
Offline Imitation Learning from Multiple Baselines
with Applications to Compiler Optimization

Teodor V. Marinov 1 Alekh Agarwal 1 Mircea Trofin 2

Abstract
This work studies a Reinforcement Learning (RL)
problem in which we are given a set of trajecto-
ries collected with K baseline policies. Each of
these policies can be quite suboptimal in isolation,
and have strong performance in complementary
parts of the state space. The goal is to learn a
policy which performs as well as the best combi-
nation of baselines on the entire state space. We
propose a simple imitation learning based algo-
rithm, show a sample complexity bound on its
accuracy and prove that the the algorithm is mini-
max optimal by showing a matching lower bound.
Further, we apply the algorithm in the setting of
machine learning guided compiler optimization
to learn policies for inlining programs with the
objective of creating a small binary. We demon-
strate that we can learn a policy that outperforms
an initial policy learned via standard RL through
a few iterations of our approach.

1. Introduction
When applying Reinforcement Learning (RL) to real-world
applications, two key challenges often prove to be critical
blockers to adoption. First is that the online interaction-
then-update loop in conventional RL poses a significant
engineering overhead in most large-scale systems, that are
more naturally designed to take a static Machine Learning
(ML) model as a dependency and update this model only
periodically in an offline manner. Second is that RL algo-
rithms typically begin tabula rasa, that is, they only leverage
the information they glean about the task at hand through
these online interactions. Typical scenarios, where the use
of RL is often preceded by prior attempts using rule-based
or supervised ML approaches, come with a treasure trove
of valuable data about desirable and undesirable behaviors,

1Google Research, USA 2Google, USA. Correspon-
dence to: Teodor V. Marinov <tvmarinov@google.com>,
Alekh Agarwal <alekhagarwal@google.com>, Mircea Trofin
<mtrofin@google.com>.

ignoring which leads to undesirable sample complexity of
learning from scratch for RL. More important, the previ-
ously tried decision making policies, even when individually
suboptimal, provide a valuable source of insight into the
plausibly good choices in many scenarios. In this work, we
study the question of leveraging such prior policies and any
data collected using them, without necessarily relying on
online policy updates.

Given these shortcomings, offline RL (Ernst et al., 2005;
Hester et al., 2018; Kumar et al., 2020; Cheng et al., 2022),
where the agent just learns from a static dataset collected us-
ing some arbitrary policy, as well as hybrid protocols (Song
et al., 2022; Haarnoja et al., 2018; Silver et al., 2014) inter-
polating the fully online and offline settings have been pro-
posed in the literature to take advantage of existing datasets,
as well as to ease the requirement of completely online
policy updates. In a different thread of work, the substan-
tial literature on imitation learning (Pomerleau, 1988; Ross
et al., 2011; Abbeel & Ng, 2004; Ho & Ermon, 2016) aims
to leverage any existing policies that we seek to improve
upon, along with the data collected using them. While
imitation learning is studied in both online and offline set-
tings, the particular scenario of having access to multiple
policies of variable qualities that is of interest here, is only
previously studied in an online setting (Cheng et al., 2020;
Barreto et al., 2020).

In this paper, we formalize this question of having access to
K baseline policies π1, . . . , πK , each of which can be quite
suboptimal in isolation, and which we hope are strong in
complementary parts of the state space. We further restrict
ourselves to only receiving static datasets Di collected from
each policy πi, and seek to learn a policy which can combine
the strengths of all the baseline policies. We are particularly
interested in challenging settings where the underlying RL
problem has a long horizon, and we only receive sparse
trajectory-level feedback at the end of each trajectory. To
motivate this setting, we consider a running example of
optimizing the inlining decisions in a compiler. The hori-
zon of the RL problem here corresponds to the number of
callsites in the program or function being compiled., which
can range from tens to tens of thousands. The reward of a
trajectory is the size of the binary we obtain after compiling

1

ar
X

iv
:2

40
3.

19
46

2v
1

 [
cs

.L
G

]
 2

8
M

ar
 2

02
4

Offline Imitation Learning from Multiple Baselines

the entire function. The offline setting we study is extremely
well motivated here, where each interaction with the RL
environment involves the expensive operation of compiling
and linking the program, and integrating this within the RL
loop engenders a significant engineering overhead.. With
this setup, our paper makes the following contributions:

• A natural behavior cloning algorithm, BC-MAX, that
combines the multiple policies by executing each pol-
icy in every starting state in our dataset, and then im-
itating the trajectory of the policy with the highest
reward in that state. We give an upper bound on the
expected regret of the learned policy to the maximal
reward obtained in each starting state by choosing the
best baseline policy for that state.

• We complement our analysis with a lower bound show-
ing that the result is unimprovable beyond polyloga-
rithmic factors in our setting.

• We apply BC-MAX to two different real-world datasets
for the task of optimizing compiler inlining for binary
size, and show that we outperform strong baselines in
both the cases. In both cases we start with a single base-
line policy, which is a prior model trained using online
RL, which already has a strong performance on this
task. We demonstrate the versatility of BC-MAX by it-
eratively applying BC-MAX on the initial expert, along
with all prior policies trained using previous BC-MAX
iterations as the next set of baselines. We show that
with a limited amount of interaction with the environ-
ment (to collect trajectories using each successive set
of baselines), we obtain strong policies in a small num-
ber of iterations, creating a promising practical recipe
for challenging real-world settings.

2. Setting and Related Work
We now define the problem setting formally, and then dis-
cuss some lines of prior work which are relevant to this
setting.

2.1. Problem setting

Contextual MDP setting. We consider a contextual
Markov Decision Process (MDP) with state space S and
action space A. We denote the initial state distribution D1

and the sampled context (initial state) is x ∼ D. Once the
context is sampled, the transition kernel Px is deterministic,
that is Px(·|s, a) is a point-mass distribution. The reward
function is rx(s, a) and we assume deterministic rewards.
We note that both the transition kernel and reward kernel are
context-dependent. We will omit the context subscript from
our notation whenever it does not introduce ambiguity.

We work in the finite-horizon setting and denote the horizon
as H . The value function of a policy π is

Vπ(x) =

H∑
h=1

Eah∼π(·|sh)[rx(sh, ah)],

where sh is the the state at step h s.t. Px(sh|sh−1, ah−1) =
1 and s1 ≡ x. Importantly, the policy class is such that the
action distribution at state s depends only on s and not on
the context, that is π(·|s, x) = π(·|s).

Goal. We assume that we are given a set of K baselines
policies {πi}k∈[K] together with n trajectories for each pol-
icy, which we denote by {τi,j}i∈[K],j∈[n], where xj ∼ D
and a trajectory for policy π consists of {(sh, ah)}h∈[H],
with ah ∼ π(·|sh). For an arbitrary policy π and context x
we use τπ(x) to denote the trajectory generated by following
π on context x. We also assume that we see the total reward
for each trajectory and policy, that is for all i ∈ [K], j ∈ [n]
we only observe

r(τi,j) =
∑

(sj,h,aj,h)∈τi,j

r(sj,h, aj,h),

instead of observing a dense reward across all the time steps
of the trajectory. We assume that the rewards are bounded
and non-negative, that is r(τ) ∈ [0, B] for all trajectories τ
and some constant B.

We have access to a policy class Π and seek to find a
find a policy in Π which ideally competes with each of
the baselines, and is able to combine their strengths. Let
Vi(x

1) = Vπi
(x1) denote the expected cumulative reward

of baseline i, conditioned on the context x. Then we seek to
minimize the regret:

Reg(π) := Ex∼D

[
K

max
i=1

Vi(x)− Vπ(x)
]
. (1)

That is, we seek to compete with the best of the baselines
for each individual context.

Learning setup. We assume access to the policy class
Π, but do not assume any other function approximators,
such as for modeling value functions. This is partly due
to the fact that the typical training of value functions using
Bellman backups is not feasible in our sparse-reward setting.
Furthermore, typical actor-critic techniques make strong
completeness and realizability assumptions on the value
function class, which are not realistic with a restricted notion
of state which we encounter in our motivating problem of
compiler optimization. This necessitates the development
of purely policy-based methods.

2.2. Related work

Vanilla behavior cloning Behavior cloning (Widrow,
1964; Pomerleau, 1988) refers to the approach of learning a

2

Offline Imitation Learning from Multiple Baselines

policy that matches the mapping from states to actions ob-
served in the data. This is typically solved as a classification
problem for deterministic policies, or by maximizing the
log-likelihood of the chosen actions in the observed states
for stochastic policies. It is unclear how to apply vanilla
behavior cloning in the presence of multiple baselines. We
will present a natural formulation to behavior clone the best
baseline policy per context in the following section.

Value-based improvement upon multiple baselines
(MAMBA) Cheng et al. (2020) show how to simultane-
ously improve upon multiple baseline policies to compete
with the best policy at each state in the MDP, which is a
significantly stronger notion that competing with the best
baseline in each context only. However, this comes with two
caveats. Their method requires value function estimation for
the baselines and access to the MDP to execute trajectories
under the learner’s policy and/or baselines. Barreto et al.
(2020) also study a problem which involves improving over
multiple baseline policies, which they title General Policy
Improvement. The policy improvement step again requires
value function evaluation. We do not assume such access to
additional function approximators or the MDP in this work.

Offline RL: Without access to the MDP, a natural ap-
proach is to consider offline reinforcement learning, with
the data collection policy being a mixture of the baselines
πi, say chosen uniformly. Given the recent results on of-
fline RL to compete with any policy that is covered by the
data distribution (Kumar et al., 2020; Xie et al., 2021; Zhan
et al., 2022), we can expect a favorable bound on the re-
gret (1), since all the baselines have a good coverage under
the uniform data collection policy. However, existing of-
fline RL methods with theoretical guarantees are typically
based on function approximation, relying on actor-critic or
Q-learning style approaches and on strong credit assign-
ment using per timestep rewards rather than the aggregated
reward of a trajectory. Applying these techniques using
policy-based function approximation alone and with aggre-
gated reward feedback is not feasible as we argue through a
simple lower bound example.

3. Algorithm and Regret Bound
We now describe our algorithm, BC-MAX, and give an upper
bound on the regret it incurs to the best per-context baseline.

Algorithm. We describe BC-MAX in Algorithm 1. The ba-
sic idea of the algorithm is quite simple. For each context xj

in our dataset, we first choose the trajectory with the highest
cumulative reward across all the baselines. Then we use a
standard behavior cloning loss to mimic the choice of ac-
tions in this trajectory. For a context xj , j ∈ [n], we denote
ij = argmaxi∈[K] r(τi,j), and BC-MAX tries to find a policy

π̂ ∈ Π that optimizes the following intuitive objective:

π̂ = argmin
π∈Π

n∑
j=1

∑
(sj,h,aj,h)∈τij ,j

1(π(sj,h) ̸= aj,h). (2)

Algorithm 1 BC-MAX for cloning best per-context baseline.
Input: Base policies {πi}i∈[K] and policy class Π.
Output: Policy π̂ ∈ Π.

for j ∈ [n] do
Sample xj ∼ D1, collect trajectories {τi,j}j∈[n]

Compute highest reward policy πij =
argmini∈[K]

∑
(sj,h,aj,h)∈τi,j

r(sj,h, aj,h).
end for
π̂ = argminπ∈Π

∑n
j=1

∑
(sj,h,aj,h)∈τij ,j

1(π(sj,h) ̸=
aj,h).

One natural question at this point might be that if there are
two trajectories with very similar high rewards in a con-
text, can it help to leverage this information rather than
only picking the one with the higher reward and cloning
it. This is indeed a shortcoming of BC-MAX, and other be-
havior cloning style approaches. However, we note that we
only have access to a trajectory-level reward, and hedging
between two very different trajectories can create a very
noisy learning setup for the algorithm. In situations where
value-functions can be feasibly learned, such information is
naturally modeled through the value function which assigns
similar future rewards to similarly good actions, but we do
not find a natural way for incorporating this information in
our setup.

Performance guarantee for BC-MAX. We now give
a bound on the suboptimality of the policy learned by
BC-MAX, relative to the best per-context baseline, in terms
of the rewards. The analysis mirrors the standard results
for behavior cloning algorithms (Ross & Bagnell, 2010).
We begin with a realizability assumption which governs
how well the best per-context baseline can be approximated
using the learner’s policy class Π.

Assumption 3.1. Let τ∗(x) = argmaxτπi
(x) r(τπi(x)) be

the trajectory with maximum return over all policies πi, i ∈
[K]. There exists π∗ ∈ Π such that

Px∼D(τπ∗(x) ̸= τ∗(x)) ≤ ϵ.

Here Px∼D(A) denotes the probability of an event A un-
der the distribution D, which we recall is the distribution
over the contexts x. The assumption is natural as BC-MAX
cannot do a good job of approximating the best per-context
baseline when no policy in the policy class has a small er-
ror in achieving this task. Note that the assumption does
not take rewards into account as BC-MAX only matches

3

Offline Imitation Learning from Multiple Baselines

the actions of τ∗(x), and does not reason about the reward
sub-optimality of other actions, as is common in behavior
cloning setups. Indeed this assumption is unavoidable in
our problem setting as we illustrate in the next section.

Theorem 3.2. Under Assumption 3.1, after collecting n
trajectories from each of the K base policies, Algorithm 1
returns a policy π̂ with regret at most

Reg(π̂) ≤ O

(
ϵH +

H2 log(H|Π|/δ)
n

)
,

with probability at least 1− δ.

Proof. Recall the definitions of τ∗(x) from Assumption 3.1,
and let π∗ = argminπ∈Π Ex∼D(

∑H
h=1 1(π(s(x)) ̸= a(x)))

where (sh(x), ah(x))
H
h=1 = τ∗(x) form the best trajectory

for x among the baseline policies. Under Assumption 3.1,
we know that Ex∼D(

∑H
h=1 1(π(s(x)) ̸= a(x))) ≤ ϵH .

Let us define

Â(π) =

n∑
j=1

H∑
h=1

1(π(sj,h) ̸= aj,h),

A(π) =Ex

(
H∑

h=1

1(π(sh(x)) ̸= ah(x))

)
.

Clearly we have that E[Â(π)] = A(π) for any fixed
policy π, and Â(π) =

∑n
j=1 Zj(π) with Zj(π) =∑H

h=1 1(π(sj,h) ̸= aj,h) ≥ 0. We note that the Zj are i.i.d.,
with E[Zj(π)] = A(π) and E[Zj(π)

2] ≤ H E[Zj(π)] =
H A(π). Then by Bernstein’s inequality combined with a
union bound over policies, we have with probability at least
1− δ, for all π ∈ Π:

|Â(π)− nA(π)| ≤
√

nH A(π) log(2|Π|/δ) +H log(2|Π|/δ)

≤nA(π)

2
+

3

2
H log(2|Π|/δ).

Applying the inequality with π = π̂ and π = π∗, we obtain

A(π̂) ≤ 2

n
Â(π̂) +

3H log(2|Π|/δ)
n

1

n
Â(π∗) ≤3

2
A(π∗) +

3

2

H log(2|Π|/δ)
n

.

Scaling the second inequality by 2 and adding them yields

A(π̂) ≤ 3A(π∗) +
6H log(2|Π|/δ)

n
≤ 3ϵ+

6H log(2|Π|/δ)
n

,

(3)

where the second inequality follows by Assumption 3.1.

Now we note that for any policy π:

Reg(π) = Ex[max
i

Vi(x)− Vπ(x)] = Ex[r(τ(x))− r(τπ(x))]

≤
H∑

h=1

(H − h)Ex[1(π(sh(x)) ̸= ah(x))|].

Plugging the bound from Equation 3 into the inequality
above completes the proof.

Implementation details In practice we can not directly
compute π̂ as defined in Equation 2. Instead we solve a
proxy to the optimization problem by replacing the indicator
function 1(π(sj,h) ̸= aj,h) by the cross-entropy loss. Let
yj,h ∈ {0, 1}A be the indicator with only entry equal to
1 the one which corresponds to the action aj,h), and all
other entries equal to 0. Further, we assume that all π ∈ Π
are such that π(s) ∈ ∆A−1, that is each π(s) represents
a distribution over the actions that policy π plays when in
state s. We then use a first order method to minimize the
loss

min
π∈Π

n∑
j=1

wj

H∑
h=1

∑
a

−yj,h(a) log(π(Sj,h)),

where wj ∈ [0, 1] are example weights which we find help-
ful in our practical implementation. We refer the reader to
our experimental evaluation for mode details on how the
weights are induced.

4. Lower bounds
In this section, we show a series of lower bounds which
illustrate the necessity of various aspects of our guarantee in
Theorem 3.2. We start with the necessity of Assumption 3.1

Necessity of Assumption 3.1 Let us consider a con-
textual multi-armed bandit problem, meaning that we fix
H = 1. For any ϵ, we choose the context space S = [M]
for M = ⌈ 1

ϵ ⌉, and choose D to be the uniform distri-
bution on S. We fix A = {a1, a2, a3}, and K = 1
with the data collection policy π1 choosing a = a1 for
each context x ∈ S. We consider two possible environ-
ments, defined through rewards r1, r2. For a1, we have
r1(x, a1) = r2(x, a2) = 1. For the other two actions, we
have r1(x, a2) = 0 and r1(x, a3) = 1, while the second
environment has r2(x, a2) = 1 and r2(x, a3) = 0. We de-
sign a policy class π with two policies {π1, π2} such that
π1(x) = π2(x) = a1 for all x ̸= 1 and π1(1) = a2m
π2(1) = a3. Clearly this policy class satisfies Assump-
tion 3.1. But it also contains an optimal policy for both the
rewards r1, r2 with a regret equal to 0. However, since the
data contains no information about which one of r1 or r2
generated the data, the best we can do is to pick between

4

Offline Imitation Learning from Multiple Baselines

π1 and π2 uniformly at random, and incur a regret of at
least 0.5ϵ. This argument shows that we cannot replace the
0 − 1 loss for measuring the accuracy of a policy in As-
supmtion 3.1, with a more reward-aware quantity. It is also
evident from the example that we cannot avoid incurring a
regret of Ω(ϵ).

Necessity of the comparator choice As discussed earlier,
we define regret relative to the best baseline per-context, but
the broader literature on offline RL allows stronger bench-
marks, such as the best policy covered by the data generating
policies. To understand the difference between the two, we
consider the case of H = 2 and K = 2, with S = {x} be-
ing a singleton. Suppose we have two actions A = {a1, a2}
and the baselines choose the trajectories π1(x) = a1 and
π2(x) = a2 at both h = 1, 2. There are two possible re-
ward functions given by r1((a1, a1)) = r1((a2, a2)) = 0.5,
r1((a1, a2)) = 1, r1((a2, a1)) = 0 and r2(τ) = 1− r1(τ)
for all trajectories τ . Now we observe that in the sense of
the coverage studied in the offline RL literature, all four tra-
jectories are covered by the dataset, since we get to observe
both the actions at both the steps in the episode. However,
since the data contains no useful information to distinguish
between r1 and r2, no learning method can pick a covered
policy which is better than our benchmark of best baseline
per-context. This challenge arises in our scenario as we
only observe the aggregate reward over a trajectory, which
makes per-step credit assignment used in standard offline
RL methods through the use of Bellman errors infeasible.

Tightness of horizon factor The tightness of the hori-
zon factor follows from a simple reduction to Theorem
6.1 in Rajaraman et al. (2020), who show that in a finite
horizon episodic MDP, there is no algorithm which only
observes n optimal policy trajectories and returns a policy
with regret better than Ω

(
SH2

n

)
. The MDP contructed by

Rajaraman et al. (2020) for the lower bound has a non-
deterministic transition kernel P. Since we are assume
that the transitions are deterministic, we instead use the
randomness in sampling contexts, x ∼ D to simulate P.
Concretely, let ξ1, . . . , ξH be the random bits sampled at
the H steps in a fixed episode from the construction in Ra-
jaraman et al. (2020). We define x = (ξ1, . . . , ξH) and set
Px(sh+1|sh, ah) = P(sh+1|sh, ah, ξh) to be the trasition
taken for the realization of ξh. The size of the state space of
contextual MDP with the above transition kernel can be set
to S = Θ(log2(|Π|) and the action space to A = {a1, a2},
so that each policy in Π is encoded by how it acts on the
state space. This construction directly leads to the following
lower bound.

Theorem 4.1. For any number of samples n there exists a
family of contextual MDPs with disribution over contexts
given by D1, such that the policy π̂ = A({τπ∗(xi)}ni=1)

returned by any algorithm A satisfies

Ex[Vπ∗(x)]− Ex[Vπ̂(x)] ≥ min

{
H,

log2(|Π|)H2

n

}
.

5. Case study: Optimizing a compiler’s
inlining policy

5.1. The inlining for size problem

In short the inlining problem which we study in our experi-
ments consists of deciding to inline or not to inline a callsite
in a program with the goal of minimizing the size of the
final program binary. We omit most compilation details and
just give a brief overview which should be sufficient for
understanding the problem from a RL perspective. In our
specific scenario, compilation is split into a frontend (fe)
and a backend (be). In our setup the frontend consists of
translating the program into an Intermediate Representation
(IR), doing some frontend optimizations, then a (thin) link
step follows, which re-organizes functions in the various
modules to improve inlining opportunities. For more details
on the linking step see Johnson et al. (2017). The backend
compilation follows the thin link step and is applied on the
updated modules. It consists of further optimizations, in-
cluding inlining decisions, final linking and lowering the IR
to machine code, e.g., x86, ARM, etc. The IRs with which
our RL algorithms work with are post frontend linking and
pre backend optimization, that is we work only on backend
optimizations. We note that a program is made up of mul-
tiple modules. In the fe, a module corresponds to a single
C/C++ source file, after all the preprocessor directives have
been applied. In the be, the module would consist of a mix
of IRs from different fe modules. The inlining decisions
will be taken at callsites in the IRs of each module, where
the callee is also in the same module. We note that each
module is ultimately compiled to a machine code-specific
binary, with its own size, that will still need to be linked
into the final executable. Hence we treat each module as
a context x in our contextual MDP setting, and the value
Vi(x) of the baseline policy πi is the size of the binary we
get for module x, when we make inlining decisions for the
module according to πi.

Program → IRs → fe optimizations

→ThinLinking1 Collecting IRs−−−−−−−−−−→ be optimization

→Final linking → x86
(4)

In Equation 4 we outline the compilation process, together
with the step at which we collect IRs from the respective
modules to be used in our RL algorithms. It is important to
note that the learned RL policy will make inlining decisions
both at the fe optimization and be optimization parts in

1See Johnson et al. (2017)

5

Offline Imitation Learning from Multiple Baselines

Equation 4, however, the IRs for training are only collected
after the fe optimization step.

The contextual MDP setting can now be tied together with
the compilation process as follows. Each context is a module
as mentioned above, with state-space defined by its IR. Each
state corresponds to a callsite in the IR of the module x, and
the action set is {inline, don’t inline} or {1, 0}
respectively. Each πi is some base inlining policy and Vi(x)
is defined by the size of the compiled stand-alone module
x. It is important to note that there is a mismatch between
trying to maximize Ex∼D[Vπ(x)] and the overall goal of
minimizing the binary size, as it is not necessarily true that
the sum of module sizes equals the size of the binary. In
fact, part of the post-inlining be and linker optimizations
may introduce a significant distribution shift between the
sum of module sizes and the size of the final binary. In our
experiments, we try to minimize this distribution shift by
turning off certain optimizations. For more details on the
compilation pipeline we refer to Trofin et al. (2021).

We note that the entire process is fully deterministic, as we
assumed in our theoretical setup, since the compiler is a
deterministic program.

5.2. Dataset collection

We train and evaluate on two sets of binaries. In the first
experiment we train on a proprietary search binary and
evaluate the model on a different proprietary set of targets
that are part of a cloud systems infrastructure. These targets
need to be installed on a fixed size partition of each cloud
machine and hence are size-constrained. In the second
experiment we train and evaluate on the Chrome binary on
Android. Training proceeds in two separate steps, which
we repeat over several iterations. The two steps can be
summarized as follows, first we collect a training dataset
which consists of trajectories with smallest size over all base
policies available at the current iteration. Next, we train a
new base model using the objective defined in Equation 2.
This conceptually applies Algorithm 1 repeatedly, where
the set of baseline policies is updated at each iteration to
include the new policy obtained from the previous iteration.
We now describe each step carefully.

Training dataset collection. The dataset collection be-
gins by creating a corpus of IRs of modules which make up
the final binary. The corpus creation follows the work of
Trofin et al. (2021); Grossman et al. (2023) and uses tools
for extracting the corpus are available on GitHub2. The
corpus is created at the beginning of training and remains
the same throughout every iteration. Training begins under

2A detailed example can be found at https:
//github.com/google/ml-compiler-opt/blob/
main/docs/inlining-demo/demo.md

the assumption that there exists at least one base policy. In
the first iteration a training dataset is collected from this
initial base policy π1, next, π1 is behavior cloned by solving
the optimization problem in Equation 2. We specify how
the weights for the objective are computed in the follow-
ing sections as they are different for the different targets.
Let π̂2 denote the resulting policy after solving Equation 2.
This policy is non-deterministic and so we construct the
base policy π2 by setting π2(s) = argmaxa∈{0,1} π̂2(s, a),
that π2 always plays the most likely action according to
π̂2. This concludes the first iteration. More generally, if
we have a larger initial set of baseline policies than just a
singleton{π1}, the iterations proceed similarly. However,
instead of just using π1, we use the full set {πi}i∈[K] of
baseline policies at every iteration at the first iteration.

Proceeding this way, at the t-th iteration the set of base
policies is taken as a subset of {π1, . . . , πt−1} which always
contains π1 (or the larger set of all initial baselines). Then
we again invoke BC-MAX with these baseline policies, and
obtain a new randomized policy π̂t, and we refer to πt as the
corresponding deterministic greedy policy. When collecting
a new training dataset we not only collect trajectories with
the chosen subset of base policies but we also may force
exploration by using π̂t−1 in the way discussed next.

Exploration in training dataset collection. For a fixed
module x and a policy π, we choose a ceiling on the num-
ber of exploration steps as a hyper parameter, which is
a fraction of the length of the trajectory |τπ1

(x)|. The
call-sites at which exploration occurs are selected as fol-
lows. The first exploration call-site is selected as h̃ =
argminh{|π̂(sh)(0) − π̂(sh)(1)|}Sh∈τπ(x), as the call-site
where the exploration policy π̂ is the least confident about
the action to choose. The exploration step is then played at
sh̃ by taking the action 1−π(sh̃) (recall that π(s) ∈ {0, 1}),
and the remaining steps in the trajectory are completed by
playing according to π. Let τ̂ denote the trajectory from the
last round of exploration. In the following exploration round
the exploration step is selected as the step h at which the
gap, |π̂(sh)(0) − π̂(sh)(0)|, is smallest among all h > h̃,
where h̃ is the exploration step in the previous round. Once
the maximum number of exploration rounds is reached or
the exploration step reaches the end of the trajectory, we re-
turn the trajectory which results in the smallest module size
among all explored trajectories. Pseudo-code is presented in
Algorithm 2. The exploration strategy is governed by π̂t−1,
however, it can be updated by using the non-deterministic
policy π̂ which induces π. We leave such approaches as
future work, as we have already observed significant benefit
of using only π̂t−1 as the exploration policy.

Online versus offline learning. Our theoretical setup
frames the problem in an offline learning scenario, yet Algo-

6

https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md
https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md
https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md

Offline Imitation Learning from Multiple Baselines

Algorithm 2 Explore module
Input: Base policy π, exploration policy π̂, module x, max-

imum exploration steps T .
Output: Compilation trajectory τπ(x) with reward rπ,x.

Compute vanilla trajectory τπ(x) by compiling with π
and receive reward r1π,x
t = 1
τ̂1 = τπ(x)
h̃1 = argminh{|π̂(Sh)(0)− π̂(Sh)(1)|}Sh∈τ̂1

while t ≤ T do
Replay τ̂t until h̃t

Play 1− π(Sh̃t
) at h̃t

Complete trajectory τ̂ t+1 by playing π
Receive reward rt+1

π,x

if h̃t < |τ̂t+1| then
h̃t+1 = argminh>h̃t

{|π̂(Sh)(0) −
π̂(Sh)(1)|}Sh∈τ̂t+1

else
break

end if
end while
t∗ = argmaxt r

t
π,x, rπ,x = rt

∗

π,x, τπ(x) = τ̂t∗

rithm 2 and the iterative procedure do rely on our ability to
interact with the environment in an adaptive manner. Note,
however, that the modality of interaction used in our ap-
proach is quite different, and significantly more practical
than full-fledged online RL. Each round of policy learning,
which happens using BC-MAX, is fully offline. This pro-
cess, which involves a large number (105 − 106) stochastic
gradient steps, happens without any interaction with the
environment, and is where the bulk of the learning happens.
Subsequently, we form a new data collection policy for the
next iteration, and this policy is applied to collect one tra-
jectory per module. The data collection process does not
involve any policy updates, and hence is massively paral-
lelizable with no interlocking bottlenecks with the learning
process. In online RL, on the other hand, data collection
and policy updating go hand-in-hand, which typically re-
quires significantly more complex architecture (Mnih et al.,
2016) to scale to domains where data collection is expensive.
Our approach, on the other hand, simply requires interleav-
ing standard supervised learning and batch data collection,
which is quite desirable especially in the compiler applica-
tion, where the ML training happens on GPUs, while the
compilation happens on CPU machines.

5.3. Search application targets

Similarly to Trofin et al. (2021) we collect a corpus for
training purposes from a search application binary with
approximately 30000 modules. The initial base policy is an

RL model trained using an Evolutionary Strategy (ES3) as
in Trofin et al. (2021). After collecting a training dataset
with the ES policy we noticed that the distribution of sizes
of modules is fairly non-uniform, with few modules having
very large sizes or very small sizes and majority of modules
being somewhere in-between. Because we expect that the
actions of the behavior cloning policy taken on larger size
modules are more important for size saving we upweight the
actions in such trajectories. The weights used in training are
computed as follows. Let size(x, π1) denote the size of
module x from the collected trajectory under policy π1 (or in
the case of multiple baseline policy under the best baseline
policy). The modules are partitioned into buckets according
to their sizes where the limits of the buckets are taken to
be on exponentially scaling grid, that is the first bucket
contains all modules with size size(x, π1) ∈ [0, 20), the
second bucket all modules such that size(x, π1) ∈ [20, 21)
etc., up to the final bucket with size [2M−1, 2M). Let bm =
{x : size(x, π1) ∈ [2m−1,m)} denote the m-th bucket
and let m(x) be the m for which x ∈ bm(x). The weight wx

for module x is computed as follows.

wx =
maxm |bm|
|bm(x)|

.

Algorithm 3 BC-MAX for cloning best per-context baseline
with exploration
Input: Base policy π1 and policy class Π. Max exploration

steps T . Max number of iterations N .
Output: Policy π̂ ∈ Π.
l = 1
while l ≤ N do

for j ∈ [n] do
Sample xj ∼ D1

for i ∈ {πs}s≤l do
ri,j , τi,j = Algorithm 2(πi, π̂ℓ, xj , T)

end for
Compute highest reward policy πij =
argmini∈[K]

∑
(sj,h,aj,h)∈τi,j

ri,j(sj,h, aj,h).
end for
Compute module weights {wj}j∈[n] (See
Sect. 5.3,5.4).

π̂l = argmin
π∈Π

−wj

n∑
j=1

∑
(sj,h,aj,h)∈τij ,j

aj,h log(π(aj,h|sj,h))

πl(s) = argmaxa π̂l(a|s),∀s ∈ S
end while

3The policy can be found here: https://github.
com/google/ml-compiler-opt/releases/tag/
inlining-Oz-v1.1

7

https://github.com/google/ml-compiler-opt/releases/tag/inlining-Oz-v1.1
https://github.com/google/ml-compiler-opt/releases/tag/inlining-Oz-v1.1
https://github.com/google/ml-compiler-opt/releases/tag/inlining-Oz-v1.1

Offline Imitation Learning from Multiple Baselines

We train two sets of policies, one set is trained without
exploration and is precisely in line with Algorithm 1. For
full pseudo-code, which includes the exploration step, we
refer the reader to Algorithm 3. The second set is trained
with exploration as described in Section 5.2. In Figure 1 we

Figure 1. Savings in MB from ES on training binary

show savings of the trained policies to π1, which is the ES
policy, on the search binary from which the training dataset
is collected. In Figure 2 we show the savings on a different
test binary. On the x-axis of the figures we show the size
savings of the policy πi learned at each iteration i, with and
without exploration respectively, where bc0 is the behavior
cloned policy from ES. Both figures demonstrate the success
of our approach in improving significantly beyond the initial
baseline, as well as the benefits from multiple iterations of
the process. Furthermore, the gap between the lines with
and without exploration highlights the benefits of the added
exploration.

We note that the compilation for both the training and test
binaries is carried out in the following way to minimize the
distribution shift – the fe optimizations are carried out by
ES, while the be optimizations are carried out by the trained
policies. If we were to use the trained policies in both fe
and be, this might lead to significant distribution shift, as
Algorithm 1 works only on trajectories collected after the
fe optimizations for which ES is always used. That is, if
any of the trained policies, bci, act very differently on the fe,
compared to ES, the resulting IRs before the be optimization
might be completely different from the training set IRs, and
hence the trained policy might take very sub-optimal actions.

5.4. Chrome on Android

In our second set of experiments we train an RL policy for
Chrome on Android. The training and test binaries are the

Figure 2. Savings in MB from ES on test binary

same in this case. The base policy with which we start
is an RL policy trained using Proximal Policy Optimiza-
tion (PPO4) (Schulman et al., 2017) as done in Trofin et al.
(2021). There are two differences in training from Sec-
tion 5.3. First, we focus only on the setting where we do
exploration. The second difference in training is how the
weights for the objective in Equation 2 are formed. The
approach for computing the weights used here is inspired
by the fact that we want to improve on PPO in each module
and not just on the sum of module sizes. That is we want
to maximize the size savings over the worst case module in
our dataset. The following approach is natural when such
max-min guarantees are desired.

Reusing notation from Section 5.3 we let

p1x =
|bm(x)|∑
m |bm|

w1
x =

maxm p1x
p1m(x)

,

be the weights in the first iteration of training. In following
iterations the weights are set as wt

x =
maxm pt

x

pt
m(x)

, where pt is

update using the Hedge algorithm (Littlestone & Warmuth,
1994). The update uses the sum of sizes in each bucket as
losses, normalized by the ℓ-infinity norm, that is

L̃t
m =

∑
x∈bm

size(x, πt)

Lt
m =

L̃t
m

∥Lt∥∞
,

4The policy can be found here: https:
//commondatastorage.googleapis.com/
chromium-browser-clang/tools/mlgo_model2.
tgz

8

https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz

Offline Imitation Learning from Multiple Baselines

Figure 3. Savings in MBs from PPO on sum of module sizes

Figure 4. Savings in MBs from PPO on binary size

where Lt
m denotes the m-th coordinate of the loss vector Lt.

The Hedge update is then

p̃t+1
m = ptm exp(−ηLt

m)

pt+1
m =

p̃tm∑
m p̃tm

.

In Figures 3 and 4, we plot the savings of our learned
policies across iterations, relative to the initial PPO policy,
measured in two different ways. For Fig 3, we simply add up
the sizes of the binaries produced by compiling each module
in our training dataset. This is a clean metric, as the distri-
bution shift between training and evaluation is small, and
no artifacts from linker or post-inlining be optimizations
are introduced in the evaluation. As we see, we improve
rapidly beyond the PPO policy with the iterative applica-
tions of BC-MAX. Note that even the sum of module sizes
suffers from the typical distribution shift between online
and offline RL, since the data used from behavior cloning
is collected using a different policy than the one we apply
in evaluation. For the sum of module sizes metric, we can
study the effect of this distribution shift rather carefully by

also compiling with an oracle policy, which simply chooses
the best baseline policy for each module, which is the target
for training in BC-MAX. This oracle, shown in red in Fig-
ure 3 naturally provides larger gains relative to PPO than
our learned policy as expected, but the gap reduces through
the iterations of our process, indicating that the policies tend
to stabilize through iterations, and the training data for later
applications of BC-MAX is closer to on-policy data. We
note that the oracle changes between different instantiations
of our weights. This is because the i-th trained policy πi

depends on the choice of weights and so the oracle after the
i-th iteration which chooses the best among {πi}iℓ=1 also
depends on the choice of weights. We also note that the
gap between the learned and oracle policy’s performance
is smaller when we use the Hedge weights, and that the
weighted version has a bigger gain relative to PPO, showing
the efficacy of this approach.

Finally, in Figure 4 we present the savings in size of the
Chrome on Android binary, which is the actual yardstick.
Here we cannot easily evaluate the size of the oracle, so
we only compare our policies to PPO, and again observe
impressive gains, with the Hedge-weighted variant doing
better. The binary size when compiled with the PPO policy
is approximately 213.32 MB.

Acknowledgements
We would like to thank Ziteng Sun for great discussions on
the lower bound.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D.
Fast reinforcement learning with generalized policy up-
dates. Proceedings of the National Academy of Sciences,
117(48):30079–30087, 2020.

Cheng, C.-A., Kolobov, A., and Agarwal, A. Policy im-
provement via imitation of multiple oracles. Advances in
Neural Information Processing Systems, 33:5587–5598,
2020.

Cheng, C.-A., Xie, T., Jiang, N., and Agarwal, A. Adversar-
ially trained actor critic for offline reinforcement learning.
In International Conference on Machine Learning, pp.
3852–3878. PMLR, 2022.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6, 2005.

9

Offline Imitation Learning from Multiple Baselines

Grossman, A., Paehler, L., Parasyris, K., Ben-Nun, T.,
Hegna, J., Moses, W., Diaz, J. M. M., Trofin, M., and
Doerfert, J. Compile: A large ir dataset from production
sources. arXiv preprint arXiv:2309.15432, 2023.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband,
I., et al. Deep q-learning from demonstrations. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Johnson, T., Amini, M., and Li, X. D. Thinlto: scalable and
incremental lto. In 2017 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), pp.
111–121. IEEE, 2017.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

Littlestone, N. and Warmuth, M. K. The weighted majority
algorithm. Information and computation, 108(2):212–
261, 1994.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Rajaraman, N., Yang, L., Jiao, J., and Ramchandran, K.
Toward the fundamental limits of imitation learning. Ad-
vances in Neural Information Processing Systems, 33:
2914–2924, 2020.

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
661–668. JMLR Workshop and Conference Proceedings,
2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. Pmlr, 2014.

Song, Y., Zhou, Y., Sekhari, A., Bagnell, J. A., Krishna-
murthy, A., and Sun, W. Hybrid rl: Using both offline
and online data can make rl efficient. arXiv preprint
arXiv:2210.06718, 2022.

Trofin, M., Qian, Y., Brevdo, E., Lin, Z., Choromanski, K.,
and Li, D. Mlgo: a machine learning guided compiler op-
timizations framework. arXiv preprint arXiv:2101.04808,
2021.

Widrow, B. Pattern recognition and adaptive control. IEEE
Transactions on Applications and Industry, 83(74):269–
277, 1964.

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal,
A. Bellman-consistent pessimism for offline reinforce-
ment learning. Advances in neural information process-
ing systems, 34:6683–6694, 2021.

Zhan, W., Huang, B., Huang, A., Jiang, N., and Lee, J. Of-
fline reinforcement learning with realizability and single-
policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

10

