
RiEMann: Near Real-Time SE(3)-Equivariant Robot
Manipulation without Point Cloud Segmentation
Chongkai Gao1, Zhengrong Xue2, Shuying Deng3, Tianhai Liang4, Siqi Yang5, Lin Shao1, Huazhe Xu267

1National University of Singapore 2Tsinghua IIIS 3Department of Automation, Tsinghua University
4Harbin Institute of Technology, Shenzhen 5Department of Electrical Engineering, Tsinghua University

6Shanghai AI Lab 7Shanghai Qizhi Institute

Abstract—We present RiEMann, an end-to-end near Real-
time SE(3)-Equivariant Robot Manipulation imitation learning
framework from scene point cloud input. Compared to previous
methods that rely on descriptor field matching, RiEMann directly
predicts the target poses of objects for manipulation without any
object segmentation. RiEMann learns a manipulation task from
scratch with 5 to 10 demonstrations, generalizes to unseen SE(3)
transformations and instances of target objects, resists visual
interference of distracting objects, and follows the near real-time
pose change of the target object. The scalable action space of
RiEMann facilitates the addition of custom equivariant actions
such as the direction of turning the faucet, which makes artic-
ulated object manipulation possible for RiEMann. In simulation
and real-world 6-DOF robot manipulation experiments, we test
RiEMann on 5 categories of manipulation tasks with a total of
25 variants and show that RiEMann outperforms baselines in
both task success rates and SE(3) geodesic distance errors on
predicted poses (reduced by 68.6%), and achieves a 5.4 frames
per second (FPS) network inference speed. Code and video results
are available on https://riemann-web.github.io/.

I. INTRODUCTION

Learning from demonstrations is an effective and convenient
mechanism for visual robot manipulation tasks [2, 41]. How-
ever, most current algorithms for learning from demonstrations
suffer from low data efficiency and generalization ability to
new situations. For example, current visual imitation learning
algorithms require around 100 demonstrations [37, 36, 6] to
learn a simple manipulation task such as picking up a mug and
placing it on a rack, and cannot generalize to new object poses
beyond the training distribution. Although previous works have
tried to tackle these problems by data augmentation [33, 31] or
contrastive learning on demonstrations [45, 32, 17], they rely
on task-specific domain knowledge and have no algorithmic
guarantees to generalize to unseen object poses.

Symmetries pervade the physical real world, and the same
is true in robot manipulation problems. Exploiting these sym-
metries can improve the sample efficiency and generalization
ability of robot learning algorithms [3]. Roto-translation equiv-
ariance is one of the most common types of symmetry for
robot manipulation tasks. It denotes that robot actions can
transform with the same SE(3) transformations as the target
objects. Although some works [56, 51, 30] have successfully
integrated SE(2)-equivariance on visual desktop top-down-
view pick-and-place tasks, the adoption of SE(3)-equivariance
in manipulation tasks still remains constrained by various limi-
tations. Effectively harnessing the symmetry inherent in three-

dimensional space has the potential to significantly broaden the
scope of robotic learning algorithms.

As pioneering works, NDFs [47, 48] propose to first
pretrain a category-level object descriptor field with SE(3)-
equivariant backbones [11] and then output robot actions
with energy-based optimization to match different descriptor
fields. EquivAct [55] inherits this two-stage idea but learns
a neural network to output actions. However, these works
require well-segmented object point clouds from scene inputs,
which is nontrivial in real-world robot manipulation tasks, and
the two-stage paradigm makes it hard to fine-tune on new
object categories. On the other hand, EDFs [42, 43] improve
the above idea to learn a descriptor field with local SE(3)-
equivariant backbones [18, 35], which avoids fine-grained
object segmentation from the scene and enables the end-to-
end training procedure. However, they still need to separate
the robot end-effector and the grasped target object point cloud
from the scene to perform the time-consuming (around 10s)
descriptor field matching process for every inference, which
makes EDFs not segmentation-free and prevents them from
being applied to real-time manipulation tasks. Moreover, the
performance of EDFs highly relies on the optimization results
from the whole scene energy field, which is often unstable in
SE(3) generalization cases in real-world manipulation tasks.

The key problem comes from the descriptor field match-
ing paradigm. It leads to the time-consuming energy-based
optimization on the whole SE(3) space, which significantly
increases the training difficulty of manipulation tasks that
actually only require a target pose prediction. Inspired by
previous works on SE(2)-equivariant robot learning [51], using
a network that directly predicts actions rather than performing
optimization could solve this issue. However, extending this
idea to our SE(3) group faces two problems: 1) SE(3)-
equivariant models themselves consume considerable compu-
tational complexity and memory usage [28, 15, 21], not to
mention the daunting burdens from end-to-end processing of
scene-level point cloud; 2) Designing an SE(3)-equivariant
action space for end-to-end learning is non-trivial. Although
SE(3)-equivariant backbones [11, 18, 35] can learn equivariant
features, these features are restricted to specific formats that
are usually incompatible with common 3D rotation representa-
tions. For example, steerable group representations outputted
from SE(3)-transformers [18] are incompatible with quater-
nion, a common rotation action representation. This is why

ar
X

iv
:2

40
3.

19
46

0v
1 

 [
cs

.R
O

] 
 2

8 
M

ar
 2

02
4

https://riemann-web.github.io/


Fig. 1: Overview of RiEMann. (a) Given 5 to 10 demonstrations of restricted object poses (The mug remains standing and only
rotates in 90 degrees around the z-axis) of the task Mug on Rack and (b) with the full scene point could as input without any
segmentation, (c) RiEMann can generalize to any local SE(3)-equivariant transformations of target objects, to new instances
of target objects, be robust to distracting objects in the scene, and (d) has the near real-time following ability of target objects.

previous works bypass this action space parameterization prob-
lem and instead match different feature fields [47, 42, 48, 43]
to define actions.

In this work, we present RiEMann, the first near Real-time
SE(3)-Equivariant robot Manipulation framework from point
cloud inputs without any segmentation. RiEMann leverages
local SE(3)-equivariant backbones [18] and learns a policy that
directly outputs SE(3)-equivariant actions. RiEMann tackles
the computational complexity problem by firstly learning an
SE(3)-invariant saliency map on the input scene point cloud to
extract a small region of interest, and then training the main
SE(3)-equivariant policy on the extracted point cloud. This
mechanism greatly decreases the computational complexity
since the main policy occupies the main computing resources
and memory usage. Next, RiEMann tackles the action param-
eterization problem by using an SE(3)-invariant vector field as
the target point affordance map for translational actions and
using three SE(3)-equivariant vector fields as three bases of the
target rotation matrix for the rotational action under steerable
group representation theory [49, 3, 18], and combining these
bases to acquire a legal rotation matrix with Gram-Schmidt
orthogonalization. We also prove that other common parame-
terizations for SO(3), such as axis-angle, quaternion, and Euler
angle, are not trainable SE(3)-equivariant representations.

In both simulation and real-world experiments, we demon-
strate that RiEMann can solve various manipulation tasks with
only 5 to 10 demonstrations for each task, generalize to unseen
poses and instances of target objects, resist visual interference
of distracting objects, and have the near real-time following
capacity, as illustrated in Figure 1. We also show that our
designed action space can be easily applied to articulated
object manipulation tasks by adding another type-1 action
on policy networks. On 5 manipulation tasks with a total
of 25 different task settings, RiEMann outperforms baselines
on both success rates as well as the SE(3) geodesic distance
errors (reduced the geodesic error by 68.6%) and a 5.4 FPS
inference speed, demonstrating the advantages of the end-to-
end supervised learning paradigm of RiEMann over previous
field-matching methods.

II. RELATED WORKS

A. Group Equivariant Neural Networks

Exploiting groups of symmetry pervading in data and incor-
porating them into deep neural networks has been the focus
of many studies since it can improve generalization and data
efficiency. Equivariant neural networks, which are first intro-
duced into CNNs [8], extract symmetries from various kinds
of data. According to [3, 22], most equivariant models can
be divided into two categories: regular group representation
networks and steerable group representation networks. The
former seeks to define equivariant convolution filters [8, 14],
attention mechanism [28], or message passing mechanism [19]
as functions on groups, while the latter uses irreducible group
representations [12] with spherical harmonics as an equivariant
basis to perform message passing [9, 49, 18, 35]. Some
other works [11] design special non-linear kernels to achieve
equivariance on the SO(3) group. The theory of equivariant
networks on homogeneous spaces is formalized in [10] with
vector bundles and the group representation theory, and the
implementation of constructing equivariant CNN layers for
arbitrary matrix groups is given in [16]. Equivariant networks
have been applied for different groups including SO(2) [9, 13,
39], SO(3) [49, 52, 1, 11], SO+(1,3) [4], and SE(3) [26, 42].

B. Equivariant Robot Manipulation

Researchers have been exploring equivariant models for
robotic manipulation tasks to improve generalizability and
sample efficiency. Pioneering works [56, 44, 25, 51, 50, 57, 27]
learn equivariant representations of objects or the scene with
equivariant networks to get SO(2)- or SE(2)-equivariance
for desktop manipulation tasks with imitation learning or
reinforcement learning. NDFs [47, 48, 55] leverages Vector
Neurons [11] to acquire SE(3)-equivariant category-level ob-
ject representations from point cloud of objects for down-
stream imitation learning, while EDFs [42, 43] uses SE(3)-
Transformer [18] and Equiformers [35] to directly learn SE(3)-
equivariant representations from point clouds of the scene.
EFEM [34] designs an EM-like SE(3)-equivariant object seg-
mentation refinement procedure from the scene, but it can
only be trained on well-segmented data. Some works use soft



loss functions with geometric constraints [7, 30] rather than
equivariant models to acquire equivariant representations, but
they cannot guarantee equivariance. In this work, we leverage
SE(3)-transformers [18] and design an end-to-end learning
paradigm to predict target actions from scene point cloud input
in near real time.

III. BACKGROUND AND PROBLEM FORMULATION

A. Problem Formulation

Let a colored point cloud with N points be P =
{(x1, c1), · · · , (xN , cN )} ∈ RN×6, where xi ∈ R3 is the
position and ci ∈ R3 is the RGB color of the i-th point.
For a manipulation task T , a policy fθ parameterized by
θ is trained to predict the target pose of robot end-effector
T = {R, t} ∈ SE(3) with the scene point cloud P, where
R ∈ SO(3) is the 3D rotation action and t ∈ R3 is the 3D
translation action. We assume a motion planner with collision
avoidance is used to execute the action T, as in [46, 47, 42].

For each task T , a set of demonstrations D = {(Pi,Ti)}mi=1

that consists of m pairs of data is provided to train the policy
to output T̂ = fθ(P), where the hat symbol indicates the
predicted output. We aim to train the policy fθ only with 5
to 10 demonstrations and then deploy the learned policy in
a setup with unseen target object poses, distracting objects,
and new object instances, which relies on the following local
SE(3)-equivariance property of our policy.

B. Local SE(3)-Equivariance

Let g ∈ SE(3) be an element of the Special Euclidean
Group in three dimensions (SE(3)) and Tg : X → X be a
transformation of g on a space X . A function f : X → Y is
called SE(3)-equivariant if there exists a transformation Sg :
Y → Y such that [18]:

Sg[f(x)] = f [Tg(x)], ∀g ∈ SE(3), x ∈ X . (1)

It is worth noting that if Sg is the identity mapping:
Sg(f(x)) = f(x), f becomes SE(3)-invariant. In our robot
manipulation tasks, f is the trained policy, X is the space of
the scene point cloud P, Y is the space of target pose T, Tg

is the space of any SE(3) transformation Tg =

[
R t
0 1

]
on P, and Sg is the SE(3) transformation on the target
pose T. The SE(3)-equivariance is achieved by using SE(3)-
equivariant networks to parameterize f . Note although Sg can
be inconsistent with Tg (they can be on different orbits [10, 3]),
researchers in the robotics community usually seek the same
transformation [10, 3, 26] on the input and output, i.e., we
here define Sg = Tg . We leave the study of more flexible Sg

to future works.
Local SE(3)-equivariance [42, 43] refers that Tg can be

applied on only part(s) of the input scene point cloud P rather
than the whole scene input, as illustrated in Figure 1. This
is more practical for robot manipulation tasks, in which we
want the policy to be only equivariant to the target objects
and robust to the scene and other distracting objects. Local
equivariance can be achieved by equivariant networks with

local mechanisms such as convolutional kernels [56, 57] or
local message-passing mechanisms [18, 49]. In this work, we
choose to use SE(3)-transformers [18] that belong to the latter
category, as introduced below.

C. Group Representations and SE(3)-Transformers

Tg and Sg above are called group representations. Formally,
a group representation D of a group G is a map from group
G to the set of N × N invertible matrices GL(N), and it
satisfies D(g)D(h) = D(gh),∀g, h ∈ G. Specifically, any
representation of SO(3) group D(R) for ∀R ∈ SO(3) can be
block-diagonalized as the direct sum of orthogonal Wigner-D
matrices Dl(R) ∈ R(2l+1)×(2l+1) [18]:

D(R) = QT

[⊕
ℓ

Dℓ(R)

]
Q, l ∈ {0, 1, 2, · · · }, (2)

where Q is the orthogonal N × N change-of-basis matrix.
Vectors transforming according to Dl(R) are called type-
l vectors [3]. Type-0 vectors are invariant under rotations
(D(R) = I) and type-1 vectors (3d space vectors) rotate
according to 3D rotation matrices. Note, type-l vectors have
length 2l + 1.

Given a point cloud P, we can assign a type-l vector to each
point x ∈ P to get a type-l vector field fl : R3 → R2l+1. Same
or different type-l vector fields can be stacked to get a complex
vector field. SE(3)-transformers [18] are neural networks that
map point cloud vector fields to point cloud vector fields with
the same point number, and they are designed to achieve local
SE(3)-equivariance for any learned type-l field:

Dl(R)fl(x) = fl(Tx),∀x ∈ P,∀T = (R, t) ∈ SE(3). (3)

We can see that the SO(3)-equivariance is achieved by
the Wigner-D matrices Dl(R), while the translational T(3)-
invariance is achieved by the local mechanisms of SE(3)-
transformers, i.e., the message-passing mechanism.

In short, SE(3)-transformers can transform the input vector
fields to the output vector fields with local SE(3)-equivariance.
To leverage this property for robot manipulation tasks, we need
to design special input and output vector fields to satisfy task
requirements, as discussed in the following section.

IV. SE(3)-EQUIVARIANT ROBOT MANIPULATION

A. The Main Idea of RiEMann

According to the above discussion, the main question lies
in designing the input and output vector fields for SE(3)-
transformers. As comparisons, NDFs [47, 48] output several
type-0 vector fields, while EDFs [42, 43] learn one type-0
vector field and a stack of high type-l vector fields. However,
they do not use learned vector fields as actions. They use field-
matching optimization between two vector fields (end-effector
and target object) to get the desired robot action.

In fact, this process is not only time-consuming, but also
increases the difficulty of training, since the field-matching
process is doing optimization given the energy-based model,
which can be seen as a generative modeling process that



Fig. 2: Illustration of different 3D rotation representations
under type-l parameterizations. (a) The initial point cloud x1 is
transformed to x2 with 3D rotation R; (b) Using three type-1
vectors to represent a Rotation Matrix. It transforms with the
same transformation R as the input; (c) (d) Using three type-0
vectors to represent the Euler Angles, and using one type-1
vector and one type-0 vector to represent Axis-angle. They
cannot be transformed with the same transformation R as the
input, so they are not SE(3)-equivariant parameterizations.

actually learns a target pose probability distribution p(T ), T ∈
SE(3). Instead, we aim to design special input and output
vector fields to make the outputted vector fields from networks
directly the desired action, which is a much simpler process
and can lead to higher precision. In this way, our model
becomes a discriminative model that can be trained with
supervised objectives.

B. Design Choices of Vector Fields

There are two main requirements for the design of input and
output vector fields: a) all the input (scene point cloud) and
output (robot actions) should be contained in the vector fields;
b) the predicted actions parameterized by output vector fields
are SE(3)-equivariant to the input transformation in theory.
For the input design, each point in our point cloud P contains
the positions and RGB information. Since SE(3)-transformer
is actually T(3)-invariant, thus we should only use the T(3)-
invariant features, or visual features, as the input, to ensure
T(3)-invariance. Thus here we only use color information
for input. Note if we want to make our model generalize
to new instances with different colors, we need to do color
randomization. RGB can be seen as 3 type-0 vectors, so our
input is a direct sum of three vector fields:

fin(x) =

3⊕
i=1

f i0(x),∀x ∈ P. (4)

For the output, our model predicts the end-effector target
pose T = {R, t} ∈ SE(3), which can be decomposed into
target position t and target rotation R. For target position t,
we cannot directly output the 3D target position vector since
SE(3)-transformers are only able to predict T(3)-invariant
features. Thus we choose to learn one type-0 vector field as
an affordance map [29, 38] on point clouds, and use softmax

on the affordance map to perform weighted sum on all point
positions to get the translational action t. For target orientation
R, people usually use Euler angle, quaternion, rotation matrix,
or axis-angle as robot action parameterization. Although all
these pose parameterizations can satisfy the first requirement
(representing output action information), we need to ensure
that after parameterizing them with different type-l vectors,
they are SE(3)-equivariant to the input transformation. We
answer this question with the following theorems. All proofs
are in Appendix B.

Theorem 1 Rotation matrices, represented by three type-
1 vectors, are SE(3)-equivariant parameterization of rotation
actions.

Theorem 2 There is no SE(3)-equivariant vector field
representation for Euler angle, quaternion, and axis-angle.

The intuitions behind these theorems are illustrated in Fig-
ure 2. Rotation matrices, represented by three type-1 vectors,
are the only SE(3)-equivariant rotation representation to the
input rotation transformation. Note although a rotation matrix
can be transformed to any other rotational representations
(e.g., using inverse Rodrigues’ formula to get an axis-angle
representation), this process will be outside the network and is
not trainable, thus cannot be parameterized by type-l vectors.

In summary, RiEMann learns one type-0 vector field (target
point heatmap) for target position t and three type-1 vector
fields for target rotation R, which is a direct sum of 4 vector
fields:

fout(x) = f0(x) +

3⊕
j=1

f j1 (x), ∀x ∈ P. (5)

As a comparison, EquivAct [55] uses one type-1 vector field
as output (the end-effector velocity), which means EquivAct
only supports 3-DOF manipulation tasks. Instead, RiEMann
can support 6-DOF manipulation through the action space
defined by Equation 5.

Equation 5 also shows that if one wants to predict other
physical properties such as 3D moving directions (type-1),
forces (type-1), gripper aperture (type-0), or more than one
target object pose, it is convenient to directly expand the output
vector fields with corresponding type-l vector fields to add
desired properties. In experiments, we demonstrate how to add
moving directions for an articulated object manipulation task
(tuning faucet, Figure 5b). Thus RiEMann is a highly scalable
framework for general SE(3)-equivariance manipulation.

The next question is how to use network to implement
equation 5 and transform the output vector fields that contain
features on each point to a single output action while keeping
SE(3)-equivariance.

C. Network Design

As we point out in the introduction, the first problem of
leveraging equivariant networks for scene point cloud input is
to reduce the heavy computational cost. A scene point cloud
for robot manipulation tasks usually contains thousands to
tens of thousands of points (in our case, 8192 points), and
end-to-end learning on such a large number of points brings



Position Net
𝜓1

Orientation Net 
𝜓2

One type-0 vector field

One type-0 vector field

Three type-1 vector fields

Saliency Net 
𝜙

(Saliency map)

Softmax & 
weighted sum

Ƹ𝑡

mean 
pooling

𝑅𝑜

t 𝑥𝑡1

Softmax & 
weighted sum

t

𝑇

𝑅

𝑅
IMGS

backpropagateable

non-backpropagateable

MSE loss

Fig. 3: Pipeline of RiEMann. For a point cloud input of a scene, a type-0 saliency map is firstly outputted by an SE(3)-invariant
backbone ϕ to get a small point cloud region BROI , and an SE(3)-equivariant policy network that contains a translational
heatmap network ψ1 and an orientation network ψ2 predicts the action vector fields on the points of BROI . Finally, we perform
softmax, mean pooling, and Iterative Modified Gram-Schmidt orthogonalization to get the target action T.

Algorithm 1 RiEMann Training

Input: Demonstrations {(Pi,Ti)}Mi=1, initialized models ϕ,
ψ1, ψ2, hyperparameters r1 and r2, epochs n.

1: for iter = 0 to n− 1 do
2: Sample a batch of m demonstrations {(Pi,Ti)}mi=1,

where Ti = (Ri, ti)
3: Predict the saliency map fs(x) = ϕ(x), x ∈ Pi

4: Get xt1 by doing weighted sum on P with the softmax
weight from fs(x)

5: Get BROI centered on xt1 with radius r1
6: Predict ft(x) = ψ1(x), fR(x) = ψ2(x), ∀x ∈ BROI

7: Get t̂ as the weighted position of ft(x) and get R̂ by
mean pooing on fR(x) on points centered at t̂ with the
radius r2

8: Normalize each type-1 vector of R̂
9: Update ϕ, ψ1, and ψ2 with L =

∑m
i=0[

∑N
j=1(ti−t̂i)

2+∑NB

k=1((ti − t̂i)
2 + (Ri − R̂i)

2)]
10: end for
Output: Trained models ϕ, ψ1, and ψ2

huge burdens for GPU memory and a long training time.
Meanwhile, the training difficulty also increases since most of
the points are not informative. For example, EDFs [42] only
support batch size = 1 for training on an Nvidia RTX3090
GPU. The key is to eliminate the large amount of redundant
information contained in the scene point cloud, since the
target objects only occupy a small part of the input. Inspired
by [57, 56], we can first learn a SE(3)-invariant network to
get a relatively small region of point cloud from the scene
point cloud for downstream policy networks. Note this does
not mean a fine-grained object segmentation. In this work,
we employ an SE(3)-transformers ϕ(x) to output one type-0
vector field fs(x) = f0(x), x ∈ P for each point as a saliency
map, and extract a point cloud ball BROI with a predefined
radius r1 centered on the point with the highest value, as
illustrated in the left part of Figure 3.

With BROI as input, we then employ another two SE(3)-
transformer modules to learn a translational action network

ψ1(x) and an orientation network ψ2(x) for ∀x ∈ BROI as
policy networks for action prediction. For the translational
part, ψ1 outputs one type-0 affordance ft(x) = f0(x), x ∈
BROI . We then perform softmax on ft(x) as weight and
multiply them to the positions of all points of BROI to get the
output translational action t̂. For the orientation part, ψ2 out-
puts three type-1 vector fields fR =

⊕3
i=1 f

i
1(x), x ∈ BROI .

These three vectors can be seen as the predicted three axes
of a rotation matrix, despite they are not orthogonal to each
other yet. To get the target rotation matrix, although we can
directly perform mean pooling on all vector fields for all points
in BROI , we find this is often unstable since there are still
many points that do not belong to the target object in BROI .
Instead, we here select the points from a smaller region that
are centered on t̂ with a radius r2, and perform mean pooling
on these points to get the output orientation action R̂, as in the
right side of Figure 3. During training, we use the translation
action t in the demonstrations as supervision for both ϕ(x)
and ψ1(x), and three orientation axes of R to train ψ2(x).
The training algorithm of RiEMann is shown in Algorithm 1.

For the orientation output R̂, although we get three type-
1 vectors from ψ2, they are not necessarily orthogonal to
each other, in which case they cannot form a legal rotation
matrix for robot control. In this work, we perform Iterative
Modified Gram-Schmidt orthogonalization (IMGS) [24] on the
orientation output to get an orthogonal matrix R̂o for actual
robot control, as summarized in Appendix A.

For tasks with multiple stages such as picking up the mug
and placing it on the rack, the execution quality of the previous
stage will affect the execution effect of the later stage, thus
directly predicting the target object pose is not optimal for
the second stage of these tasks. In this work, we predict both
the mug pose and the rack pose after picking up the mug,
and calculate the pose transformation T̂ = TrackT

−1
mug as the

target action for placing, as illustrated in Figure 5a. Note this
is a direct calculation and is much faster than descriptor field
matching in [47, 42, 43].



Fig. 4: Simulation and real-world environments. Top: the training environment settings of simulation tasks Mug on Rack, Plane
on Shelf, Turning Faucet, and real world tasks Mug on Rack, and Plane on Shelf. Bottom: the ALL testing case of tasks, where
the target object is a new instance and in a new pose, and distracting objects are added in the environments.

D. Implementation Details

We use NVIDIA’s implementation [40] of SE(3)-
transformers that is more efficient than the original official
implementation [18]. We also perform voxel downsampling
as well as random color dropping and jittering for color aug-
mentation. Detailed input and output processing and network
hyperparameters are listed in Appendix C.

V. EXPERIMENTS

We systematically evaluate RiEMann in both simulation and
real-world experiments. This evaluation includes 3 types of
manipulation tasks in simulation environments and 2 types of
manipulation tasks in the real world, with 5 different settings
and 10 demonstrations for each task. We perform quantitative
evaluations with success rates SE(3) geodesic distances on
RiEMann and comparable baselines, and find RiEMann is
consistently superior to other SE(3)-equivariant methods.

A. Simulation Environments and Tasks

We build all simulation manipulation environments based
on sapien [53] for point-cloud-based manipulation. We build
a ring-table experiment platform for all tasks in simulation, as
shown in Figure 4. The radius of the table is 0.75m, and we
put a Franka Panda robot arm in the center of the table. We
divide the table into a semicircle part and two quarter parts and
make them different heights with a height difference of 0.1m.
This is designed to conveniently apply SE(3) transformations
on target objects. We put 6 RGBD cameras around the table to
fuse their images to get the point cloud input. We cut the input
point cloud into a cube with a side length of 2m centered on
the center of the table. We then downsample the scene point
cloud to 8192 points, which is the final input for networks.

For each manipulation task, we collect demonstrations and
train our policy under the training setting (T), and test the
trained policy on T and four extra settings:

• New Instance (NI): the target object will be replaced by
different objects of the same category.

(a) Placing action calculation
for the task Mug on Rack in
simulation. Both the mug pose
and rack pose are predicted af-
ter picking up the mug.

(b) Opening direction (red ar-
row) prediction in the task Turn
Faucet. Note the network can
capture the local equivariance of
the handle part of the faucet.

Fig. 5: The placing action and opening action.

• New Poses (NP): the initial and target poses of target
objects will be under SE(3) transformations on the table.

• Distracting Objects (DO): there will be additional dis-
tracting objects in the scene.

• ALL: the combination of NI, NP, and DO.

We design three tasks for evaluation. More detailed task
descriptions can be found in D. We describe the tasks and
demonstrations here:

1) Mug on Rack: For T, we put a mug on the left-down
quarter of the table, and put the rack on the right-down
quarter of the table, allowing them to rotate within 90
degrees only around the z-axis randomly. For NI, we use
a new mug and keep the rack the same. For NP, we allow
the mug and the rack on any quarter of the table, and
rotate the mug along all 3 axes with arbitrary degrees.

2) Plane on Shelf : This task is designed for the evaluation
of objects with complex geometry, as evaluated in [54].
The setting of T, NI, and NP are the same as above.

3) Turn Faucet: This is an articulated object manipulation
task and the robot must predict SE(3)-equivariant opening



TABLE I: Success rates of different tasks in simulation. Each value is evaluated under 20 random seeds.

Mug on Rack Plane on Shelf Turn Faucet

Method T NI NP DO ALL T NI NP DO ALL T NI NP DO ALL

PerAct [46] 0.85 0.00 0.70 0.00 0.00 0.90 0.00 0.80 0.00 0.00 0.45 0.00 0.50 0.00 0.00
R-NDF [48] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n/a n/a n/a n/a n/a
EDF [42] 1.00 0.85 1.00 0.95 0.80 0.90 0.75 0.80 0.85 0.70 n/a n/a n/a n/a n/a
D-EDF [43] 1.00 0.85 0.95 0.95 0.75 1.00 0.80 0.95 0.95 0.75 n/a n/a n/a n/a n/a
RiEMann (Ours) 1.00 0.90 0.95 1.00 0.85 1.00 0.90 1.00 1.00 0.90 1.00 0.75 1.00 1.00 0.65

TABLE II: SE(3) Geodesic distances of different tasks in simulation. Each value is evaluated under 20 random seeds.

Mug on Rack Plane on Shelf Turn Faucet

Method T NI NP DO ALL T NI NP DO ALL T NI NP DO ALL

PerAct [46] 0.393 4.086 0.698 4.166 4.375 0.431 4.806 0.469 4.752 4.993 0.457 4.365 0.382 4.218 4.039
R-NDF [48] 4.855 4.298 4.178 4.509 4.662 4.277 4.361 4.179 4.466 4.989 4.996 4.374 4.278 4.229 4.560
EDF [42] 0.249 0.429 0.347 0.252 0.501 0.333 0.872 0.461 0.337 0.985 0.188 1.473 0.448 0.242 2.049
D-EDF [43] 0.312 0.545 0.425 0.337 0.682 0.328 0.966 0.417 0.345 1.024 0.304 2.047 0.567 0.488 2.249
RiEMann (Ours) 0.053 0.066 0.069 0.056 0.068 0.101 0.120 0.117 0.099 0.122 0.079 0.159 0.098 0.082 0.197

Training Time Inference Time Training Batch Size

RiEMann (Ours) 47mins 0.19s 4
D-EDFs [43] 40 mins 15.2s 1

TABLE III: Training time, inference time, and the GPU
memory usage (on NVIDIA A40) of RiEMann and D-EDFs
on the task Mug on Rack. RiEMann has a much faster speed
for inference (5.4FPS) and lower GPU usage.

direction to turn the faucet. For NP, we rotate the faucet
along the z-axis, and also change the initial position of
the handle. For baselines, since they cannot predict target
directions, we only evaluate the quantitative results of
their pose estimations.

B. Baselines

We compare RiEMann with four baselines:
1) PerAct [46]: a point-cloud-based imitation learning

method. This is for the comparison between the
SE(3)-equivariant method with the non-SE(3)-equivaraint
method. We perform SE(3) data augmentation for PerAct.

2) R-NDFs [48]: a strong SE(3)-equivariant baseline for
manipulation tasks. This represents a line of methods that
rely on NDFs [47] and Vector Neurons [11]. We use their
pre-trained object encoder from NDFs [47].

3) EDFs [42]: an SE(3)-equivariant baseline that use SE(3)-
transformers for manipulation tasks. This is for the com-
parison between directly regressing target poses (RiE-
Mann) and field matching on type-l fields. Note EDFs
require separated point clouds of the scene and the robot
end-effector respectively. Here we manually extract the
end-effector point cloud out from the scene for EDFs.

4) D-EDFs [43]: the state-of-the-art SE(3)-equivariant base-
line for object rearrangement tasks. This is for the com-
parison of training and inference time, since D-EDFs
claim their main advantage is training speed.

C. Evaluation Metrics and Methodology

We first report the success rates of all methods in all five
settings (T, NI, NP, DO, ALL) with the average success rates
across 20 different random seeds. The success rates are the
total success rates of the two stages of each task.

However, we point out that only using success rates cannot
effectively reflect the effect of different methods, because the
success of the task not only relies on the accurate prediction
of the target poses, but also relies on different object shapes
and specific task settings. For example, the size of the inner
radius of the mug handle can greatly affect the success rates,
since a larger handle is easier for hanging. To quantitatively
show the model’s effects and eliminate the influences of other
factors, we propose to evaluate the SE(3) geodesic distance [5]
of the predicted target pose T̂ and the ground truth T:

Dgeo(T, T̂) =

√∥∥∥∥log (R⊤R̂
)∨

∥∥∥∥2 + ∥∥t̂− t
∥∥2, (6)

where ∨ is the logmap. We report Dgeo in the same manner
as success rates.

D. Results

Table I and Table II show the success rates and Dgeo

respectively. We can see that PerAct [46] generally performs
worse than SE(3)-equivariant methods, which shows the ad-
vantage of improving the sample efficiency of equivariant
methods. NDFs [48] with Vector Neurons [11] totally fail on
unsegmented point cloud input, which shows the necessity
of using local SE(3)-equivariance modules. EDFs [42] and
D-EDFs [43] are generally similar in both success rate and
Dgeo, and can generalize to local SE(3) transformations of the
target objects. However, their performances are not satisfactory
because of their field-matching process which makes the task
a harder learning problem. Meanwhile, they cannot output
any other physical quantities such as the direction of turning
the faucet. Instead, RiEMann consistently achieves the best



NPNI DO ALL

(a) Pose predictions of the task Mug on Rack and Plan on Box of
four test cases NI, NP, DO, and ALL in the real world.

(b) The BROI and the local SE(3)-equivariant feature visualization of
the above ALL test cases. The middle shows the position (one type-
0 vector) field predicted from ϕ1. The right shows the orientation
(three type-1 vectors) fields from ϕ2. We can see that the type-1
vectors away from the target position are different from the correct
orientation, which shows the necessity of r2 shown with the red circle.

Fig. 6: Test pose predictions and feature visualization of real-
world evaluations.

results in both training and testing settings, which shows
the superiority of our end-to-end learning paradigm. Note a
Dgeo = 0.05 means an error around 1cm + 2◦, which is low
enough for a successful manipulation. We also visualize the
four test case pose predictions in Figure 6a and the local SE(3)-
equivariance features in Figure 6b. We can see that RiEMann
can generalize to local SE(3)-transformations of target objects
and new instances, and resist the distraction of other objects.

We also evaluate the training and inference time of RiE-
Mann and D-EDFs [43] , as well as their GPU memory usage,
as shown in Table III. RiEMann is the only method that can
achieve fast training and near real-time inference as well as
local SE(3)-equivariance.

E. Ablation Studies

We also conduct ablation studies for further analysis of
key components of RiEMann that may influence the perfor-
mance, which include: 1) Point numbers in the point cloud;
2) Different maximum types of descriptor vectors in the
hidden layer (four layers for each network); 3) The number of
demonstrations per task; 4) Using and not using the saliency
map network ϕ. We test the trained model on the NP case
of the task Mug on Rack in simulation. Results are shown in
Figure 7. We can see that with more points in the scene input
point cloud, the performance of the model is better, and the

Number of Points Hidden Layer Type-l Number of Demonstrations w/ or w/o Phi
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Va
lu

es

0.071

512

0.025

2048

0.013

4096

0.011

8192

0.056

2

0.020

3

0.011

4

0.012

5

0.044

1

0.047

3

0.016

7

0.011

10

0.018

w/o

0.011

w/

SE(3) Geodesic Distances on the NP setting of the Mug on Rack task

Fig. 7: Ablation studies of different hyperparameters of RiE-
Mann. Each value is the average result of 20 random seeds.

T NI NP DO ALL

Task G A G A G A G A G A

Mug on Rack 1.0 1.0 1.0 1.0 0.75 0.75 0.92 0.83 0.75 0.58
Plane on Shelf 1.0 1.0 1.0 1.0 0.58 0.50 1.0 1.0 0.55 0.50

TABLE IV: Success rates of Mug on Rack and Plane on Shelf
in the real world. Each value is the average of 12 tests.

same is the number of demonstrations. Our model can achieve
competitive results with less than 10 demonstrations. For the
hidden layer type-l experiment, we can see that with a higher
max type-l, the model can work better. However, in practice,
higher type-l will extremely increase the computational cost
and GPU memory usage. In the Mug On Rack task, a network
with a maximum number l equals 5 only supports batch size
= 1 during training on an Nvidia A40. Lastly, the last group
of Figure 7 shows that the saliency map network can not
only reduce the training burden of the policy network but also
improve the final pose estimation results.

F. Real World Evaluation

Finally, we evaluate RiEMann in two real-world experi-
ments: Mug on Rack and Plane on Shelf, as illustrated in
Figure 4. We use four RealSense D435i cameras for point
cloud fusion and a Franka Panda arm for execution. We record
10 demonstrations for each task. We show quantitative results
of success rates of pick (P) and full task (A) respectively
of each task in Table IV. We can see that the real-world
performance of RiEMann is generally the same within the
simulation, which shows RiEMann can resist the relatively
low-quality point cloud input from the real world. The perfor-
mance of NP is notably suboptimal, primarily due to the partial
absence of the object’s point cloud in real-world scenarios.
This deficiency stems from the cameras’ inability to capture
the lower section of the object, resulting in a missing portion
that faces downwards. Consequently, in both T and NP, these
specific parts exhibit noticeable disparities, as illustrated in
Figure 8. Please also check supplementary videos for more
results and the real-time following video.

VI. DISCUSSION AND FUTURE WORKS

This paper proposes RiEMann, a near real-time SE(3)-
equivariant robot manipulation framework without point cloud



T TNP NP

Fig. 8: Point cloud visualization of the T case and the NP
case in the real world. Different parts of target objects are
missing (marked with the red circle), which causes the poor
performance of NP.

segmentation. We achieve this by our specially designed
parameterization of the action space and training scheme that
makes RiEMann a supervised model, and achieves superior
SE(3) generalization ability in experimental results on both
simulation and real-world manipulation tasks. One limitation
is that equivariant models usually bring more computation and
memory costs, which hinders their application in large-scale
robot learning scenarios. Another limitation is that RiEMann
does not perform well for occluded point cloud input or
symmetric objects. Future works can focus on these two
problems, and seek to apply RiEMann on other tasks that
require SE(3)-equivariant outputs such as forces, and seek to
incorporate RiEMann into robot reinforcement learning.

ACKNOWLEDGMENTS

We would like to thank Tianren Zhang, Yuanchen Ju, and
Chenrui Tie for their helpful discussions.

REFERENCES

[1] Brandon Anderson, Truong Son Hy, and Risi Kondor.
Cormorant: Covariant molecular neural networks. Ad-
vances in neural information processing systems, 32,
2019.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469–483, 2009.

[3] Erik J. Bekkers. An introduction to equivariant
convolutional neural networks for continuous groups.
https://uvagedl.github.io/GroupConvLectureNotes.pdf,
2021.

[4] Alexander Bogatskiy, Brandon Anderson, Jan Offer-
mann, Marwah Roussi, David Miller, and Risi Kondor.
Lorentz group equivariant neural network for particle
physics. In International Conference on Machine Learn-
ing, pages 992–1002. PMLR, 2020.

[5] Luca Carlone. Lecture 4: Lie groups. Lecture Nots
of Visual Navigation for Autonomous Vehicles (VNAV),
2023.

[6] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. arXiv preprint arXiv:2303.04137, 2023.

[7] Ethan Chun, Yilun Du, Anthony Simeonov, Tomas
Lozano-Perez, and Leslie Kaelbling. Local neural de-

scriptor fields: Locally conditioned object representations
for manipulation. arXiv preprint arXiv:2302.03573,
2023.

[8] Taco Cohen and Max Welling. Group equivariant con-
volutional networks. In International conference on
machine learning, pages 2990–2999. PMLR, 2016.

[9] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016.

[10] Taco S Cohen, Mario Geiger, and Maurice Weiler. A gen-
eral theory of equivariant cnns on homogeneous spaces.
Advances in neural information processing systems, 32,
2019.

[11] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poule-
nard, Andrea Tagliasacchi, and Leonidas J Guibas. Vec-
tor neurons: A general framework for so (3)-equivariant
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12200–12209,
2021.

[12] Carlos Esteves. Theoretical aspects of group equivariant
neural networks. arXiv preprint arXiv:2004.05154, 2020.

[13] Carlos Esteves, Christine Allen-Blanchette, Xiaowei
Zhou, and Kostas Daniilidis. Polar transformer networks.
arXiv preprint arXiv:1709.01889, 2017.

[14] Marc Finzi, Samuel Stanton, Pavel Izmailov, and An-
drew Gordon Wilson. Generalizing convolutional neural
networks for equivariance to lie groups on arbitrary
continuous data. In International Conference on Machine
Learning, pages 3165–3176. PMLR, 2020.

[15] Marc Finzi, Samuel Stanton, Pavel Izmailov, and An-
drew Gordon Wilson. Generalizing convolutional neural
networks for equivariance to lie groups on arbitrary
continuous data. In International Conference on Machine
Learning, pages 3165–3176. PMLR, 2020.

[16] Marc Finzi, Max Welling, and Andrew Gordon Wil-
son. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. In
International conference on machine learning, pages
3318–3328. PMLR, 2021.

[17] Peter R Florence, Lucas Manuelli, and Russ Tedrake.
Dense object nets: Learning dense visual object descrip-
tors by and for robotic manipulation. arXiv preprint
arXiv:1806.08756, 2018.

[18] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. Se (3)-transformers: 3d roto-translation equiv-
ariant attention networks. Advances in neural information
processing systems, 33:1970–1981, 2020.

[19] Johannes Gasteiger, Florian Becker, and Stephan
Günnemann. Gemnet: Universal directional graph neural
networks for molecules. Advances in Neural Information
Processing Systems, 34:6790–6802, 2021.

[20] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling,
Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified
benchmark for generalizable manipulation skills. arXiv
preprint arXiv:2302.04659, 2023.

[21] Jiaqi Han, Yu Rong, Tingyang Xu, and Wenbing Huang.



Geometrically equivariant graph neural networks: A sur-
vey. arXiv preprint arXiv:2202.07230, 2022.

[22] Jiaqi Han, Yu Rong, Tingyang Xu, and Wenbing Huang.
Geometrically equivariant graph neural networks: A sur-
vey. arXiv preprint arXiv:2202.07230, 2022.

[23] haosulab. Mplib: a lightweight python package for mo-
tion planning, 2023. URL https://github.com/haosulab/
MPlib. GitHub repository.

[24] Walter Hoffmann. Iterative algorithmen für die gram-
schmidt-orthogonalisierung. Computing, 41:335–348,
1989.

[25] Haojie Huang, Dian Wang, Robin Walters, and Robert
Platt. Equivariant transporter network. arXiv preprint
arXiv:2202.09400, 2022.

[26] Haojie Huang, Dian Wang, Xupeng Zhu, Robin Walters,
and Robert Platt. Edge grasp network: A graph-based se
(3)-invariant approach to grasp detection. arXiv preprint
arXiv:2211.00191, 2022.

[27] Haojie Huang, Dian Wang, Arsh Tangri, Robin Walters,
and Robert Platt. Leveraging symmetries in pick and
place. The International Journal of Robotics Research,
page 02783649231225775, 2024.

[28] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi,
Emilien Dupont, Yee Whye Teh, and Hyunjik Kim.
Lietransformer: Equivariant self-attention for lie groups.
In International Conference on Machine Learning, pages
4533–4543. PMLR, 2021.

[29] David Inkyu Kim and Gaurav S Sukhatme. Semantic la-
beling of 3d point clouds with object affordance for robot
manipulation. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 5578–5584.
IEEE, 2014.

[30] Seungyeon Kim, Byeongdo Lim, Yonghyeon Lee, and
Frank C Park. Se (2)-equivariant pushing dynamics
models for tabletop object manipulations. In Conference
on Robot Learning, pages 427–436. PMLR, 2023.

[31] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Im-
age augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint
arXiv:2004.13649, 2020.

[32] Michael Laskin, Aravind Srinivas, and Pieter Abbeel.
Curl: Contrastive unsupervised representations for re-
inforcement learning. In International Conference on
Machine Learning, pages 5639–5650. PMLR, 2020.

[33] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,
Pieter Abbeel, and Aravind Srinivas. Reinforcement
learning with augmented data. Advances in neural
information processing systems, 33:19884–19895, 2020.

[34] Jiahui Lei, Congyue Deng, Karl Schmeckpeper, Leonidas
Guibas, and Kostas Daniilidis. Efem: Equivariant neural
field expectation maximization for 3d object segmenta-
tion without scene supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4902–4912, 2023.

[35] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant
graph attention transformer for 3d atomistic graphs.

arXiv preprint arXiv:2206.11990, 2022.
[36] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang

Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking
knowledge transfer for lifelong robot learning. arXiv
preprint arXiv:2306.03310, 2023.

[37] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What matters in learning from offline human demon-
strations for robot manipulation. arXiv preprint
arXiv:2108.03298, 2021.

[38] Lucas Manuelli, Wei Gao, Peter Florence, and Russ
Tedrake. kpam: Keypoint affordances for category-level
robotic manipulation. In The International Symposium
of Robotics Research, pages 132–157. Springer, 2019.

[39] Diego Marcos, Michele Volpi, Nikos Komodakis, and
Devis Tuia. Rotation equivariant vector field networks.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 5048–5057, 2017.

[40] Alexandre Milesi. Se(3)-transformers for
pytorch, 2021. URL https://github.com/NVIDIA/
DeepLearningExamples/tree/master/DGLPyTorch/
DrugDiscovery/SE3Transformer.

[41] Harish Ravichandar, Athanasios S Polydoros, Sonia
Chernova, and Aude Billard. Recent advances in robot
learning from demonstration. Annual review of control,
robotics, and autonomous systems, 3:297–330, 2020.

[42] Hyunwoo Ryu, Hong-in Lee, Jeong-Hoon Lee, and
Jongeun Choi. Equivariant descriptor fields: Se (3)-
equivariant energy-based models for end-to-end vi-
sual robotic manipulation learning. arXiv preprint
arXiv:2206.08321, 2022.

[43] Hyunwoo Ryu, Jiwoo Kim, Junwoo Chang, Hyun Seok
Ahn, Joohwan Seo, Taehan Kim, Jongeun Choi, and
Roberto Horowitz. Diffusion-edfs: Bi-equivariant de-
noising generative modeling on se (3) for visual robotic
manipulation. arXiv preprint arXiv:2309.02685, 2023.

[44] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin
Coumans, Vikas Sindhwani, Ken Goldberg, and Andy
Zeng. Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 4568–4575. IEEE, 2021.

[45] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jas-
mine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,
and Google Brain. Time-contrastive networks: Self-
supervised learning from video. In 2018 IEEE inter-
national conference on robotics and automation (ICRA),
pages 1134–1141. IEEE, 2018.

[46] Mohit Shridhar, Lucas Manuelli, and Dieter Fox.
Perceiver-actor: A multi-task transformer for robotic ma-
nipulation. In Conference on Robot Learning, pages 785–
799. PMLR, 2023.

[47] Anthony Simeonov, Yilun Du, Andrea Tagliasac-
chi, Joshua B Tenenbaum, Alberto Rodriguez, Pulkit
Agrawal, and Vincent Sitzmann. Neural descriptor fields:

https://github.com/haosulab/MPlib
https://github.com/haosulab/MPlib
https://github.com/NVIDIA/DeepLearningExamples/tree/master/DGLPyTorch/DrugDiscovery/SE3Transformer
https://github.com/NVIDIA/DeepLearningExamples/tree/master/DGLPyTorch/DrugDiscovery/SE3Transformer
https://github.com/NVIDIA/DeepLearningExamples/tree/master/DGLPyTorch/DrugDiscovery/SE3Transformer


Se (3)-equivariant object representations for manipula-
tion. In 2022 International Conference on Robotics and
Automation (ICRA), pages 6394–6400. IEEE, 2022.

[48] Anthony Simeonov, Yilun Du, Yen-Chen Lin, Al-
berto Rodriguez Garcia, Leslie Pack Kaelbling, Tomás
Lozano-Pérez, and Pulkit Agrawal. Se (3)-equivariant
relational rearrangement with neural descriptor fields. In
Conference on Robot Learning, pages 835–846. PMLR,
2023.

[49] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Ten-
sor field networks: Rotation-and translation-equivariant
neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018.

[50] Dian Wang, Mingxi Jia, Xupeng Zhu, Robin Walters, and
Robert Platt. On-robot learning with equivariant models.
arXiv preprint arXiv:2203.04923, 2022.

[51] Dian Wang, Robin Walters, and Robert Platt. So (2)-
equivariant reinforcement learning. In International Con-
ference on Learning Representations, 2022.

[52] Maurice Weiler, Mario Geiger, Max Welling, Wouter
Boomsma, and Taco S Cohen. 3d steerable cnns: Learn-
ing rotationally equivariant features in volumetric data.
Advances in Neural Information Processing Systems, 31,
2018.

[53] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J.
Guibas, and Hao Su. SAPIEN: A simulated part-based
interactive environment. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2020.

[54] Zhengrong Xue, Zhecheng Yuan, Jiashun Wang, Xueqian
Wang, Yang Gao, and Huazhe Xu. Useek: Unsuper-
vised se (3)-equivariant 3d keypoints for generalizable
manipulation. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 1715–1722.
IEEE, 2023.

[55] Jingyun Yang, Congyue Deng, Jimmy Wu, Rika
Antonova, Leonidas Guibas, and Jeannette Bohg. Equiv-
act: Sim (3)-equivariant visuomotor policies beyond rigid
object manipulation. arXiv preprint arXiv:2310.16050,
2023.

[56] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Jonathan Chien, Maria Attarian, Travis Arm-
strong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al.
Transporter networks: Rearranging the visual world for
robotic manipulation. In Conference on Robot Learning,
pages 726–747. PMLR, 2021.

[57] Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su,
Robin Walters, and Robert Platt. Sample efficient
grasp learning using equivariant models. arXiv preprint
arXiv:2202.09468, 2022.



APPENDIX

A. Iterative Modified Gram-Schmidt Orthogonalization

We use Iterative Modified Gram-Schmidt Orthogonaliza-
tion [24] to make the outputted rotation matrix R̂ legal.
IMGS works much more stable than the vanilla Gram-Schmidt
Orthogonalization. The algorithm is summarized as follows.

Algorithm 2 Iterative Modified Gram-Schimidt

Input: R̂ that contains column vectors v0, v1, and v2 ∈ R3

1: for iter = 1 to 2 do
2: for i = 0 to 2 do
3: ui = vi
4: for j = 0 to i− 1 do
5: vi = vi − ⟨vi,uj⟩

⟨uj ,uj⟩uj
6: end for
7: ui = vi
8: end for
9: end for

Output: A legal rotation matrix R̂ that contains updated
column vectors v0, v1, and v2 ∈ R3

B. Proofs

First, let’s review the definition SE(3)-equivariance on our
point cloud P. Given an outputted vector field fout(x) =⊕n

i=1 f
i(x),∀x ∈ P from SE(3)-transformer [18] where n

is the total types of vectors, they are SE(3)-equivariant that
means:

Dl(R)fl(x) = fl(Tx),∀x ∈ P, T = (R, t) ∈ SE(3), l ∈ n.
(7)

where Dl(R) is the Wigner-D matrix. For entities living in
the usual 3D physical world, the angular momentum quantum
number j of the Wigner-D matrix is 1, thus for vectors with
l = 1, we have:

D(R) = e−im′αdjm′,m(β)e−imγ , (8)

where α, β, γ are the Euler angle representation of R that
satisfies R = Rz(α)Rx(β)Rz(γ), m,m′ ∈ {−1, 0, 1}, and
djm′,m(β) is the matrix element. Since D(R) is also a unitary
matrix, we can find a set of basis [v0, v1, v2] that makes
D(R) = R.

For type-0 vector fields, D0(R) is a one-dimensional iden-
tical scale factor 1. Let’s begin our proofs.

Theorem 1 Rotation matrices, represented by three type-
1 vectors, are SE(3)-equivariant parameterization of rotation
actions.

Proof: For a rotation matrix R = [v0, v1, v2] ∈ R9, where
v0, v1, and v2 are the three column vectors, we use three
type-1 vectors to represent these three column vectors. Thus
the output vector of the network is as follows:

fout(x) =

3⊕
i=1

f1i (x),∀x ∈ P. (9)

When the input point cloud is transformed by a SE(3)
transformation T = (R, t), the rotation matrix representation
of the target object also transforms by R, that is [v′0, v

′
1, v

′
2] =

R[v0, v1, v2]. According to Equation 7 and 8, the outputted
type-1 vector fields are transformed by D1(R) = R, thus we
have:

[v′0, v
′
1, v

′
2] = D1(R)[v0, v1, v2] (10)

■
Theorem 2 There is no SE(3)-equivariant vector field

representation for Euler angle, quaternion, and axis-angle.
Proof: We use proof by contradiction to prove theorem 2.

Consider the example illustrated in Figure 2.
1) For quaternion, we define a quaternion q =

[cos(θ/2), sin(θ/2)ui, sin(θ/2)uj , sin(θ/2)uk] where θ is the
rotation angle and [ui, uj , uk] is the rotation axis. For the
initial pose, we have q = [1, 0, 0, 0]. For the end pose, we
have q′ = [

√
2
2 ,

√
2
2 , 0, 0], thus:

q′ = q + [

√
2

2
− 1,

√
2

2
, 0, 0]. (11)

There are two options for quaternion type-l parameteriza-
tion: 1) using four type-0 vectors; 2) using one type-1 vector
and one type-0 vector. For both cases, the +[

√
2
2 − 1,

√
2
2 , 0, 0]

operation cannot be represented by a Wigner-D matrix. Thus
there is no SE(3)-equivariant vector field representation for
quaternion. Axis-angle can be proven in the same way.

2) For Euler angles, we define an Euler angle as E =
(α, β, γ). For the initial pose, we have Euler angles equal to
E = (0, 0, 0). For the end pose, we have Euler angles equal
to E′ = (−π

2 , 0, 0). Thus we have:

E′ = E + [−π
2
, 0, 0]. (12)

There are two options for Euler angles’ type-l parameteri-
zation: 1) using three type-0 vectors; 2) using one type-1
vector. For both cases, the +[−π

2 , 0, 0] operation cannot be
represented by a Wigner-D matrix. Thus there is no SE(3)-
equivariant vector field representation for Euler angles.

■

C. Training Details

1) Point Cloud Preprocessing: In the real-world experi-
ments, we perform point cloud voxel downsampling before
feeding the point cloud into the network with the voxel size
equal to 1cm for the Mug on Rack task and 2cm for the task
Plane on Shelf.

After this, we perform color jittering by adding Gaussian
noise on each point’s color with a standard variance equal to
0.005. We also perform random color dropping that replaces
30% points’ color to zero, and HSV transformation that
randomly transfers the hue, saturation, and brightness of each
point by 0.4, 1.5, and 2 times respectively.



2) Method Details: For RiEMann, We use r1 = 0.2m, r2 =
0.02m for all the tasks in the simulation. We use r1 =
0.16m, r2 = 0.02m for the real world Mug on Rack task, and
r1 = 0.2m, r2 = 0.02m for the Plane on Shelf task. Other
network hyperparameters of RiEMann are listed in Table V.
We do not use any kind of prior knowledge for the training
of RiEMann such as object segmentation, pertaining, or pose
augmentations. We also set the robot to first reach some pre-
defined pre-grasp pose (e.g., above the mug) and a pre-place
pose (e.g., in front of the rack) to eliminate the unnecessary
influence of the motion planners.

The full training of RiEMann takes 200 epochs on a single
NVIDIA A40 with a batch size of 4 and a learning rate of
1e-4 for each network module ϕ, ψ1, and ψ2. However, we
find that for Mug on Rack, they only need about 50 epochs to
converge, which takes about 47 minutes.

Network Layer Max Type-l Head Number Channels Message Passing Distance

ϕ 4 4 1 8 0.1m
ψ1 4 3 1 8 0.07m
ψ2 4 4 1 8 0.07m

TABLE V: Network hyperparameters of RiEMann.

For PerAct [46], the language descriptions of our tasks are:
Put the mug on the rack, Place the plane on the shelf, Turn
the faucet. We follow the original 3D voxel grid size (1003)
and the patch size (53). We use Euler angles as the rotational
action representations for PerAct. For fairness, we do not train
the gripper action for PerAct. We use 6 self-attention layers for
the perceiver Transformer module. The other hyper-parameters
are the same with the original paper.

For R-NDF [48], since there is no pre-trained weight for
the plane and the faucet, we here pre-train the NDFs using
the reconstructed meshes from the point clouds in our demon-
strations, and use these model as the NDFs module to run R-
NDFs. We observe that R-NDFs fail to accomplish all of the
tasks when testing, which shows that R-NDFs cannot perform
well without object segmentation, because of the locality
requirements of R-NDFs. We also tried to use the original pre-
trained weights from the original paper [48] for the task Mug
on Rack, but we found that the performances were even worse
because of the discrepancy of the specific object shapes in the
test experiments and the pertaining datasets. Other network
hyper-parameters are the same as in the original paper.

For EDF [42]and D-EDF [43], we manually separate the
robot end-effector and the grasped object point cloud from the
scene rather than setting a series of separate cameras to capture
their point cloud. For EDFs, we run the MH for 1000 steps,
run the Langevin algorithm for 300 steps, and optimize the
samples for 100 steps. We use one query point for picking and
three query points for placing. We train EDFs for 200 epochs,
the same epochs with RiEMann. For D-EDFs, we train the
networks for 1 hour with parallel training of the low-resolution
and the high-resolution networks and the energy-based critic
network. Other network hyper-parameters are the same as in
the original paper.

D. Simulation Experiments

1) Detailed Descriptions of Simulation Tasks: Mug on
Rack: A mug and a rack are placed on the table. The robot has
to pick up the mug by the rim and then hang it on the rack by
the handle. This is the most representative object rearranging
task that is also evaluated in [47, 42, 48, 43]. For the training
set T, we use a mug in blue with a side length of about 17
cm, and a rack with a height of 67cm. The mug must be hung
on the highest peg of the rack. For the new instance set NI,
we use a patterned red mug with a height of about 19cm and
a base diameter of about 10cm.

Plane on Shelf : A plane model and a box-shape shelf are
placed on the table, and the robot has to pick the middle part
of the body of the plane and place it on the shelf. For T, we
use a grey plane model with a length of about 20cm. For NI,
we use a blue plane with the same size.

Turn Faucet: A faucet is placed on the table, and the robot
has to turn on the faucet by first moving to the handle of the
faucet and then moving along the opening direction. For T,
we use the NO. 5004 faucet model in ManiSkill2 [20]. For
NI, we use the No. 5005 faucet model.

2) Demonstration Collection: We provide the ground truth
pose to a point cloud based motion planner MPlib [23] to gen-
erate the demonstration trajectory for training. We transform
all point cloud input to the end-effector coordinate system. We
collect 10 demonstrations for each setting for the evaluation of
SE(3) geodesic distance. We manually exclude those situations
that cannot support a successful collision-free motion planning
trajectory, as well as in the testing cases.

E. Real World Experiments

1) Environment Setup: We use a Franka Emika Panda robot
arm with four RealSense D435i RGB-D cameras for the real-
world experiments, as shown in Figure 4. The cameras are
calibrated relative to the robot’s base frame. We fuse the point
clouds from all four cameras and transform the point cloud
into the end-effector frame of the robot for control. We crop
the scene to a cube with a side length of 1.5 meters and
downsample the point to get 8192 points in the scene.

For real-world tasks, since the point cloud is noisy and usu-
ally part-occluded, we do not perform the pose transformation
calculation T̂ = TplaceT−1

object for the task, i.e., we directly
use the predicted target pose as the final action.

2) Detailed Task Descriptions: Mug on Rack: The task is
similar to the version in the simulation. For T, we use a pink
mug with a side length of about 10cm. We use a rack with a
height of 35cm and a base diameter of about 15cm. We split
the table into four equal areas, as in the simulated version of
this task. In T, we only collect demonstrations in a quarter of
the desktop area and let the mug rotate along the z-axis for 90
degrees in a top pose. For NI, we use a yellow new mug with
a similar size to the pink mug. For NP, we let the mug on all
table regions and rotate in 3 dimensional with any degree.

Plan on Shelf : The task is similar to the version in the
simulation. For T, we use a blue plane model, and collect
demonstrations in the same manner as above. For NI, we use



a green plane with a similar size. The shelf is a set of discrete
racks that can support the plane if it is placed in the correct
pose.

3) Demonstration Collection: We use the teaching mode of
the robot arm to give demonstrations, as illustrated in Figure 1
and in supplementary videos. We transform all the point cloud
into the end-effector coordinate system.


	Introduction
	Related Works
	Group Equivariant Neural Networks
	Equivariant Robot Manipulation

	Background and Problem Formulation
	Problem Formulation
	Local SE(3)-Equivariance
	Group Representations and SE(3)-Transformers

	SE(3)-Equivariant Robot Manipulation
	The Main Idea of RiEMann
	Design Choices of Vector Fields
	Network Design
	Implementation Details

	Experiments
	Simulation Environments and Tasks
	Baselines
	Evaluation Metrics and Methodology
	Results
	Ablation Studies
	Real World Evaluation

	Discussion and Future Works
	Appendix
	Iterative Modified Gram-Schmidt Orthogonalization
	Proofs
	Training Details
	Point Cloud Preprocessing
	Method Details

	Simulation Experiments
	Detailed Descriptions of Simulation Tasks
	Demonstration Collection

	Real World Experiments
	Environment Setup
	Detailed Task Descriptions
	Demonstration Collection



