rn-valued components of the n+ 1 kernel equations (6),

(7) into step functions in y ∈ [0, 1].
Lemma 4.2: Consider the n + 1 kernel equations (6), (7)

where the parameters satisfy Assumption 2.1 and define the

following functions for all x ∈ [0, 1], piecewise in y for i, j =
1, 2, . . . , n5

λn(x, y) = λi(x), y ∈ (i − 1)/n, i/n], (17a)

σn(x, y, η) = σi,j(x), y ∈ ((i − 1)/n, i/n], (17b)

η ∈ ((j − 1)/n, j/n], (17c)

Wn(x, y) = Wi(x), y ∈ ((i − 1)/n, i/n], (17d)

θn(x, y) = θi(x), y ∈ ((i − 1)/n, i/n], (17e)

qn(y) = qi, y ∈ ((i − 1)/n, i/n]. (17f)

Construct the following function for all 0 ≤ ξ ≤ x ≤ 1,

piecewise in y for i = 1, 2, . . . , n

kn(x, ξ, y) = ki(x, ξ), y ∈ ((i − 1)/n, i/n], (18)

where
(
ki
)n+1

i=1
is the solution to (6), (7). Then,(

kn(x, ξ, y), kn+1(x, ξ)
)

satisfies the kernel equations

(11), (12) for the parameters defined in (17) and the

original µ.

5These functions can be extended to y ∈ [0, 1] by assigning the value at
y = 0 arbitrarily, which does not affect the functions in the L2 sense. The
same applies to (18).

Proof: The claim follows after applying a linear trans-

form to the kernel equations (6), (7). In order to rigorously

present the transformation, we have to write (6) as a single

equation on Rn+1. We introduce the following notation

k(x, ξ) =
(
ki(x, ξ)

)n+1

i=1
, (19a)

L(x) = diag
((

λi(x)
)n
i=1

,−µ(x)
)
, (19b)

S(x) =
1

n




σ1,1(x) · · · σn,1(x) nθ1(x)
...

. . .
...

...

σ1,n(x) · · · σn,n(x) nθn(x)
W1(x) · · · Wn(x) 0


 , (19c)

so that (6) can be written as

µ(x)kx(x, ξ) − L(ξ)kξ(x, ξ) = L′(ξ)k(x, ξ) + S(ξ)k(x, ξ).
(20)

The linear transform is given by F = diag(Fn, 1), where

Fneℓ = χ((ℓ−1)/n,ℓ/n] with χ((ℓ−1)/n,ℓ/n] being the indicator

function of the interval ((ℓ−1)/n, ℓ/n] and (eℓ)
n
ℓ=1 being the

Euclidean basis of Rn. Thus, the transform maps any b =
(bi)

n+1
i=1 ∈ Rn+1 into L2 ([0, 1];R)× R as

Fb =

[∑n
i=1 biχ((i−1)/n,i/n]

bn+1.

]
. (21)

For any g ∈ L2([0, 1];R), the adjoint F∗
n satisfies

〈Fneℓ, g〉L2([0,1];R) =

ℓ/n∫

(ℓ−1)/n

g(y)dy =
1

n
〈eℓ,F∗

ng〉Rn ,

(22)

that is, F∗
n is given by

F∗
ng =


n

i/n∫

(i−1)/n

g(y)dy




n

i=1

, (23)

where each component is the mean value of g over the interval

[(i − 1)/n, i/n]. Thus, F has the adjoint F∗ = diag (F∗
n, 1),

which additionally satisfies F∗F = In+1, i.e., F (and Fn)

are isometries, and thus, norm preserving from their domain

to their co-domain.

Let us now transform (20) from Rn+1 to L2([0, 1];R)×R

by applying F to (20) from the left

µ(x)Fkx(x, ξ)−FL(ξ)F∗Fkξ(x, ξ) =

FL′(ξ)F∗Fk(x, ξ) + FS(ξ)F∗Fk(x, ξ), (24)

where we also utilized µ(x) being scalar-valued and F∗F =
In+1. Let gn be a step function in y and r a scalar. Applying

the transformations gives

Fk(x, ξ) =

[
kn(x, ξ, ·)
kn+1(x, ξ)

]
, (25a)

FL(ξ)F∗

[
gn

r

]
=

[
λn(ξ, ·)gn(·)

µ(ξ)r

]
, (25b)

FS(ξ)F∗

[
gn

r

]
=




1∫
0

σn(ξ, η, ·)gn(η)dη θn(ξ, ·)r
1∫
0

Wn(ξ, y)gn(y)dy 0


 ,

(25c)
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with the functions kn, λn, σn, θn,Wn defined in (17) and

(18). Inserting (25) into (24) and writing the equations sep-

arately on L2([0, 1];R) and R yields (11) with parameters

λn, µ, σn, θn,Wn. Essentially, this amounts to
(
kn, kn+1

)

satisfying (11) on intervals for y of the form (18), which in

turn implies satisfying (11) for almost all y ∈ [0, 1], i.e., in

the L2 sense with respect to y.

The boundary conditions (7) could be transformed into (12)

with the same transformation, but it is more straightforward

to check directly that
(
kn, kn+1

)
satisfies (12) for parameters

θn, λn, µ, qn. For any i = 1, 2, . . . , n, we have for all x ∈ [0, 1]
and y ∈ ((i − 1)/n, i/n]

kn(x, x, y) = ki(x, x) =
θi(x)

λi(x) + µ(x)
=

θn(x, y)

λn(x, y) + µ(x)
,

(26)

and thus, this boundary condition is satisfied for almost all

y ∈ [0, 1]. Moreover,

µ(0)kn+1(x, 0) =
1

n

n∑

j=1

qjλj(0)k
j(x, 0)

=

1∫

0

qn(y)λn(0, y)kn(x, 0, y)dy, (27)

which concludes that the boundary conditions (12) are satis-

fied. This concludes the proof.

Let us next consider the continuum of kernel equations

(11), (12) with continuous parameters λ, µ,W, θ, σ, q that

satisfy (13) and Assumption 3.1, together with the respective

kernel equations (11), (12) with piecewise constant parameters

λn, µ,Wn, θn, σn, qn in y constructed in Lemma 4.2. In the

next lemma, we show that the solution
(
kn, k̄n

)
to the latter

approximates the solution (k, k̄) to the former to arbitrary

accuracy, provided that n is sufficiently large.

Lemma 4.3: Consider the solutions
(
kn, k̄n

)
to the kernel

equations (11), (12) with parameters λn, µ,Wn, θn, σn, qn

from Lemma 4.2. There exist continuous parameters

λ, µ,W, θ, σ, q constructed such that they satisfy Assump-

tion 3.1 and (13), and for any such parameters the solution(
k, k̄
)

to the respective kernel equations (11), (12) exists and

satisfies the following implications. For any δ > 0, there exists

an nδ ∈ N such that for all n ≥ nδ we have

max
(x,ξ)∈T

‖k(x, ξ, ·)− kn(x, ξ, ·)‖L2([0,1];R) ≤ δ, (28a)

max
(x,ξ)∈T

|k̄(x, ξ) − k̄n(x, ξ)| ≤ δ, (28b)

where we denote T = {(x, ξ) ∈ [0, 1]2 : 0 ≤ ξ ≤ x ≤ 1}.

Proof: We begin by establishing some key properties

of the solutions
(
kn, k̄n

)
and (k, k̄). Firstly, it has been

shown in [13, Sect. V] that, under Assumption 2.1, the

kernel equations (6), (7) are well-posed, i.e., that the solution(
ki
)n+1

i=1
exists, is unique, and depends continuously on the

parameters of (6), (7), and that
(
ki
)n+1

i=1
is continuous on T .

Secondly, the functions
(
kn, k̄n

)
are constructed in Lemma

4.3 based on
(
ki
)n+1

n=1
, and thus, for almost all y, they exist,

are unique, continuous on T , and depend continuously on

λn, µ,Wn, θn, σn, qn in the L2 sense (in y). Thirdly, the

existence and uniqueness of the solution
(
k, k̄
)

to the kernel

equations (11), (12) follows, provided that the parameters

λ, µ,W, θ, σ, q satisfy Assumption 3.1 [27, Thm 3]. More-

over, it has been shown in [27, Sect. VI] that (k, k̄) are

continuous on T , and as a consequence of the estimates in

[27, Sect. VI.C], the solution
(
k, k̄
)

depends continuously on

λ, µ,W, θ, σ, q.

Due to the continuity of
(
kn, k̄n

)
and

(
k, k̄
)

on T , the

norms in (28) are continuous on T , and hence, the maxima

are reached at some point in T . Thus, it remains to show that

the maxima become arbitrarily small when n is sufficiently

large. The remainder of the proof utilizes the well-posedness

of the kernel equations (11), (12), in particular that the

solutions
(
k, k̄
)

and
(
kn, k̄n

)
depend continuously on the

parameters of the respective kernel equations as we established

in the beginning of the proof. First we show that, when n
is sufficiently large, the parameters λn,Wn, θn, σn, qn can

approximate the respective continuum parameters λ,W, θ, σ, q
to arbitrary accuracy in the L2 sense. That is, for any ε1 > 0,

the following estimates are satisfied for any sufficiently large n

max
x∈[0,1]

‖λ(x, ·)− λn(x, ·)‖L2([0,1];R) ≤ ε1, (29a)

max
x∈[0,1]

‖σ(x, ·, ·) − σn(x, ·, ·)‖L2([0,1]2;R) ≤ ε1, (29b)

max
x∈[0,1]

‖θ(x, ·)− θn(x, ·)‖L2([0,1];R) ≤ ε1, (29c)

max
x∈[0,1]

‖W (x, ·)−Wn(x, ·)‖L2([0,1];R) ≤ ε1, (29d)

‖q − qn‖L2([0,1];R) ≤ ε1. (29e)

Existence of continuous functions λ,W, θ, σ, q satisfying (13)

and Assumption 3.1 can be guaranteed by construction (see,

e.g., Footnote 4). Moreover, the functions λn,Wn, θn, σn, qn

are continuous in x by construction and Assumption 2.1, so

that the maxima in (29) are reached at some points x ∈ [0, 1].
As the functions compared in (29) match for all x ∈ [0, 1]
at the points y, η = 1/n, 2/n, . . . , 1, the differences of the

functions can be made arbitrarily small in the sense of (29)

with n being sufficiently large, e.g., based on the fact that step

functions are dense in the L2 function space [32, Sect. 1.3.5].

Finally, due to the well-posedness of the kernel equations,

the solutions compared in (28) depend continuously on the

parameters compared in (29). Thus, as ε1 tends to zero in (29),

the difference of the solutions
(
k, k̄
)

and
(
kn, k̄n

)
converges

to zero in a certain sense. More precisely, the convergence is

exactly in the sense stated in (28), as the parameter functions

converge uniformly in x by (29), and ξ only appears in place

of x in the kernel equations. Thus, the convergence of the

solutions is uniform in both x and ξ on T , and hence, for

any δ > 0, the estimates (28) are satisfied for any sufficiently

large n.

Remark 4.4: The convergence of the solutions to the kernel

equations (11), (12), with parameters λ, µ,W, θ, σ, q holds

true for any step functions that approximate the continuous

parameters as in (29) and not only the ones defined in (17).

Any such construction should be such that λn,W, θn, σn, qn

match with λ,W, θ, σ, q at some points in y within intervals

of the form [(i− 1)/n, i/n].
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We have by now established convergence of the solutions(
kn, k̄n

)
to the kernel equations (11), (12) with parameters

λn, µ,Wn, θn, σn, qn defined in (17), to the solutions
(
k, k̄
)

to

(11), (12) with parameters λ, µ,W, θ, σ, q. Since the solutions(
kn, k̄n

)
are piecewise constant in y satisfying (18) and (28),

where
(
ki
)n+1

k=1
are the solutions to (6), (7) with parameters(

λi
)n
i=1

, µ,
(
W i
)n
i=1

, (θ)
n
i=1 ,

(
qi
)n
i=1

, the solutions
(
kn, k̄n

)

can, in fact, approximate the kernels
(
ki
)n+1

i=1
to arbitrary

accuracy as n gets sufficiently large. This in turn implies that

the control law (16), constructed based on the solutions
(
k, k̄
)

to the continuum kernel equations (11), (12), approximates

(arbitrarily close as n gets sufficiently large) the original

control law (5) constructed based on the solutions
(
ki
)n+1

i=1
to the kernels equations (6), (7). For this, we present the

following lemma.

Lemma 4.5: The control law (16) can be written as

U(t) =

1∫

0

(
1

n

n∑

i=1

ki(1, ξ)ui(t, ξ) + kn+1(1, ξ)v(t, ξ)

)
dξ

+

1∫

0

(
1

n

n∑

i=1

∆ki(1, ξ)ui(t, ξ) + ∆kn+1(1, ξ)v(t, ξ)

)
dξ,

(30)

where
(
ki
)n+1

i=1
is the solution to the n+1 kernel equations (6),

(7), and the approximation error terms
(
∆ki(1, ·)

)n+1

i=1
become

arbitrarily small, uniformly in ξ ∈ [0, 1], when n is sufficiently

large.

Proof: Transform the functions
(
k̃i
)n
i=1

from (16) into

a step function in y as

k̃n(x, ξ, y) = k̃i(x, ξ), y ∈ ((i − 1)/n, i/n], (31)

for all 0 ≤ ξ ≤ x ≤ 1 and piecewise in y for i = 1, 2, . . . , n.

By (31) and (15), the functions k̃ and k coincide for all 0 ≤
ξ ≤ x ≤ 1 at every y = 1/n, 2/n, . . . , 1. As both functions are

continuous on 0 ≤ ξ ≤ x ≤ 1 and k is additionally continuous

in y, for any ε > 0, there exists some nε ∈ N such that

max
(x,ξ)∈T

‖k(x, ξ, ·)− k̃n(x, ξ, ·)‖L2([0,1];R) ≤ ε, (32)

for any n ≥ nε. Combining this with the estimates of

Lemma 4.3 and using the triangle inequality, we have for any

n ≥ max{nδ, nε}

max
(x,ξ)∈T

‖kn(x, ξ, ·) − k̃n(x, ξ, ·)‖L2([0,1];R)

≤ max
(x,ξ)∈T

‖kn(x, ξ, ·) − k(x, ξ, ·)‖L2([0,1];R)

+ max
(x,ξ)∈T

‖k(x, ξ, ·)− k̃n(x, ξ, ·)‖L2([0,1];R)

≤ δ + ε, (33)

where both δ and ε can be made arbitrarily small by increasing

n by Lemma 4.3 and (32), respectively. As the estimate is

uniform on T , it particularly applies on x = 1.

Moreover, the step functions k̃n and kn constructed in

(31) and (18), respectively, are obtained through applying the

isometric transform Fn, introduced in the proof of Lemma 4.3,

to
(
k̃i
)n
i=1

and
(
ki
)n
i=1

, respectively. Thus, the estimate (33)

also holds for the vector-valued functions, i.e.,

max
(x,ξ)∈T

1√
n

∥∥∥
(
ki(x, ξ)

)n
i=1

−
(
k̃i(x, ξ)

)n
i=1

∥∥∥
Rn

≤ δ + ε.

(34)

In addition, from (28) in Lemma 4.3 we already have

max
(x,ξ)∈T

∣∣∣kn+1(x, ξ)− k̃n+1(x, ξ)
∣∣∣ ≤ δ. (35)

Now, setting ∆ki = k̃i − ki for i = 1, 2, . . . , n+ 1, we have

written (16) as (30), where the error term can be estimated

using (34), (35), triangle inequality and Cauchy-Schwartz

inequality as

1∫

0

(
1

n

n∑

i=1

∆ki(1, ξ)ui(t, ξ) + ∆kn+1(1, ξ)v(t, ξ)

)
dξ ≤

(2δ + ε)
∥∥∥
(

u(t,·)
v(t,·)

)∥∥∥
E
, (36)

where δ and ε become arbitrarily small when n is sufficiently

large.

By Lemma 4.5, the control law (16) can be split into the

part that exponentially stabilizes the large-scale n+ 1 system

(3), (4) and to the ∆-part which we treat as a perturbation

that becomes arbitrarily small when n is sufficiently large.

Thus, the stability of the n+ 1 system under the control law

(30) can be established based on existing results for well-

posed infinite-dimensional linear systems. The well-posedness

of the n+1 system and a generic stability result for perturbed

well-posed linear systems are presented in Propositions A.1

and A.2, respectively, in Appendix A.

Proof of Theorem 4.1. By Proposition A.1 and [31, Sect.

10.1], we can translate the boundary-controlled PDE (3), (4)

into a well-posed abstract Cauchy problem ż(t) = Az(t) +
BU(t) on the Hilbert space E, where z = (u1, . . . , un, v)T ,

ż(t) = Az(t) corresponds to (3) with the homogeneous

boundary condition from (4) through the domain of A, and

BU(t) corresponds to the boundary control in (4). Moreover,

we introduce bounded linear operators K and ∆K corre-

sponding to taking inner products (on E) with
(
ki(1, ·)

)n+1

i=1

and
(
∆ki(1, ·)

)n+1

i=1
such that the control law (30) can be

expressed as U(t) = Kz(t)+∆Kz(t), where ‖∆K‖L(E,R) ≤
2δ + ε becomes arbitrarily small when n is sufficiently large

by Lemma 4.5. Thus, the exponential stability of (3), (4)

under the control law (30) follows from [13, Thm 3.2] and

Proposition A.2. As this control law is equivalent to (16) by

Lemma 4.5, this concludes the proof of Theorem 4.1.

C. Proof of Theorem 4.1 Using a Lyapunov Functional

By following [13, Lem. 3.1], we construct the Lyapunov

functional with parameters p, δ1 > 0

V (t) =

1∫

0

pe−δ1x
1

n

n∑

i=1

α2
i (t, x)

λi(x)
dx+

1∫

0

1 + x

µ(x)
β(t, x)2dx,

(37)
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where αi(t, x) = ui(t, x) for i = 1, . . . , n and

β(t, x) = v(t, x) −
x∫

0

1

n

n∑

i=1

ki(x, ξ)ui(t, ξ)dξ

−
x∫

0

kn+1(x, ξ)v(t, ξ)dξ, (38)

are the states of the target system after the exact backstepping

transformation. The dynamics of the target system is of the

form [13, Sect. III.A]

αi
t(t, x) + λi(x)α

i
x(t, x) =

1

n

n∑

j=1

σi,j(x)α
j(t, x) +Wi(x)β(t, x)

+
1

n

n∑

j=1

x∫

0

ci,j(x, ξ)α
j(t, ξ)dξ +

x∫

0

κi(x, ξ)β(t, ξ)dξ, (39a)

βt(t, x) − µ(x)βx(t, x) = 0,
(39b)

with boundary conditions αi(t, 0) = qiβ(t, 0) for all i =
1, 2, . . . , n, where ci,j , κi are continuous on T 6. Employing

the approximate control law (30), the boundary condition for

β at x = 1 is

β(t, 1) =

1∫

0

1

n

n∑

i=1

∆ki(1, ξ)ui(t, ξ)dξ

+

1∫

0

∆kn+1(1, ξ)v(t, ξ)dξ

=
〈(

∆k(1,·)

∆kn+1(1,·)

)
,
(

u(t,·)
v(t,·)

)〉
E
, (40)

which also needs to be taken into account in the Lyapunov-

based analysis.

6Under the exact backstepping controller, (39) would be accompanied with
boundary condition β(t, 1) = 0.

Computing V̇ (t) and integrating by parts yields

V̇ (t) =

[
−pe−δ1x

1

n
‖ααα(t, x)‖2

Rn + (1 + x)β(t, x)2
]1

0

−
1∫

0

(
δ1pe

−δ1x
1

n
‖ααα(t, x)‖2

Rn + β(t, x)2
)
dx

+

1∫

0

pe−δ1x
1

n
ααα(t, x)Tλλλ−1(x)

σσσ(x)

n
ααα(t, x)dx

+ 2

1∫

0

x∫

0

pe−δ1x
1

n
ααα(t, x)Tλλλ−1(x)

c(x, ξ)

n
ααα(t, ξ)dξdx

+ 2

1∫

0

pe−δ1x
1

n
ααα(t, x)Tλλλ−1(x)W(x)β(t, x)dx

+ 2

1∫

0

x∫

0

pe−δ1x
1

n
ααα(t, x)Tλλλ−1(x)κκκ(x, ξ)β(t, ξ)dξdx,

(41)

where we denote ααα = (αi)
n
i=1 ,W = (Wi)

n
i=1 ,κκκ =

(κi)
n
i=1 and λλλ = diag(λi)

n
i=1,σσσ = (σi,j)

n
i,j=1 , c = (ci,j)

n
i,j=1.

Since all the (individual components of the) parameters are

continuous, they are also uniformly bounded on compact sets,

and hence, there exist some Mσ,MW ,Mc,Mκ > 0 such that

max
x∈[0,1]

‖σσσ(x)‖∞
n

≤ Mσ, (42a)

max
x∈[0,1]

‖W(x)‖∞ ≤ MW , (42b)

max
(x,ξ)∈T

‖c(x, ξ)‖∞
n

≤ Mc, (42c)

max
(x,ξ)∈T

‖κκκ(x, ξ)‖∞ ≤ Mκ. (42d)

Moreover, since λλλ(x) is diagonal and uniformly bounded away

from zero by Assumption 2.1, there exists some Mλ > 0 such

that maxx∈[0,1] ‖λλλ−1(x)‖∞ ≤ Mλ. Thus, we eventually get

V̇ (t) ≤ −
(
1− p

1

n

n∑

i=1

q2i

)
β(t, 0)2 + 2β(t, 1)2

−
1∫

0

(
1− pMλMW − pMλMκ

δ1

)
β(t, x)2dx

−
1∫

0

pe−δ1x(δ1 − M̃)
1

n
‖ααα(t, x)‖2

Rndx, (43)

where M̃ = MλMσ +2MλMc

δ1
+MλMW + MλMκ

δ1
7. We have

the following estimate from (40) and (36)

2β(t, 1)2 ≤ 2(2δ + ε)2
∥∥∥
(

u(t,·)
v(t,·)

)∥∥∥
2

E
, (44)

7If β(t, 1) = 0, under the exact controller, then V̇ (t) is negative definite
for some sufficiently small p > 0 and sufficiently large δ1 > 0.
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where ui = αi for all i = 1, 2, . . . , n. Moreover, there exist

inverse kernels
(
li
)n+1

i=1
such that [13, Sect. III.A.3]

v(t, x) = β(t, x) +
〈(

l(x,·)

ln+1(x,·)

)
,
(

ααα(t,·)
β(t,·)

)〉
E
, (45)

where
(
li
)n+1

i=1
are continuous on T , and hence, also uniformly

bounded. Thus, there exists some Ml > 0 such that

max
(x,ξ)∈T

max
i∈{1,2,...,n+1}

∣∣li(x, ξ)
∣∣ ≤ Ml. (46)

By Jensen’s inequality we thus have

∥∥∥
(

u(t,·)
v(t,·)

)∥∥∥
2

E
≤ (1 +Ml)

2
∥∥∥
(

ααα(t,·)
β(t,·)

)∥∥∥
2

E
, (47)

which finally yields

2β(t, 1)2 ≤ 2(2δ + ε)2(1 +Ml)
2
∥∥∥
(

ααα(t,·)
β(t,·)

)∥∥∥
2

E
. (48)

Relation (48) implies that when δ and ε are sufficiently small,

V̇ (t) in (43) can be made negative definite, with a proper

choice of p, δ1, despite the perturbation acting on β(t, 1).

To complete the proof, we note that V (t) in

(37) corresponds to the weighted inner product

V (t) =
〈(

ααα(t,·)
β(t,·)

)
,P(·)

(
ααα(t,·)
β(t,·)

)〉
E

, where P(x) =

diag
(
pe−δ1xλλλ−1(x), 1+x

µ(x)

)
> 0 for all x ∈ [0, 1], by which

there exists some mV ,MV > 0 such that

mV

∥∥∥
(

ααα(t,·)
β(t,·)

)∥∥∥
2

E
≤ V (t) ≤ MV

∥∥∥
(

ααα(t,·)
β(t,·)

)∥∥∥
2

E
. (49)

Moreover, from (43) and (48) we get

V̇ (t) ≤ −cV

∥∥∥
(

ααα(t,·)
β(t,·)

)∥∥∥
2

E
with cV =

min
{
1− pMλMW − pMλMκ

δ1
, pe−δ1

(
δ1 − M̃

)}
− 2(2δ +

ε)2(1 +M2
l ), which can be made positive for a large δ1 and

small p, δ, ε. Thus, we have

∥∥∥
(

ααα(t,·)
β(t,·)

)∥∥∥
2

E
≤ mV

MV

∥∥∥
(

ααα(0,·)
β(0,·)

)∥∥∥
2

E
exp

(
− cV
MV

t

)
. (50)

Finally, using (47) and an analogous estimate for the forward

transform (38) as ‖(αααβ )‖E ≤ (1 + Mk) ‖(uuuv )‖E , for some

Mk > 0 such that max
(x,ξ)∈T

max
i∈{1,2,...,n+1}

∣∣ki(x, ξ)
∣∣ ≤ Mk, we

obtain

∥∥∥
(

u(t,·)
v(t,·)

)∥∥∥
2

E
≤ M̃V

∥∥∥
(

u(0,·)
v(0,·)

)∥∥∥
2

E
exp

(
− cV
MV

t

)
, (51)

where M̃V = (1 +Ml)
2 mV

MV
(1 +Mk)

2, which completes the

proof.

Remark 4.6: Technically, the Lyapunov-based arguments

presented apply to classical solutions, the existence of which

can be guaranteed for any initial conditions ui
0, v0 ∈

H1([0, 1];R) that satisfy the compatibility conditions ui
0(0) =

qiv0(0) and v0(1) = U(0) [31, Prop. 10.1.8]. However, as

noted in [7, Sect. 2.1.3], for any weak solution there exists a

sequence of classical solutions which converges to the weak

solution in E, and hence, the decay estimate (51) also applies

to weak solutions.

V. NUMERICAL EXAMPLE

A. Stabilization via Approximate Kernels

As an example, consider an n + 1 system (3), (4) with

parameters µ(x) = 1 and

λi(x) = 1, (52a)

σi,j(x) = x3(x+ 1)

(
i

n
− 1

2

)(
j

n
− 1

2

)
, (52b)

Wi(x) = x(x + 1)ex
(
i

n
− 1

2

)
, (52c)

θi(x) = −70ex
35

π2
i

n

(
i

n
− 1

)
, (52d)

qi = cos

(
2π

i

n

)
, (52e)

for i, j = 1, . . . , n such that continuous functions satisfying

(13) can be constructed as

λ(x, y) = 1, (53a)

σ(x, y, η) = x3(x+ 1)

(
y − 1

2

)(
η − 1

2

)
, (53b)

W (x, y) = x(x + 1)ex
(
y − 1

2

)
, (53c)

θ(x, y) = −70ex
35

π2 y (y − 1) , (53d)

q(y) = cos(2πy). (53e)

The latter parameter values correspond to the example consid-

ered in [27, Sect. VII], where it is shown that the solutions of

the corresponding continuum kernel equations are given by

k(x, ξ, y) = 35y(y − 1)e2ξk̄(x,ξ), (54a)

k̄(x, ξ) =
35

2π2
. (54b)

We note that while a closed-form solution exists to the con-

tinuum kernel equations (11), (12) with parameters (53), we

were not able to solve the corresponding n+1 kernel equations

(6), (7) with parameters (52) in closed-form when n ∈ N is

arbitrary, nor do we expect that a closed-form solution can be

constructed (even for small n). This is also consistent with,

e.g., [33], in which an explicit solution is possible to obtain for

the specific case n = 1 and for spatially invariant parameters

(52). Regardless, in this particular example, the continuum

approximation significantly simplifies the computation of the

stabilizing control kernels.

We simulate the n+1 system (3), (4) with parameters (52)

under the control law (16) computed based on the continuum

kernels (54). Various values of n are considered to illustrate

the behavior of the closed-loop system as n increases. In

fact, the closed-loop system is stable for any n ≥ 2, but

the performance is improved for larger n. However, when

n = 1, the system (3), (4) is open-loop stable and k1(x, ξ) =
k2(x, ξ) = 0 is the solution to the kernel equations (6), (7), in

which case the approximate control law (16) destabilizes the

system (because k̄ 6= 0, in contrast to k2).

In the simulations, the system (3), (4) is approximated

using finite differences with 256 grid points in x ∈ [0, 1].
The ODE resulting from the finite-difference approximation
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Fig. 2. The controls U(t) based on the approximate control law (16)
when n = 2, . . . , 6.

is solved using ode45 in MATLAB. The initial conditions

for all n are ui
0(x) = qi for i = 1, . . . , n and v0(x) = 1,

for all x ∈ [0, 1]. Fig. 2 displays the control law (16) when

n = 2, . . . , 6. We note that the control law also acts as a

weighted average of the solution to (3), (4), i.e., we can also

assess the exponential decay rate of the solutions based on

U(t). However, as k(x, ξ, 1) = 0 in (54), the component

un(t, x) does not affect the control in any way. Therefore,

un(t, x) is displayed separately in Fig. 3 for n = 2, . . . , 5,

which shows that also un(t, x) decays to zero as t → ∞.

Fig. 3. The solution component un(t, x) when n = 2, . . . , 5.

Fig. 2 and Fig. 3 show that the approximate control law

based on the continuum kernels (54) is indeed stabilizing

already when n = 2, even if the rate of decay is very

slow. However, Fig. 2 and Fig. 3 show that the closed-loop

performance significantly improves when n becomes larger,

and in Fig. 2 the controls for n = 5 and n = 6 are virtually

indistinguishable. However, as we consider larger values of

n separately in Fig. 4 and Fig. 5, some changes in U(t) and

un(t, ξ) are still noticeable between n = 6 and n = 10.

Regardless, in all studied cases beyond n > 5, the controls,

along with the solutions, have practically converged to zero by

t = 6. We note that it takes the control input 1/µ+ 1/λ = 2

0 2 4 6 8 10

-150

-100

-50

0

50

Fig. 4. The controls U(t) based on the approximate control law (16)
when n = 6, 10, 15, 20.

Fig. 5. The solution component un(t, x) when n = 6, 10, 15, 20.

time units to traverse through the system (3), (4) for any n,

which is why, e.g., the state component un(t, ξ), may grow

rapidly in the beginning of the simulation, as seen in Fig. 3

and Fig. 5, before getting stabilized by the controls. However,

due to the in-domain coupling between u and v in (3), the

controls do affect the ui components through v already before

entering the ui channels at time t = 1/µ = 1.

Overall, the simulations demonstrate that the approximate

control law (16) based on the continuum kernels (54) exponen-

tially stabilizes the n+1 system (3), (4) when n is sufficiently

large, and that the approximation error of the control law

decreases as n increases. Thus, the simulations are well in

accordance with the theoretical results. Moreover, in this

example, the approximate control law has good performance

already for very moderate n, showing that the sufficiently large

n appearing in the theoretical results may be, in practice,

relatively small. However, one should not expect this to be

the case in general, as this is dependent on the parameters of

both the system (3), (4) and its continuum approximation (8),

(9).
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Fig. 6. Top: Approximation error of the exact control kernels by the
continuum control kernels. Bottom: Computational time to solving the
exact control kernels PDEs.

B. Comparison with Exact Control Kernels

In this subsection, we compare the approximate control

gain kernels with the exact kernels, as well as we compare

performance of the closed-loop systems under the approximate

and exact kernels. However, as we are not aware of the

existence of closed-form solutions to (6), (7), we have to find

the solution implicitly, and hence, the presented comparisons

are between the closed-form continuum kernels (54) and

numerical approximations of the exact kernels obtained from

(6), (7). Regardless, we refer to the numerical solution to (6),

(7) as the exact kernels.

In Fig. 6, the evolution of max
ξ∈[0,1]

‖∆k(1, ξ)‖∞ is shown

for n = 2, 3, . . . , 40, where we use the boldface notation

for the vector
(
∆ki

)n+1

i=1
. It can be seen that the error norm

decays (even exponentially) as n increases, until n = 17 after

which the accuracy of our numerical procedure to solving the

exact kernel equations (6), (7) starts to deteriorate. That is, the

increase in the error norm around n = 20 is due to numerical

inaccuracies in solving the exact kernel equations (6), (7), as in

theory the error norm should tend towards zero as n increases.

Fig. 6 additionally shows the computational time required (by

our numerical procedure) to solve (6), (7), which appears to

grow linearly with respect to n. However, solving (6), (7)

additionally requires spatial discretization of the domain T ,

where we simply use finite differences with 257 grid points

in both x and ξ. We expect that (6), (7) can be solved more

accurately using more sophisticated methods, such as finite

element methods (FEM), and a finer discretization of T , but

this will likely result in longer computational times as well,

since the complexity of FEM algorithms is proportional to

the number of nodes in the finite element mesh [34]. We note

here that the computational time of computing the approximate

kernels is virtually invariant to n, as such computations rely

only on evaluation of (54a) at the given points in y.

In Fig. 7, we compare the control efforts obtained by

using the approximate continuum kernels and the exact kernels

obtained from (6), (7) for n = 3, 5, 10, 20. It can be seen that

qualitatively the controls computed based on the exact kernels

seem to behave the same despite of n. Moreover, as expected

from Fig. 2 and Fig. 4, the approximate control laws computed

based on the continuum kernels (54) get closer to the exact

controls as n increases. However, as already seen in Fig. 6, we

can numerically demonstrate this convergence only up to some

finite accuracy. Regardless, it can be seen from Fig. 7 that the

differences in closed-loop performance are small already at

n = 10.

-200

-100
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-200

-100

0

-150

-100

-50

0

0 2 4 6 8 10

-100

-50

0

Fig. 7. Comparison of the control efforts with the continuum (approxi-
mate) kernels and the exact control kernels for n = 3, 5, 10, 20.

VI. APPROXIMATION OF THE SOLUTIONS TO THE

LARGE-SCALE SYSTEM BY A CONTINUUM

In this section, we show that the continuum system (8), (9)

acts as an approximation of the n+1 system (3), (4), when n
is sufficiently large. In particular, a sequence of solutions to

(3), (4) can approximate the solution to (8), (9), provided that

the sequence of data of (3), (4) approximates the data of (8),

(9) (including initial conditions) to arbitrary accuracy.

Theorem 6.1: Consider an n + 1 system (3), (4), with pa-

rameters λi, µ,Wi, θi, σi,j , qi for i, j = 1, 2, . . . , n satisfying

Assumption 2.1, initial conditions v0, u
i
0 ∈ L2([0, 1];R) for

i = 1, 2, . . . , n, and input U ∈ L2
loc([0,+∞);R). Construct a

continuum system (8), (9), with parameters λ, µ,W, θ, σ, q that

satisfy Assumption 3.1 and (13), and equip (8), (9) with initial

conditions u0, v0 and input U , such that u0 is continuous in

y and satisfies

u0(x, i/n) = ui
0(x), (55)

for i = 1, 2, . . . , n8. Sample the solution (u, v) to the resulting

PDE system (8), (9) for these data, into a vector-valued

function ((ũi)
n
i=1, ṽ) as ũ(t, x) = F∗

nu(t, x, ·)9 and ṽ(t, x) =
v(t, x), pointwise for all t ≥ 0 and almost all x ∈ [0, 1]. On

any compact interval t ∈ [0, T ], for any given T > 0, we have

max
t∈[0,T ]

∥∥∥
(

u(t)
v(t)

)
−
(

ũ(t)
ṽ(t)

)∥∥∥
E
≤ δ2 + ε2 + δ3 + ε3, (56)

8Such functions can always be constructed as, e.g., per Footnote 4.
9The transform Fn is introduced in the proof of Lemma 4.2, and its adjoint

F∗
n satisfies (23).
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where ε2, ε3, δ2, δ3 > 0 become arbitrarily small when n is

sufficiently large.

Proof: Firstly, we note that (8), (9) is well-posed on

Ec = L2([0, 1];L2([0, 1];R)) × L2([0, 1];R) under Assump-

tion 3.1 as shown in Proposition B.1 in Appendix B. That is,

for any initial conditions u0 ∈ L2([0, 1];L2([0, 1];R)), v0 ∈
L2([0, 1];R) and input U ∈ L2

loc([0,+∞);R), the solution

(u, v) is well-defined, unique, continuous in time, and depends

continuously on the data of the problem on any compact

interval t ∈ [0, T ], for any given T > 0. In particular, there

exist families of bounded linear operators Tt,Φt for t ≥
0, depending continuously on the parameters λ, µ, σ, θ,W, q,

such that the solution to (8), (9) is given by [31, Prop. 4.2.5]

(
u(t)
v(t)

)
= Tt (

u0
v0 ) + ΦtU, (57)

which satisfies ( uv ) ∈ C([0,+∞);Ec). The well-posedness

and regularity of solutions to (3), (4) have already been

established in Proposition A.1 in Appendix A and Remark 2.2.

Secondly, based on the parameters λi,Wi, θi, σi,j , qi for

i, j = 1, 2, . . . , n of (3), (4), we can construct the step

functions λn, σn, θn,Wn, qn as in (17) such that they satisfy

(29) for any ε1 > 0 when n is sufficiently large. Moreover,

we can transform the solution to (3), (4) into a step function

(in y) by applying the transform F introduced in the proof of

Lemma 4.2, i.e.,
(

un(t,x,·)
vn(t,x)

)
= F

(
u(t,x)
v(t,x)

)
. (58)

That is, un is defined piecewise in y, for i = 1, 2, . . . , n,

as un(t, x, y) = ui(t, x), y ∈ ((i − 1)/n, i/n], pointwise for

all t ∈ [0, T ] and almost all x ∈ [0, 1]. Then (un, vn) is the

solution to (8), (9) for parameters λn, µ, σn, θn,Wn, qn, input

U , and initial conditions v0, u
n
0 (x, ·) = Fnu0(x). This can be

verified by applying the transform F to (3), (4) (from the

left), for each t ≥ 0 and almost all x ∈ [0, 1], which results

in (un, vn) satisfying (8), (9) for the stated parameters, initial

conditions, and input. (This follows in a similar manner with

the respective part of the proof of Lemma 4.2.) As (3), (4) is

well-posed, the transformed solution (3), (4) is the well-posed

solution to the transformed (by F ) PDE system. In particular,

there exist families of operators Tn
t ,Φ

n
t for t ≥ 0, depending

continuously on the parameters λn, µ, σn, θn,Wn, qn, such

that the solution to (8), (9) for these parameters is given by

(
un(t)
vn(t)

)
= T

n
t

(
un
0

v0

)
+Φn

t U, (59)

which satisfies
(
un

vn

)
∈ C([0,+∞);Ec).

Thirdly, consider the difference of the solutions (to (8),

(9)) (57) and (59), under the respective parameters and initial

conditions, and the same inputs on the interval t ∈ [0, T ]. We

get, for each t ∈ [0, T ],
∥∥∥
(

u(t)
v(t)

)
−
(

un(t)
vn(t)

)∥∥∥
Ec

≤
∥∥(Tt − T

n
t )
(
un
0

v0

)∥∥
Ec

+ ‖Tt‖L(Ec)

∥∥( u0
v0 )−

(
un
0

v0

)∥∥
Ec

+ ‖(Φt − Φn
t )U‖Ec

≤ δ2 + ε2 + δ3, (60)

where, for any given T, u0, v0, and U , the constants δ2, ε2, δ3
can be made arbitrarily small by taking n sufficiently large.

That is, δ2 and δ3
10 become small due to the solution to (8), (9)

depending continuously on the parameters, initial conditions,

and input of the problem, i.e., δ2 and δ3 depend continuously

on ε1 in (29) such that δ2, δ3 → 0 as ε1 → 0. The second

term ε2 becomes small as ‖Tt‖L(Ec)
is uniformly bounded

on t ∈ [0, T ] by Proposition B.1; while the difference ‖u0 −
un
0‖L2([0,1]2;R) can be made arbitrarily small due to (55) and

un
0 (x, ·) = Fnu0(x), analogously to (29).

Finally, set ũ(t, x) = F∗
nu(t, x, ·) and ṽ = v for all t ∈

[0, T ] and almost all x ∈ [0, 1], i.e., each component of ũ is

ũi(t, x) = n

i/n∫

(i−1)/n

u(t, x, y)dy, (61)

which is the mean value of u(t, x, ·) over an interval of length

1/n in y. Since F is an isometry, we have, for each t ∈ [0, T ],
∥∥∥
(

u(t)
v(t)

)
−
(

ũ(t)
ṽ(t)

)∥∥∥
E
=
∥∥∥F
((

u(t)
v(t)

)
−
(

ũ(t)
ṽ(t)

))∥∥∥
Ec

≤
∥∥∥
(

un(t)
vn(t)

)
−
(

u(t)
v(t)

)∥∥∥
Ec

+
∥∥∥
(

u(t)
v(t)

)
−FF∗

(
u(t)
v(t)

)∥∥∥
Ec

≤ δ2 + ε2 + δ3 + ε3, (62)

where we used the triangle inequality (added and subtracted

(u, v)), definitions (58) and (61), and (60). Moreover, ε3 >
0 can be made arbitrarily small, as the solution (u, v) is

uniformly bounded on t ∈ [0, T ] and the step function

FF∗
(

u(t)
v(t)

)
can approximate

(
u(t)
v(t)

)
to arbitrary accuracy

(for almost all x, y ∈ [0, 1], uniformly in t ∈ [0, T ]) when n is

sufficiently large, i.e., when the interval length 1/n becomes

sufficiently small (by mean-value approximation, see, e.g., [32,

Sect. 1.6]). Thus, the maximum of (62) over t ∈ [0, T ] can

be made arbitrarily small by taking n sufficiently large, which

yields (56).

Remark 6.2: The conclusion of Theorem 6.1 remains valid

even if the input U was not exactly the same for both

PDE systems. That is, rewriting (60) with U replaced

by some Ū in (57) results in an additional error term

‖Φt‖L(L2([0,T ];R);Ec)‖U − Ū‖L2([0,T ],R), which can be made

arbitrarily small by assuming ‖U−Ū‖L2([0,T ],R) is sufficiently

small, since the operator norm of Φt is uniformly bounded

on compact intervals t ∈ [0, T ] (based on Proposition B.1 in

Appendix B).

VII. THE LIMITING CASE n → ∞
While the system (3), (4) and the kernel equations (6), (7)

are well-defined for any finite n, we can consider the limiting

case n → ∞ through interpreting these as the respective

continuum limits of system (8), (9) and kernel equations (11),

(12). This can be formally proved as follows, utilizing the

10Note that δ2 and δ3 are the maxima over [0, T ] of the respective constants
satisfying (60) for each t ∈ [0, T ].
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results of Sections IV and VI. As regards the case of the

kernels, it follows from (28) that

lim
n→∞

max
(x,ξ)∈T

‖k(x, ξ, ·)− kn(x, ξ, ·)‖L2([0,1];R) = 0, (63a)

lim
n→∞

max
(x,ξ)∈T

|k̄(x, ξ) − k̄n(x, ξ)| = 0. (63b)

As proved in Lemma 4.3 (relation (29)), this convergence

is enabled by the convergence of the respective parameters

λn, σn, θn,Wn, qn (constructed in (17), based on the param-

eters associated with the solution to (6), (7)) associated with

the kernels constructed in (18) based on the solutions to (6),

(7), to the parameters λ, σ, θ,W, q associated with the kernels

satisfying (11), (12). Moreover, by (60), the solution sequence

(un(t), vn(t)), constructed in (58) based on the solutions to

(3), (4), under the conditions of Theorem 6.1, converges (in

Ec, on compact time intervals) to the solution of (8), (9), i.e.,

lim
n→∞

∥∥∥
(

u(t)
v(t)

)
−
(

un(t)
vn(t)

)∥∥∥
Ec

= 0, (64)

for all t ∈ [0, T ], for any given T > 0. Note that all

convergence properties stated hold in L2 for y, which is

sufficient for attaining the stated approximation result. In

fact, based on the convergence properties of the kernels and

solutions, namely, equations (63) and (64), respectively, the

control law (5) converges to (10) (on compact time intervals),

i.e., the following holds

lim
n→∞

1∫

0

[
1

n

n∑

i=1

ki(1, ξ)ui(t, ξ) + kn+1(1, ξ)v(t, ξ)

]
dξ =

lim
n→∞

〈(
k(1,·)

kn+1(1,·)

)
,
(

u(t)
v(t)

)〉
E
=

lim
n→∞

〈(
kn(1,·,·)

k̄n(1,·)

)
,
(

un(t)
vn(t)

)〉
Ec

=
〈(

k(1,·,·)

k̄(1,·)

)
,
(

u(t)
v(t)

)〉
Ec

=

1∫

0




1∫

0

k(1, ξ, y)u(t, ξ, y)dy + k̄(1, ξ)v(t, ξ)


 dξ,

(65)

for all t ∈ [0, T ], for any given T > 0.

Finally, it is interesting to note that the stability estimate

(51), based on the previous discussion, in the limiting case

n → ∞ becomes, essentially, the stability estimate of the

continuum system (8), (9) under the exact continuum control

law (10), i.e., (see also [27, Thm 2])

∥∥∥
(

u(t)
v(t)

)∥∥∥
2

Ec

≤ M̃C
V

∥∥∥
(

u(0)
v(0)

)∥∥∥
2

Ec

exp

(
− c̄V

MC
V

t

)
, (66)

where the coefficients M̃C
V ,MC

V , c̄V are obtained based on the

continuum counterparts of the respective coefficients in the

Lyapunov-based proof of Theorem 4.1. This can be shown

as follows. First, the solution
(
(ui(t))ni=1, v(t)

)
to (3), (4)

converges to the solution (u(t), v(t)) to (8), (9) (via the step

function interpretation (58); see Theorem 6.1 for details) as

per (64), which results in the Ec norms of (u(t), v(t)) and

(u0, v0) appearing in (66) and corresponding to the E norm in

(51)11. Second, combining the convergence property of each of

the parameter sequences to their respective continuum limits,

which follows from (29), together with the uniform essential

boundedness of the parameter sequences, which follows from

the step function-based construction, we can uniformly bound

the functions appearing on the left-hand side of (42), and

hence, also bound their continuum limits. In particular, Mσ

and MW can be replaced by

MC
σ = max

x∈[0,1]
‖σ(x, ·, ·)‖L∞([0,1]2;R), (68)

MC
W = max

x∈[0,1]
‖W (x, ·)‖L∞([0,1];R). (69)

Similarly, we can replace Mλ by MC
λ =

max
x∈[0,1]

‖1/λ(x, ·)‖L∞([0,1];R). Moreover, based on the

convergence property (63), together with the essential

boundedness of (kn, k̄n) (by construction), we can replace

Mk by

MC
k = max

{
max

(x,ξ)∈T
‖k(x, ξ, ·)‖L∞([0,1];R), max

(x,ξ)∈T
|k̄(x, ξ)|

}
.

(70)

Consequently, as the inverse kernels (li)n+1
i=1 depend continu-

ously on (ki)n+1
i=1 , while the parameters (ci,j)

n
i,j=1, (κi)

n
i=1 de-

pend continuously on (ki)n+1
i=1 and (Wi)

n
i=1, we can construct

step function sequences (ln, l̄n), cn, κn (associated with pa-

rameters li, ci,j , κi, in a similar manner to constructions (17),

(18)), based on the step function sequences (kn, k̄n) and Wn.

These sequences converge to their respective continuum limits

(l, l̄), c, κ (in the L2 sense in y), and they can be bounded,

similarly to (kn, k̄n) and Wn. Thus, we can replace Mκ and

Mc in (42), and Ml in (46), by

MC
κ = max

(x,ξ)∈T
‖κ(x, ξ, ·)‖L∞([0,1];R), (71)

MC
c = max

(x,ξ)∈T
‖c(x, ξ, ·)‖L∞([0,1];R), (72)

MC
l = max

{
max

(x,ξ)∈T
‖l(x, ξ, ·)‖L∞([0,1];R), max

(x,ξ)∈T
|l̄(x, ξ)|

}
.

(73)

Therefore, as δ, ǫ → 0 in the limiting case n → ∞, all involved

parameters in estimate (51), namely M̃V , cV , and MV , can be

replaced by the continuum bounds M̃C
V , c̄V and MC

V , based

on (68)–(73)12, fact which allows us to obtain (66). We finally

note that, by (64) and (65), the estimate (66) holds for all

t ∈ [0, T ], for any given T > 0, nevertheless, since (66) also

provides a uniform bound for the solution, the estimate (66)

is valid for all t ∈ [0,+∞).

11In more detail, using (58) and (64), it holds that

lim
n→∞

‖( uv )‖E = lim
n→∞

‖F ( uv )‖Ec
= lim

n→∞

∥∥∥
(

un

vn

)∥∥∥
Ec

= ‖( uv )‖Ec
.

(67)

12In particular, based on the explicit dependence of M̃V ,MV , mV , cV
on Mλ,MW ,Mk,Mσ ,Ml,Mκ,Mc, we can obtain the respective expres-

sions for M̃C
V
, c̄V ,MC

V
, using (68)–(73), together with MC

λ
and mC

λ
=

max
x∈[0,1]

‖λ(x, ·)‖L∞([0,1];R).
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VIII. CONCLUSIONS AND DISCUSSION

Computation of approximate stabilizing kernels based on

the continuum kernel may provide flexibility in computation

(also in terms of the number of different kernels being

computed), as well as it may significantly improve computa-

tional complexity (although, practically, such computation also

depends on the sampling method chosen for the continuum

kernel). This is confirmed in the numerical example in which

computational burden of stabilizing kernels is significantly

improved, since the approximate kernels computed based on

the continuum can be computed in closed form, in contrast to

the exact kernels that have to be computed implicitly based

on the solution to the kernel PDEs.

In general, we may expect that the complexity of computa-

tion of stabilizing control gains via the continuum approxima-

tion approach to not scale with n, i.e., to be O(1); while the

complexity of computation of the exact control kernels to be

O(n), i.e., to grow with the number of state components. Thus,

this approach may be useful for computationally efficient

control of large-scale PDE systems.

Another important possible usage of the approach presented

may be in reducing the number of measurements required in a

full-state feedback law, retaining closed-loop stability, in view

of the fact that, as the number of state components increases,

the sum in the control law (16) essentially approximates

the integral in (10), which in turn may be computed at a

chosen resolution, not necessarily equal to the number of state

components. Although this is also motivated by simulation

investigations we performed using the same numerical exam-

ple as in Section V, in which stability is preserved when we

employ in (16) a smaller number, than n, of terms in the

sum, this has to be rigorously proved. We have made here

the first step towards such study by formally establishing the

connection between the solutions to the original n+1 system

(3), (4) and the solutions to the continuum system (8), (9), as

the number n of state components becomes sufficiently large.

This is a matter we are currently investigating.

APPENDIX

A. Technical Propositions

This appendix contains two technical results regarding the

well-posedness of the n + 1 system (3), (4) under Assump-

tion 2.1, and a generic result regarding exponential stability

of perturbed, well-posed, infinite-dimensional linear systems.

Both results are direct consequences of existing results in the

literature.

Proposition A.1: The system (3), (4) is well-posed on

L2([0, 1];Rn+1) for any parameters satisfying Assump-

tion 2.1.

Proof: We utilize [30, Thm 13.2.2], for which we

need to show that the system (3), (4) can be interpreted

as a port-Hamiltonian system satisfying the assumptions

of this theorem. Thus, we write the system (3) in the

form zt(t, x) = P1(H(x)z(t, x))x + D(x)z(t, x), where

z = (u1, . . . , un, v)T , P1 = diag(−In×n, 1) = PT
1 ,H =

diag(λ1, . . . , λn, µ) ∈ C1([0, 1];R(n+1)×(n+1)) by Assump-

tion 2.1 and D is a bounded linear operator. More precisely,

D = −P1H′ + D1, where D1 is such that D1(x)z(x, t)
corresponds to the right-hand-side of (3), and the the diagonal

operator P1H satisfies the first assumption of [30, Thm 13.2.2]

by Assumption 2.1.

For the boundary conditions (4), we define a vector f =
(u1(0), . . . , un(0), v(0), u1(1), . . . , un(1), v(1))T comprising

the boundary values of z. Using this, the boundary condition

ui(·, 0) = qiv(·, 0) can be written as WB,1f = 0, where

WB,1 =
[
In×n −q 0n×(n+1)

]
, where we denote q =

(q1, . . . , qn)
T . The boundary control v(·, 1) = U(·) can be

written as WB,2f = U , where WB,2 =
[
0 . . . 0 1

]
. Thus,

the matrix WB =

[
WB,1

WB,2

]
has full rank regardless of q, which

covers the second assumption of [30, Thm 13.2.2]. Thus, by

[30, Thm 13.2.2, Rem. 13.2.3], the system (3), (4) is well-

posed.

Proposition A.2: Consider a well-posed abstract Cauchy

problem ż(t) = Ax(t) + BU(t) on a Hilbert space Z under

feedback control law U(t) = (K + ∆K)z(t), where K
and ∆K are bounded linear operators. If the feedback law

U(t) = Kz(t) is exponentially stabilizing, then so is U(t) =
Kz(t) + ∆Kz(t), provided that ‖∆K‖L(Z,R) is sufficiently

small.

Proof: The proof relies on the well-posedness of the

abstract Cauchy problem, i.e., B being an admissible control

operator for (the strongly continuous semigroup generated by)

A [31, Sect. 4.2], and the Gearhart-Greiner-Prüss Theorem

[35, Thm V.1.11]. Let us denote AK = A + BK which is

the generator of an exponentially stable semigroup on Z , i.e.,

the solution to ż(t) = (A + BK)z(t), z(0) = z0 satisfies

‖z(t)‖Z ≤ Me−γt‖z0‖Z for some M,γ > 0. Now, the

system under the perturbed control law can be written as

ż(t) = AKz(t)+B∆Kz(t), where B is admissible for AK by

[31, Cor. 5.5.1]. Moreover, there exists some Kγ/4 > 0 such

that [31, Prop. 4.4.6]

‖(sI −AK)−1B∆K‖L(Z)

≤ Kγ/4√
Re(s) + γ/4

‖∆K‖L(Z,R), ∀Re(s) > −γ/4

≤ 2Kγ/4√
γ

‖∆K‖L(Z,R), ∀Re(s) > 0, (A.1)

where, in place of −γ/4 we could use any value on (−γ, 0).

The rest of the proof utilizes spectral arguments. Based on

the identity (sI − AK − B∆K) = (sI − AK)(I + (sI −
AK)−1B∆K), we see that any point s ∈ C is guaranteed to

be in the resolvent set of AK+B∆K if it is in the resolvent set

of AK and ‖(sI−AK)−1B∆K‖L(Z) < 1. By the exponential

stability of AK and (A.1), these conditions can be guaranteed

for all Re(s) > 0 when ‖∆K‖L(Z,R) is sufficiently small,

in addition to the resolvent operator (sI − AK − B∆K)−1

being uniformly bounded for all Re(s) > 0. Thus, for

‖∆K‖L(Z,R) sufficiently small, we have that AK + B∆K
is exponentially stable by [35, Thm V.1.11], which concludes

the proof.
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B. Well-Posedness of the Continuum System

The following proposition states the well-posedness result

for (8), (9), analogously to what has been stated in Proposi-

tion A.1 for (3), (4).

Proposition B.1: The continuum system (8), (9) is well-

posed on Ec = L2([0, 1];L2([0, 1];R))×L2([0, 1];R) for any

parameters satisfying Assumption 3.1. That is, for any initial

conditions u0 ∈ L2([0, 1];L2([0, 1];R)), v0 ∈ L2([0, 1];R)
and input U ∈ L2

loc([0,+∞);R), there is a unique (weak)

solution to (8), (9) satisfying (u, v) ∈ C([0,+∞);Ec).
Proof: In order to show the well-posedness of the

continuum system (8), (9), due to [30, Lem. 13.1.14], we only

need to show the well-posedness of the pure transport part, i.e.,

ut(t, x, y) + λ(x, y)ux(t, x, y) = 0, (B.1a)

vt(t, x)− µ(x)vx(t, x) = 0, (B.1b)

with boundary conditions u(t, 0, y) = q(y)v(t, 0), v(t, 1) =
U(t) and initial conditions u(0, x, y) = u0(x, y), v(0, x) =
v0(x). For now, assuming that everything is sufficiently

smooth, the solution of the transport equation (B.1) with

spatially-varying transport speed is (cf. [36, Prop. 3.1])

v(t, x) =





v0
(
φ−1
µ (φµ(x) + t)

)
, t−

1∫
x

dξ
µ(ξ) ≤ 0

U

(
t−

1∫
x

dξ
µ(ξ)

)
, t−

1∫
x

dξ
µ(ξ) > 0

,

(B.2a)

u(t, x, y) =





u0

(
φ−1
λy

(φλy
(x)− t), y

)
, t−

x∫
0

dξ
λ(ξ,y) ≤ 0

q(y)v

(
t−

x∫
0

dξ
λ(ξ,y) , 0

)
, t−

x∫
0

dξ
λ(ξ,y) > 0

,

(B.2b)

where φµ(x) =
∫ x

0
dξ
µ(ξ) and φλy

(x) =
∫ x

0
dξ

λ(ξ,y) , pointwise

for (almost) every y ∈ [0, 1]. The solution (B.2) is well-

defined, unique, and depends continuously on λ, µ, v0, u0

and U . The solution formula (and thus, the properties of

the solution) is valid for any v0 ∈ H1([0, 1];R), u0 ∈
H1([0, 1];L2([0, 1];R)), and U ∈ H1

loc([0,+∞);R) under

the compatibility conditions v0(1) = U(0) and u0(0, y) =
q(y)v0(0), i.e., (B.2) is the classical solution of (B.1). More-

over, for any v0 ∈ L2([0, 1];R), u0 ∈ L2([0, 1];L2([0, 1];R))
and U ∈ L2

loc([0,+∞);R), we can construct a unique weak

solution as the limit of a sequence of classical solutions [7,

Sect. 2.1.3] due to H1 being dense in L2 (on one-dimensional

intervals) by the Sobolev Embedding Theorem. Thus, the

system (B.1) is well-posed on L2([0, 1];L2([0, 1];R)) ×
L2([0, 1];R). Finally, since (8), (9) only differs from (B.1) by

a bounded additive perturbation (i.e., everything on the right-

hand side of (8)), we have that (8), (9) is well-posed by [30,

Lem. 13.1.14].
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