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Magnetic quantum oscillations (MQO) of Hall coefficient are measured in rare-earth tritelluride
TmTe3 and shown to be much stronger and persist to higher temperature than the Shubnikov
oscillations. It is general for MQO in strongly anisotropic metals, and the combined measurements
of Hall and diagonal magnetoresistance provide useful informations about the electronic structure.
The ratio of their MQO amplitudes depends linearly on magnetic field, and its slope gives a simple
and accurate measurement tool of the electron mean free time and its temperature dependence.

PACS numbers: 71.45.Lr, 72.15.G-d, 71.18.+y

The Landau quantization of electron spectrum in mag-
netic fields leads to the magnetic quantum oscillations
(MQO) in metals [1–3]. Usually, the MQO are observed
in magnetoresistance, called the Shubnikov-de Haas ef-
fect (ShdH), and in magnetization, called the de Haas-
van Alphen effect (dHvA). These quantities are mea-
sured as a function of the inverse magnetic field and dis-
play a periodic behavior. The period is given by the
extremal cross section of the Fermi surface (FS) encir-
cled by conducting electrons in a semiclassical picture.
The amplitude of the MQO is given by the well known
Lifshitz-Kosevich (LK) formula [4]. This formula gives
the relation between the MQO frequency and FS, and
describes the MQO damping by thermal and disorder
broadening. Fitting the experimental temperature de-
pendence of MQO amplitude by the LK formula gives
the effective electron massm∗, while the field dependence
of MQO amplitude gives the Landau-level (LL) broaden-
ing [1]. The MQO measurements provide a powerful tool
to study the electronic properties of various quasi-two-
dimensional (Q2D) layered metallic compounds which
are the subject of intense studies now: organic metals
[5, 6], cuprate and iron-based high-temperature super-
conductors [7–14], heterostructures [15, 16], graphite in-
tercalation compounds [17], various van-der-Waal crys-
tals [18], topological semimetals [19, 20], etc.

Usually, only the diagonal component of magnetore-
sistance tensor is used to measure the MQO and to
study the electronic structure, although the MQO of non-
diagonal Hall component are also clearly observed and
may even be stronger. For example, the MQO in the
hole-doped high-Tc cuprate superconductors were first
discovered measuring the Hall resistance [7]. The high-
temperature quantum oscillations of the Hall resistance

were also measured in topological semimetals, such as
bulk Bi2Se3 [19]. It seems interesting to compare the
MQO of diagonal and Hall magnetoresistance compo-
nents and to analyze if that gives additional useful in-
formations about the electronic structure. For this pur-
pose we choose a Q2D compound TmTe3. Compounds
of family RTe3 (R =Y, La, Ce, Nd, Sm, Gd, Tb, Ho,
Dy, Er, Tm) have weak orthorhombic structure (space
group Cmcm) in the normal state (see Fig. 1(a)). These
systems exhibit a c-axis incommensurate charge-density
wave (CDW) at high temperature through the whole R
series that was recently a subject of intense studies [21–
26]. For the heaviest rare-earth elements, a second a-
axis CDW occurs at low temperature. MQO in RTe3
compounds have been studied in works [27–30]. It was
shown in [30] that in RTe3 compounds with the double
charge density wave state several small pockets with a
very small effective mass and with the largest occupy-
ing around 0.5% of the Brillouin zone remain. TmTe3
is a member of RTe3 family with the heaviest rare-earth
element and demonstrates the lowest transition temper-
ature TCDW1 = 250 K of first high-T CDW and the
highest transition temperature TCDW2 = 190 K of the
second low-T CDW [23]. Hence, TmTe3 is most con-
venient for the comparative study of MQO in Hall and
diagonal magnetoresistance in a wide temperature range.

Single crystals of TmTe3 were grown by a self-flux tech-
nique under purified argon atmosphere as described pre-
viously [24]. Thin single-crystal samples with a rectangu-
lar shape and with a thickness typically 1-2 µm were pre-
pared by micromechanical exfoliation of relatively thick
crystals glued on a sapphire substrate. RTe3 compounds
are quite sensitive to air, so the crystals should be stored
in an oxygen and moisture free environment and all ma-
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FIG. 1: (color online)(a) Crystal structure of RTe3 com-
pounds. (b) Temperature dependence of resistivity of TmTe3
along the a and the c -axis directions and conductivity
anisotropy, ρa/ρc, in the a− c plane. (c) Magnetoresistance,
Rxx, and (d) Hall resistance, Rxy, in TmTe3 as a function of
magnetic field, B applied pependicular to the (a − c) plane,
at various temperatures in the range 5-50 K. Panels (e) and
(f) show the corresponding FFT.

nipulation with the crystals in air should be done during
minimal time. Because of this feature the electrical con-
tacts were prepared by cold soldering of In. The mag-
netic field was applied parallel to the b axis, and in-plane
magnetoresistance and the Hall resistance were recorded
using the van der Pauw method [31], sweeping the field
between +10 and −10 T. Measurements were performed
at fixed temperature in the temperature range 4.2-100 K.
Magnetic field dependencies of resistance and Hall resis-

tance were determined as
(V (+B)± V (−B))

2I
taking (+)

for magnetoresistance and (−) for Hall resistance corre-
spondingly. Conductivity measurements were performed
using the Montgomery technique [32, 33].

Figure 1(b) shows the temperature dependence of re-
sistivity of TmTe3 measured along the in-plane c and a
axes together with the anisotropy ratio ρa/ρc in the con-
ducting ac plane using the Montgomery method. Above
the Peierls transition temperature TCDW1 = 270 K the
studied compound is practically isotropic in the ac plane
and ρa/ρc ≈ 1. Below TCDW1 the ratio ρa/ρc strongly
increases in agreement with Ref. [25]. Below the second
CDW transition temperature the resistivity anisotropy
decreases, and at T < 80 K it becomes less than 5%. In
this temperature range the compound can be considered

as nearly isotropic in (ac) plane.
Figs. 1c and 1d show the diagonal Rxx and Hall Rxy

transverse magnetoresistance components in TmTe3 as a
function of magnetic field B at various temperatures T
in the range 5-50 K. The MQO of Rxy are much more
pronounced than of those of Rxx. Panels (e) and (f)
demonstrate corresponding Fourier transforms (FFT) in
the window 3-9 T for MQO of resistivity components ρxx
and ρxy. The MQO with frequency F = 15 T clearly
manifest in both the diagonal and Hall magnetoresis-
tance. However, the MQO of Hall resistivity are much
stronger and observable till considerably higher temper-
ature. This difference between the MQO of Hall and di-
agonal magnetoresistance components has not been pre-
viously pointed out.
The temperature dependence of MQO amplitude

A (T,B) is used to extract the effective electron mass
m∗, and its field dependence to extract the Dingle tem-
perature TD = ~/2πkBτ , related to the electron mean
free time τ , where kB = 1.38 · 10−16 erg/K is the Boltz-
mann’s constant. In 2D metals the amplitude of MQO is
described by modified Lifshitz-Kosevitch formula [34]:

A (T,B) ∝ RT (T,B)RD (B) , (1)

where the temperature damping factor

RT = RT (T,B) =
λ

sinh(λ)
, λ ≡

2πkBT

~ωc

, (2)

ωc = eB/m∗c is the cyclotron frequency, e is the electron
charge, c is the light velocity. The damping of MQO by
disorder is described by the usual Dingle factor

RD = exp

(

−
2π2kBTD

~ωc

)

= exp

(

−
π

ωcτ

)

. (3)

The magnetic oscillations of diagonal and Hall magne-
toresistance at different temperatures are shown in Fig.
2 (a) and (b) correspondingly. Fig. 2c demonstrates the
temperature evolution of MQO amplitudes. The MQO
amplitude Axx of the diagonal magnetoresistance (blue
symbols) is well fitted by the Eq. (1) (blue solid lines)
with the best-fit value m∗

α = 0.033me. The low ShdH
frequency and very small effective mass indicate the ex-
istence of small FS pockets with very light carriers in
these compounds at low T in agreement with Ref. [30].
At the same time, the temperature dependence of the os-
cillation amplitude Axy of Hall resistance, indicated by
red squares in Fig. 2c, cannot be described by the same
formula because Axy decreases much slower than Axx as
temperature grows and the MQO of ρxy are observable
up to much higher temperatures.
The Dingle temperature and the scattering time are,

usually, extracted from the so-called Dingle plot that is
the logarithm of MQO amplitude divided by a thermal
damping factor, λ/ sinh(λ), plotted as a function of in-
verse magnetic field, 1/B. The corresponding Dingle
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FIG. 2: (color online) Temperature evolution of the MQO of
magnetoresistance (a) and of Hall resistance (b) in TmTe3
for F = 15 T. (c) The temperature dependence of the am-
plitude of Shubnikov oscillations for F = 15 T (blue sym-
bols) and the corresponding Lifshitz-Kosevitch fits (blue solid
lines). Red squares indicate the temperature dependence of
MQO amplitude of the Hall resistance. (d) The Dingle plots,
ln(A sinh(λ)/λ)(B−1), for the MQO of diagonal magnetoresis-
tance ρxx at the same temperatures. (e) The magnetic-field
dependence of the ratio of MQO amplitudes, Axx/Axy, at
various temperatures. Inset shows the corresponding temper-
ature dependence of the scattering rate, 1/τ (T ).

plots for the MQO of ρxx are shown in Fig. 2 (d) at
various temperatures. We see that these plots and their
slope change strongly as temperature increases. The Din-
gle temperature extracted from the slope of these curves
at T = 5 K is equal to TD ≈ 13.4 K, while at T = 25
K it decreases to TD ≈ 5.9 K. Of course, this strong
decrease of TD(T ) is not physical and appears from the
incorrect use of Eq. (1) beyond its applicability region.
As we argue below, one may use the value TD extracted

only at low temperature. The corresponding scattering
times extracted from the Dingle plot at low T = 5 K is
τα = (0.90± 0.07)10−13 seconds.
The MQO of magnetoresistance in two-dimensional

(2D) electron systems for low/intermediate magnetic
fields were theoretically studied in Ref. [35]. According
to this work, the MQO should be observable both in di-
agonal and Hall magnetoresistance components, and for
one-band 2D metals they are given by simple formulas:

ρxx =
1

σ0

(

1 + 2
∆g(T )

g0

)

, (4)

ρxy =
ωcτ

σ0

(

1−
1

(ωcτ)2
∆g(T )

g0

)

, (5)

where in a weak magnetic field, when high harmonics of
MQO are small,

∆g(T )

g0
= −2 cos

(

2πεF
~ωc

)

RDRT (6)

is the oscillatory part of the density of states (DoS),
multiplied by the temperature damping factor RT , εF
is the Fermi energy, and the damping factors RD and
RT are given by Eqs. (3) and (2). Eqs. (4)-(6) were
recently generalized [36, 45] to layered quasi-2D metals
(see Eqs. (57)-(60) of Ref. [36]) and shown to be valid
in the main (first) order in the Dingle factor RD even
at finite interlayer electron transfer integral tz if the os-
cillating DoS in Eq. (6) is multiplied by the additional
factor J0(4πtz/(~ωc)) typical to quasi-2D metals, where
J0(x) is the Bessel function of zeroth order.
Now the fact that the observed MQO in Hall resis-

tance ρxy are stronger and observable up to much higher
temperatures than the MQO of ρxx is not surprising be-
cause it directly follows from Eqs. (4) and (5). Indeed,
in contrast to MQO of ρxx the amplitude Axy of MQO in
ρxy is inversely proportional to τ0, which should decrease
as the temperature grows because the electron levels be-
come broadened not only by static crystal disorder but
also by thermal excitations due to the electron-phonon
(e-ph) and electron-electron (e-e) interaction.
We now emphasize another interesting point: Eqs. (4)

and (5) predict a very simple formula for the ratio of
MQO amplitudes,

∆ρxx/∆ρxy = 2ωcτ = 2eBτ/(m∗c). (7)

Hence, plotting the ratio ∆ρxx/∆ρxy as a function of
magnetic field B one obtains a linear dependence with
a slope equal to 2eτ/(m∗c). Figs. 2a and 2b show the
magnetic-field dependence of the relative MQO ampli-
tudes ∆ρxx/ρ̄xx and ∆ρxy/ρ̄xy obtained from the in-
verse Fourier transformation, where ρ̄xx and ρ̄xy are non-
oscillating parts of diagonal and Hall magnetoresistivity
correspondingly.
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The Hall-resistivity oscillations are in antiphase to
magnetoresistance oscillations (see Fig. 2 (a) and (b)),
which corresponds to the theoretical prediction [35, 36]
in Eqs. (4) and (5). In Fig. 2(e) the ratio of the abso-
lute values of MQO amplitudes, ∆ρxx/∆ρxy, as a func-
tion of B are shown at various temperatures. We see
that these dependencies are linear at all temperatures in
agreement with Eq. (7). The scattering time obtained
using Eq. (7) from the slope of this curve at T = 5 K is
τ = (0.99 ± 0.09)10−13 s, which coincides with the scat-
tering time τα = (0.90± 0.07)10−13 s extracted from the
Dingle plot at the same temperature.

The above results suggest a new and elegant method
to determine the electron scattering time τ using the ra-
tio between the MQO amplitudes of diagonal and Hall
magnetoresistivity. To check the applicability region of
the proposed method we apply it at higher temperatures
and compare with other common methods. As we noted
before, the Dingle plots at T > 10 K demonstrate an
unrealistic behavior. For T = 5, 10, 15, 20, 25 K these
plots are shown in Fig. 2(d), where all these graphs
are almost linear but with a slope that continuously de-
creases with increasing temperature. This corresponds
to the decrease of scattering time τ(T ) with increasing
temperature, which is unphysical and indicates that the
L-K formula (1) for the temperature dependence of MQO
amplitude does not hold. At T = 5 K the temperature
damping factor RT is only a small correction that does
not affect the Dingle plot. Hence, the extracted Dingle
temperature TD = 13.4K and the corresponding mean-
free time τα ≈ 0.9 · 10−13 s are reasonable. However, at
higher temperature even small violations of the L-K for-
mula (1) change dramatically the final Dingle plot and
spoil the common method of determining τ from the Din-
gle plot.

On contrary, we can extract the scattering time τ
at high temperature from the ratio ∆ρxx/∆ρxy. The
dependence of this ratio on magnetic field B at T =
5, 10, 15, 20, 25, 30 K is shown in Fig. 2(e). In contrast to
the Dingle-plot procedure, from the ratios ∆ρxx/∆ρxy
we obtain a reasonable temperature dependence of the
scattering rate 1/τ(T ) shown in the inset in Fig. 2(e)
and given by the sum of contributions from the electron-
phonon (e-ph) and electron-electron (e-e) interaction [2],

τ−1(T ) = τ−1(0) + τ−1

e−ph(T ) + τ−1

e−e(T ), (8)

where at low T < 30K τ−1

e−ph(T ) ∝ T 3 and τ−1

e−e(T ) ∝ T 2.

With increasing temperature, the MQO in magnetore-
sistance quickly disappear according to Eq. (2) due to
temperature smearing of the Fermi level. An increase in
temperature also leads to the raise of electron scatter-
ing rate τ−1 because of the e-ph and e-e interaction [2].
However, in the lowest order of e-ph interaction and for
exponentially weak MQO, the e-ph interaction leaves the
Dingle factor RD and the effective mass m∗ unchanged

in the MQO damping given by Eq. (1) [37, 38]. This
comes from the special cancellation of two terms in the
electron self energy at T ≫ ~ωc, which enter both RD

and RT . Later this cancellation was confirmed for the
2D electron systems and for the e-e interaction [39–41]
and named the first Matsubara-frequency rule [41].

The above cancellation of the T -dependence of MQO
amplitude [37–41] concerns only the exponential factor
given by Eq. (1), which contains the product of RT and
RD. The prefactors ωcτ in Eqs. (5) and (7), as well as
the Dingle factor RD alone, do not have this cancellation,
and τ in these prefactors depends on temperature.

The resistivity ρxx(T ) contains the T -dependence of
the transport scattering rate τ−1

tr (T ), which differs from
τ−1(T ) at low temperature [2]. Hence, ρxx(T ) only gives
a qualitative dependence τ(T ). Thermal conductivity
contains τ−1(T ) in combination with the electronic part
of the specific heat C(T ) ∝ T [2] and also can be used
to extract the dependence τ−1(T ). The temperature de-
pendence of τ and of the Dingle factor (3) can also be
studied experimentally using the so-called differential or
slow magnetoresistance oscillations (SlO) [28, 42–45]

ρd ≈ Ad cos (2π∆F/B)R2

D (9)

with a frequency ∆F proportional not to the Fermi en-
ergy εF or to the Fermi-pocket area but to the splitting
of electron band structure due to the interlayer trans-
fer integral. This energy splitting is not affected by the
temperature smearing of the Fermi level, hence the SlO
do not have the temperature damping factor RT given
by Eq. (2), and the temperature damping of SlO is de-
termined only by the electron scattering processes enter-
ing τ−1(T ). The SlO amplitude is also not affected by
the macroscopic sample inhomogeneities, which smear
the Fermi level and MQO similar to temperature [42–
46]. Therefore, the SlO are often stronger than the usual
MQO [42]. The magnetic intersubband oscillations [47–
49] or difference-frequency oscillations in multiband met-
als [50] have a similar origin but are less convenient to ex-
tract τ−1(T ), since their amplitudes contain the temper-
ature damping factor RT (T ) because the effective masses
differ on two different bands or FS pockets.

We pay attention on the fact which was not seen be-
fore: if τ in Eq. (5) decreases with temperature, e.g.
due to e-e or e-ph interation, the MQO should fade with
temperature much slower for Hall than for diagonal re-
sistivity, because the oscillatory term in Hall resistivity
is inversely proportional τ . This interesting fact didn‘t
get enough attention till now probably because of fact
that the work [35] was oriented mainly on the quantum
Hall effect (QHE) systems. As a rule, QHE is studied
in semiconducting heterostructures having relatively low
carrier concentration. Hence, in these structures the rel-
ative MQO in Hall resistance appear much weaker than
the MQO in magnetoresistance. Another situation takes
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place in metallic Q2D compounds where the carrier con-
centration is high and the Hall effect is not too large. In
such systems one can expect that the relative MQO in
Hall coefficient are much stronger than in diagonal mag-
netoresistance. As an indication of such a behavior we
notice the first observation of MQO in high-temperature
cuprate superconductors just in the Hall resistance [7].
From Eq. (5) we see that the MQO of Hall coefficient
are stronger than the MQO of diagonal magnetoresis-
tance at low and intermediate magnetic field range when
ωcτ . 1. Thus, for the experimental observation of this
enhancement of MQO in Hall coefficient in other com-
pounds, the most convenient is to study Q2D metals in
the intermediate magnetic-field range.

To summarize, we performed a comprehensive analy-
sis of the quantum oscillations of magnetoresistance ten-
sor in layered rare-earth tritellurides, including the in-
tralayer diagonal and Hall magnetoresistance. The mag-
netic quantum oscillations (MQO) of Hall coefficient are
much stronger and persist to much higher temperature.
We show that this is a general effect for MQO in highly
anisotropic metals, and the combined Hall and diagonal
magnetoresistance measurements provide additional use-
ful information about the electronic structure. In par-
ticular, the ratio of MQO amplitudes of diagonal and
Hall magnetoresistance components depends linearly on
the magnetic field, and its slope gives a simpler and
much more accurate estimate of the electron mean free
time than the Dingle plot, especially at finite temper-
ature T ∼ ~ωc. This provides an elegant new method
of measuring the electron scattering rate and its tem-
perature dependence in various quasi-2D conductors, in-
cluding high-temperature superconductors, organic met-
als, layered van-der-Waal crystals, topological materials,
graphite intercalation compounds, artificial heterostruc-
tures, etc.

The work is supported by RSF-ANR grant RSF-22-42-
09018 and ANR-21-CE30-0055.
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