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Abstract— Sampling trajectories from a distribution followed
by ranking them based on a specified cost function is a
common approach in autonomous driving. Typically, the sam-
pling distribution is hand-crafted (e.g a Gaussian, or a grid).
Recently, there have been efforts towards learning the sampling
distribution through generative models such as Conditional
Variational Autoencoder (CVAE). However, these approaches
fail to capture the multi-modality of the driving behaviour
due to the Gaussian latent prior of the CVAE. Thus, in this
paper, we re-imagine the distribution learning through vector
quantized variational autoencoder (VQ-VAE), whose discrete
latent-space is well equipped to capture multi-modal sampling
distribution. The VQ-VAE is trained with demonstration data
of optimal trajectories. We further propose a differentiable
optimization based safety filter to minimally correct the VQ-
VAE sampled trajectories to ensure collision avoidance. We
use backpropagation through the optimization layers in a self-
supervised learning set-up to learn good initialization and
optimal parameters of the safety filter. We perform extensive
comparisons with state-of-the-art CVAE-based baseline in dense
and aggressive traffic scenarios and show a reduction of up to
12 times in collision-rate while being competitive in driving
speeds.

I. INTRODUCTION

Trajectory sampling is a conceptually simple approach that
has found widespread adoption in autonomous driving com-
munity [1], [2]. As the name suggests, the process involves
sampling trajectories from a distribution and evaluating their
utility based on a specified cost function. The least cost
trajectory from the sample is chosen for execution. The
sampling itself can be encoded in the form of interpretable
parameters. For example, instead of trajectories, we can
sample set-points for velocity and lateral offset for the
vehicle and pass it through a simple quadratic program to
obtain the resulting trajectory samples [3]. This encoding
has the advantage of assigning some physical interpretation
to each sampled trajectory.

Irrespective of the exact strategy, the underlying sampling
distribution is often hand-crafted, e.g in the form of a
Gaussian or a pre-fixed grid [4], [2]. Recently, there has
been efforts towards learning the sampling distribution [3],
[5]. The distribution itself is represented in the form of a
Conditional Variational AutoEncoder (CVAE) [6] and can
be conditioned on the environment observations. These cited
approaches have shown superior performance compared to
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(a) - CVAE

(b) - VQ-VAE

(c) - CVAE (d) - VQ-VAE

Fig. 1. Comparison between trajectory distribution sampled from CVAE
(a) and VQ-VAE (b). As can be seen, VQ-VAE shows higher diversity and
multi-modality in the sampled trajectories. This can be further validated by
Fig. (c) and (d) which show the Kernel Density Estimation plots of the
forward velocity (vd) and lateral-offset (yd) associated with each sampled
trajectory.

hand-crafted approaches. In this paper, we take this line
of research further to solve one of the fundamental bottle-
necks of CVAE, namely the posterior collapse. Intuitively, it
refers to the inadequacy of CVAE in capturing multi-modal
distributions, similar to what is commonly encountered in
autonomous driving. This in turn, can be attributed to the
Gaussian latent prior of the CVAE.

In this paper, we present a novel improvement based on
Vector-Quantized Variational Autoencoder (VQ-VAE) [7],
whose discrete latent space is better suited to capturing multi-
modal distribution. For example, the discrete latent space
can capture the different homotopies of the optimal driving
trajectories (see Fig.1). Our key algorithmic contributions
along with their benefits are summarized below
Algorithmic Contribution: We train a VQ-VAE using
multi-modal demonstration of optimal trajectories to learn
the underlying discrete latent space. We also train a Pix-
elCNN [8] to sample from the learned latent space while
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conditioning it on the observation. We embed a differentiable
QP within the VQ-VAE decoder to generate an intermediate
interpretable representation of the each sampled trajectory
from the VQ-VAE in terms of velocity and lateral-offset
setpoints.

We show that while VQ-VAE based trajectory sampling
is enough for collision-free navigation in low density traffic,
more complicated scenarios require explicit consideration of
collision avoidance and lane boundary constraints. With this
motivation, we propose an optimization-based safety filter
modeled in terms of barrier function [9]. The parameters of
the filter along with good initialization for the underlying
optimizer is learned in a self-supervised manner. We show
how reformulations of barrier constraints can be exploited
to simplify the differentiation through the safety filter opti-
mization layer.
State-of-the-Art Performance: We compare our approach
with recent CVAE-based baseline presented in [5] which has
shown impressive performance in dense traffic scenarios. We
show that our VQ-VAE pipeline achieves up to 12 times
reduction in collision-rate over [5], while being competitive
in achieved forward velocity. We further show that the
discrete latent prior of VQ-VAE ensures superior diversity
in sampled trajectories. As a result, a near-perfect perfor-
mance is achieved in low traffic scenarios even without the
computationally demanding safety layer. Finally, we show
that our approach also maintains good performance even at
reduced computation and sampling budget.

II. MATHEMATICAL PRELIMINARIES

Symbols and Notation: Scalars will be denoted by normal
font lowercase letters, vectors by bold font lowercase letters,
and matrices by uppercase bold font letters. The superscript
T will indicate the transpose operation applied to either a
matrix or a vector.

A. Frenet Frame and Trajectory Parametrization

We assume access to a lane center-line which allows us to
perform motion planning in the so-called Frenet frame. In
this set-up, the X and Y axes of the Frenet-frame are aligned
with the longitudinal and lateral motion of the ego-vehicle.
We parametrize the positional space (x[k], y[k]) of the ego-
vehicle in the Frenet frame at any time instant k in terms of
polynomials:[

x[0], x[1], . . . , x[k]
]
= Wcx,

[
y[0], y[1], . . . , y[k]

]
= Wcy, (1)

where, W is a matrix formed with time-dependent polyno-
mial basis functions and (cx, cy) are the coefficients of the
polynomial. We can also express the derivatives in terms of
Ẇ, Ẅ.

B. Trajectory Sampling Via Setpoints

Instead of trajectories, we follow the intuition of [10], [5]
and sample set-points for forward velocity and lateral-offset
from the center-line. These are converted to a trajectory
distribution by solving the following optimization problem.

min
∑
k

cs + cl + cv (2a)

(x(o)[0], y(o)[0]) = b0, (x
(o)[n], y(o)[n]) = bf (2b)

cs(ẍ[k], ÿ[k]) = ẍ[k]2 + ÿ[k]2 (3a)

cl(ÿ[k], ẏ[k]) = (ÿ[k]− κp(y[k]− yd)− κv ẏ[k])
2 (3b)

cv(ẋ[k], ẍ[k]) = (ẍ[k]− κp(ẋ[k]− vd))
2 (3c)

The first term cs(.) in the cost function (2a) ensures smooth-
ness in the planned trajectory by penalizing high accelera-
tions at discrete time instants. The last two terms (cl(.), cv(.))
model the tracking of lateral offset (yd) and forward velocity
(vd) set-points respectively and is inspired from works like
[10]. For the former, we define a Proportional Derivative
(PD) like tracking with gain (κp, κv). It induces lateral
accelerations that will make the ego-vehicle converge to the
yd. The derivative terms in cl minimize oscillations while
converging to the desired lateral offset. For velocity tracking,
we only use a proportional term. Equality constraints (2b)
ensures boundary conditions on the oth derivative of the
planned trajectory. We use o = {0, 1, 2} in our formulation.

Optimization (2a)-(2b) can be converted into the following
QP using the trajectory parameterization of (1).

ξ∗ = argmin
ξ

1

2
ξT Qξ + qT (p)ξ, (4a)

Aξ = b (4b)

where ξ = (cx, cy) and p = (vd, yd).

III. MAIN RESULTS

The complete pipeline of our model is illustrated in fig 2.
Our goal is to generate a distribution of safe trajectories cor-
responding to a given observation O. This is accomplished
through the different blocks as show in fig 2. Firstly, we
sample from a learned VQ-VAE to obtain a distribution of
velocity and lateral-offset set points (p), and the associated
trajectories. The sampled trajectories are then processed by a
learned safety filter block, which ensures that they conform
to collision and lane boundary constraints. Following this
safety filtration, the trajectories are evaluated by a cost
function to identify the optimal (least-cost) trajectory. The
VQ-VAE and the safety filter are trained separately in a
heirarchical manner. We describe the main building blocks
next.

A. Learning with VQ-VAE and Differentiable QP block

Our VQ-VAE pipeline is shown in Fig.3 and adapts [7] for
trajectory inputs. The expert trajectories are mapped by an
encoder to a continuous latent space Ze ∈ RL×D, where
L is the number of latent vectors and D is their individual
dimensionality. For ease of notation, we represent the ith

latent vector (row) of Ze as ze,i. The core idea of VQ-
VAE lies in the discretization of the latent space. i.e mapping
continuous Ze to discrete Zq . To this end, we introduce a
latent embedding space E ∈ RK×D consisting of K discrete
vectors ej with dimension D. Subsequently, we define the
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Fig. 2. Our overall pipeline that consists of sampling from a learnd VQ-VAE and passing the samples to a learned safety filter. This is followed by cost
evaluation on the trajectory samples and the selection of the best trajectory.

ith latent vector (row) of Zq as the jth ej vector closest to
ze,i. This assignment is performed by the nearest neighbour
optimization problem defined in (5)

zq,i = er, where r = argmin
j

||ze,i − ej ||22

for i ∈ {1, 2, ..., L} (5)

The decocder of VQ-VAE takes in Zq and produces set-
points p, which is then passed through a QP layer defined
by (4a)-(4b) to obtain the reconstruction of the expert tra-
jectory ξ∗. The VQ-VAE is trained using the loss function
defined in (6) which has three components. The first part
is the reconstruction loss which makes the entire pipeline
learn to reconstruct the input expert trajectory. The typical
backpropagation cannot trace the gradient through the non-
differentiable nearest neighbour assignment (5), which in
turn poses problem in jointly training the encoder, decoder
and the embedding space vectors. To counter this, straight-
through gradient estimation method proposed in [7] is used,
which in turn necessitates adding the last two terms in
the loss function (6). The second term in the loss function
employs the l2 error to guide the movement of embedding
vectors ei towards the encoder outputs ze, thereby updating
the embedding space vectors parameters. And the last term
seeks to make the encoder commit to the embedding space
vectors. In other words, it prevents the encoder output to
keep getting assigned to a different nearest neighbour in each
forward pass.

LV QV AE = ∥Wξ∗ − τ e∥22 + ∥sg[Ze]−E∥22
+ β∥Ze(x)− sg[E]∥22 (6)

B. Conditional sampling of the discrete latent space using
PixelCNN

Let hq denote a vector wherein each element corresponds
to the codebook index of the vector zq,i in Zq , with i ∈
1, 2, ..., L. We want to generate different samples of hq such
that they can be mapped to the learned latent space of VQ-
VAE, Zq . These in turn, can be mapped to velocity and lateral
offset setpoints (p) and the associated trajectories through
the learned decoder. Moreover, the hq generation should be
conditioned on the observations O. To this end, we adapt the
PixelCNN architecture proposed in [8].

Our pipeline is shown in fig 4. We pass observation vector
O through CNN layers to get feature vector o. During
training, this representation, together with the ground truth
hq obtain from the trained VQ-VAE model is passed to
the PixelCNN. The model then predicts the conditional

distribution of the codebook indices in an autoregressive
manner using a set of masked CNN layers as described in
[8]. We train the generated distribution p(hq|O) using cross-
entropy loss with the ground truth hq .

During the inferencing phase, we iniatialize hq to zeros
and recursively generate the element of hq conditioned on
the observation using the trained PixelCNN. This generates
a multinomial distribution for each generated hq element.
We sample from this distribution at each step to construct
the corresponding hq vector which then passes through the
embedding layer to get Zq .

C. Learnable Safety Filter

Our safety filter is defined through the following optimization
problem.

ξ
∗
j = argmin

ξ
∗
j

1

2
∥ξ∗

j − ξ∗
j∥

2
2 (7)

Aξ
∗
j = b, g(ξ∗

j ,γ) ≤ 0 (8)

As can be seen, the safety filter takes in the jth trajectory
generated by the VQ-VAE and projects them onto the con-
straint set. The equality constraints ensure that the trajec-
tories satisfy the initial and terminal states. The inequality
constraints model collision avoidance, lane-boundary con-
straints along with velocity and acceleration bounds. We
defined the algebraic form of these entities in Appendix. But
we highlight that the collision avoidance and lane-boundary
constraints are designed using the barrier function approach
of [9]. In this context, γ represents the parameter of the
barrier function.

The safety filter has one explicit learnable parameter
namely γ. Additionally, we also aim to learn good initial-
ization for optimization problem underlying the safety filter.
Training Pipeline: The overall architecture of safety filter is
shown in Fig.5. A multi-layer perceptron (MLP) block takes
in the observations O along with the trajectory generated
by the VQ-VAE and outputs γ along with initialization λ
(defined in Appendix VII), 0ξ

∗
for the optimization solver.

These predictions are then passed onto the safety filter. The
MLP is trained in a self-supervised manner using the loss
function defined in (9). The first term in the loss function
minimizes the projection residual and is designed to enforce
minimum possible correction to the input trajectory. The
second term c(ξ∗) minimizes the constraint residuals of the
safety filter. The constant s is used to trade-off between the
two loss terms.

Lmlp = ∥ξ∗ − ξ∗∥22 + s
∑
k

c(ξ∗) (9)



Fig. 3. VQVAE with a differentiable QP block for learning discrete latent prior over the forward velocity vd, lateral offset yd and the associated trajectory.

Fig. 4. The auto-regressive conditional PixelCNN architecture that is used
to learn how to sample from the discrete latent space of a trained VQ-VAE.

Differentiation Through the Optimization Layer: Train-
ing the safety filter requires differentiating through the op-
timization problem underlying the safety filter. There are
two possible approaches for it namely implicit differentiation
and algorithm unrolling [11]. The former cannot be used in
our case, as they are not suitable for learning initialization.
More precisely, the initialization do not appear explicitly in
the optimality conditions and thus, these cannot be learned
using implicit differentiation. On the other hand, algorithm
unrolling does not have this limitation but requires that
every step of the optimization solver is differentiable. To
this end, we propose a novel solution process that ensures
differentiability across each numerical step. Detailed analysis
can be found in Appendix VII, (26a)-(26f). Moreover, our
solver is easily parallelizable over GPUs, does not require
any matrix factorization and even has closed-form solution
for many of the intermediate steps.

Fig. 5. Learned Safety filter that consists of an MLP augmented with an
optimization layer. We train the safety filter in self-supervised setting to
learn the parameters of inequality constraints along with good intialization
for the optimization problem.

IV. CONNECTIONS TO EXISTING WORKS

Learning Trajectory Sampling Distribution: A large num-
ber of recent works have attempted to learn good sampling
distribution. The application domain covers both general
motion planning as well as those specific for autonomous
driving. For example, [12] uses CVAE to approximate a good
sampling distribution for motion planners. Along similar
lines, [13] learned sampling distribution to accelerate MPPI
[14] algorithm using normalizing flows [15]. Our prior work
used CVAE along with differentiable optimization layers [3],
[5]. The fundamental difference between these cited works
stems from our usage of discrete latent priors, which we
believe better captures the multi-modality for autonomous
driving trajectories.

Differentiable Optimization Layers: The ability to differ-
entiate optimization solvers have proved extremely useful for
end-to-end learning [16] for control. However, the greatest
success of these class of approaches have come while em-
bedding convex optimization problems within neural network
pipeline. Algorithms for differentiating non-convex solvers is
limited, for example, unconstrained non-linear least squares
problem [11]. Thus, current work develops its own custom
differentiable optimization layers following our prior efforts
[5]. In particular, we reformulate the underlying constraints
to achieve an optimization routine where each step is differ-
entiable. Subsequently, we use algorithm unrolling to learn
both good initialization as well as the explicit learnable
parameters of our safety filter.

Safety Filter: : Safety filter based on barrier function are
extensive used in the existing works [17]. Potentially, the
parameters of the CBF can also be learned, for example
through imitation learning [18]. However, most existing
safety filter, especially the ones that are learned are based
on one-step planning formulated as a QP [18]. In contrast,
our proposed safety filter is based on trajectory optimization
over a long horizon.

V. VALIDATION AND BENCHMARKING

This section presents extensive simulation results to answer
the following research questions.

• Q1 How does VQ-VAE compare with CVAE in captur-
ing multi-modal trajectory distribution and how these
respective approaches perform in complex driving sce-
narios.



• Q2 How does the performance of VQ-VAE and CVAE
scale with restriction in computational and sampling
budget.

Density 1.5 / Speed limit 7 m/s Density 1.0 / Speed limit 7 m/s

Density 1.5 / Speed limit 15 m/s Density 3.0 / Speed limit 15 m/s

Fig. 6. Various traffic scenarios made from different densities and speed
limit of neighboring vehicles used for benchmarking our approach with the
CVAE-based baseline [5]

A. Implementation Details

We developed our entire inferencing pipeline in Python
with JAX [19] as the GPU-accelerated linear algebra back-
end. The matrix W in (1) is derived from a 10th order
polynomial. The VQ-VAE, PixelCNN and safety filter were
trained in PyTorch. Our simulation framework is based on the
Highway Environment (highway-env) simulator [20], where
neighboring vehicles adhere to simple rule-based strategies
for lateral and longitudinal control.

1) Training of VQ-VAE and PixelCNN: The training
details of the VQ-VAE and PixelCNN models have been
elaborated in earlier sections. Each expert trajectory consists
of 100 x − y coordinate points. The observation vector O,
sized 55, consisted of (i) distance from the left and right
lane boundaries, (ii) lateral and longitudinal velocities, (iii)
ego-vehicle heading, and (iv) state information (x-y position,
latitudinal and longitudinal velocities, and heading) of the
ten closest obstacles. All position measurements are relative
to the ego-vehicle position. During inference, the PixelCNN
uses O from the simulator to yield vector samples of code-
book indices hq in the embedding space. These indices are
then fed through the embedding layer to retrieve the discrete
latent representation Zq . Subsequently, the VQ-VAE decoder
first generates the corresponding velocity and lateral-offset
vector p and then the associated trajectories. To gather multi-
modal optimal trajectory demonstrations for training both the
VQ-VAE and PixelCNN, we use the approach presented in
[21]

2) Baseline: We compare our VQ-VAE based approach
with the CVAE-based baseline presented in [5], which has
earlier demonstrated good performance in dense traffic sce-
narios. Both the CVAE and VQ-VAE models utilize iden-
tical observation vectors denoted as O as input. Both the
approaches also employ a safety filter. But the ones used in
[5] does not have any explicit learnable parameter, while
that proposed in current work learns the barrier function
parameters through self-supervised learning.

3) Environments, Tasks, and Metrics: The highway driv-
ing scenarios are depicted in Figure 6. Utilizing the highway-
env simulator, we are able to configure parameters such as

vehicle density and average speed limit within each traf-
fic scenario. Benchmarking was conducted across multiple
scenarios, each evaluated using two distinct seeds, with the
resulting metric averages being derived from these seeds.

The primary objective is collision-free navigation of the
ego vehicle amidst traffic, while attempting to move as fast
as possible. Consequently, the evaluation metric comprises
two key components: (i) collision rate and (ii) average
velocity attained within each episode, with collision rate
taking precedence as the more critical measure.

B. Qualitative Comparison Between VQ-VAE and CVAE

Fig.1 (a) shows a scenario with static obstacles. The ego-
vehicle is positioned in a way that multiple feasible trajec-
tories are possible. However, CVAE-based approach of [5]
is only able to generate trajectory samples in one homotopy
class. In sharp contrast, our VQ-VAE (Fig.1(b)) can leverage
its learned discrete latent space to generate more diverse tra-
jectories. The core difference between the two models can be
further understood by Fig.1(c)-(d), which shows the Kernel
Density Estimation (KDE) over the velocity and lateral-offset
setpoints associated with the sampeled trajectories. While
VQ-VAE generated samples exhibit sharp mutli-modality, a
distinct posterior collapse can be viewed for the CVAE.

C. Benchmarking Driving Performance with VQ-VAE and
CVAE

All tasks referred to in this section were performed across
50 different episodes and two different seeds. The collision
rate measures the percentage number of crashed episodes in
the 50 episode runs. For forward velocity, we present both
mean and standard-deviation to capture the variation within
episodes.

1) Performance Across Different Densities: Fig.7 com-
pares the performance of CVAE based trajectory sampling
of [5] with our VQ-VAE pipeline. The former works well
for low-traffic scenarios and where the speed limit of the
neighboring vehicle is high creating large vacant spaces. As
the density increases or the neighboring vehicles start moving
slowly, [5] demonstrates higher collision-rate. In contrast,
the superior exploration properties of our VQ-VAE sampling
allows for upto 12 times reduction (density 3 scenarios) in
collision-rate over the CVAE baseline. Both the approaches
result in similar velocity profiles.

2) Performance Scaling with Computational Budget: In
this study, we examine the performance of the VQ-VAE
model under reduced computational resources. Specifically,
we focus on variations in the number of iterations of the
safety layer optimization and the number of trajectories
sampled from VQ-VAE. Fig. 8 summarizes the results. We
observe that the collision-rate is mere 3% even when the
number of iterations is reduced to 50. Similarly, while
reducing the sample-size from 1000 to 750, the collision-
rate has only increased to 4%. It is worth pointing out that
these experiments were conducted under conditions where
the traffic density was set at 3.0 and the speed limit of
neighboring vehicles was 15 m/s.
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1251007550
Number of iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Co
lli

si
on

 r
at

e 
(%

)

(a)

1000750500
Number of sampled points

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(b)

Fig. 8. (a) shows the comparison across different number of iterations
of the safety filter. (b) shows the comparison across different number of
sampled set points/trajectories.

D. Effect of Learned Safety Filter

Fig. 9 illustrates the significance of a safety filter. We
perform experiments for CVAE baseline [5] and our VQ-
VAE approach as both of them have similar safety with
minor subtle differences that our proposed safety filter is
based on barrier function whose parameters are also learned.
The results are summarized in Fig.9. It can be seen that
up to traffic density 1.5, the multi-modal sampling ensured
by VQ-VAE itself is enough to maintain a low collision-
rate. In contrast, the CVAE-baseline without safety filter
demonstrates an eight times higher collision-rate. At higher
densities both CVAE and VQ-VAE based approaches require
the explicit constraint handling provided by the safety filter
to ensure low collision-rate. It can also be seen that the
incorporation of safety filter typically makes the vehicle more
conservative by reducing its forward speed.

VI. CONCLUSION AND FUTURE WORKS

We demonstrated how we can train a VQ-VAE model to
learn a discrete prior over the space of optimal trajectories.
Moreover, we can train a PixelCNN to sample from the
learned discrete latent space. We showed that VQ-VAE
is more capable of capturing the inherent multi-modality
in driving behaviours and thus demonstrates superior per-
formance than CVAE based approaches. In particular, we
compare against the SOTA approach of [5] and showed
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Fig. 9. Comparison of CVAE baseline [5] and our VQ-VAE approach
with and without the safety filter. The superior samples generated from
VQ-VAE allows for safe navigation even without the safety layer in some
less/moderately dense scenarios

a reduction of up to 12 times in collision-rate. We also
proposed a learnable safety filter that uses the concept of
barrier function to enhance safety in dense traffic scenarios.
The safety layer is trained in a self-supervised manner. Our
future efforts are geared towards extending our approach to
navigation in unstructured dynamic environments like human
crowds and manipulation for high-dimensional systems.

VII. APPENDIX

This section extends the formulation of [5]. Specifically, we
incorporate collision and lane boundary constraints in terms
of barrier functions, while retaining the differentiability and
efficiency of the resulting optimization steps.

A. Reformulating Constraints:

Table I presents the list of all the constraints included in our
projection optimizer. The collision avoidance, velocity and
acceleration constraints presented there can be re-written in
the following polar form by introducing additional variables.

fo,i =
{

x[k]− xo,i[k]− do,i[k] cosαo,i[k]
y[k]− yo,i[k]− do,i[k] sinαo,i[k]

}
do,i[k] ≥ 1 (10)

fv =

{
ẋ[k]− dv[k] cosαv[k]
ẏ[k]− dv[k] sinαv[k]

}
, vmin ≤ dv[k] ≤ vmax (11)

fa =

{
ẍ[k]− da[k] cosαa[k]
ÿ[k]− da[k] sinαa[k]

}
, 0 ≤ da[k] ≤ amax (12)

The variables αo,i[k]], αv[k], αa[k], do,i[k], dv,i[k], and
da,i[k] will be computed by the safety layer.

Incorporating obstacle barrier constraints based on [22]:
In (10), do,i[k] = 1 represents the boundary of the feasible
set of the collision avoidance constraints in Table I. In other
words do,i[k] = 1 ensures h1,i[k] = 0. Similarly, do,i[k] > 1
signify the interior of the set. With this insight, we can define
the polar reformulation of barrier constraints in the following
form:

do,i[k] ≥ 1 + (1− γobs)(do,i[k − 1]− 1),∀k (13)

The constraints (10) and (13) differ only in the feasible
region definition of do,i[k]. When γobs = 1, the constraints
are equivalent.



TABLE I
LIST OF INEQUALITY CONSTRAINTS USED IN THE SAFETY FILTER

Constraint Type Expression Parameters

Discrete-time Barrier
for Collision Avoidance at step k

g1 = (g1,1, g1,2, . . . g1,m)

g1,i[k] : h1,i[k + 1]− h1,i[k] > −γobsh1,i[k],

h1,i[k] = − (x[k]−xo,i[k])
2

a2 − (y[k]−yo,i[k])
2

b2
+ 1

a
2
, b
2

: dimension of combined ellipitcal
footprint of vehicle and obstacle .

xo,i[k], yo,i[k]: trajectory way-point of
obstacles at time step k
m: number of obstacles

Velocity bounds at step k
g2 = (g2,lb, g2,ub)

g2,ub[k] :
√

ẋ[k]2 + ẏ[k]2 ≤ vmax

g2,lb[k] :
√

ẋ[k]2 + ẏ[k]2 ≥ vmin

vmin, vmax: min/max velocity
of the ego-vehicle

Acceleration bounds at step k
g3

g3[k] :
√

ẍ[k]2 + ÿ[k]2 ≤ amax
amax: max acceleration

of the ego-vehicle

Discrete-time barrier
for Lane boundary at step k

g4 = (g4,lb, g4,ub)

g4,ub[k] : h4,ub[k + 1]− h4,ub[k] ≥ −γlaneh4,ub[k],
g4,lb[k] : h4,lb[k + 1]− h4,lb[k] ≥ −γlaneh4,ub[k]

h4,ub[k] = −y[k] + yub
h4,lb[k] = y[k]− ylb

ylb, yub: Lane limits

We integrate (13) into our algorithm through a minor
modification in the feasible region definition of do,i[k]. Let
tdo,i[k] be the value of do,i[k] obtained at the t-th iteration
of our optimization algorithm (presented later). We use it to
approximate the lower bound on do,i[k] for obstacle barrier
constraints at the (t + 1 )-th iteration as

do,i[k] ≥ 1 + (1− γobs)(
tdo,i[k − 1]− 1) (14)

The right-hand side of (14) is constant, and thus the feasible
region of do,i[k] for barrier constraints is approximated
through a simple lower bound.

1) Incorporating lane barrier constraints: The standard
form of lane constraints is as follows:

ylb ≤ y[k] ≤ yub∀k (15)

where ylb, yub are the lane limits. The discrete-time control
barrier functions corresponding to these are given in I:

Consequently, the lane upper bound barrier constraints are,

y[k + 1] + (γlane − 1)y[k] ≤ γlaneyub∀k (16)

In terms of trajectory parametrization (1), this becomes:

W[k + 1]cy + (γlane − 1)W[k]cy ≤ γlaneyub∀k (17)

where W[k] represents the kth row of the W matrix
and cy is the coefficient vector for y. Since we want a
combined inequality corresponding to all the time steps
k = 0, 1, 2, ..., n− 1, we can rewrite the above as :

W1,ubcy + (γlane − 1)W0,ubcy ≤ bub or,

(W1,ub + (γlane − 1)W0,ub)cy ≤ bub

(18)

where W1,ub := W[1 : n− 1], W0,ub := W[0 : n− 2] and
bub := γlaneyub1(n−1)×1.
Define Gub := W1,ub + (γlane − 1)W0,ub. This results in
the following inequality constraint:

Gubcy ≤ bub (19)

Similarly, we get the lane lower bound barrier constraints
as:

Glbcy ≤ blb (20)

where Glb := W1,lb + (1 − γlane)W0,lb, W1,lb :=
−W[1 : n − 1], W0,lb := W[0 : n − 2] and blb :=
−γlaneylb1(n−1)×1.

2) Reformulated Problem: Using the developments in the
previous section and the trajectory parametrization presented
in (1), we can now replace the safety layer optimization (7)-
(8) with the following. Note the subscript j that signifies the
problem is defined for projecting the jth sampled trajectory.

ξ
∗
j = argmin

ξ
∗
j

1

2
∥ξ∗

j − ξ∗
j∥

2
2 (21a)

Aξ
∗
j = b (21b)

F̃ ξ
∗
j = ẽ(αj , dj) (21c)

dmin ≤ dj ≤ dmax(γobs) (21d)

Gγlaneξ
∗
j ≤ ylane (21e)

F̃ =



Fo

Ẇ
Ẅ

 0

0

Fo

Ẇ
Ẅ



 , ẽ =


xo + ado,j cosαo,j

dv,j cosαv,j

da,j cosαa,j

yo + ado,j sinαo,j

dv,j sinαv,j

da,j sinαa,j

 , (22)

Gγlane =
[
Gub Glb

]T
, ylane =

[
bub blb

]T (23)

αj = (αo,j ,αa,j ,αv,j), dj = (do,j , dv,j , da,j)

Constraints (21c)-(21e) acts as substitutes for g(ξ∗j ) ≤ 0 in
the optimization (7)-8.

We form matrix Fo by stacking the matrix W from
(1) as many times as the number of neighbouring vehi-
cles considered for collision avoidance at a given plan-
ning cycle. The vector xo, yo is formed by appropriately
stacking xo,i[k], yo,i[k] at different time instants and for all
the neighbours. Similar construction is followed to obtain
αo,j ,αv,j ,αa,j ,do,j ,dv,jda,j . The vector ylane is formed
by stacking the upper and lower lane bounds after repeat-
ing them n times (planning horizon). Similarly, vectors
dmin,dmax are formed by stacking the lower and upper
bounds for do,j ,dv,jda,j (recall (10)-(12)). Note that the
upper bound for do,j can be simply some large number,



while the lower bound depends on γobs (recall (10), (14)).
Moreover, these bounds are the same across all batches.

Remark 1: The vector γ = (γlane, γobs) form the learn-
able barrier function parameters introduced in (8), Section
III-C

3) Solution Process: We relax the non-convex equality
(21c) and affine inequality constraints as l2 penalties and
augment them into the projection cost (21a).

(24)

L =
1

2

∥∥∥ξ∗
j − ξ∗

j

∥∥∥2

2
− λT

j ξ
∗
j +

ρ

2

∥∥∥F̃ξ∗
j − ẽ

∥∥∥2

2

+
ρ

2

∥∥∥Gγlaneξ
∗
j − ylane + sj

∥∥∥2

=
1

2

∥∥∥ξ∗
j − ξ∗

j

∥∥∥2

2
− λT

j ξ
∗
j +

ρ

2

∥∥∥Fξ∗
j − e

∥∥∥2

2

F =

[
F̃

Gγlane

]
, e =

[
ẽ

ylane − sj

]
(25)

Note, the introduction of the Lagrange multiplier λ that
drives the residual of the second and third quadratic penalties
to zero [23]. We minimize (24) subject to (21b) through
Alternating Minimization (AM), which reduces to the fol-
lowing steps [24], wherein the left superscript t represents
the iteration index.

t+1αj = argmin
αj

L(tξ∗
j ,

tdj ,αj
tλj ,

tsj) (26a)

t+1dj = argmin
dj

L(tξ∗
j , dj ,

k+1αj ,
tλj ,

tsj) (26b)

t+1s = max
(
0,−Gγlane

tξ
∗
j − ylane

)
(26c)

t+1λj = tλj + ρFT (F tξ
∗
j − tej) (26d)

t+1ej =

[
ẽ(t+1αj ,

t+1dj)
ylane −

t+1sj

]
(26e)

t+1ξ
∗
j = argmin

ξ
∗
j

L(ξ∗
j ,

t+1λj ,
t+1ej) (26f)

As can be seen, we optimize over only one group of
variables at each AM step while others are held fixed at
values obtained at the previous updates. Steps (26d)-(26e)
have a closed-form solution, while (26f) is an equality
constrained QP [5]. Thus, we can trace the gradients through
the unrolled optimization step and train the safety filter
proposed in Section III-C. Moreover, as shown in [5], the
QP (26f) is easily batchable and can be made free of matrix
factorization.
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