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(a) Content-style customization of various contents with the same style.

(c) Visual comparisons with SOTA approaches for content-style customization. 
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(b) Content-style customization of various styles with the same content.

Figure 1: By separately learning content and style in “partly learnable projection” (PLP), ourmethod is able to generate images of
customized content and style aligned with various prompts while successfully disentangling content and style and maintaining
high fidelity of them.

ABSTRACT
Personalized generation paradigms empower designers to customize
visual intellectual properties with the help of textual descriptions
by tuning or adapting pre-trained text-to-image models on a few
images. Recent works explore approaches for concurrently cus-
tomizing both content and detailed visual style appearance. How-
ever, these existing approaches often generate images where the
content and style are entangled. In this study, we reconsider the
customization of content and style concepts from the perspective
of parameter space construction. Unlike existing methods that
utilize a shared parameter space for content and style, we pro-
pose a learning framework that separates the parameter space to

facilitate individual learning of content and style, thereby enabling
disentangled content and style. To achieve this goal, we introduce
“partly learnable projection” (PLP) matrices to separate the original
adapters into divided sub-parameter spaces. We propose “break-
for-make” customization learning pipeline based on PLP, which
is simple yet effective. We break the original adapters into “up
projection” and “down projection”, train content and style PLPs
individually with the guidance of corresponding textual prompts in
the separate adapters, and maintain generalization by employing a
multi-correspondence projection learning strategy. Based on the
adapters broken apart for separate training content and style, we
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thenmake the entity parameter space by reconstructing the con-
tent and style PLPs matrices, followed by fine-tuning the combined
adapter to generate the target object with the desired appearance.
Experiments on various styles, including textures, materials, and
artistic style, show that our method outperforms state-of-the-art
single/multiple concept learning pipelines in terms of content-style-
prompt alignment.

KEYWORDS
Customize generation, content-style fusion, text-to-image genera-
tion.

1 INTRODUCTION
Text-to-image (T2I) models based on diffusion technology [Ho et al.
2020; Ho and Salimans 2022; Song et al. 2020] have demonstrated re-
markable proficiency in generating high-quality images, expanding
the imaginative capabilities of humans through textual descriptions.
Represented by Stable Diffusion [Rombach et al. 2022] and Mid-
journey [Midjourney 2023], various diffusion models and platforms
have been widely applied in the field of creativity design or digital
content generation. Despite the outstanding generalization ability
of T2I models, it is challenging for users to generate specific visual
concepts using only textual descriptions.

Customized generation approaches have thus been proposed for
subject-driven generation by techniques such as tuning the base
model with regularization [Ruiz et al. 2023], learning additional
parameters as pseudo words [Alaluf et al. 2023; Gal et al. 2022;
Voynov et al. 2023] or low-rank adaptations [Hu et al. 2021]. Most
of these approaches, however, only support generating images
depicting a single concept (e.g., objects, textures, materials, art
style, etc.), leaving the customized generation of multi-concept (e.g.
specific content with a specific style) a challenging task. For exam-
ple, designers may wish to render specific objects with different
textures or materials to examine various effects. Similarly, artists
may want to render specific objects in their own distinctive styles.

Multi-concept generation approaches [Avrahami et al. 2023a;
Kumari et al. 2023] are first proposed to learn and generate dif-
ferent contents by manipulating or constraining cross-attentions
mechanisms. Different objects would be distinguished on the cross-
attention maps using corresponding textual descriptions [Hertz
et al. 2022]. However, the intricate nature of visual style, which
is often entangled with content, poses challenges in effectively
decoupling content and style concepts due to the shared parameter
space and the lack of disentanglement strategies employed by these
methods. As a result, previous approaches cannot be well applied
to jointly learn content and style concepts.

To address the content-style customization problem, Zhang et al.
[2023b] recently propose a step-wise pseudo words generation
pipeline, which supports combining content and style concepts.
However, relying on step-wise diffusion priors limits ProSpect’s
generability across different types of visual styles. More intuitively,
ZipLoRA [Shah et al. 2023] merges two independently fine-tuned
content and style adaptations using a loss function based on co-
sine similarity to alleviate the entanglement between content and
style. Nevertheless, the merging process often leads to interference
between the parameters of different adapters [Ortiz-Jimenez et al.

2023]. This oversight in failing to optimally align the integrated
parameters can result in a notable performance degradation of the
merged model, leading to ineffective preservation of the distinct
qualities of both content and style [Yadav et al. 2023]. Therefore,
a method that decouples the learning of content and style, and
recombines them in the generation process without interference, is
necessary.

In this work, we introduce a two-stage learning approach for
customized content-style generation, namely “break-for-make”. In
the first stage, we propose “partly learnable projection” (PLP) ma-
trices to train content and style in separated sub-parameter spaces
of low-rank adapters. Specifically, we freeze certain parameters in
both the “up projection” and “down projection” matrices, allowing
separate training of content and style within their respective train-
able parameter subsets. To avoid interference between content and
style after matrix multiplication by frozen parameters, we initialize
the frozen rows and columns within the projection matrices to
approximate orthogonal bases. To maintain the generalization of
the learned content/style PLPs, we utilize a “multi-correspondence
projection” (MCP) learning strategy to learn unbiased content and
style parameter spaces. Specifically, we train customized content
in “up projection” matrices with diverse reference styles in “down
projection” matrices and vice versa. This approach avoids one-to-
one binding between content and style, thereby mitigating the
overfitting of content/style PLPs when composing with other cor-
responding PLPs. In the second stage, we reconstruct the unified
parameter space using the content and style PLP matrices trained
in the first stage, then fine-tune the combined adapter to obtain
content-style customized results. As the specific content and style
are learned separately and in a generalized manner during the first
stage, fine-tuning (approximately a few dozen steps) is required for
the combined adapter to generate images that better align with the
content and style references, as shown in Fig. 1(a) and (b).

Our contributions can be summarized as follows:
• We separate the parameter space of low-rank adapters for
disentangling the content and style representations and
introduce a content-style customization learning pipeline.

• We propose a Partly Learnable Projection (PLP) with an
orthogonal frozen parameters strategy that enables the dis-
entanglement of content and style. During training, a Multi-
Corresp-ondence Projection (MCP) mechanism is proposed
to maintain generalization.

• Extensive qualitative and quantitative experiments validate
the superior effectiveness of our approach over current base-
line methods, particularly in the realms of content and style
disentanglement and the preservation of content-style fi-
delity.

2 RELATEDWORK
2.1 Text-to-Image Customization
Diffusion models [Ho et al. 2020] have demonstrated the capability
to produce high-quality images in text-to-image generation [Betker
et al. 2023; Chang et al. 2023; Rombach et al. 2022; Saharia et al.
2022]. Text-to-image customization aims to inject specific con-
cepts or styles into diffusion models to generate diverse images,
including different views, poses, scenes, and more [Chen et al.
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Figure 2: Frameworks of the two main approaches and ours for customized content-style image generation. LoRA joint training
incorporates image-text pairs to fine-tuning the overall model parameters. ZipLoRA [Shah et al. 2023] effectively merging
independently trained content and style LoRAs, then add to per-trained weights to generaet images of the customized content
and style. Our method trains content and style in separated parameter subspaces of LoRA, results in disentanglement of content
and style while maintaining high level of fidelity.

2024; Gal et al. 2022, 2023; Huang et al. 2024; Ruiz et al. 2023;
Wei et al. 2023; Zhang et al. 2023c]. To achieve this, numerous
approaches have been proposed across various aspects. Textual
Inversion [Gal et al. 2022] employs inherent parameter space to
describe specific concepts and inverts training images back to text
embeddings. DreamBooth [Ruiz et al. 2023] fine-tunes backbone
models with specific token-images pairs and a prior preservation
loss. Custom diffusion [Kumari et al. 2023] optimizes a few diffusion
model parameters to represent new concepts/styles while enabling
fast tuning for multiple concepts jointly. LoRA [Hu et al. 2021], a
parameter-efficient fine-tuning approach first revealed for large lan-
guage models, has proven effective for customization by adapting
only a few adaptation parameters. LoRA’s lightweight nature and
ability to generate customized content/style without full model fine-
tuning make it highly flexible. Various LoRA-based methods have
been proposed for more effective and efficient training [Dettmers
et al. 2024; Edalati et al. 2022; Hyeon-Woo et al. 2021; Valipour
et al. 2022; Zhang et al. 2023a]. Po et al. [2023] design multiple
LoRAs to separately train different content and generate multi-
ple contents simultaneously in one image. By integrating adapter
modules, AdapterFusion [Pfeiffer et al. 2020] allows adaptation to
downstream tasks via fine-tuning only the adapter parameters. Liu
et al. [2023] propose Cones, a layout guidance method for control-
ling multiple customized subject generation. Perfusion [Tewel et al.
2023] introduces a new mechanism locking new concepts’ cross-
attention Keys to their superordinate category to avoid overfitting,
and a gated rank-1 approach to control a learned concept’s influence
during inference and combine multiple concepts. NeTI [Alaluf et al.
2023] and ProSpect [Zhang et al. 2023b] introduce an expanded
text-conditioning space over diffusion time steps for fine-grained
control. These concept-customized generation methods primar-
ily focus on the quality of generated outputs, addressing general
concept customization. In contrast, we focus mainly on the fusion
generation of customized content and style.

2.2 Customized Content Style Fusion
The goal of the content-style customization is to generate an image
that incorporates specific content and style based on reference

images, while ensuring the unique characteristics of both content
and style are distinctively represented and aligned with prompts.
Previous works jointly train content and style on customized gen-
eration models [Gal et al. 2022; Kumari et al. 2023; Ruiz et al.
2023]. During inference, these methods generate images blend-
ing both content and style based on given prompts. However,
these straightforward approaches do not optimize the learning
between content and style, often resulting in their entanglement
in the generated results. DreamArtist [Dong et al. 2022] employs a
positive-negative prompt-tuning learning strategy for customized
generation and discusses content-style image fusion in the exper-
iments. SVDiff [Han et al. 2023] fine-tunes the singular values of
weight matrices and proposes a Cut-Mix-Unmix data-augmentation
technique to help multi-subject and content-style image generation.
StyleDrop [Sohn et al. 2023] improves the quality of generating
stylized images via iterative training with human or automated
feedback. ProSpect [Zhang et al. 2023b] leverages learning word
embeddings specific to content and style, incorporating them at
different diffusion time steps to control customized content-style
image generation. However, relying on step-wise diffusion priors
limits ProSpect’s generability across different content and visual
styles. Recent work ZipLoRA [Shah et al. 2023]learns hybrid coeffi-
cients to optimize conflicts arising when merging two separately
trained LoRAs, partially mitigating disentanglement issues. How-
ever, it concurrently modifies the distribution of learned parameters,
subsequently influencing reconstruction outcomes. Compared to
related approaches, our proposed “partly learnable projection” and
“multi-correspondence projection learning” strategy trains content
and style separately in different sub-parameter spaces within low-
rank adaptations with data augmentation. This effectively disen-
tangles content and style in generated images while maintaining
high image fidelity.

3 VANILLA SOLUTIONS FOR CONTENT-STYLE
CUSTOMIZATION

In this section, we first introduce the task definition of content-style
customization in image generation. Then, we review existing re-
lated methods, including the basic low-rank adaptation fine-tuning
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method, joint training method, and merging after independent
training method. Note that our primary focus is on methods based
on low-rank adaptations, as these are both efficient and effective
for fine-tuning large T2I models. We then investigate why these
methods fail to generate images of disentangled content and style
faithfully. In response to these challenges, we propose our novel
solution.

The goal of content-style customization is to generate images
that effectively present both user-specified content and style while
ensuring their unique characteristics are distinctively represented [Shah
et al. 2023; Zhang et al. 2023b]. Formally, given a content reference
image 𝐼𝑐 , a style reference image 𝐼𝑠 , and a prompt 𝑃 , we aim to
generate an output image 𝐼𝑜𝑢𝑡 that contains the same content as
𝐼𝑐 , and has the same style as 𝐼𝑠 , while aligning with the provided
prompt 𝑃 .

However, accurately generating specific content while effectively
rendering it in a reference style without conflict is challenging. For
example, the inherent style of the user-provided content image may
interfere with the reference style, leading to style conflict when
generating a customized content-style image. LoRA [Hu et al. 2021],
a lightweight adaptation method, has been applied in customized
generation, enabling effective learning of content and style within
the LoRA module. This motivates us to train content and style in
separate subspaces of the low-rank adaptation parameters.

Low-Rank Adaptation Fine-Tuning. LoRA [Hu et al. 2021]
is an efficient adaptation strategy for fine-tuning large pre-trained
models while retaining high quality. Initially proposed for fine-
tuning large language models, LoRA has also proven suitable for
fine-tuning vision models like diffusion models for text-to-image
generation. For a per-trained weight matrix 𝑊𝑜 ∈ R𝑚×𝑛 , each
LoRA module consists of an up-projection matrix𝑊𝑢𝑝 ∈ R𝑚×𝑟

and a down-projection matrix 𝑊𝑑𝑜𝑤𝑛 ∈ R𝑟×𝑛 , where the rank
𝑟 ≪ 𝑚𝑖𝑛(𝑚,𝑛). Given an input 𝑧, during training, the forwards
pass is:

𝐼 =𝑊0𝑧 +𝑊𝑢𝑝𝑊𝑑𝑜𝑤𝑛𝑧, (1)

and only𝑊𝑢𝑝 and𝑊𝑑𝑜𝑤𝑛 are updated to find a suitable adaptation
Δ𝑊 = 𝑊𝑢𝑝𝑊𝑑𝑜𝑤𝑛 . In this work, we incorporate LoRA modules
into the cross-attention components of the diffusion model for fine-
tuning [Simo 2023]. After that, we can directly merge the LoRA
module with the per-trained weight matrix and obtain new weights
𝑊 =𝑊0 + Δ𝑊 , which can perform inference as usual.

Jointing Training. A straightforward method for customized
content-style generation is jointly training LoRA modules with
customized content images and style images. In simple terms, LoRA
modules𝑊 for learning specific content and style are trained using
a squared error loss function as follows:

𝐿 = [∥𝑊̂𝜃 (𝑧𝑐 |𝑐𝑐 , 𝑡) − 𝑥𝑐 ∥22] + [∥𝑊̂𝜃 (𝑧𝑠 |𝑐𝑠 , 𝑡) − 𝑥𝑠 ∥22], (2)

where (𝑧𝑐 , 𝑐𝑐 , 𝑥𝑐 ) and (𝑧𝑠 , 𝑐𝑠 , 𝑥𝑠 ) are data-conditioning-target pairs
of the specific content and style (image latent, text embeddings
and target images), respectively. 𝑡 is diffusion process time 𝑡 ∼
([0, 1]), and 𝜃 represents model parameters. The training pipeline
is presented in Fig. 2 (a). However, this training approach mixes
the parameter spaces of content and style during the training stage,
resulting in the entanglement of content and style when weights
𝑊 multiplied with the input, as analyzed in Fig. 3 (a).

Merging after Independent Training.Another primarymethod
involves independently training two LoRA modules — one dedi-
cated to content and the other to style — in the first stage. Subse-
quently, in the second stage, these modules are merged with certain
constraints, as shown in Fig. 2(b). Given a set of learned LoRA
weights Δ𝑊𝑖 optimized on content and style, the merged weight is
simply given by

𝑊𝑚𝑒𝑟𝑔𝑒𝑑 =𝑊0 +
∑︁
𝑖

𝜆𝑖𝑊𝑖 , (3)

where 𝜆𝑖 is a scalar representing the relative strength of content
and style. However, directly merging two independently trained
LoRAs may lead to parameter conflict. Specifically, when merging
a parameter that is influential for one LoRA but redundant for the
other, the influential valuemay be obscured by the redundant values,
resulting in a decrease in overall effectiveness [Yadav et al. 2023].
This interference leads to the loss of content and style features
learned during independent training stages, as analyzed in Fig. 3
(b). ZipLoRA [Shah et al. 2023] learns mixing coefficients for both
content and style LoRAs to mitigate conflicts. Nevertheless, to some
extent, it affects the distribution of content and style parameters
learned during the training phase. Although this approach shows
improved disentanglement performance, the fidelity of reconstruc-
tion is somewhat reduced. This motivates us to pursue separate
training for content and style, aiming to achieve both precise re-
construction on customized content and style as well as effective
disentanglement.

4 OUR METHOD
In this section, we first introduce our proposed “partly learnable pro-
jection” (PLP) method, a parameter separation training framework
for LoRA that enables better control over the training parameters.
This facilitates the generation of images that are more faithfully
aligned with the specified conditions while maintaining higher fi-
delity.We then present “Multi-Correspondence Projection Learning”
(MCP), a technique for training content and style representations
during the customization process to mitigate overfitting between
the two. By utilizing both the proposed PLP and MCP methods,
we enable the generation of customized content-style images that
achieve effective disentanglement of content and style, while also
preserving a high degree of image fidelity.

4.1 Partly Learnable Projection
To address the aforementioned issues, we propose “Partly Learn-
able Projection” (PLP) matrices to separate the LoRA module and
search for the optimal content and style parameters within distinct
sub-parameter spaces. Specifically, we consider a LoRA module
Δ𝑊 with input dimension 𝑛, rank 𝑟 , and output dimension 𝑚.
The𝑊𝑑𝑜𝑤𝑛 and𝑊𝑢𝑝 matrices of Δ𝑊 are decomposed into two
submatrices along the feature dimension, respectively. The𝑊𝑢𝑝

can be formed as:
𝑊𝑢𝑝 =

[
𝐴 𝐵

]−1
, (4)

where

𝐴 =


𝐴11 · · · 𝐴1𝑟
.
.
.

. . .
.
.
.

𝐴𝑑1 · · · 𝐴𝑑𝑟

 , 𝐵 =


𝐵 (𝑚−𝑑 )1 · · · 𝐵 (𝑚−𝑑 )𝑟

.

.

.
. . .

.

.

.

𝐵𝑚1 · · · 𝐵𝑚𝑟

 . (5)
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LoRA for customized content-style image generation. Joint
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content and/or style unfaithful after fusion. Our proposed
method trains the content and style in separate parameter
subspaces of the LoRA modules, with orthogonal fixed
parameter spaces, resulting in disentangled and faithful
fusion of content and style.

Similarly, the𝑊𝑑𝑜𝑤𝑛 matrix can be formed as:

𝑊𝑑𝑜𝑤𝑛 =
[
𝐶 𝐷

]
, (6)

where

𝐶 =


𝐶11 · · · 𝐶1𝑑
.
.
.

. . .
.
.
.

𝐶𝑟1 · · · 𝐶𝑟𝑑

 , 𝐷 =


𝐷1(𝑛−𝑑 ) · · · 𝐷1𝑛

.

.

.
. . .

.

.

.

𝐷𝑟 (𝑛−𝑑 ) · · · 𝐷𝑟𝑛

 . (7)

According to the rules of partitioned matrix multiplication, we have

Δ𝑊 =𝑊𝑢𝑝𝑊𝑑𝑜𝑤𝑛 (8)

=

[
𝑊𝑢𝑙 𝑊𝑢𝑟

𝑊𝑑𝑙 𝑊𝑑𝑟

]
, (9)

where
𝑊𝑢𝑙

𝑖, 𝑗 =
∑︁
𝑟

𝐴𝑖,𝑟𝐶𝑟,𝑗 , (10)
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Figure 4: Illustration of the multi-correspondence projection.
We present the learned content distribution on the left of
the top row. When training specific content and style in a
one-to-one manner, the content will tend to overfit to the
specific style, as illustrated on the middle of the top row. By
leveraging our proposed multi-correspondence projection,
we learn multiple styles with the content in PLP, enhance
the generalization of the learned content.

𝑊𝑢𝑟
𝑖, 𝑗 =

∑︁
𝑟

𝐴𝑖,𝑟𝐷𝑟, 𝑗 , (11)

𝑊 𝑑𝑙
𝑖, 𝑗 =

∑︁
𝑟

𝐵𝑖,𝑟𝐶𝑟, 𝑗 , (12)

𝑊 𝑑𝑟
𝑖, 𝑗 =

∑︁
𝑟

𝐵𝑖,𝑟𝐷𝑟, 𝑗 . (13)

Here, 𝑑 represents the feature dimension of the fixed parameters.
Adjusting the size of 𝑑 implies modifying the ratio of frozen to
trainable parameters within the matrix. We will discuss it in Sec-
tion 5.7. After multiplication, we obtain a partitioned matrix, which
can be visualized as the original matrix decomposed into a set of
horizontal and vertical submatrices.

We propose PLP with orthogonal parameters for better disen-
tanglement of content and style during training. Specifically, the
matrices 𝐴 and 𝐶 in Eq. (5) and Eq. (7) are kept frozen during the
training process. We initialize𝐴 and𝐶 as approximately orthogonal
to reduce redundant parameters and achieve better disentanglement
of content and style:

𝑊𝑢𝑙
𝑖, 𝑗 =

∑︁
𝑟

𝐴𝑖,𝑟𝐶𝑟,𝑗 , (14)

= 0. (15)

We can notice that, the up-right part of Δ𝑊 in Eq. (11) represents
only the parameters of submatrix 𝐷 only. Similarly, the down-left
part of Δ𝑊 in Eq. (12) represents only the parameters of submatrix
𝐵 only,𝑊 𝑑𝑟

𝑖, 𝑗
in Eq. (13) relates to 𝐵 and 𝐷 , allowing us to learn the

interactive features between them.
The forward pass during training yields:

𝐼 =𝑊0𝑧 +
[

0
∑
𝑟 𝐴𝑖,𝑟𝐷𝑟,𝑗∑

𝑟 𝐵𝑖,𝑟𝐶𝑟, 𝑗
∑
𝑟 𝐵𝑖,𝑟𝐷𝑟, 𝑗

]
𝑧, (16)

where 𝐴𝑖,𝑟 and 𝐶𝑟, 𝑗 are frozen during training.



,
, Xu, et al.

So far, we have demonstrated that our proposed method based
on partitioned matrices can effectively separate the parameters
associated with content and style. This enables the multiplication of
input features with the corresponding parameters during training,
thereby distinctly representing the acquired content and style in
different subspaces of the parameter space. Consequently, this
mitigates the entanglement between content and style during image
generation while preserving a high degree of fidelity.

Our method is illustrated in Fig. 3 (c), which indicates that after
separating the LoRAmodule into two parts and performing forward
matrix multiplication, the resulting partitioned matrices exhibit the
following advantageous characteristics: the top-left part consists of
zeros due to the multiplication of orthogonal vectors, the top-right
part represents the style submatrix for learning style image feature
parameters, the bottom-left part represents the content submatrix
for learning content image feature parameters, and the bottom-
right part is utilized for learning interactive feature parameters
between content and style. The four distinct parts in the partitioned
matrix demonstrate that our method successfully separates content
and style for training in different LoRA parameter subspaces. This
circumvents the parameter conflict issues introduced by merging
methods and allows us to obtain disentangled content and style
feature representations. Meanwhile, the interactive parameters be-
tween content and style enable the generation of more naturalistic
fusion images with high visual quality.

4.2 Multi-Correspondence Projection Learning
When training specific content and style in a one-to-one manner,
overfitting issues may arise, resulting in suboptimal performance
when reconstructing the content-style modules in the second stage
for image generation. To mitigate this problem between content
and style during training, we introduce a multi-correspondence
projection (“MCP”) learning method involving diversified content-
style training data pairs. Specifically, when training for a particular
content, we update the parameters of 𝐵 in Eq. (5) with the particular
content image and update the parameters of 𝐷 in Eq. (7) with
various style images, vice versa. In simple terms, a LoRA model𝑊
for learning specific content is trained using a squared error loss
function as follows:

𝐿 = [∥𝑊̂𝜃 (𝑧𝑐 |𝑐𝑐 , 𝑡) − 𝑥𝑐 ∥22] +
1
𝑛
·

𝑛∑︁
𝑖=1

[∥𝑊̂𝜃 (𝑧𝑠 |𝑐𝑠 , 𝑡) − 𝑥𝑠 ∥22], (17)

where (𝑧𝑐 , 𝑐𝑐 , 𝑥𝑐 ) and (𝑧𝑠 , 𝑐𝑠 , 𝑥𝑠 ) are data-conditioning-target triplets
of the specific content and diverse styles (image latents, text em-
beddings, and target images), respectively. 𝑛 represents the number
of different styles. 𝑡 is the diffusion process time 𝑡 ∼ ([0, 1]), and
𝜃 represents the model parameters. The loss function for training
the style LoRA model is similar to Eq. (17). This training approach
prevents overfitting issues that arise when learning specific content-
style pairs (see the ablation study in Fig. 14), simultaneously en-
hancing the method’s generalization ability and improving the
effectiveness of diverse content-style combinations.

Inference. After training, we obtain 𝐿𝑜𝑅𝐴𝑐 which contains
the learned parameters of the specific content, and 𝐿𝑜𝑅𝐴𝑠 which
contains the learned parameters of the specific style. We then
combine the up-projection part of 𝐿𝑜𝑅𝐴𝑐 with the down-projection

part of 𝐿𝑜𝑅𝐴𝑠 to reconstruct 𝐿𝑜𝑅𝐴𝑓 as the fusion adapters. With
a few dozen fine-tuning steps of 𝐿𝑜𝑅𝐴𝑓 on the given content and
style images, we can effectively obtain the final adapters capable
of generating content-style disentangled images with high fidelity.
For single content or style generation, we can directly perform
inference using the learned 𝐿𝑜𝑅𝐴𝑐 or 𝐿𝑜𝑅𝐴𝑠 , respectively.

5 EXPERIMENTS
In this section, we conduct qualitative comparisons and quantitative
evaluations to demonstrate our method outperforms state-of-the-
art customized content-style fusion baselines. We also conduct
ablation studies to analyze the impact of certain crucial modules in
our approach on the generation results.

Datasets. For fair and unbiased evaluation, we use concept
images and style images from related works [Gal et al. 2022; Ruiz
et al. 2023; Shah et al. 2023; Zhang et al. 2023b] together with diverse
images from the Internet. For training content images, we collect
three to five images of the same content and five different styles,
each style consisting of one image. For training style images, we
collect one to three images of the same style and five different
contents, each content consisting of one image.

Compared Methods. We compare our method against state-of-
the-art baselines on the task of content-style customization.

• Dreambooth+LoRA (DB+LoRA) [Simo 2023] leverages LoRA
for customized content and style generation. We jointly
train the LoRA with content and style images and their
corresponding prompts. In each epoch, we first update pa-
rameters based on content loss for the same model, followed
by updating parameters based on style loss.

• Textual inversion (TI) [Gal et al. 2022] inverts a customized
image back to text embeddings and bands it with a token.
Then, the token can be composed into a prompt to generate
related content or style in the output image.We learn content
and style on two separate tokens and simultaneously incor-
porate these two tokens into the prompt for content-style
customization.

• ProSpect [Zhang et al. 2023b] proposes a novel approach that
adds different conditions to the diffusion model in different
generation steps to achieve fine-grained and controllable
generation. In our experiment, we add customized content
and style as conditions in different steps of generation to
achieve content-style fusion, according to their paper.

• Custom Diffusion (CD) [Kumari et al. 2023] proposes an effi-
cient fine-tuning method for simultaneously generating mul-
tiple customized content or content with style. We followed
the official open-source code, conducting joint training for
content and style.

• ZipLoRA [Shah et al. 2023] is a recently released method
that provides a novel approach to merge trained content and
style LoRAs by learning mixing coefficients for LoRAs. As
official codes of ZipLoRA have not been released yet, we
evaluate this method with a popular implementation in the
GitHub community [mkshing 2023]. We initially train the
content and style models separately and then perform LoRA
merging based on the parameters specified in the paper.
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Figure 5: Qualitative evaluation and comparison of DB+LoRA, TI, ProSpect, CD, ZipLoRA and our method in diverse styles.
We present the results of customized generation of the same content and different styles. Results indicate that our method
generates harmonious fusion images of the content and the style, while preserving the disentanglement of content and style,
as well as maintaining high-level fidelity of them.
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[s1] glass style

Ours DB+LoRA      TI      ProSpect     CD    ZipLoRA

[s2] sticker style

Ours DB+LoRA      TI      ProSpect     CD    ZipLoRA

Figure 6: Qualitative evaluation and comparison of DB+LoRA, TI, ProSpect, CD, ZipLoRA, and our method in diverse contents.
The results indicate that our method generates harmonious content-style fusion images with diverse contents while preserving
the disentanglement of content and style, as well as maintaining high-level fidelity.
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Figure 7: More results of diverse content and style generated by our method.

Metrics.We primarily conduct qualitative and quantitative com-
parisons between our method and baseline methods. For qualita-
tive comparisons, we primarily present and compare the visual
quality of the generated images. For quantitative comparisons, we
mainly assess three metrics: content alignment and style align-
ment between the generated images and reference images, as well
as text alignment between the generated images and the corre-
sponding prompts. Following quantitative experiment settings of
ProSpect [Zhang et al. 2023b] and ZipLoRA [Shah et al. 2023], we
compare cosine similarities between CLIP [Ilharco et al. 2021] (for
style and prompt) and DINOv2 [Oquab et al. 2023] features (for
content) of the generated images and reference contents, styles and
prompts respectively.

ImplementationDetails. In our experiments, we utilized Stable
Diffusion XL v1.0 [Podell et al. 2023] with default hyperparameters
and set a base learning rate of 0.0001. During training, we set the
batch size to 1, text encoders of SDXL are kept frozen, and the refiner
of SDXL is not utilized. Based on the orthogonal fixed parameters
we proposed, we train LoRA modules with the same size as the
input and output feature dimensions. The rank of LoRA is set to 64.

5.1 Main Results
In this section, we present Qualitative and Quantitative Compar-
isons between our method and baseline approaches. Additionally,
we showcase more of our results with diverse contents and styles
in Fig. 7.

Qualitative Comparison.We compare our method with five
content-style customizationmethods: DreamBooth+LoRA (DB+LoR-
A), Textual Inversion (TI), ProSpect, Custom Diffusion (CD) and
ZipLoRA.We first present the results of generating the same content
image with multiple style images in Fig. 5, then we present the same
style image with multiple content images in Fig. 6. Results indicate
that our methods successfully disentangle content and style in one
image while maintaining a high level of fidelity. The DB+LoRA
method usually generates images of unnatural content style fusion
(the result of “mountain” with “yarn style” and “oil painting style”
in Fig. 5) and images of the mixed style (“vase” and “teapot” with
“glass style” in Fig. 6), the observed entanglement phenomenon
aligns with the analysis presented in Section 3. The TI method
only updates parameters in the text embedding space, thus having
a relatively weaker learning capability. At times, it struggles to
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Table 1: Comparison of cosine similarity between CLIP(for style and prompt) and DINO features(for content) of the generated
images and reference style, content, and prompt, respectively. Our method has the best average score, indicating that our
approach successfully customizes the generation of the target content and style while aligning with the prompt.

Methods DB+LoRA TI ProSpect CD ZipLoRA w/o MCP w/o Orth Ours
Content-alignment (↑) 0.7982 0.7292 0.6165 0.6845 0.7103 0.6242 0.6874 0.6615
Style-alignment (↑) 0.4974 0.3942 0.4816 0.4381 0.5414 0.5331 0.5626 0.6219

Prompt-alignment (↑) 0.3894 0.2836 0.3156 0.2778 0.3319 0.3867 0.4035 0.3908
Average (↑) 0.5617 0.4690 0.4712 0.4668 0.5279 0.5147 0.5512 0.5581

accurately learn content/style features, leading to a decrease in
the fidelity of generated images (“mountain” with “Minimalism
painting style” and “marble style” in Fig. 5, the loss of feature
“transparent glass” in “glass style” in Fig. 6). ProSpect learns the
reference image with a specific token and trains the embedding
of this token, then adds it as a condition in different steps during
inference. This method has achieved effective control over content
and style to some extent, as seen in examples such as “vase” and
“teapot” in Fig. 6, shape and material are presented in generated
images. However, it is constrained by its learning capability, which
leads to low-quality content-style customization results (the result
of “mountain” with “watercolor painting style” and “yarn style” in
Fig. 5). The CD also encounters entangling issues between content
and style. In cases of “glass style” with “vase” and “teapot” in Fig. 6,
the reference images of content influence the style of the generated
images. In the case of ZipLoRA, the generated results may not
accurately present the reference content or style. For example, in
instances like “vase” and “teapot” in Fig. 6, the outputs of ZipLoRA
lack the texture style of “transparent glass” in the reference set.
In instances of generating “mountain” with “oil painting” style
and “blackborad painting” style, the mountain cannot be generated
faithfully as the reference. This also reflects the manifestation of
fidelity degradation due to parameter conflicts. Compared with
the above methods, our method maintains a high level of fidelity
and harmonious content-style interaction when generating various
styles for the same content. This also demonstrates the strong
generalization capability of our approach. One more interesting
thing is that the instance of the “sticker style” images includes a
dual style, encompassing both sticker and cartoon styles. When
evaluating it as the reference, our method successfully generates
images in the sticker style. It simultaneously transfers the content
into a cartoon style, while the results of other methods are kept in
a realistic style.

Quantitative Comparison.We present quantitative compar-
ison results in Table 1, evaluating the style-alignment, prompt-
alignment (using CLIP feature extraction), and content-alignment
(using DINO feature extraction) metrics. Additionally, we report
the average of these three metrics, where higher values indicate
better performance. Our method achieves the highest average score
among all baselines, suggesting it generates customized content-
style images that align well with the content and style references
while corresponding to the given prompt. Note that in the content-
alignment metric, our score is not the highest because other meth-
ods tend to generate images that retain more features from the
content reference images. However, this could compromise accurate
expression of style and adherence to the prompt in the generated

images, affecting the effectiveness of style transfer and prompt
alignment, as indicated by the lower style-alignment and prompt-
alignment metrics for other methods in Table 1. Additionally, the
comparative display in Fig.5 and Fig. 6 supports this observation.

5.2 Editability Evaluation and Comparison
We evaluate and compare the editability of ourmethod against other
baselines by generating customized content-style fusion images
using a diverse set of prompts. For a fair comparison, the prompts
and results of the ZipLoRA are obtained from their original paper.
As illustrated in Fig. 8, ZipLoRA is generally effective in generating
customized content-style images that align well with the provided
prompts. However, in some details, ZipLoRA tends to lose certain
characteristics of the reference image, such as the ears and mouth
in the “wearing a hat” example, and the overall appearance in the
“in a boat” and “driving a car” examples. In contrast, our method
maintains better consistency with the reference image in these
generated results. Additionally, we showcased more generation
results from diverse prompts in the bottom two rows of Fig. 8.
These results demonstrate high alignment with the prompts while
maintaining a high level of disentanglement between content and
style, as well as preserving the fidelity of content and style represen-
tations. Overall, our method exhibits superior editability compared
to existing baselines, enabling the generation of customized content-
style images that faithfully integrate the provided prompts while
retaining the desired characteristics of the reference content and
style.

5.3 Visualizing and Comparing Parameter
Distributions for Our Method and Baseline
Methods

We employ t-SNE [Van der Maaten and Hinton 2008] (t-Distributed
Stochastic Neighbor Embedding) to visualize the high-dimensional
parameter distributions of the low-rank adapters from our method
and the joint training baseline. Specifically, we use t-SNE to reduce
the column dimension of the low-rank adapters parameters to 2
dimensions. Fig. 9(a) depicts the parameter distribution of the low-
rank adapters from our proposed method after applying t-SNE for
dimensionality reduction and visualization. For a fair comparison,
we set the orthogonal part of the joint training baseline’s param-
eters to zero to align with our methods’ parameter formulation.
Fig. 9(b) shows the t-SNE visualization of the resulting joint training
baseline’s low-rank adapter parameter distribution. Additionally,
Fig. 9(c) presents the parameter distribution of the joint training
baseline after t-SNE visualization, but without zeroing out the
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A [c2] dog A tree in [s2]
sticker style sleeping             barking         reading books       in a doghouse     in Indian chief in a sofa

A [c3] teddybear Flowers in 
[s3] yarn style

on the beach            skiing             driving a car        in a suit graduated with a crown

playing a ball    catching a frisbee   wearing a hat     with a  crown     riding a bicycle   catching a frisbee        in a boat driving a car

DB+LoRA                             Textual Inversion                     Customize Diffusion                           ProSpect

playing a ball    catching a frisbee   wearing a hat      with a crown      riding a bicycle          in a boat          driving a car

Ours

ZipLoRA

A lady in [s1] 
cartoon style

A [c1] dog

Figure 8: Results of generating diverse customized content-style images. This indicates that our method exhibits excellent
editing capabilities as well as generalization capabilities to both content and style.

(a) Ours (b) Joint Training-Zeros (c) Joint Training

Figure 9: Visualizing Low-Rank Adapter Parameter Distribu-
tions via t-SNE.

orthogonal parameter components. The results indicate that, after
training, compared with the joint training baseline method, our
method successfully separates the parameter space of the low-rank
adapters from a uniform distribution.

5.4 Concept and Style Reconstruction after First
Stage Training

The proposed two-stage training paradigm employs amulti-corresp-
ondence projection learning strategy in the first stage to accurately
learn the specific content and style features. Consequently, in
the second stage, only a few dozen iterations of fine-tuning are
required to generate customized content-style fusion images. Fig. 10
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in Paris as Superman  graduated               in galaxy

A [c1] bear ...

flowers                    castle                      river                      village           

... in [s2] painting style

W/o finetuning          With finetuning

a [c1] bear in [s2] painting style                     a [c1] bear with flowers in [s2] painting style

W/o finetuning  With finetuning

Figure 10: Individual content/style generation of our method.
Our method can generate diverse content/style images indi-
vidually with a high level of fidelity and disentanglement.
Fine-tuning enhances the final effect.

illustrates that our approach has accurately learned the features
of content or style in the first stage of training and maintained
a high level of fidelity for individual content and style after the
second stage of fine-tuning. Moreover, this multi-correspondence
projection learning strategy prevents overfitting between content
and style, thereby enabling the generation of more diverse results
based on prompts. We also present images generated from directly
combined adapters without fine-tuning in Fig. 10, these results
verify that content and style are disentangled in the first stage and
have better effects after undergoing the fine-tuning process.

5.5 Comparison with Other Two-Stage
Content-Style Customization Paradigms

For the task of customized content-style image generation, we
also evaluate other two-stage approaches that involve learning
specific content/style in the first stage and subsequently learning
or editing style/content [Avrahami et al. 2023b,c; Balaji et al. 2022;
Bau et al. 2019; Brooks et al. 2023; Hertz et al. 2022; Kawar et al.
2023; Mokady et al. 2023; Parmar et al. 2023] based on the previous
results in the second stage. In our experiments, we learn the content
of reference images in the first stage and learn or edit style in
the second stage. We leverage NULL-text Inversion [Mokady et al.
2023], a SOTA real image editing method to edit style in the second
stage. The results are presented in Fig. 11. We observe that both the
two-stage training and editing methods share similar drawbacks,
primarily the entanglement between content and style features.
For instance, when generating the “glass” style, the “teddy bear”
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CC (b) CC + ES (c) Ours(a) CC + CS

Figure 11: Comparison with other two-stage content-style
customization paradigms. CC indicates custom content in
the first stage, CC+CS indicates custom style in the second
stage based on CC. CC+ES indicates editing style based on
CC.

retains plush features, and the “vase” and “teapot” retain opaque
material from the content reference. In the case of the “sticker”
style, these two methods only generate the contours as the “sticker”
style, while the content of the sticker still reflects the realistic
style depicted in the content reference image. Furthermore, the
editing-based approach often necessitates complex prompts to
accurately describe the features of the reference image, thereby
increasing the difficulty of precisely customizing content-style
generation. In contrast, our method effectively disentangles the
content and style of the reference image, blending them together to
generate high-quality customized content-style images without the
need for complex prompts. Our approach demonstrates superior
performance in achieving faithful content-style fusion compared
to both the two-stage training and editing methods.

5.6 User Study
We conduct a user study to assess the images generated by our
method and other baseline methods, employing five comparative
methods: DB+LoRA, TI, ProSpect, Custom Diffusion (CD), and
ZipLoRA. A total of 45 participants took part in the survey, in-
cluding 20 researchers in computer graphics or computer vision.
Among the participants, five are aged between 10 and 19 years
old, 36 are aged between 20 and 39 years old, and four are aged
between 40 and 60 years old. Additionally, there are 23 female
participants and 22 male participants. The evaluation primarily
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Style Alignment Preference

55.00%

7.78%

6.48%

7.41%

4.44%
18.89%

Content Alignment Preference

77.78%

2.96%

4.26%

0.37%
1.48%

13.15%

Overall Preference

(c) Consistency Preference

(b) Success Rate Preference

(a) Alignment Preference

Ours v.s. 
DB+LoRA

Ours v.s. 
TI

Ours v.s. 
ProSpect

Ours v.s. 
CD

Ours v.s. 
ZipLoRA

Ours v.s. 
DB+LoRA

Ours v.s. 
TI

Ours v.s. 
ProSpect

Ours v.s. 
CD

Ours v.s. 
ZipLoRA

Figure 12: User study results.

includes: I. Alignment of content between generated images and
reference images; II. Alignment of style between generated images
and reference images; III. Overall alignment of content and style
between generated and reference images; IV. The success rate of
generating images with custom content and style; IV. Stability of
the generated results.

• User Study I.Alignment of content between generated images
and reference images. One of the objectives of the content-
style customization task is to ensure the alignment of content
between the generated image and the reference image. In this
user study, participants were tasked with selecting the image
that most closely aligned with the given content reference
image from six images generated using different methods
(including our proposed method and baseline methods). Our
method received 55.00%’s preference while DB+LoRA, TI,
ProSpect, CD, ZipLoRA received 7.78%, 6.48%, 7.41%, 4.44%,
18.89%, respectively. Results are presented on the left of
Fig. 12(a), indicating that our generated images have a higher
level of content alignment with the reference images com-
pared to baseline methods.

• User Study II. Alignment of style between generated images
and reference images.We also need to evaluate the alignment
of style between the generated image and the reference
image. In this user study, participants were tasked with
selecting the image that most closely aligned with the given
style reference image from six images generated using differ-
ent methods (including our proposed method and baseline
methods). Our method received 79.07%’s preference while
DB+LoRA, TI, ProSpect, CD, ZipLoRA received 5.56%, 2.96%,
0.93%, 2.04%, 9.44%, respectively. Results are presented in the
middle of Fig. 12(a), indicating that our generated images
have a higher level of style alignment with the reference
images compared to baseline methods.
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Figure 13: Cosine similarity between features of output and
reference style, content and prompt of different dimension
d. When d=0.5, the average cosine similarity of the features
reaches its maximum, indicating optimal alignment between
the generated results and the reference content, style, and
prompt.

• User Study III.Overall alignment of content and style between
generated images and reference images. Participants were
asked to provide an overall assessment of the alignment be-
tween the generated images and both the content reference
images and the style reference images, selecting the most fit-
ting results. Our method received 77.78%’s preference while
DB+LoRA, TI, ProSpect, CD, ZipLoRA received 2.96%, 4.26%,
0.37%, 1.48%, 13.15%, respectively. Results are presented in
the right of Fig. 12 (a), indicating that, overall, our method
aligns with both the given content and style reference images
simultaneously.

• User Study IV.We conduct A/B testing to evaluate the success
rate of generating content-style customized images between
our method and other baseline methods. During the test, one
of the five baseline methods is randomly selected for compar-
ison with our method. Both methods generate nine images
with different seeds. Participants were asked to select which
set of nine images contained more content-style customized
generated images. Our method received 96.67%’s preference
while compared with DB+LoRA, 94.44%’s preference while
compared with TI, 92.22%’s preference while compared with
ProSpect, 95.56%’s preference while compared with CD, and
85.56%’s preference while compared with ZipLoRA, respec-
tively. Results are shown in Fig. 12 (b) The results indicate
that our method generates a greater number of content-style
customized images compared to other methods, suggesting
a higher success rate in satisfied image generation.

• User Study V. Similar to the experiment settings in User
Study IV, participants were tasked with selecting which
set of nine images exhibited stronger consistency among
them. Our method received 92.22%’s preference while com-
pared with DB+LoRA, 87.78%’s preference while compared
with TI, 85.56%’s preference while compared with ProSpect,
87.78%’s preference while compared with CD, and 81.11%’s
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[s1] glass style [s3] sticker style

W/o MCP - II With MCPW/o MCP - I

[s2] yarn style [s2] yarn style

W/o MCP - II With MCPW/o MCP - I

Figure 14: Ablation study evaluating the impact of the proposed Multi-Correspondence Projection (“MCP”). We train specific
content (e.g., “vase”) and style (e.g., “glass”) in a one-to-one manner and directly inference after training. Results are presented
in W/o MCP - I column. We train specific content (e.g., “vase”) and style (e.g., “yarn”) in a one-to-one manner in the first stage,
and combine the content (e.g., “vase”) adapters with other style (e.g., “glass”) adapters in the second stage, then inference with
the combined adapters. Results are presented in W/o MCP - II column. The visual comparison highlights the effectiveness of
MCP in enhancing the details while preserving the disentanglement of content and style, as well as maintaining high-level
fidelity of them.

preference while compared with ZipLoRA, respectively. The
results indicate that our method generates a more significant
number of content-style customized images compared to the
other methods, suggesting a higher success rate in satisfied
image generation. Results are shown in Fig. 12 (c) The re-
sults demonstrate that the images generated by our method
exhibit stronger consistency among them, indicating that
our method, comparatively, has the highest level of stability.

5.7 Ablation Study
The Optimal Dimension 𝑑 for the Fixed Parameters. In Sec-
tion 4, we introduce the hyperparameter 𝑑 as the row dimension of
the fixed parameters, representing the proportion of fixed parame-
ters in the parameter subspace. We conduct experiments on eight
different fixed parameter ratios, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and
1, corresponding to the proportion of fixed parameters relative to
the total parameters. We quantitatively evaluate the text alignment,
content alignment, and style alignment metrics for various values
of 𝑑 , and the results are presented in Fig. 13. From the histogram,
we observe that as the ratio of fixed parameters increases, both the
values of “Style Alignment” and “Text Alignment” gradually rise,
reaching their peaks at a ratio of 0.5, and then gradually decline.

The “Average Alignment” reaches its maximum at a ratio of 0.5.
This indicates that the optimal alignment occurs at a ratio of 0.5,
resulting in better customized content-style images. This finding
aligns with our theoretical framework introduced in Section 4,
where a 1:1 ratio between fixed and trainable parameters results in
the “content parameter subspace” in Eq. (12) and “style parameter
subspace” in Eq. 11) having the maximum number of trainable
parameters, thus reaching the maximum learning capacity and
achieving the best generation effect. It is noteworthy that at a ratio
of 0.5, the “Content Alignment” is not maximal. This is because the
results of other ratios present a weaker learned style (as indicated
by lower “Style Alignment” in the histogram) and are entangled
with the content to some extent.

Multi-Correspondence Projection Learning.To prevent over-
fitting between specific content and style during the training stage,
we introduce aMulti-Correspondence Projection (“MCP”) learn-
ing within our work. We conduct two ablation studies with different
experimental settings to evaluate the impact of the proposed MCP.
Specifically, in the first study, we train the specific content (e.g.,
“vase") with a particular style (e.g., “glass style”) in a one-to-one
manner and leverage the trained model for inference. The results
are shown asW/o MCP-I in Fig. 14. In the second study, we first
train the model on a specific content (e.g., “vase") with a different
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[s1] glass style [s2] sticker style

W/o Orth With Orth W/o Orth With Orth

Figure 15: Ablation study evaluating the impact of the
proposed orthogonal fixed parameters. The W/o Orth shows
results without orthogonal fixed parameters, while the With
Orth demonstrates the improved image quality achieved by
our full method incorporating orthogonal fixed parameters.
The visual comparison highlights the effectiveness of orthog-
onal fixed parameters in enhancing content and style fidelity
of generated images.

style (e.g., “yarn style”) in a one-to-one manner. Subsequently, in
the second stage, we combine the content adapters with the trained
style (e.g., “glass style”) adapters and utilized the combined model
for inference. The results are shown as W/o MCP-II in Fig. 14. We
can observe that in the first study, the generated images exhibit
a degree of overfitting to the reference images(e.g., “teapot” with
“chair legs” from the style reference image, “sticker” style with
realistic style from the content reference image), resulting in a
decrease in fidelity to the content or style, thereby reducing the
quality of the outputs. In the second study, we can observe that
the results exhibit some features (e.g., the color from “yarn style”)
of the style trained in the first stage. As the final model does not
incorporate this style, this is mainly because due to the fact that
without MCP, the “yarn style” influences the parameter space of the
content during the training stage, as analyzed in Fig. 4. We present
the results of our methods inWith MCP; by comparing, we can
observe that with MCP, we can effectively avoid overfitting and
generate images with more disentangled content and style.

Orthogonal Fixed Parameters. To demonstrate the effective-
ness of the orthogonal fixed parameters designed to enhance the
content and style fidelity of generated images, we conduct an
experiment where we remove the orthogonal fixed parameters
and replace them with randomly fixed parameters. We present the
results in Fig.15 for comparison. Without the orthogonality of the
fixed parameters, it leads to decreased fidelity for the generated
images. For instance, in the case of “vase”, “teapot”, and “teddy bear”,
the generated images no longer preserve the original content details,
and the style has also changed. In the case of the “sticker style”, the
generated images lose the cartoonish style of the contents present
in the reference. We also present quantitative results in Table. 1.
After ablating fixed parameter orthogonalization, although the

“A teddybear
 in paper style”

“A [c1] teddybear
 in paper style”

“A teddybear
in [s1] paper style”

“A [c1] teddybear
in [s1] paper style”
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Figure 16: Comparison of results with and without learning
concepts. We present output images generated with and
without learning reference content or style in in the orange
(by our method) and green (by DreamBooth method) boxes.
We also show images directly generated by basic Stable
Diffusion-XL model in blue box. Prompts for inference are
shown on top. Without learning content or style in pseudo
words, models that rely solely on prompts cannot generate
desired content or styles faithfully.

content alignment slightly increases, the style alignment decreases
significantly, and the average alignment decreases as well. Note
that the slight increase in text alignment is due to the increase
in content alignment, as the prompts’ emphasis on describing the
image content.

Fine-Tuning of the Combined LoRAModules. In the second
stage of our pipeline, we reconstruct the entity parameter space
by combining the content and style PLP matrices. Subsequently,
we fine-tune the combined LoRA modules for a few dozen steps
to enable the model to generate images with customized content
with style. The results of ablating the fine-tuning step are presented
in Fig. 10. The results demonstrate that after undergoing a few
dozen fine-tuning steps, our proposed method achieves optimal
visual performance. We also present individual content or style
generation results in the middle and bottom rows of Fig. 10. These
results illustrate that our proposed method successfully disentan-
gles content and style while retaining the capability to faithfully
generate individual content or style.

Concepts learning ablation.We aim to evaluate the learning
effect of the desired content or style in comparison with the baseline
stable diffusion model. To achieve this, we employ pseudo words for
training and inference of specific content and style. For the purpose
of comparison, we describe content and style using prompts for
generation. As the results presented in Fig. 16, solely relying on
prompts to describe the desired content or style, without learning
these representations, fails to capture detailed features from ref-
erence images, leads to unfaithful generation of the customized
content and style.

6 APPLICATIONS AND DISCUSSIONS
We demonstrate the effectiveness and versatility of our technique
across various applications, including content-style customization
of diverse textures and portraits.
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content

style

Figure 17: Application I. Content-style customization of
variety texture, including knit, burlap, denim and fabric
texture.

portrait

style

Figure 18: Application II. Content-style customization of
portraits. Image credits:@Philip Martin [Philip 2023](up)

Application-I: Content-Style Customization of Various
Textures. Our technique enables the synthesis of high-quality
content with a wide variety of user-controlled textures and materi-
als, which can be leveraged for customized product visualization,
digital content creation, or material design applications. We present
results for different textures (knit texture, burlap texture, denim
texture, and fabric texture) in Fig. 17. The visualized results indicate
that our method is capable of customizing generation for a diverse
range of textures while maintaining content consistency with the
reference images.With our approach, designers can easily showcase
their products with custom material and textile options tailored to
customer preferences. Compared to traditional rendering pipelines
requiring extensive modeling and material setup, our data-driven
approach significantly streamlines this process.

Application-II: Content-Style Customization of Portraits.
Another compelling application of our technique is enabling users
to generate stylized portraits adhering to diverse artistic styles and
visual domains. This capability opens up new creative avenues
for digital artists, as well as opportunities in areas like virtual
production and AI-assisted artwork creation. For digital artists
and creative professionals, our framework efficiently synthesizes

content                   style                    result

content                   style                    result

Figure 19: Bad cases of our method. Sometimes style refer-
ence can induce undesirable influences on the background
generation in the output results.

portrait imagery in various artistic styles with fine user control.
Fig. 18 illustrates examples where we tasked artists to create stylized
portraits using our approach in styles like sticker, watercolor paint-
ing, and flat cartoons. Compared to manual digital painting, our
approach dramatically accelerates this creative process while still
allowing users to guide stylistic aspects and maintain consistent
facial identities. A key advantage of our approach is its ability
to generalize stylized portrait synthesis across numerous visual
domains while still allowing users to control diverse scenes, poses,
etc.

Bad Cases. While our proposed method demonstrates consider-
able promise in addressing customized content and style fusion, it
is essential to acknowledge instances where the model occasionally
exhibits an influence from the style reference on the background
regions of the generated images, as presented in Fig. 19. This ob-
served influence on the background regions in the generated results
can be attributed to the limited diversity among the style reference
images. To mitigate this issue, future iterations of our method will
incorporate rigorous regularization techniques and enhanced data
preprocessing methodologies. Furthermore, the integration of cross-
validation procedures and model simplification strategies will be
explored to promote improved generalization performance.

Limitations. While our method performs well on content-style
customization, generating imageswith complex or rare content/style
solely by using textual prompts remains a challenging task. Specifi-
cally, our method leverages the class priors in the T2I model when
learning the content or style of given images (𝑒.𝑔., “a [c1] dog”
leverages “dog” as a class prior, “a [s1] yarn style” leverages “yarn”
as a class prior) [Ruiz et al. 2023]. When the customized content or
style images are highly complex or rare, obtaining accurate priors
through simple prompts becomes challenging, leading to a decrease
in the fidelity of the generated images.
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