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Well-Posedness of the generalised Dean-Kawasaki Equation

with correlated noise on bounded domains

Shyam Popat∗

March 29, 2024

ABSTRACT. In this paper, we extend the notion of stochastic kinetic solutions introduced in [FG24] to
establish the well-posedness of stochastic kinetic solutions of generalized Dean-Kawasaki equations with

correlated noise on bounded, C2-domains with Dirichlet boundary conditions. The results apply to a wide
class of non-negative boundary data, which is based on certain a priori estimates for the solutions, that
encompasses all non-negative constant functions including zero and all smooth functions bounded away

from zero.

1 Introduction

We will consider the well-posedness of the generalised Dean-Kawasaki initial boundary value problem
on a C2 and bounded domain U ⊂ R

d,










∂tρ = ∆Φ(ρ)−∇ · (σ(ρ) ◦ ξ̇F + ν(ρ)), on U × (0, T ],

Φ(ρ) = f̄ , on ∂U × [0, T ],

ρ(·, t = 0) = ρ0, on U × {t = 0}.
(1)

The main uniqueness and existence assumptions for the non-linear functions Φ, σ and ν are given in
Assumptions 3.1 and 4.2 respectively. The assumptions allow us to consider a wide range of relevant
stochastic PDE such as the full range of fast diffusion and porous medium equations, i.e. Φ(ρ) = ρm

for every m ∈ (0,∞) and the degenerate square root σ(ρ) =
√
ρ. Subsequently we will refer to this

choice of Φ and σ, and the alternative choice σ(ρ) = Φ1/2(ρ) as the model case. The Stratonovich
noise ◦ξ̇F is white in time and sufficiently regular in space, see Definition 2.1.
We will prove the existence and uniqueness of a stochastic kinetic solutions of (1), in the sense
of Definition 2.8 below. In the definition we do not insist that ρ is continuous all the way to the
boundary and so we can’t define the boundary condition in a pointwise sense. We only require the
solution ρ to be locally in the Sobolev space W 1,2(U), i.e. when cutoff away from zero and infinity,
and otherwise just to be L1(U) regular. Hence the boundary condition in (1) is expressed indirectly
via Φ(ρ) and is done using the trace theorem, see Section 5.5 of [Eva22]. Furthermore, the boundary
condition does not depend on time, f̄ = f̄(x∗) for x∗ ∈ ∂U . The restriction on the boundary data
f̄ that we are able to handle comes from assuming finiteness of the various boundary terms that
appear in the a priori energy estimates.
A detailed summary outlining various reasons why one would be interested in studying stochastic
PDE such as (1) is given in Section 1.3 of [FG24]. To briefly summarise, they arise as fluctuating
continuum models for interacting particle systems, see [GLP98], and they can also be used to de-
scribe the hydrodynamic limit of simple particle processes, for instance the simple exclusion process,
see [QRV99], and the zero range process, see Section 4.3 of [DSZ16].
In [FG24], Fehrman and Gess prove the well-posedness of equations such as (1) on the torus. Moti-
vated by the particle system application, we will follow and extend the techniques introduced there
in order to extend the well-posedness to a bounded domain. In this context the Dirichlet boundary
condition enables one to model sources and sinks.
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1.1 Background and relevant literature

The Dean-Kawasaki equation was derived independently in the physics literature by Dean [Dea96]
and Kawasaki [Kaw94]. In [Dea96], Dean considered an N particle system {X i}Ni=1 following
Langevin dynamics with pairwise interaction potential V 1,

Ẋ i
t =

1

N

N
∑

j=1

V 1(X i
t −Xj

t ) +
√
2β̇it .

Via a formal argument replacing space time white noise and Brownian motion, the empirical measure
ρNt := 1

N

∑N
i=1 δXi

t
is shown to satisfy the equation

∂tρ
N = ∆ρN −∇ ·

(

ρN∇V 1 ∗ ρN
)

−
√
2√
N

∇ ·
(

√

ρNξ
)

, (2)

where ξ is space time white noise. The irregularity of space time white noise implies that equa-
tions like (2) and (1) with space time white noise are not renormalisable using Hairer’s regularity
structures [Hai14] or Gubinelli, Imkeller and Perkowski’s paracontrolled distributions [GIP15], even
in dimension d = 1. Since the derivative hits space time white noise in (2), one can only consider

solutions ρN in the space of distributions rather than functions, in which case the square root
√

ρN

as well as the product
√

ρNξ have no meaning. In fact, Konarovskyi, Lehmann and von Renesse
show in [KLvR19, KLvR20] that the only martingale solutions to (2) or (1) with space time white
noise are the ”trivial” empirical measures ρN defined above. Furthermore, they show that one at
least needs to add a drift correction term into the equations to obtain non-trivial solutions. It is
for this reason that the Dean-Kawasaki equation is described as a ”rigid mathematical object” in
[CFIR23]. However, this rigidity can be overcome when suitable regularisations are considered, for
instance smoothing or truncating the noise. We now discuss previous work on regularised versions
of the Dean-Kawasaki equation based on relevance with the present work.
As mentioned above, this work primarily follows the techniques presented in Fehrman and Gess,
[FG24]. There the authors consider a white in time, spatially correlated noise, see Definition 2.1
below. Even though the noise is sufficiently regular in space the well-posedness of equation (1) is
tricky due to the square root singularity σ(ρ) =

√
ρ. Indeed, the Itô to Stratonovich conversion

of (1) introduces a term with factor (σ′(ρ))2∇ρ that creates a singularity at zero, see derivation of
equation (3) and Remark 2.4 below. The lack of local integrability of log(ρ) means that even a weak
solution to (1) can not be considered. Instead, the authors consider stochastic kinetic solutions, see
Definition 2.8 below, where the compact support in the velocity variable restricts the solution away
from it’s zero set, see Remark 2.11. The kinetic formulation and the notion of kinetic solutions was
first introduced in the PDE setting by Lions, Perthame and Tadmor [LPT94] where the authors con-
sidered the kinetic formulation for multidimensional scalar conservation laws. They chose the term
’kinetic equation’ due to its analogy with the classical kinetic models such as Boltzmann or Vlasov
models, see [Cer88]. Later, Chen and Perthame [CP03] were able to treat non-isotropic degenerate
parabolic-hyperbolic equations. A new chain rule type condition introduced there allowed kinetic
equations to be well defined, even when the macroscopic fluxes are not locally integrable.
Before proceeding, it is worth mentioning the relationship between stochastic kinetic solutions and
weak solutions in the context of the Dean-Kawasaki equation. When the diffusion coefficient σ is
sufficiently smooth so that we can make sense of weak solutions to (1), a weak solution is a stochas-
tic kinetic solution, see Proposition 5.21 of [FG24]. Conversely, under additional assumptions on σ,
stochastic kinetic solutions are also weak solutions, see Corollary 5.31 of [FG24].
Other related works are that of Fehrman and Gess [FG19, FG21] where they prove the path by path
well-posedness of equations like (1) via a kinetic approach, motivated by the theory of stochastic
viscosity solutions, see [LS98b, LS98a, LS00], and stochastic conservation laws, see [LPS13, LPS14,
GS14, GS17]. The pathwise well-posedness is proven via rough path techniques, which imposes
extra regularity on the diffusion coefficient σ that is needed to overcome the roughness of the noise
ξF . In the recent work of Clini [Cli23] the result was extended to a smooth bounded domain with
zero Dirichlet boundary conditions in the case of the porous media and fast diffusion equations, i.e.
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Φ(ρ) = ρm, ν(ρ) = 0 in (1).
Another extension of [FG24] was that of Wang, Wu and Zhang [WWZ22]. The authors are able to
show the existence of renormalised kinetic solutions to non-local equations such as (2) where we have
a convolution, rather than the local interaction ν(ρ) in (1) considered here and in [FG24]. There the
interaction kernel (V 1 in (2)) is assumed to satisfy the Ladyzhenskaya-Prodi-Serrin (LPS) condition,
a regularity condition first studied in the context of Navier-Stokes equations in [Pro59, Ser61, Lad67]
and applied to SDEs and distributional dependent SDEs in [KR05, RZ21] respectively. The main
difficulty lies in the proof of existence, where the lack of uniform Lp(Td) estimates of weak solutions
of the regularised equation implies that the kinetic measures of the regularised equation are not
uniformly bounded over [0, T ] × T

d × R. One needs to instead use entropy estimates, similar to
Proposition 4.24 below, to show the tightness of the kinetic measures of the approximate equations.
Another approach was by Dareiotis and Gess [DG20] where they constructed probabilistic solutions
to (1) via an entropy formulation. The advantage of the kinetic approach considered here and in
[FG24] over the entropy approach is that, by the precise identification of the kinetic defect measure,
the kinetic approach can handle L1(U) integrable initial data, whereas the entropy approach requires
Lm(U) integrable initial data in the model case Φ(ξ) = ξm. Furthermore, the approach in [DG20]
required C1,α-regularity from the noise coefficient σ, and therefore remained far from the critical
square root case σ(ρ) =

√
ρ.

Djurdjevac, Kremp and Perkowski in [DKP22] were able to prove the existence of strong solutions
to equations like (1) in the case of truncated noise and mollified square root. The proof follows by a
variational approach for a transformed equation and energy estimates for the approximate (Galerkin
projected) system. However, again it is worth mentioning that the approach can only handle smooth
coefficients and so also can not handle the square root singularity.
Also relevant is the work of Martini and Mayorcas [MM22], where local well-posedness of equa-
tions like (1) with space time white noise is proven when the square root σ(ρ) =

√
ρ is replaced by

σ =
√
ρdet where ρdet solves a related deterministic PDE. The proof is via paracontrolled distribu-

tion theory.
Finally, we mention that there is an extensive literature surrounding the well-posedness of stochastic
nonlinear diffusion equations on a smooth, bounded domains in R

d with zero Dirichlet boundary
conditions. In [BBDPR06], Barbu, Bogachev, Da Prato and Röckner are able to show the existence
of weak solutions of additive equations of the form

∂tρ = ∆Φ(ρ) + σ(ρ)Ẇt,

where Wt is cylindrical Brownian motion, σ =
√
Q in the case that Q is linear, non-negative

and of finite trace and Φ′ satisfies a polynomial growth condition. See [BDPR09] for a proof of
strong solutions in the porus medium case with lipschitz σ. Well-posedness of similar equations
with multiplicative noise for dimension 1 ≤ d ≤ 3 was shown by Barbu, Da Prato and Röckner
[BDPR08a, BDPR08b].

1.2 Organisation and main contributions

In Section 2 we setup the problem. Firstly, in Section 2.1 we give the definition and assumptions
on the nose ξF and subsequently in Section 2.2 we define a stochastic kinetic solution. The setup is
analogous to Chapters 2 and 3 of [FG24], the main difference being that we incorporate the bound-
ary condition in point two of the definition of stochastic kinetic solution, Definition 2.8.
In Section 3.1 we state the required assumptions for uniqueness as well as the definitions of convolu-
tion kernels and cutoff functions. Given that we are working on a bounded domain, in order to avoid
boundary terms that we don’t have control over appearing when integrating by parts, our solution
concept Definition 2.8 is modified so that our test functions are also compactly supported in space.
When formalising this in the uniqueness proof, this amounts to multiplying the test functions in
[FG24] by a new spacial cutoff ιγ , see Definition 3.2. It is worthwhile to mention that the restriction
of working on a C2 domain U arises so that we are able to differentiate the distance function that
forms part of the definition of the spacial cutoff, as well as to apply Sobolev embedding theorems
later on. In Section 3.2 the uniqueness is proven. The main novelty in the proof is in the techniques
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used to bound the new terms arising when the gradient hits the spacial cutoff.
In Section 4.1 we begin by proving L2(U) a priori energy estimates of an appropriately regularised
version of (1) in Proposition 4.14. We use this to prove further space-time regularity results in the
remainder of the section. In Section 4.2 we prove an entropy estimate for the equation, similar to
Proposition 5.18 of [FG24]. A localised version of the entropy estimate is used to prove a bound for
the decay of the kinetic measure at zero, a statement needed in the uniqueness proof but proved
in Section 4.3 for convenience. All of the estimates follow from applying Itô’s formula. An impor-
tant novelty is that we introduce harmonic PDEs (see for example Definitions 4.8 and 4.22) with
carefully chosen boundary data that ensures we obtain functions which vanish along the boundary
when applying Itô’s formula, and so we can integrate by parts without worrying about additional
boundary terms. The boundary regularity assumptions needed for our energy estimates will impose
restrictions the boundary data f̄ that we can consider.
The rest of the existence arguments, including tightness and compactness arguments of Section 4.4
follow directly from arguments from Chapter 5 of [FG24] so we are brief and simply include the
main ideas for completeness.

2 Setup and Kinetic formulation

2.1 Definition of the noise

We briefly introduce and state the assumptions needed for the noise term ξF . Both the definition
and assumptions are identical to those introduced in Chapter 2 of [FG24].

Definition 2.1 (The noise ξF ). Let F := {fk : U → R}k∈N be a sequence of continuously differ-
entiable functions and {Bk : [0, T ] → R

d}k∈N a sequence of independent, d-dimensional Brownian
motions on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P). The noise ξF , superscripted by F to
denote dependence on {fk}k, is defined by

ξF : U × [0, T ] → R
d, ξF (x, t) :=

∞
∑

k=1

fk(x)B
k
t .

For ease of notation let’s define three quantities related to the spacial component of the noise,

F1 : U → R defined by F1(x) :=

∞
∑

k=1

f2
k (x);

F2 : U → R
d defined by F2(x) :=

∞
∑

k=1

fk(x)∇fk(x) =
1

2

∞
∑

k=1

∇f2
k (x);

F3 : U → R defined by F3(x) :=
∞
∑

k=1

|∇fk(x)|2.

We need to make the following assumptions on the noise.

Assumption 2.2 (Assumption on noise). Suppose that Fi, i = 1, 2, 3 are continuous on U . Fur-
thermore assume ∇ · F2 is bounded on U .

Note that by Hölder’s inequality, the boundedness of F1 and F3 imply the partial sums of F2 are
absolutely convergent.

2.2 Definition of stochastic kinetic solution

We begin by re-writing equation (1) using Itô noise. By Definition 2.1 of the noise we have

∂tρ = ∆Φ(ρ)−∇ · (σ(ρ) ◦ ξ̇F + ν(ρ)) = ∆Φ(ρ)−∇ · ν(ρ) −
∞
∑

k=1

∇ · (σ(ρ)fk ◦ dBkt ).
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Denoting Fσ,k(ξ, x) := σ(ξ)fk(x) for fixed x ∈ U , the Itô to Stratonovich conversion formula (see
Section 3.3 of [Oks13]), the chain rule and product rule give formally that

∂tρ = ∆Φ(ρ) −∇ · (σ(ρ)ξ̇F + ν(ρ)) +
1

2

∞
∑

k=1

∇ ·
(

∂Fσ,k(ρ, x)

∂Bk

)

= ∆Φ(ρ) −∇ · (σ(ρ)ξ̇F + ν(ρ)) +
1

2

∞
∑

k=1

∇ ·
(

fkσ
′(ρ)

∂ρ

∂Bk

)

= ∆Φ(ρ) −∇ · (σ(ρ)ξ̇F + ν(ρ)) +
1

2

∞
∑

k=1

∇ · (fkσ′(ρ)∇(fkσ(ρ)))

= ∆Φ(ρ) −∇ · (σ(ρ)ξ̇F + ν(ρ)) +
1

2
∇ · (F1[σ

′(ρ)]2∇ρ+ σ′(ρ)σ(ρ)F2), (3)

which we will equivalently sometimes write in the formal SDE notation as

dρt = ∆Φ(ρ) dt−∇ · (σ(ρ) dξF + ν(ρ) dt) +
1

2
∇ · (F1[σ

′(ρ)]2∇ρ+ σ′(ρ)σ(ρ)F2) dt.

The below remark illustrates how to interpret integrals involving the divergence of the Itô noise in
(3). We use it when interpreting the kinetic equation (5) below.

Remark 2.3. For Ft-adapted processes gt ∈ L2(Ω × [0, T ];L2(U)) and ht ∈ L2(Ω × [0, T ];H1(U))
and any t ∈ [0, T ] we define

∫ t

0

∫

U

gs∇ · (hs dξF ) =
∞
∑

k=1

(∫ t

0

∫

U

gsfk∇hs · dBks +

∫ t

0

∫

U

gshs∇fk · dBks
)

.

Remark 2.4. In the model case σ(ρ) = ρ1/2, the first correction term arising in the Itô equation
(3) is 1

8∇ · (F1ρ
−1∇ρ) = 1

8∇ · (F1∇log(ρ)). If the solution ρ approaches 0 at any time the above
term is a singular. In fact it is not even clear how we can define the notion of a weak solution since
we don’t know if log(ρ) is locally integrable.

We now turn our attention to providing the kinetic formulation for the generalised Dean-Kawasaki
equation (3). By now the kinetic formulation is well understood, and for the Dean-Kawasaki equation
the full derivation can be found in Chapter 3 of [FG24]. We briefly describe the motivation below.
Suppose that for a convex function S ∈ C2(R;R) we were interested in properties of functions of
the solution S(ρ), where ρ solves equation (3). To derive the equation satisfied by S(ρ) one applies
Itô’s formula

dS(ρ) = S′(ρ)dρ+
1

2
S′′(ρ)d〈ρ〉.

However, one can not do this directly since ρ is not regular enough to apply Itô’s formula, and
instead we work on the level of the regularised equation.

Definition 2.5 (Regularised equation). The regularised generalised Dean-Kawasaki Equation ρα is
defined for every α ∈ (0, 1) by

∂tρ
α = ∆Φ(ρα) + α∆ρα −∇ · (σ(ρα)ξ̇F + ν(ρα)) +

1

2
∇ · (F1[σ

′(ρα)]2∇ρα + σ′(ρα)σ(ρα)F2). (4)

After obtaining an equation for S(ρα), one aims to re-write the equation in terms of the kinetic
function.

Definition 2.6 (Kinetic function). Given a non-negative solution ρ of equation (3), define the
kinetic function χ : U × [0, T ]× R → {0, 1} by

χ(x, t, ξ) = 1{0≤ξ≤ρ(x,t)}.

The kinetic function can equivalently be viewed as χ : R× R → {0, 1}, χ = χ(ρ, ξ).
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In Lions, Perthame and Tadmor [LPT94] the kinetic function is called the velocity distribution
or velocity profile since there they view ξ as a velocity variable. Here we will adopt the same
nomenclature. By analogy with the theory of gasses, χ can be called a pseudo-Maxwellian. It is not
then difficult to obtain a distributional equation for the kinetic function by using identities such as,
if S(0) = 0,

S(ρ(x, t)) =

∫

R

S′(ξ)χ(x, ξ, t) dξ.

Finally, in taking the regularisation limit (α → 0), one needs to control a term containing α|∇ρα|2
where we have the competing decay of α and divergence of |∇ρα| in the limit. On the level of the
kinetic equation, in the theory of entropy solutions, see for instance Chapter 2 of [CP03], this is
precisely quantified by the kinetic measure q.

Definition 2.7 (Kinetic measure). Let (Ω,F , (Ft)t∈[0,∞),P) be a filtered probability space.
A kinetic measure q is a map from Ω to the set of non-negative, locally finite measures on U ×
(0,∞)× [0, T ] such that, for every ψ ∈ C∞

c (U × (0,∞)) we have

(ω, t) ∈ (Ω, [0, T ]) →
∫ t

0

∫

R

∫

U

ψ(x, ξ) dq(ω)

is Ft predictable.

The resulting equation forms the basis of the definition of stochastic kinetic solution. We en-
capsulate some of the properties of the kinetic measure in points three and four of the definition
below.

Definition 2.8 (Stochastic kinetic solution of (3)). Let ρ0 ∈ L1(Ω;L1(U)) be a non-negative F0

measurable initial condition. A stochastic kinetic solution of (3) is a non-negative, almost surely
continuous L1(U) valued Ft-predictable function ρ ∈ L1(Ω× [0, T ];L1(U)) that satisfies

1. Integrability of flux: we have

σ(ρ) ∈ L2(Ω;L2(U × [0, T ])) and ν(ρ) ∈ L1(Ω;L1(U × [0, T ];Rd)).

2. Boundary condition, local regularity of solution: for each k ∈ N

[(Φ(ρ) ∧ k) ∨ 1/k]− [(f̄ ∧ k) ∨ 1/k] ∈ L2(Ω;L2([0, T ];H1
0 (U))).

Furthermore, there exists a kinetic measure q that satisfies:

3. Regularity: almost surely, in the sense of non-negative measures,

δ0(ξ − ρ)Φ′(ξ)|∇ρ|2 ≤ q on U × (0,∞)× [0, T ].

4. Vanishing at infinity: we have

lim
M→∞

E (q(U × [M,M + 1]× [0, T ])) = 0.

5. The kinetic equation: for every ψ ∈ C∞
c (U × (0,∞)) and every t ∈ (0, T ], almost surely,

∫

R

∫

U

χ(x, ξ, t)ψ(x, ξ) dx dξ =

∫

R

∫

U

χ(x, ξ, t = 0)ψ(x, ξ) dx dξ

−
∫ t

0

∫

U

(

Φ′(ρ)∇ρ+ 1

2
F1[σ

′(ρ)]2∇ρ+ 1

2
σ′(ρ)σ(ρ)F2

)

· ∇ψ(x, ξ)|ξ=ρ dx ds

−
∫ t

0

∫

R

∫

U

dξψ(x, ξ) dq +
1

2

∫ t

0

∫

U

(

σ′(ρ)σ(ρ)∇ρ · F2 + σ(ρ)2F3

)

∂ξψ(x, ρ) dx ds

−
∫ t

0

∫

U

ψ(x, ρ)∇ · (σ(ρ) dξF ) dx−
∫ t

0

∫

U

ψ(x, ρ)∇ · ν(ρ) dx ds. (5)
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We conclude the chapter with a few remarks on the above definition.

Remark 2.9. In the kinetic equation (5) we write ∇ψ(x, ξ)|ξ=ρ to emphasize that we take gradient
in the first component of ψ rather than the full gradient of ψ(x, ρ).
We abuse notation and write ∂ξψ(x, ρ) to mean ∂ξψ(x, ξ)|ξ=ρ.

Remark 2.10. Since we will assume Φ is strictly increasing (Assumption 3.1), the second point
implies that locally ρ ∈ H1(U).

Remark 2.11. In the kinetic equation it’s essential that we integrate against test functions ψ that
are compactly supported in U × (0,∞). Firstly, noting Remark 2.4, the compact support in the
velocity variable ξ ∈ (0,∞) implies that equation (5) needs to hold only away from the zero set of the
solution. Secondly, the compact support in space implies that we can integrate by parts and without
worrying about boundary terms. The velocity and spacial compactness requirement motivates the
introduction cutoff functions in Definition 3.2 that will be present in many of the choices of test
function ψ we make.

3 Uniqueness

In Section 3.1 we begin with some assumptions on the coefficients Φ, ν, σ of equation (3) needed for
uniqueness. The assumptions are the same as in [FG24] and allow us to consider the model cases.
We then introduce smoothing kernels and cutoff functions in Definition 3.2.
The uniqueness is proved in Theorem 3.5. By taking limits of the various convolution kernels and
cutoffs in the correct order, the only difference to the torus, Theorem 4.7 of [FG24], is the need to
bound new terms arising when the gradient hits the spacial cutoff. In the proof we will use a result
bounding the decay of the kinetic measure at zero, Proposition 4.6 of [FG24], which, for convenience,
we prove in the next chapter in Section 4.3.

3.1 Assumptions and definition of convolution kernels and cutoff func-

tions

We begin with the assumptions needed for uniqueness, identical to Assumption 4.1 of [FG24].

Assumption 3.1 (Uniqueness assumptions). Suppose Φ, σ ∈ C([0,∞)) and ν ∈ C([0,∞);Rd)
satisfy the five assumptions:

1. We have Φ, σ ∈ C1,1
loc ([0,∞)) and ν ∈ C1

loc([0,∞);Rd).

2. The function Φ is strictly increasing and starts at 0: Φ(0) = 0 with Φ′ > 0 on (0,∞).

3. At least linear decay of σ2 at 0: There exists a constant c ∈ (0,∞) such that

lim sup
ξ→0+

σ2(ξ)

ξ
≤ c.

In particular this implies that σ(0) = 0.

4. Regularity of oscillations of of σ2 at infinity: There is a c ∈ [1,∞) such that

sup
ξ′∈[0,ξ]

σ2(ξ′) ≤ c(1 + ξ + σ2(ξ)) for every ξ ∈ [0,∞).

5. Regularity of oscillations of of ν at infinity: There is a constant c ∈ [1,∞) such that

sup
ξ′∈[0,ξ]

|ν(ξ′)| ≤ c(1 + ξ + |ν(ξ)|) for every ξ ∈ [0,∞).
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We refer to Remark 4.2 of [FG24] for a comprehensive discussion on the final two assumptions.
The assumptions are satisfied in the case that the functions σ2, ν are increasing, or are uniformly
continuous, or grow linearly at infinity. The assumption is more general than any of the above three
examples and essentially amounts to a restriction on the growth of the magnitude of oscillations,
rather than frequency of oscillations at infinity.
We now define the convolution kernels and cutoff functions required in the uniqueness proof.

Definition 3.2 (Convolution kernels and cutoff functions). • Convolution kernel in space and
velocity: for every ǫ, δ ∈ (0, 1) let κǫd : U → [0,∞) and κδ1 : R → [0,∞) be standard con-
volution kernels/ mollifiers of scale ǫ and δ on U and R respectively. That is to say, let
κd ∈ C∞

c (Rd), κ1 ∈ C∞
c (R) be non-negative and integrate to one. For ǫ, δ ∈ (0, 1) define

κǫd(x) =
1

ǫd
κd

(x

ǫ

)

, κδ1(ξ) =
1

δ
κ1

(

ξ

δ

)

.

Let κǫ,δ be defined by the product

κǫ,δ(x, y, ξ, η) := κǫd(x− y)κδ1(ξ − η), (x − y, ξ, η) ∈ U × R
2.

• Cutoff of small velocity ξ: for every β ∈ (0, 1) let φβ : R → [0, 1] be the unique non-decreasing
piecewise linear function that satisfies

φβ(ξ) = 1 if ξ ≥ β, φβ(ξ) = 0 if ξ ≤ β/2, φ′β =
2

β
1β/2≤ξ≤β .

• Cutoff of large velocity ξ: for every M ∈ N let ζM : R → [0, 1] be the unique non-increasing
piecewise linear function that satisfies

ζM (ξ) = 1 if ξ ≤M, ζM (ξ) = 0 if ξ ≥M + 1, ζ′M = −1M≤ξ≤M+1.

• Spacial cutoff around boundary: for γ sufficiently small (depending on geometry of domain U),
start by introducing the interior regions

Uγ := {x ∈ U : d(x, ∂U) ≥ γ} ⊂ U, ∂Uγ := {x ∈ U : d(x, ∂U) = γ},
where d is the usual Euclidean distance in R

d.
The cutoff function is such that it takes the value 1 in the interior of the domain, 0 along the
boundary, and linearly interpolates between the two. Explicitly we consider the function

ιγ(x) :=
d(x, ∂U) ∧ γ

γ
=

{

1, if d(x, ∂U) > γ,

γ−1d(x, ∂U), if 0 ≤ d(x, ∂U) ≤ γ.
(6)

We will repeatedly use below that for any fixed γ, one can approximate the cutoff function above
by a sequence of compactly supported functions. In this way we may abuse notation and describe
ιγ itself as being compactly supported. Let us now discuss how to define the gradient of the spacial
cutoff.

Remark 3.3 (Derivative of spacial cutoff). To define the spacial derivative of the function ιγ , we
will differentiate the distance function. We know that the distance function is differentiable if and
only if for every x we can find a unique closest point x∗ := Π∂U (x) on the boundary to x. Looking
at the definition of the cutoff (6), we only want to differentiate the distance function for x ∈ U \Uγ,
so it follows that we only need to assume this property for points x sufficiently close to the boundary.
This can be done in any C2 domain, see [Foo84].
In this case, letting vx denote the inward pointing unit normal at the boundary to point x ∈ U , with
x∗ as above, the first derivative is given by

∇ιγ(x) = γ−1 x− x∗

|x− x∗|1U\Uγ
(x) := γ−1vx1U\Uγ

(x),

which in particular implies that the size of the first derivative is of the order γ−1,

|∇ιγ(x)| = γ−1
1U\Uγ

(x).
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3.2 Uniqueness proof

Before proving the uniqueness theorem, we need to prove an integration by parts lemma against the
kinetic function. Since we will only deal with test functions that are compactly supported in space,
the statement reads the same as the torus, see Lemma 4.4 of [FG24]. We will use the lemma with
test function being the convolution kernel ψ = κǫ,δ.

Lemma 3.4 (Integration by parts against kinetic function). Let ψ ∈ C∞
c (U×(0,∞)) be a compactly

supported test function (in both arguments) and χ the kinetic function as defined in Definition 2.7.
Then

∫

R

∫

U

∇xψ(x, ξ)χ(x, ξ, r) dx dξ = −
∫

U

ψ(x, ρ(x, r))∇ρ(x, r) dx.

Proof. Let Ψ : U × (0,∞) → R be a function satisfying ∂ξΨ(x, ξ) = ψ(x, ξ), Ψ(x, 0) = 0. By the
definition of kinetic function, for any r ∈ [0, T ] we have

∫

U

∫

R

∇xψ(x, ξ)χ(x, ξ, r) dξ dx =

∫

U

∫ ρ(x,r)

0

∇xψ(x, ξ) dξ dx

=

∫

U

∫ ρ(x,r)

0

∂ξ∇xΨ(x, ξ) dξ dx

=

∫

U

∇xΨ(x, ρ(x, r)) −∇xΨ(x, 0) dx

=

∫

U

∇Ψ(x, ρ(x, r)) − ∂ξΨ(x, ρ(x, r))∇ρ(x, r) dx

=

∫

∂U

Ψ(x, ρ(x, r)) · η̂ dx−
∫

U

ψ(x, ρ(x, r))∇ρ(x, r) dx,

where the final equality is due to the divergence theorem. Note that the above is an equality
of vectors, the first term on the right hand side in the final line denotes a vector where the i′th
component is the function Ψ dotted with the i′th direction outward pointing unit normal ηi, and it
vanishes due to the compact support of ψ. In the remainder of the paper we write η̂ = (η̂i)

d
i=1 to

denote the outward pointing unit normal at the boundary ∂U .

We are now in a position to prove the uniqueness of stochastic kinetic solutions of (3). For the
proof we will assume the following decay of the kinetic measure at zero, which is proved in Section
4.3.

lim inf
β→0

(

β−1q(U × [β/2, β]× [0, T ])
)

= 0.

Theorem 3.5. Suppose that the coefficients Φ, σ, ν of equation (3) and the coefficients of noise ξF

satisfy Assumptions 2.2, 3.1, and further suppose we have the above decay of the kinetic measure at
zero. Suppose ρ1 and ρ2 are two stochastic kinetic solutions of (3) in the sense of Definition 2.8
with F0−measurable initial data ρ10, ρ

2
0 ∈ L1(Ω;Ent(U)) respectively. Then almost surely

sup
t∈[0,T ]

‖ρ1(·, t)− ρ2(·, t)‖L1(U) ≤ ‖ρ10 − ρ20‖L1(U).

Remark 3.6. • Note that the pathwise contraction property in the equation above implies the
pathwise continuity of solutions with respect to the initial condition. This is a stronger result
than the uniqueness of equation (3).

• The proof follows along the same lines as on the torus, see Theorem 4.7 of [FG24]. Hence in
the proof below we omit the majority of the bounds that just follow from there, instead focusing
our attention on the new terms arising as a result of having to include the spacial cutoff ιγ as
part of the test function.

• In the below proof and throughout the paper we use c to denote a running constant and not
specify what it depends on unless it is important.
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Proof. Let χ1, χ2 be the kinetic functions of ρ1, ρ2 respectively. For every ǫ, δ ∈ (0, 1), i ∈ {1, 2} and
κǫ,δ as in Definition 3.2 define the smoothed kinetic functions

χǫ,δt,i (y, η) := (χi(·, ·, t) ∗ κǫ,δ)(y, η), t ∈ [0, T ], y ∈ U, η ∈ R.

We have by definition of convolution kernels that for x, y ∈ U and for ξ, η ∈ R

∇xκ
ǫ
d(y − x) = −∇yκ

ǫ
d(y − x), ∂ξκ

δ
1(η − ξ) = −∂ηκδ1(η − ξ).

This implies, as a result of the kinetic equation (5), that for every ǫ, δ ∈ (0, 1) there is a subset of
full probability such that we have for every i ∈ {1, 2}, t ∈ [0, T ] and (y, η) ∈ U2ǫ× (2δ,∞) such that
the convolution kernel is compactly supported

χ
ǫ,δ
s,i(y, η)

∣

∣

∣

t

s=0
:= (χi(·, ·, s) ∗ κǫ,δ)(y, η)

∣

∣

∣

t

s=0
:=

∫

R

∫

U

χ
i(x, ξ, s)κǫ,δ(y, x, η, ξ) dx dξ

∣

∣

∣

∣

t

s=0

= ∇y ·

(
∫ t

0

∫

U

(

Φ′(ρi)∇(ρi) +
1

2
F1[σ

′(ρi)]2∇ρi +
1

2
σ
′(ρi)σ(ρi)F2

)

κ
ǫ,δ(y, x, η, ρi) dx ds

)

+ dη

(
∫ t

0

∫

R

∫

U

κ
ǫ,δ(y, x, η, ξ) dqi

)

−
1

2
∂η

(
∫ t

0

∫

U

(

σ
′(ρi)σ(ρi)∇ρi · F2 + σ(ρi)2F3

)

κ
ǫ,δ(y, x, η, ρi) dx ds

)

−

∫ t

0

∫

U

κ
ǫ,δ(x, y, ρ, η)∇ · (σ(ρi) dξF ) dx−

∫ t

0

∫

U

κ
ǫ,δ(x, y, ρ, η)∇ · ν(ρi) dx ds. (7)

To find an expression of the difference in solutions, we want to deal with a regularised version of

∫

U

|ρ1(x, s)− ρ
2(x, s)|dx

∣

∣

∣

∣

t

s=0

=

∫

U

∫

R

χ
1(ξ, ρ(x, s)) + χ

2(ξ, ρ(x, s))− 2χ1(ξ, ρ(x, s))χ2(ξ, ρ(x, s)) dξ dx

∣

∣

∣

∣

t

s=0

.

(8)

We begin by treating the regularised version of the first two terms on the right hand side of equation
(8). Testing equation (7) against smooth approximations of the product of cutoff functions ζMφβιγ ,
which are smooth and compactly supported, and subsequently taking the limit of the approximations
yields

∫

R

∫

U

χ
ǫ,δ
s,i(y, η)ζM (η)φβ(η)ιγ(y) dy dη

∣

∣

∣

∣

t

s=0

=

−

∫

R

∫ t

0

∫

U2

(

Φ′(ρi)∇ρi +
1

2
F1[σ

′(ρi)]2∇ρi +
1

2
σ
′(ρi)σ(ρi)F2

)

κ
ǫ,δ(y, x, η, ρi)ζM (η)φβ(η) · ∇ιγ dy dx ds dη

−

∫ t

0

∫

R2

∫

U2

κ
ǫ,δ(y, x, η, ξ)∂η(ζM (η)φβ(η))ιγ(y) dq

i
dy dη

+
1

2

∫

R

∫ t

0

∫

U2

(

σ
′(ρi)σ(ρi)∇ρi · F2 + σ(ρi)2F3

)

κ
ǫ,δ(y, x, η, ρi)∂η(ζM(η)φβ(η))ιγ(y) dy dx ds dη

−

∫

R

∫ t

0

∫

U2

ζM (η)φβ(η)ιγ(y)κ
ǫ,δ(y, x, η, ρi)∇ · (σ(ρi) dξF ) dy dx ds dη

−

∫

R

∫ t

0

∫

U2

ζM (η)φβ(η)ιγ(y)κ
ǫ,δ(y, x, η, ρi)∇ · ν(ρi) dy dx ds dη.

For convenience we split this up into three parts,

∫

R

∫

U

χǫ,δs,i(y, η)ζM (η)φβ(η)ιγ(y) dy dη

∣

∣

∣

∣

t

s=0

= Ii,cutt + Ii,martt + Ii,const ,

with the cutoff term being the first three lines on the right hand side, the martingale term being
the noise term on the fourth line and the conservative term being the term in the final line. Note in
particular that the first terms on the right hand side containing the derivative of the spacial cutoff
∇ιγ is a new term compared to the torus case which a priori diverges like γ−1.
To obtain an expression for the final term (the mixed term) in (8), we introduce the notation

10



(x, ξ) ∈ U × R for arguments in χ1 and related quantities and (x′, ξ′) ∈ U × R for arguments of χ2

and related quantities. For brevity we also introduce the notation

k̄ǫ,δs,1(x, y, η) := κǫ,δ(x, y, η, ρ1(x, s)), k̄ǫ,δs,2(x
′, y, η) := κǫ,δ(x′, y, η, ρ2(x′, s)).

In the below computations, since we smoothed the kinetic function, we are allowed to use it as part
of an admissible test function. The stochastic product rules tells us that almost surely we have, for
β ∈ (0, 1), M ∈ N, γ sufficiently small depending on the domain U , δ ∈ (0, β/4), ǫ ∈ (0, γ/4),

∫

R

∫

U

χ
ǫ,δ
s,1(y, η)χ

ǫ,δ
s,2(y, η)ζM(η)φβ(η)ιγ(y) dy dη

∣

∣

∣

∣

t

s=0

=

∫ t

0

∫

R

∫

U

(

χ
ǫ,δ
s,1(y, η)dχ

ǫ,δ
s,2(y, η) + χ

ǫ,δ
s,2(y, η)dχ

ǫ,δ
s,1(y, η) + d〈χǫ,δ

1 , χ
ǫ,δ
1 〉s(y, η)

)

ζM (η)φβ(η)ιγ(y) dy dη

=

∫

R

∫

U

(

χ
ǫ,δ
s,1(y, η)

[

χ
ǫ,δ
s,2(y, η)

∣

∣

∣

t

s=0

]

+ χ
ǫ,δ
s,2(y, η)

[

χ
ǫ,δ
s,1(y, η)

∣

∣

∣

t

s=0

]

+
[

〈χǫ,δ
1 , χ

ǫ,δ
2 〉s(y, η)

∣

∣

∣

t

s=0

])

ζM (η)φβ(η)ιγ(y) dy dη. (9)

Using equation (7) we can write the first term on the final line of (9) as
∫

R

∫

U

χ
ǫ,δ
s,1(y, η)

[

χ
ǫ,δ
s,2(y, η)

]∣

∣

∣

t

s=0
ζM (η)φβ(η)ιγ(y) dy dη

=

∫

R

∫

U

ζM (η)φβ(η)ιγ(y)χ
ǫ,δ
s,1(y, η)

[

∇y ·

(
∫ t

0

∫

U

(

Φ′(ρ2)∇ρ2
)

k̄
ǫ,δ
s,2 dx

′
ds

)

+∇y ·

(
∫ t

0

∫

U

(

1

2
F1[σ

′(ρ2)]2∇ρ2 +
1

2
σ
′(ρ2)σ(ρ2)F2

)

k̄
ǫ,δ
s,2 dx

′
ds

)

+ ∂η

(
∫ t

0

∫

R

∫

U

κ
ǫ,δ(x′

, y, ξ, η) dq2
)

−
1

2
∂η

(
∫ t

0

∫

U

(

σ
′(ρ2)σ(ρ2)∇ρ2 · F2 + σ(ρ2)2F3

)

k̄
ǫ,δ
s,2 dx

′

)

ds

−

∫ t

0

∫

U

k̄
ǫ,δ
s,2∇ · (σ(ρ2) dξF ) dx′ −

∫ t

0

∫

U

k̄
ǫ,δ
s,2∇ · ν(ρ2) dx′

ds

]

dy dη.

We integrate by parts and move derivatives onto (smooth approximations of) the product

ζM (η)φβ(η)ιγ(y)χ
ǫ,δ
s,1(y, η), which are smooth, compactly supported so can be done using classical

integration by parts. We use the product rule when integrating in y then the integration by parts
lemma, Lemma 3.4 noting the convolution kernel is compactly supported since y, η ∈ U2ǫ× (2δ,∞):

∇yχ
ǫ,δ
s,1(y, η) :=

∫

R

∫

U

χi(x, ξ, s)∇yκ
ǫ,δ(y, x, η, ξ) dx dξ

= −
∫

R

∫

U

χi(x, ξ, s)∇xκ
ǫ,δ(y, x, η, ξ) dx dξ

= −
∫

U

k̄ǫ,δs,i∇ρi(x, r) dx,

to obtain the decomposition

∫ t

0

∫

R

∫

U

χǫ,δs,1(y, η)dχ
ǫ,δ
s,2(y, η)ζM (η)φβ(η)ιγ(y) dy dη

= I1,2,errt + I1,2,meast + I1,2,cutt + I1,2,martt + I1,2,const .

Adding the term

∫ t

0

∫

R

∫

U3

[Φ′(ρ1)]1/2[Φ′(ρ2)]1/2∇ρ1 · ∇ρ2k̄ǫ,δs,1k̄ǫ,δs,2φβ(η)ζM (η)ιγ(y) dx dx
′ dy dη ds

to the error term and taking it away from the measure term gives for each term separately (note
below that we get an extra spacial and an extra real integral due to the definition of convolution in
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χǫ,δ):

I
1,2,err
t =

−

∫ t

0

∫

R

∫

U3

ζM (η)φβ(η)ιγ(y)Φ
′(ρ2)∇ρ2 · ∇ρ1k̄ǫ,δs,1k̄

ǫ,δ
s,2 dx dx

′
ds dy dη

−

∫ t

0

∫

R

∫

U3

ζM (η)φβ(η)ιγ(y)

(

1

2
F1[σ

′(ρ2)]2∇ρ2 · ∇ρ1 +
1

2
σ
′(ρ2)σ(ρ2)F2 · ∇ρ

1

)

k̄
ǫ,δ
s,1k̄

ǫ,δ
s,2 dx dx

′
ds dy dη

−
1

2

∫ t

0

∫

R

∫

U3

ζM (η)φβ(η)ιγ(y)
(

σ
′(ρ2)σ(ρ2)∇ρ2 · F2 + σ(ρ2)2F3

)

k̄
ǫ,δ
s,2k̄

ǫ,δ
s,1 dx

′
ds dy dη

+

∫ t

0

∫

R

∫

U3

[Φ′(ρ1)]1/2[Φ′(ρ2)]1/2∇ρ1 · ∇ρ2k̄ǫ,δs,1k̄
ǫ,δ
s,2φβ(η)ζM(η)ιγ(y) dx dx dx

′
dy dη ds,

measure term

I1,2,meast =

∫ t

0

∫

R2

∫

U3

ζM (η)φβ(η)ιγ(y)κ
ǫ,δ(x′, y, ξ, η)k̄ǫ,δs,1 dq

2(x′, ξ, s) dx dy dη

−
∫ t

0

∫

R

∫

U3

[Φ′(ρ1)]1/2[Φ′(ρ2)]1/2∇ρ1 · ∇ρ2k̄ǫ,δs,1k̄ǫ,δs,2φβ(η)ζM (η)ιγ(y) dx dx
′ dy dη ds,

cutoff term defined by

I1,2,cutt = −
∫ t

0

∫

R2

∫

U2

∂η(ζM (η)φβ(η))χ
ǫ,δ
s,1(y, η)ιγ(y)κ

ǫ,δ(x′, y, ξ, η) dq2(x′, ξ, s) dy dη

+
1

2

∫ t

0

∫

R

∫

U2

∂η(ζM (η)φβ(η))χ
ǫ,δ
s,1(y, η)ιγ(y)

(

σ′(ρ2)σ(ρ2)∇ρ2 · F2 + σ(ρ2)2F3

)

k̄ǫ,δs,2 dx
′ ds dy dη

−
∫ t

0

∫

R

∫

U2

ζM (η)φβ(η)χ
ǫ,δ
s,1(y, η)∇yιγ(y) ·

(

Φ′(ρ2)∇ρ2 + 1

2
F1[σ

′(ρ2)]2∇ρ2 + 1

2
σ′(ρ2)σ(ρ2)F2

)

× k̄ǫ,δs,2 dx
′ ds dy dη,

martingale term

I1,2,martt = −
∫ t

0

∫

R

∫

U2

k̄ǫ,δs,2ζM (η)φβ(η)ιγ(y)χ
ǫ,δ
s,1(y, η)∇ · (σ(ρ2) dξF ) dx′ dy dη,

and conservative term

I1,2,const = −
∫ t

0

∫

R

∫

U2

k̄ǫ,δs,2ζM (η)φβ(η)ιγ(y)χ
ǫ,δ
s,1(y, η)∇ · ν(ρ2) dx′ ds dy dη.

Note again that the challenge arises from the final line of the cutoff term involving the derivative
∇ιγ . An analogous decomposition holds for the second term on the right hand side of (9). We denote
error, measure, cutoff, martingale and conservative terms of the second term up to time t ∈ [0, T ] by
I2,1,·t , where we again artificially add an error term and subtract it from the measure term. Finally
we deal with the quadratic variation term in equation (9). Let’s begin by noticing, using Definition
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2.1 of the noise ξF , that formally

d〈χǫ,δ·,1 , χ
ǫ,δ
·,2 〉s(y, η) := d〈(χ1 ∗ κǫ,δ), (χ2 ∗ κǫ,δ)〉s(y, η)

=

∫

U2

∫

R2

d〈χ1, χ2〉sκǫ,δs,1(y, x, η, ξ)κǫ,δs,2(y, x′, η, ξ′) dξ dξ′ dx dx′

=

∫

U2

∫

R2

δ0(ξ − ρ1)δ0(ξ
′ − ρ2)∇ ·

(

σ(ρ1)

∞
∑

k=1

fk(x)dB
k
s

)

∇ ·



σ(ρ2)

∞
∑

j=1

fj(x
′)dBjs





× κǫ,δs,1(x, y, ξ, η)κ
ǫ,δ
s,2(x

′, y, ξ′, η) dξ dξ′ dx dx′

=

∞
∑

j,k=1

∫

U2

(

fkσ
′(ρ1)∇ρ1 + σ(ρ1)∇fk

) (

fjσ
′(ρ2)∇ρ2 + σ(ρ2)∇fj

)

d〈Bk· , Bj· 〉sk̄ǫ,δs,1k̄ǫ,δs,2dxdx′

=
∞
∑

k=1

∫

U2

(

fkσ
′(ρ1)∇ρ1 + σ(ρ1)∇fk

) (

fjσ
′(ρ2)∇ρ2 + σ(ρ2)∇fj

)

k̄ǫ,δs,1k̄
ǫ,δ
s,2 dx dx

′ ds.

The above can be made rigorous by integrating against smooth approximations of the product
φβζM ιγ and rather than the multiplication of delta functions, and using the integration by parts
lemma, Lemma 3.4. One obtains

∫ t

0

∫

R

∫

U

d〈χǫ,δ·,1 , χ
ǫ,δ
·,2 〉s(y, η)φβ(η)ζM (η)ιγ(y) dy dη

=
∞
∑

k=1

∫ t

0

∫

R

∫

U3

(

fkσ
′(ρ1)∇ρ1 + σ(ρ1)∇fk

)

·
(

fjσ
′(ρ2)∇ρ2 + σ(ρ2)∇fj

)

× k̄ǫ,δs,1k̄
ǫ,δ
s,2φβ(η)ζM (η)ιγ(y) dx dx

′ dy dη ds.

Putting this together, it follows from equation (9) and the subsequent above computations that we
have the decomposition:

∫

R

∫

U

χǫ,δs,1(y, η)χ
ǫ,δ
s,2(y, η)ζM (η)φβ(η)ιγ(y) dy dη

∣

∣

∣

∣

t

s=0

= Ierrt + Imeast + Imix,cutt + Imix,martt + Imix,const . (10)

We put all four terms from the quadratic variation term into the error term and regroup the terms.
Note that the addition of the artificial term in terms I1,2,err and I2,1,err factorises with a term
from the quadratic variation and allows it to be controlled, for more detail see equation (4.24)
and subsequent computations in [FG24]. Similarly, the measure term just arises from the first two
components of (9),

Imeast = I1,2,meast + I2,1,meast .

The contribution from the mixed term (third term of (8)) in the cutoff, martingale and conservative
terms just comes from the sum of the first two terms of equation (9) and are denoted as mixed terms
above in (10). Finally, we return back to the equation of interest that governs the L1 difference of
two solutions, equation (8). One has the decomposition

∫

R

∫

U

(

χǫ,δs,1 + χǫ,δs,2 − 2χǫ,δs,1χ
ǫ,δ
s,2

)

φβζM ιγ

∣

∣

∣

∣

t

s=0

= −2Ierrt − 2Imeast + Imartt + Icutt + Iconst . (11)

The error and measure term were defined above and arise solely from the mixed term (10), the final
term on the left hand side of (11). The martingale, cutoff and conservative terms arise from all
three terms in the left hand side of equation (11),

Imart,cut,const = I1,mart,cut,const + I2,mart,cut,const − 2Imix,mart,cut,const .
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Let us deal with each term on the right hand side of (11) separately.
Measure term.

Firstly, by Hölder’s inequality and the regularity property (point three) in Definition 2.8 of stochastic
kinetic solution, we have

Imeast ≥ 0.

Error term.

Following the computations from equation (4.24) to (4.26) of [FG24], we have

lim sup
δ→0

(

lim sup
ǫ→0

|Ierrt |
)

= 0.

Cutoff term.

We have for every β ∈ (0, 1),M ∈ N, γ > 0 sufficiently small, δ ∈ (0, β/4), ǫ ∈ (0, γ/4) that for every
t ∈ [0, T ],

Icutt := I1,cutt + I2,cutt − 2Imix,cutt

=

∫ t

0

∫

R2

∫

U2

κǫ,δ(y, x, η, ξ)∂η(ζM (η)φβ(η))ιγ(y)(−1 + 2χǫ,δs,2) dq
1(x, ξ, s) dy dη

+
1

2

∫

R

∫ t

0

∫

U2

(

σ′(ρ1)σ(ρ1)∇ρ1 · F2 + σ(ρ1)2F3

)

k̄ǫ,δs,1(1− 2χǫ,δs,2)∂η(ζM (η)φβ(η))ιγ(y) dy dx ds dη

+

∫ t

0

∫

R2

∫

U2

κǫ,δ(y, x′, η, ξ)∂η(ζM (η)φβ(η))ιγ(y)(−1 + 2χǫ,δs,1) dq
2(x′, ξ, s) dy dη

+
1

2

∫

R

∫ t

0

∫

U2

(

σ′(ρ2)σ(ρ2)∇ρ2 · F2 + σ(ρ2)2F3

)

k̄ǫ,δs,2(1− 2χǫ,δs,1)∂η(ζM (η)φβ(η))ιγ(y) dy dx ds dη

+

∫

R

∫ t

0

∫

U2

(

Φ′(ρ1)∇ρ1 + 1

2
F1[σ

′(ρ1)]2∇ρ1 + 1

2
σ′(ρ1)σ(ρ1)F2

)

× k̄ǫ,δs,1ζM (η)φβ(η) · ∇ιγ(y)(−1 + 2χǫ,δs,2) dy dx ds dη

+

∫

R

∫ t

0

∫

U2

(

Φ′(ρ2)∇ρ2 + 1

2
F1[σ

′(ρ2)]2∇ρ2 + 1

2
σ′(ρ2)σ(ρ2)F2

)

× k̄ǫ,δs,2ζM (η)φβ(η) · ∇ιγ(y)(−1 + 2χǫ,δs,1) dy dx
′ ds dη.

(12)

Let us begin by bounding the final two lines of Icutt above, comprising of the new terms involving
gradients of the spacial cutoff. We take the ǫ, δ → 0 limits first and use the distributional inequality
for i, j ∈ {1, 2},

lim
ǫ,δ→0

k̄ǫ,δs,i (x, y, η, ρ)(−1 + 2χǫ,δs,j(y, η)) → δ0(x− y)δ0(η − ρi)sgn(ρj − η)

= δ0(x− y)δ0(η − ρi)sgn(ρj − ρi). (13)

This means that the final two lines of the cutoff (12) can be realised in the ǫ, δ → 0 as

∫ t

0

∫

U

(

Φ′(ρ1)∇ρ1 + 1

2
F1[σ

′(ρ1)]2∇ρ1 + 1

2
σ′(ρ1)σ(ρ1)F2

)

× ζM (ρ1)φβ(ρ
1) · ∇ιγ(y)sgn(ρ2 − ρ1) dy ds

+

∫ t

0

∫

U2

(

Φ′(ρ2)∇ρ2 + 1

2
F1[σ

′(ρ2)]2∇ρ2 + 1

2
σ′(ρ2)σ(ρ2)F2

)

× ζM (ρ2)φβ(ρ
2) · ∇ιγ(y)sgn(ρ1 − ρ2) dy ds. (14)

The terms of the two lines are combined using the fact that sgn(ρ1 − ρ2) = −sgn(ρ2 − ρ1).
We will deal with terms that have a factor of ∇ρ and terms that do not separately. Let’s consider the

14



first terms in both the lines of (14). Start by defining the function ΦM,β to be the unique function
such that ΦM,β(0) = 0 and

Φ′
M,β(ξ) = ζM (ξ)φβ(ξ)Φ

′(ξ) ≥ 0.

This says that the function ΦM,β is non-decreasing. Hence, with the convention that sgn(0) = 1,
using Remark 3.3 to define the spacial derivative of the cutoff, the notation vy := y−y∗

|y−y∗| for the inward

pointing unit normal, and the fundamental theorem of calculus, we can show that the difference of
the first terms of (14) is non-negative

−
∫ t

0

∫

U

(

∇ΦM,β(ρ
2)−∇ΦM,β(ρ

1)
)

· ∇ιγ(y) sgn(ρ2 − ρ1) dy ds

= −
∫ t

0

∫

U

(

∇ΦM,β(ρ
2)−∇ΦM,β(ρ

1)
)

· ∇ιγ(y) sgn(ΦM,β(ρ
2)− ΦM,β(ρ

1)) dy ds

= −
∫ t

0

∫

U

∇|ΦM,β(ρ
2)− ΦM,β(ρ

1)| · ∇ιγ(y) dy ds

= −γ−1

∫ t

0

∫

U\Uγ

∇|ΦM,β(ρ
2)− ΦM,β(ρ

1)| · vy dy ds

= −γ−1

∫ t

0

∫ γ

0

∫

∂Uz

∇|ΦM,β(ρ
2(y∗ + zvy, s))− ΦM,β(ρ

1(y∗ + zvy, s))| · vy dy dz ds

= −γ−1

∫ t

0

∫ γ

0

∫

∂Uz

∂

∂z
|ΦM,β(ρ

2(y∗ + zvy, s))− ΦM,β(ρ
1(y∗ + zvy, s))| dy dz ds

= γ−1

∫ t

0

∫

∂U

|ΦM,β(ρ
2)− ΦM,β(ρ

1)| − γ−1

∫ t

0

∫

∂Uγ

|ΦM,β(ρ
2)− ΦM,β(ρ

1)| ≤ 0. (15)

The first term on the final line vanishes since the solutions coincide on the boundary, and the second
term is non-positive because the integrand is clearly non-negative for every fixed γ > 0. By repeating
the same arguments, noting that 1

2F1(σ
′(ρ2))2 ≥ 0, one can conclude that the combination of second

terms of (14) are non-positive for every γ > 0. For the final term of (14), we have by Remark 3.3
as well as by the boundedness of F2 and sgn

1

2

∫ t

0

∫

U

(

σ′(ρ2)σ(ρ2)ζM (ρ2)φβ(ρ
2)− σ′(ρ1)σ(ρ1)ζM (ρ1)φβ(ρ

1)
)

sgn(ρ2 − ρ1)F2 · ∇ιγ(y) dy ds

≤ cγ−1

∫ t

0

∫

U

∣

∣σ′(ρ2)σ(ρ2)ζM (ρ2)φβ(ρ
2)− σ′(ρ1)σ(ρ1)ζM (ρ1)φβ(ρ

1)
∣

∣

1U\Uγ
(y) dy ds.

For ease of notation, for every M,β define the function GM,β by GM,β(ξ) = σ′(ξ)σ(ξ)ζM (ξ)φβ(ξ),
which is bounded and Lipschitz due to the fact that σ and σ′ are locally lipschitz, and also it is
clearly zero outside [β/2,M+1]. For every y ∈ U sufficiently close to the boundary (i.e. γ sufficiently
small above) let y∗ = y∗(y) denote the unique closest point on the boundary to y. For i = 1, 2 we
denote ρi(y∗) := Φ−1

(

f̄(y∗)
)

and ρiM,β(y
∗) := (ρi(y∗)∨ β/2)∧ (M +1) for y∗ ∈ ∂U . By adding and

subtracting this boundary data, the triangle inequality and Lipschitz property of GM,β, we have

cγ−1

∫ t

0

∫

U\Uγ

∣

∣σ′(ρ2)σ(ρ2)ζM (ρ2)φβ(ρ
2)− σ′(ρ1)σ(ρ1)ζM (ρ1)φβ(ρ

1)
∣

∣ dy ds

≤ cγ−1

∫ t

0

∫

U\Uγ

(

|GM,β(ρ
2)−GM,β(ρ

2(y∗))|+ |GM,β(ρ
1(y∗))−GM,β(ρ

1)|
)

dy ds

≤ cγ−1

∫ t

0

∫

U\Uγ

(

|ρ2M,β(y, s)− ρ2M,β(y
∗, s)|+ |ρ1M,β(y

∗, s)− ρ1M,β(y, s)|
)

dy ds. (16)

Both of the above terms can be handled in the same way. Write for i = 1, 2, fixed distance from the
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boundary γ′ ∈ (0, γ), fixed time s ∈ [0, t], and for running constant c ∈ (0,∞),

∫

∂Uγ′

|ρiM,β(y, s)− ρiM,β(y
∗, s)| =

∫

∂Uγ′

∣

∣

∣

∣

∣

∫ γ′

0

∇ρiM,β (y
∗ + zvy, s) dz

∣

∣

∣

∣

∣

≤
∫

U\Uγ′

|∇ρiM,β(y, s)| dy

≤ |U \ Uγ′|1/2 ‖∇ρiM,β‖L2(U\Uγ′ )

≤ c(γ′)1/2 ‖∇ρiM,β‖L2(U\Uγ′ )

≤ c(γ′)1/2 ‖∇ρiM,β‖L2(U),

where in the final line we made the norm independent of γ′. We therefore bound the terms of (16)
by

c γ−1

∫ t

0

∫

U\Uγ

|ρiM,β(y, s)− ρiM,β(y
∗)| dy ds = c γ−1

∫ t

0

∫ γ

0

∫

∂Uγ′

|ρiM,β(y, s)− ρiM,β(y
∗)| dy dγ′ ds

≤ c γ−1

∫ t

0

‖∇ρiM,β‖L2(U)

(∫ γ

0

√

γ′ dγ′
)

ds

≤ c γ1/2‖∇ρiM,β‖L1([0,t];L2(U)),

which converges to 0 as γ → 0 for fixed M,β. Therefore we managed to show that the final two
lines of the cutoff (12) consisting of the new terms are non-positive in the γ → 0 limit. The below is
an important point about the remaining cutoff terms, as well as martingale and conservative terms
that are yet to be analysed.
Following the computations in the uniqueness proof in [FG24], the terms involving F2 in the second
and fourth lines of the cutoff term (12), as well as martingale and conservative terms are handled
by integration by parts. More precisely the ǫ, δ limits are taken first, then integration by parts is
performed before taking M,β limits. On the bounded domain, the presence of a spacial cutoff ιγ
leads to additional terms with factors ∇ιγ when integrating by parts. We emphasize that these new
terms can be bounded in a similar way to the third term in (14). We will explain how to bound
these terms, which will allow us to conclude.
Firstly, to bound the terms involving F2 in the second and fourth line of (12), analogously to above,
in the ǫ, δ → 0 limit we use the distributional equality (13), followed by the equality sgn(ρ1 − ρ2) =
−sgn(ρ2 − ρ1) and finally the product rule to evaluate the derivative of the cutoffs to get

lim
ǫ,δ→0

(

1

2

∫

R

∫ t

0

∫

U2

σ′(ρ1)σ(ρ1)∇ρ1 · F2k̄
ǫ,δ
s,1(1− 2χǫ,δs,2)∂η(ζM (η)φβ(η)) ιγ(y) dy dx ds dη

+
1

2

∫

R

∫ t

0

∫

U2

σ′(ρ2)σ(ρ2)∇ρ2 · F2k̄
ǫ,δ
s,2(1− 2χǫ,δs,1)∂η(ζM (η)φβ(η)) ιγ(y) dy dx ds dη

)

=
1

2

∫ t

0

∫

U

(

σ′(ρ2)σ(ρ2)∇ρ2 − σ′(ρ1)σ(ρ1)∇ρ1
)

· F2∂η(ζM (η)φβ(η))sgn(ρ
2 − ρ1) ιγ dx ds

=
1

4

∫ t

0

∫

U

(

∇σ2(ρ2)−∇σ2(ρ1)
)

· F2

(

1M<ρ<M+1 + β−1
1β/2<ρ<β

)

sgn(ρ2 − ρ1) ιγ dx ds

=
1

4β

∫ t

0

∫

U

∇
(

σ2
((

ρ2 ∨ β
)

∧ β/2
)

− σ2
((

ρ1 ∨ β
)

∧ β/2
))

· F2sgn(ρ
2 − ρ1) ιγ dx ds

+
1

4

∫ t

0

∫

U

∇
(

σ2
((

ρ2 ∨ (M + 1)
)

∧M
)

− σ2
((

ρ1 ∨ (M + 1)
)

∧M
))

· F2sgn(ρ
2 − ρ1) ιγ dx ds.

Note that σ2 is not necessarily increasing, so we can’t use that sgn(ρ2 − ρ1) = sgn(σ2(ρ2)− σ2(ρ1))
as in (15). Instead we smooth out the sign function by writing sgnδ := sgn ∗ κδ1 for δ ∈ (0, 1) before
integrating by parts. The terms involving M are handled in the same way as the terms involving
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β, so we illustrate how to handle the β term. For convenience introduce the shorthand notation
ρiβ(x, t) :=

(

ρi(x, t) ∨ β
)

∧ β/2 for i = 1, 2, (x, t) ∈ U × [0, T ]. The terms involving β can be written
as

1

4β

∫ t

0

∫

U

∇
(

σ2(ρ2β)− σ2(ρ1β)
)

· F2sgn(ρ
2 − ρ1)ιγ dx ds

= lim
δ→0

1

4β

∫ t

0

∫

U

∇
(

σ2(ρ2β)− σ2(ρ1β)
)

· F2sgn
δ(ρ2 − ρ1)ιγ dx ds

= − lim
δ→0

1

4β

∫ t

0

∫

U

(

σ2(ρ2β)− σ2(ρ1β)
)

∇ · F2sgn
δ(ρ2 − ρ1)ιγ dx ds

− lim
δ→0

1

4β

∫ t

0

∫

U

(

σ2(ρ2β)− σ2(ρ1β)
)

∇(ρ2 − ρ1) · F2(sgn
δ)′(ρ2 − ρ1)ιγ dx ds

− lim
δ→0

1

4β

∫ t

0

∫

U

(

σ2(ρ2β)− σ2(ρ1β)
)

∇ιγ · F2 sgn
δ(ρ2 − ρ1) dx ds.

For the first two terms we can directly take the γ → 0 limit since the cutoff converges point-wise to 1
and so they can be handled analogously as on the torus, see the computation leading from equation
(4.28) to equation (4.31) in [FG24]. We only need to consider the final term involving the gradient
of spacial cutoff, which we can bound in an analogous way to the final term in equation (14) after
realising that σ2(·∨β∧β/2) is Lipschitz for every fixed β > 0, F2 and sgnδ are bounded, and noting
we take γ → 0 limit before M and β limits.
To show that the first and third lines of the cutoff term (12) vanish we use precisely the decays of
the kinetic measure at zero and infinity. Putting (12) and subsequent computations together, we
conclude

lim
M→∞,β→0

lim
γ→0

lim
ǫ,δ→0

Icutt ≤ 0.

Martingale term.

Following the analysis from equation (4.27) to (4.36) presented in [FG24], we have that, for the
unique function ΘM,β : [0,∞) → [0,∞) defined by ΘM,β(0) = 0, Θ′

M,β(ξ) = φβ(ξ)ζM (ξ)σ′(ξ)

lim
ǫ,δ→0

Imartt =

∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ∇ ·
((

ΘM,β(ρ
1)−ΘM,β(ρ

2)
)

dξF
)

+

∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ
(

φβ(ρ
1)ζM (ρ1)σ(ρ1)−ΘM,β(ρ

1)
)

∇ · dξF

−
∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ
(

φβ(ρ
2)ζM (ρ2)σ(ρ2)−ΘM,β(ρ

2)
)

∇ · dξF .

The final two terms can be handled directly as in [FG24] by first directly taking the γ → 0 limit.
For the first term, using again the regularisation of the sign function and subsequently integrating
by parts gives two terms. When the derivative hits the regularised sign, the term can be handled in
the same way as [FG24] after immediately taking the γ → 0 limit, and we get a new term when the
derivative hits the spacial cutoff,

∫ t

0

∫

U

sgnδ(ρ2 − ρ1)
(

(ΘM,β(ρ
1)−ΘM,β(ρ

2)
)

∇ιγ · dξF .

By using the Burkholder-Davis-Gundy inequality (see for example Theorem 4.1 of [RY13]), the
boundedness of the sgnδ as well as the bound on the derivative of the spacial cutoff given in Remark
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3.3, we have

E

(

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

∫

U

sgnδ(ρ2 − ρ1)
(

(ΘM,β(ρ
1)−ΘM,β(ρ

2)
)

∇ιγ · dξF
∣

∣

∣

∣

)

≤ cE

(

∫ T

0

(∫

U

sgnδ(ρ2 − ρ1)
(

(ΘM,β(ρ
1)−ΘM,β(ρ

2)
)

|∇ιγ |
)2

ds

)1/2

≤ cγ−1
E

(

∫ T

0

(∫

U

∣

∣(ΘM,β(ρ
1)−ΘM,β(ρ

2)
∣

∣

1U\Uγ

)2

ds

)1/2

.

The inner spacial integral is handled in an analogous way to the final term of (14) after once again
noticing ΘM,β is Lipschitz due to the cutoffs. By Young’s inequality we can write

E

(

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

∫

U

sgn(ρ2 − ρ1)
(

(ΘM,β(ρ
1)−ΘM,β(ρ

2)
)

∇ιγ · dξF
∣

∣

∣

∣

)

≤ cγ−1
E





∫ T

0

(

2
∑

i=1

‖∇ρiM,β‖L2(U)γ
3/2

)2

ds





1/2

≤ cγ1/2
2
∑

i=1

E‖∇ρiM,β‖L2([0,T ];L2(U)).

The final term converges to zero in the γ → 0 limit for fixed M,β. This implies almost sure
convergence of this new term along a sub-sequence, that is

lim
M→∞,β→0

(

lim
γ→0

(

lim
ǫ,δ→0

Imartt

))

= 0.

Conservative term.

The same arguments as the martingale term, in particular equation (4.31) to (4.35) of [FG24], also
apply here. After again taking the ǫ, δ limit we have

lim
ǫ,δ→0

Iconst =

∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ
(

∇ · ν(ρ1)ζMφβ(ρ1)−∇ · ν(ρ2)ζMφβ(ρ2)
)

.

First define the Lipschitz vector valued function ΨM,β,ν = (ΨM,β,ν,i)
d
i=1 such that for ν = (νi)

d
i=1

ΨM,β,ν,i(0) = 0,
∂ΨM,β,ν,i

∂xi
(ξ) =

∂2νi
∂x2i

(ξ)φβ(ξ)ζM (ξ).

Then with a similar re-writing as the martingale term, we have

lim
ǫ,δ→0

Iconst =

∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ∇ ·
(

ΨM,β,ν(ρ
1)−ΨM,β,ν(ρ

2)
)

+

∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ
(

∇ · ν(ρ1)ζMφβ(ρ1)−∇ ·ΨM,β,ν(ρ
1)
)

−
∫ t

0

∫

U

sgn(ρ2 − ρ1)ιγ
(

∇ · ν(ρ2)ζMφβ(ρ2)−∇ ·ΨM,β,ν(ρ
2)
)

.

The final two terms can be handled analogously to the final two terms appearing in the martingale
term after taking a γ → 0 limit. The first term can be handled using integration by parts, analogous
to the martingale term as shown above. Here we use the L1(U) integrability of ν(ρ) and the final
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assumption of Assumption 3.1 to apply the dominated convergence theorem, and conclude that
along subsequences

lim
M→∞,β→0

(

lim
γ→0

(

lim
ǫ,δ→0

Iconst

))

= 0.

Conclusion.

Putting everything together we get from (11) and subsequent handling of each term, that there are
random sub-sequences ǫ, δ, β, γ → 0, M → ∞ along which

∫

R

∫

U

|χ1
s − χ2

s|2
∣

∣

∣

∣

t

s=0

= lim
β→0,M→∞

lim
γ→0

lim
ǫ,δ→0

∫

R

∫

U

|χǫ,δs,1 − χǫ,δs,2|2φβζM ιγ
∣

∣

∣

∣

t

s=0

= lim
β→0,M→∞

lim
γ→0

lim
ǫ,δ→0

(

−2Ierrt − 2Imeast + Imartt + Icutt + Iconst + Iboundt

)

≤ 0.

This implies that
∫

U

|ρ1(·, t)− ρ2(·, t)| =
∫

R

∫

U

|χ1
t − χ2

t |2 ≤
∫

R

∫

U

|χ1
0 − χ2

0|2 =

∫

U

|ρ10 − ρ20|.

4 Existence

In this chapter we construct a stochastic kinetic solution of the generalised Dean-Kawasaki Equation
(3) in the sense of Definition 2.8. The existence consists of three steps. Firstly, in Section 4.1 we
will prove L2(U) energy estimates for a suitable regularised version of (3). To do this we will use
the regularised equation (4) and smooth the non-linearity σ. We then proceed to prove further
space-time regularity results for weak solutions of the regularised equation.
As an aside, in 4.2 is dedicated to proving an entropy estimate for the equation and a localised
version of this argument helps us to prove a statement about the Kinetic measure at zero in Section
4.3. For all of the energy estimates we will need to introduce harmonic PDE’s (for example in
Definitions 4.8 and 4.22) that allow certain functions to vanish along the boundary when applying
Itô’s formula.
The second and third steps are analogous to Chapter 5 of [FG24], and so we are brief in their
presentation. For the second step, in the first part of Section 4.4 we show that there exists a
stochastic kinetic solution to the regularised equation. Since all the coefficients are regular, the
proof follows by a projection argument, where the projected system is just a finite dimensional
system of stochastic differential equations and so has a unique strong solution. The final step,
illustrated in the latter half of Section 4.4, requires us to pass to the limit in the regularisation.

4.1 A priori estimates for the regularised equation

In this section we start with some definitions as well as stating the relevant assumptions needed for
uniqueness. The main result of the section is the subsequent L2(U) energy estimate of the regularised
equation in Proposition 4.14. We conclude by proving some higher order spacial regularity of the
solution in Corollary 4.15 and higher order space-time regularity of the solution cutoff away from
zero in Proposition 4.18 that will be essential in the tightness arguments.
The estimates will be proven with respect to the regularised equation (4), which we recall is given
by

∂tρ
α = ∆Φ(ρα) + α∆ρα −∇ · (σ(ρα)ξ̇F + ν(ρα)) +

1

2
∇ · (F1[σ

′(ρα)]2∇ρα + σ′(ρα)σ(ρα)F2),

defined for α ∈ (0, 1) with boundary condition Φ(ρα) = f̄ . For ease of notation when proving
estimates about the regularised equation we denote the regularised equation by ρ instead of ρα.
Motivated with trying to write the factor Φ′(ρ)|∇ρ|2 in the regularised kinetic measure as a single
gradient term, we introduce the below auxiliary function.
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Definition 4.1 (Auxiliary function corresponding to Φ). Let Φ be any C([0,∞)]) ∩ C1
loc(0,∞)

function that is strictly increasing with Φ(0) = 0. Define ΘΦ ∈ C([0,∞)]) ∩ C1
loc(0,∞) to be the

unique function satisfying ΘΦ(0) = 0 and

Θ′
Φ(ξ) = (Φ′(ξ))1/2.

We now state the assumptions needed for existence. Some of the assumptions overlap with the
uniqueness assumptions, Assumption 3.1.

Assumption 4.2 (Existence assumptions). Suppose Φ, σ ∈ C([0,∞)) ∩ C1
loc((0,∞)) and ν ∈

C([0,∞);Rd) ∩ C1
loc((0,∞);Rd) satisfy the six assumptions in the same spirit as Assumption 5.2

of [FG24]:

1. We have Φ(0) = σ(0) = 0 and Φ′ > 0 on (0,∞).

2. There exists constants m ∈ (0,∞), c ∈ (0,∞) such that for every ξ ∈ [0,∞)

Φ(ξ) ≤ c(1 + ξm).

3. There is a constant c ∈ (0,∞) such that, we have for every ξ ∈ [0,∞)

Φ′(ξ) ≤ c(1 + ξ +Φ(ξ)).

4. For ΘΦ defined in Definition 4.1, we have that either for constants c ∈ (0,∞) and θ ∈ [0, 1/2]
that for every ξ ∈ (0,∞),

(Θ′
Φ(ξ))

−1 := Φ′(ξ)−1/2 ≤ cξθ, (17)

or we have constants c ∈ (0,∞), q ∈ [1,∞) such that for every ξ, η ∈ [0,∞)

|ξ − η|q ≤ c|ΘΦ(ξ)−ΘΦ(η)|2. (18)

5. For a constant c ∈ (0,∞) and every ξ ∈ [0,∞) we have

σ2(ξ) ≤ c(1 + ξ +Φ(ξ)).

6. For each δ ∈ (0, 1) there is a constant cδ ∈ (0,∞) such that for every ξ ∈ (δ,∞),

(σ′(ξ))4

Φ′(ξ)
≤ cδ(1 + ξ +Φ(ξ)).

Furthermore we have the additional new assumptions, used to bound new boundary terms that
arise in the estimates:

7. For a constant c ∈ (0,∞) and every ξ ∈ (0,∞) we have

ΘΦ(ξ) ≥ c(ξ
m+1

2 − 1).

8. There is a constant c ∈ (0,∞) such that for every ξ ∈ [0,∞)

|ν(ξ)|2 + |σ(ξ)σ′(ξ)|2 ≤ c(1 + ξ +Φ(ξ)).

9. The anti-derivative of ν, defined element-wise for i = 1, . . . , d, by Θν,i(0) = 0, Θ′
ν,i(ξ) = νi(ξ)

satisfies for i = 1 . . . , d that Θν,i(Φ
−1(f̄)) · η̂i ∈ L1(∂U), where f̄ is the boundary condition for

the regularised equation.

10. We have σ2(Φ−1(f̄)) ∈ L1(∂U).
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11. Either f̄ is constant, or for the unique function Ψσ defined by Ψσ(1) = 0, Ψ′
σ(ξ) = F1[σ

′(ξ)]2,
we have

f̄ ∈ L2(∂U), Φ−1(f̄) ∈ L2(∂U), Ψσ(Φ
−1(f̄)) ∈ L2(∂U).

Remark 4.3. The fourth point in the above assumption enables us to consider Φ(ξ) = ξm for every

m ∈ (0,∞). If m < 1 then Φ′(ξ)−1/2 = m−1/2ξ
1−m

2 so satisfies (17). On the other hand, if m ≥ 1

then by Remark 4.4 we have c|ΘΦ(ξ)−ΘΦ(η)|2 = cm|ξm+1
2 −ηm+1

2 |2 so satisfies (18) with q = m+1.

Remark 4.4 (Growth assumption on ΘΦ). The lower bound on the growth of ΘΦ in point seven
of the above assumption is essential for obtaining Lk(U) estimates of the solution in Proposition
4.12 below. Formally, one should think that in order to obtain Lk(U) estimates for the solution, one
needs to harness the additional regularity in equation (4) coming from when the Laplacian acts on
Φ(ρ) = ρm. In the model case Φ′(ξ) = mξm−1 and so the assumption is satisfied since

ΘΦ(ξ) = m1/2

∫ ξ

0

η(m−1)/2 dη =
2m1/2

m+ 1
ξ(m+1)/2.

Remark 4.5 (Constraint on boundary conditions). For the final assumption in the final point, we
have in the model case that Ψσ(ξ) ∼ log(ξ). Hence the assumption still enables us to handle boundary
data f̄ that is constant or uniformly bounded away from zero.

We once again need to deal with singularities from the Itô to Stratonovich conversion and en-
sure the integrals below are well defined, so need the below assumption smoothing σ. We state
it as a separate assumption since it is not necessary and will subsequently be dispensed of via an
approximation argument in Lemma 4.32.

Assumption 4.6. Let σ ∈ C([0,∞)) ∩ C∞((0,∞)) with σ(0) = 0 and σ′ ∈ C∞
c ([0,∞)).

For the regularised equation with smoothed σ we can make sense of a weak solution:

Definition 4.7 (Weak solution of regularised equation (4)). Let ξF ,Φ, σ and ν satisfy Assumptions
2.2, 4.2 and 4.6. Let further ρ0 ∈ L2(Ω;L2(U)) be non-negative and F0 measurable. A weak
solution ρ of (4) with initial condition ρ0 is a continuous L2(U) valued, non-negative Ft-predictable
process such that ρ− g ∈ L2([0, T ];H1

0 (U)) and ΘΦ(ρ) ∈ L2([0, T ];H1(U)), and such that for every
ψ ∈ C∞

c (U), almost surely for every t ∈ [0, T ],

∫

U

ρ(x, t)ψ(x) dx =

∫

U

ρ0ψ dx−
∫ t

0

∫

U

Φ′(ρ)∇ρ · ∇ψ dxdt − α

∫ t

0

∫

U

∇ρ · ∇ψ dxdt

+

∫ t

0

∫

U

ν(ρ) · ∇ψ dxdt+
∫ t

0

∫

U

σ(ρ)∇ψ · dξF dt

− 1

2

∫ t

0

∫

U

F1(σ
′(ρ))2∇ρ · ∇ψ dxdt− 1

2

∫ t

0

∫

U

σ(ρ)σ′(ρ)F2 · ∇ψ dxdt.

We introduce two PDEs that will allow us to avoid boundary terms in our energy estimate,
Proposition 4.14.

Definition 4.8 (The PDEs g and hM ). Let f̄ be the boundary condition in the regularised equation
(4). Define g : U → R to be the below harmonic function that captures the regularity of the solution
on the boundary

{

−∆g = 0 on U,

g = Φ−1(f̄) on ∂U.

For the function SM : [0,∞) → [0,∞) satisfying S′′
M (ξ) = 1M1<ξ<M2(ξ) with 0 < M1 < M2, define

hM : U → R to be the below harmonic function satisfying
{

−∆hM = 0 on U,

hM = S′
M (Φ−1(f̄)) on ∂U.
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Note that S′
M is [0,M2 −M1]−valued, and therefore by the maximum principle hM is bounded

by M2 −M1. Before stating the assumption we will need on g, we first state an important remark
motivating the harmonic PDEs introduced in this paper.

Remark 4.9 (Choice of harmonic PDEs.). The boundary data of the PDEs are chosen to ensure
certain functions vanish along the boundary when applying Itô’s formula, and consequently allows
integration by parts without picking up boundary terms. They are all also chosen to be harmonic
in U , and this is for several reasons, illustrated using the example of PDE g in equation (23) in
Proposition 4.14 below.

1. Looking at the final line of (23), several terms include integrands with a factor of ∇g multiplied
by another gradient term. To bound these terms, integrating by parts and moving the derivative
onto the ∇g, since g is harmonic we have that that they turn into boundary terms. That is,
for f : U × [0, T ] → R such that the below integrals are well defined, we have

∫

U

∇f(x, t) · ∇g(x) = −
∫

U

f(x, t)∆g(x) +

∫

∂U

f(x∗, t)
∂g

∂η̂
(x∗) =

∫

∂U

f(x∗, t)
∂g

∂η̂
(x∗).

2. For the remaining terms in the final line of equation (23), to handle integrands where ∇g is
multiplied by terms without another gradient we use either Hölder’s or Young’s inequality. In
both of these cases we have to bound the L2(U) norm of ∇g. Since g is harmonic, testing the
PDE against the solution and integrating by parts allows us to estimate this quantity,

∫

U

|∇g|2 =

∫

∂U

g
∂g

∂η̂
.

3. It is a fascinating fact that on a C1 domain, one can bound the Lp(∂U) norm of the normal
derivative of a harmonic PDE simply by a norm of the boundary condition. Here we work over
a C2 domain so can apply the result.
To be more specific, consider as in [FJJR78] Laplace’s equation ∆u = 0 on U with u|∂U = f̄ .
We define the H1(∂U) norm of the boundary data f̄ as the definition of the Lp1(∂D) norm on
page 176 of [FJJR78](with p = 2). Then we will repeatedly use a special case of Theorem 2.4
(iii) of [FJJR78] that says that there exists a constant c ∈ (0,∞) independent of f̄ so that

∥

∥

∥

∥

∂u

∂η̂

∥

∥

∥

∥

L2(∂U)

≤ c‖f̄‖H1(∂U).

It is clear that such a statement would be useful, for instance in bounding terms on the right
hand side of the above two points. Importantly, this allows us to express bounds in terms of
norms of the boundary data f̄ directly rather than in terms of norms the corresponding PDEs.

With the above remark in mind, we state below assumptions.

Assumption 4.10 (Assumption on g). Either the boundary data f̄ is constant, or using the PDE
for g in Definition 4.8, we have Φ−1(f̄) ∈ H1(∂U) where the norm is defined as the Lp1(∂D) norm
in page 176 of [FJJR78]. Further assume that either the boundary data f̄ is bounded, or we have
ΘΦ(g) ∈ H1(U).

Remark 4.11 (Distinguishing constant and non-constant boundary conditions). The analysis in
the energy estimates below (as well as the entropy estimate of Proposition 4.24) is far simpler in the
case that the boundary condition is constant, say f̄ = a ≥ 0. In this case the PDEs g and hM as
defined in Definition 4.8 are solved by constant functions, for instance

g(x) = Φ−1(a), x ∈ Ū .

Hence the gradient ∇g as well as the normal derivative ∂g
∂η̂ are zero, and so terms involving either

of these factors vanish immediately.
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We arrive to the first result of the section, and obtain a bound for powers of the solution by
comparing it with the function ΘΦ defined in Definition 4.1. Such an estimate is required because
we are not on the torus so do not have preservation of mass, and nor do we have enough regularity
to quantify the flux along the boundary, see Remark 4.26 below.

Proposition 4.12 (Estimate for L1
tL

k
x norm of the solution). Suppose that Φ satisfies the polyno-

mial growth condition in point two of Assumption 4.2 and the PDE g as in Definition 4.8 satisfies
Assumption 4.10. If ρ is a weak solution of the regularised equation (4) in the sense of Definition
4.7, then one has, for every ǫ > 0 and k ∈ (0,m+ 1), a constant c ∈ (0,∞) depending only on k,m
and U ,

∫ T

0

∫

U

|ρ|k ≤ c

(

T

ǫ
+ ǫT ‖ΘΦ(g)‖H1(U) + ǫ

∫ T

0

∫

U

|∇ΘΦ(ρ)|2
)

.

If the boundary data f̄ is bounded by constant K, we obtain the simplified bound with constant again
depending only on k,m and U ,

∫ T

0

∫

U

|ρ|k ≤ c

(

T

ǫ
+ ǫT + ǫ

∫ T

0

∫

U

|∇ΘΦ(ρ)|2
)

.

Remark 4.13. Using Jensen’s inequality, the above proposition also provides a bound for powers of
the L1(U) norm of the solution, since

∫ T

0

(∫

U

|ρ|
)k

= |U |k
∫ T

0

(

1

|U |

∫

U

|ρ|
)k

≤ |U |k−1

∫ T

0

∫

U

|ρ|k.

The proposition implies that for the full range m ∈ (0,∞) we at least have an L1
tL

1
x estimate for

the solution, since k ∈ (0,m+ 1). Apart from the bounding the L1
x norm, the result is useful when

m, k > 1, since if k < 1 we can just use interpolation to obtain

∫ T

0

∫

U

|ρ|k ≤
∫ T

0

∫

U

(1 + |ρ|) .

Proof. The bound on ΘΦ given in point seven of Assumption 4.2 gives, for a running constant c
depending on k, U and m,

∫ T

0

∫

U

|ρ|k ≤ cT + c

∫ T

0

∫

U

|ΘΦ(ρ)|
2k

m+1 .

Note that here the exponent in the integrand is strictly less than two. Applying Young’s inequality
with ǫ and exponent m+1

k > 1 and Jensen’s inequality then gives

∫ T

0

∫

U

|ΘΦ(ρ)|
2k

m+1 ≤
∫ T

0

(m+ 1− k)1
m+1

m+1−k

ǫ(m+ 1)
+

ǫk

m+ 1

(∫

U

ΘΦ(ρ)
2k

m+1

)
m+1

k

≤ cT

ǫ
+ cǫ

∫ T

0

∫

U

ΘΦ(ρ)
2.

Using the trivial inequality a2 ≤ 2(a− b)2 + b2 with b = ΘΦ(g), where the PDE g is as in Definition
4.8, and subsequently applying Poincaré inequality gives the first claim,

∫ T

0

(∫

U

|ρ|
)k

≤ cT

ǫ
+ cǫ

∫ T

0

∫

U

(ΘΦ(ρ)−ΘΦ(g))
2 + cǫ

∫ T

0

∫

U

ΘΦ(g)
2 (19)

≤ cT

ǫ
+ cǫ

∫ T

0

∫

U

|∇ (ΘΦ(ρ)−ΘΦ(g))|2 + cǫT

∫

U

ΘΦ(g)
2

≤ cT

ǫ
+ cǫ

∫ T

0

∫

U

|∇ΘΦ(ρ)|2 + cǫT ‖ΘΦ(g)‖H1(U).
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For the second claim, if the boundary data is bounded by constantK, then we can use the comparison
principle which tells us that

∫ T

0

(∫

U

|ρ|
)k

≤
∫ T

0

(∫

U

|ρ̃|
)k

,

where ρ̃ solves the same equation as ρ but with boundary condition K. Repeating the steps above
to bound the norm on the right hand side, we see that when we arrive to (19) we add and subtract
the constant

ΘΦ(K) =
2m1/2

m+ 1
K

m+1
2 ,

which can subsequently be absorbed into the running constant. This gives the second claim.

Proposition 4.14 (Energy estimate for solution of regularised equation with smooth, bounded σ).
Let ξF ,Φ, σ and ν satisfy Assumptions 2.2, 4.2 and 4.6, and let α ∈ (0, 1), T ∈ [1,∞). Let further
ρ0 ∈ L2(Ω;L2(U)) be non-negative and F0 measurable, Θν,i and Ψσ be defined as in Assumption 4.2
and g, hM be the PDEs defined in Definition 4.8 satisfying Assumption 4.10. If ρ is a weak solution
of the regularised equation (4) in the sense of Definition 4.7 then one has for c ∈ (0,∞) independent
of α, the estimate

1

2
sup
t∈[0,T ]

E

(∫

U

(ρ(x, t)− g(x))2
)

+ E

(

∫

U

∫ T

0

|∇ΘΦ(ρ)|2
)

+ E

(

α

∫

U

∫ T

0

|∇ρ|2
)

≤ 1

2
‖ρ0 − g‖2L2(U) + T

(

c+ c‖ΘΦ(g)‖H1(U) +

d
∑

i=1

∫

∂U

Θν,i(Φ
−1(f̄)) · η̂i + c‖σ2(Φ−1(f̄))‖L1(∂U)

)

+ T
(

‖f̄‖2L2(∂U) + ‖Ψσ(Φ−1(f̄))‖2L2(∂U) + c(1 + α)‖Φ−1(f̄)‖2H1(∂U)

)

. (20)

Let the function SM and the PDE hM be defined as in Definition 4.8, and for i = 1, . . . , d define
the functions ΘM,ν,i : R → R by ΘM,ν,i(0) = 0 and Θ′

M,ν,i(ξ) = 1M1<ξ<M2νi(ξ). Then we have for

every M1 < M2 ∈ (0,∞) the existence of constant c ∈ (0,∞) independent of both M1,M2 such that

E

∫

U

∫ T

0

1M1<ρ<M2

(

Φ′(ρ)|∇ρ|2 + α|∇ρ|2
)

≤ E

∫

U

(ρ0(x)−M1)+ + ‖hM‖L2(U)E‖ρT ‖L2(U)

+ c
∥

∥S
′
M (Φ−1(f̄))

∥

∥

H1(∂U)
E

∫ T

0

∫

U

|∇ΘΦ(ρ)|
2 + cE

∫

U

∫ T

0

1ρ≥M1σ
2(ρ ∧M2)

+ T

d
∑

i=1

∫

∂U

ΘM,ν,i(Φ
−1(f̄)) · η̂ + cT

∫

∂U

(

σ
2((Φ−1(f̄) ∧M2) ∨M1)− σ

2(M1)
)

+ cT
∥

∥S
′
M (Φ−1(f̄))

∥

∥

H1(∂U)

(

T + ‖ΘΦ(g)‖H1(U) +
∥

∥f̄
∥

∥

L2(∂U)
+ α

∥

∥Φ−1(f̄)
∥

∥

L2(∂U)
+

∥

∥Ψσ(Φ
−1(f̄))

∥

∥

L2(∂U)

)

.

(21)

Note that the final two terms on the left hand side of (20) are the approximate kinetic measures
qα, and the bound in (21) is a bound on the approximate kinetic measures when ρ is bounded away
from zero and infinity. The right hand side of (21) is written deliberately to emphasise that it
converges to zero as M1,M2 → ∞ due to the fact that hM ≡ 0 on Ū as M1 → ∞.

Proof. To prove the first claim, applying Itô’s formula to the solution minus the PDE with correct
boundary data so that the difference vanishes along the boundary, gives

∫

U

(ρ(x, s) − g(x))2 dx

∣

∣

∣

∣

t

s=0

=

∫

U

∫ t

0

d(ρ− g)2 =

∫

U

∫ t

0

2(ρ− g) d(ρ− g) +
1

2
2(ρ− g)0d〈ρ− g〉s dx.

(22)
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For the first term on the right hand side, noting g does not depend on time so d(ρ − g) = dρ and
integrating by parts gives
∫

U

∫ t

0

2(ρ− g) d(ρ− g) dx

= −2

∫

U

∫ t

0

∇(ρ− g) ·
(

∇Φ(ρ) + α∇ρ− σ(ρ)ξ̇F − ν(ρ) +
1

2
F1[σ

′(ρ)]2∇ρ+ 1

2
σ′(ρ)σ(ρ)F2

)

ds dx.

The Itô correction can be easily evaluated considering d〈ρ − g〉 = d〈ρ〉 and using the definition of
the noise,

∫

U

∫ t

0

d〈ρ− g〉s dx =

∫

U

∫ t

0

F1(σ
′(ρ))2|∇ρ|2 + 2σσ′(ρ)F2 · ∇ρ+ F3σ

2(ρ) ds dx.

Putting these two together, we get from (22) that

1

2

∫

U

(ρ(x, s)− g(x))2 dx

∣

∣

∣

∣

t

s=0

= −
∫

U

∫ t

0

(

Φ′(ρ)|∇ρ|2 + α|∇ρ|2 − σ(ρ)∇ρ · ξ̇F −∇ρ · ν(ρ)− 1

2
σ′(ρ)σ(ρ)∇ρ · F2 −

1

2
F3σ

2(ρ)

)

+

∫

U

∫ t

0

∇g ·
(

∇Φ(ρ) + α∇ρ− σ(ρ)ξ̇F − ν(ρ) +
1

2
F1[σ

′(ρ)]2∇ρ+ 1

2
σ′(ρ)σ(ρ)F2

)

. (23)

Let’s consider each term of (23) in turn. The first two terms on the right hand side are precisely
those in the estimate, so we move them to the left hand side. The noise term in both lines vanish
after taking an expectation. The fourth term remains, but we can write it as a boundary integral
in the following way. As in Assumption 4.2, for i = 1, . . . , d let Θν,i denote the anti-derivative of νi.
We then obtain

∫

U

∫ t

0

∇ρ · ν(ρ) ds dx =

d
∑

i=1

∫

U

∫ t

0

∂i (Θν,i(ρ)) ds dx =

d
∑

i=1

∫

∂U

∫ t

0

Θν,i(Φ
−1(f̄)) · η̂i ds dx.

The fifth term can be bounded by integration by parts, noting either ∇ · F2 = 0 or it is bounded
and we can bound σ2 by c(1 + ρ+Φ(ρ)), and the fact that F2 · η̂ is bounded. We have

1

4

∫

U

∫ t

0

∇σ2(ρ) · F2 ds dx = −1

4

∫

U

∫ t

0

σ2(ρ)∇ · F2 ds dx+
1

4

∫

∂U

∫ t

0

σ2(Φ−1(f̄))F2 · η̂ ds dx

≤ c

∫

U

∫ t

0

(1 + ρ+Φ(ρ)) ds dx+ c

∫

∂U

∫ t

0

σ2(Φ−1(f̄)) ds dx.

The final term on the second line of (23) can be bounded by the first term in the above inequality
after noting that F3 is bounded and once more bounding σ2(ρ) by c(1 + ρ+Φ(ρ)).
The terms on the final line of (23) involving ∇g would all vanish if the boundary condition was
constant. Otherwise they can be bounded precisely as described in points one and two of Remark
4.9. The first, second and fifth terms involving another gradient are reduced to boundary terms
using integration by parts and noting g is harmonic, whereas the remaining terms are handled using
Young’s inequality and the bounds in point eight of Assumption 4.2. Putting everything in (23)
together we have

1

2
E

(

∫

U

(ρ(x, s)− g(x))2 dx

∣

∣

∣

∣

t

s=0

)

+ E

(∫

U

∫ t

0

|∇ΘΦ(ρ)|2
)

+ E

(

α

∫

U

∫ t

0

|∇ρ|2
)

≤ c

(

t+ E

∫ t

0

∫

U

|ρ|+ E

∫ t

0

∫

U

Φ(ρ)

)

+ t
d
∑

i=1

∫

∂U

Θν,i(Φ
−1(f̄)) · η̂i + ct

∫

∂U

σ2(Φ−1(f̄))

+ αt

∫

∂U

Φ−1(f̄)
∂g

∂η̂
+ t

∫

∂U

f̄
∂g

∂η̂
+ t

∫

∂U

Ψσ(Φ
−1(f̄))

∂g

∂η̂
+ t‖∇g‖2L2(U),
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where Ψσ was defined in point eleven of Assumption 4.2. We used the fact that the boundary terms
in the final two lines are deterministic and do not depend on time, and are all well defined due to
the final three assumptions in Assumption 4.2.
The first three terms in the final line can be further bounded using Young’s inequality point three
of Remark 4.9 and the final term can also be bounded using points two and three of Remark 4.9 as
well as Hölder’s inequality.
To bound the integral involving Φ(ρ) in the second line we first note the polynomial growth condition
Φ(ρ) ≤ c(1 + ρm). We then use Proposition 4.12 to bound this term and the term involving the
L1(U) norm of the solution,

∫ t

0

∫

U

(|ρ|+ |Φ(ρ)|) ≤ cT + c

(

T

ǫ
+ ǫT ‖ΘΦ(g)‖H1(U) + ǫ

∫ T

0

∫

U

|∇ΘΦ(ρ)|2
)

.

Choosing ǫ so small that the final term can be absorbed into the left hand side of the estimate and
taking the supremum over t ∈ [0, T ] we obtain the first estimate (20).
To prove the the second estimate (21), for the function SM : [0,∞) → [0,∞) defined in Definition
4.8, apply Itô’s formula to a regularised version of ΨSM : U × [0,∞) → R defined by

ΨSM (x, 0) = 0, ∂ξΨSM (x, ξ) = S′
M (ξ)− hM (x),

where hM satisfies the PDE in Definition 4.8 and ensures that ∂ξΨSM (x, ρ) vanishes along the
boundary. Grouping the ∇hM and ∇ρ terms, we have

∂t

∫

U

ΨSM (x, ρ(x, t)) dx =

∫

U

∂ξΨSM (x, ρ(x, t))∂tρ dx+
1

2

∫

U

∂2ξΨSM (x, ρ(x, t))∂t〈ρ〉t dx

= −
∫

U

∫ t

0

S′′(ρ)∇ρ ·
(

∇Φ(ρ) + α∇ρ− σ(ρ) dξF − ν(ρ)− σ(ρ)σ′(ρ)F2

)

+
1

2

∫

U

∫ t

0

S′′(ρ)F3σ
2(ρ)

+

∫

U

∫ t

0

∇hM ·
(

∇Φ(ρ) + α∇ρ− σ(ρ) dξF − ν(ρ) +
1

2
F1(σ

′(ρ))2∇ρ+ σ(ρ)σ′(ρ)F2

)

. (24)

We deal with the terms in the same way as the first estimate. The first two terms form part of the
estimate so are moved to the left hand side, the noise terms vanish in expectation and the fourth
term can be re-written as a boundary integral. For the fifth term in the right hand side of (24) we
use the distributional equality

1M1<ρ<M2σ(ρ)σ
′(ρ)∇ρ =

1

2
1M1<ρ<M2∇σ2(ρ) =

1

2
∇
(

σ2((ρ ∧M2) ∨M1)− σ2(M1)
)

.

Then using integration by parts gives

1

2

∫

U

∫ T

0

S′′(ρ)σ(ρ)σ′(ρ)∇ρ · F2 = −1

4

∫

U

∫ T

0

(

σ2((ρ ∧M2) ∨M1)− σ2(M1)
)

∇ · F2

+
1

4

∫

∂U

∫ T

0

(

σ2((Φ−1(f̄) ∧M2) ∨M1)− σ2(M1)
)

F2 · η̂.

This implies by the boundedness of ∇ · F2, F3 and F2 · η̂ that

1

2

∫

U

∫ T

0

S′′(ρ)
(

σ(ρ)σ′(ρ)∇ρ · F2 + F3σ
2(ρ)

)

≤ c

∫

U

∫ T

0

1ρ≥M1σ
2(ρ ∧M2)

+ c

∫

∂U

∫ T

0

(

σ2((Φ−1(f̄) ∧M2) ∨M1)− σ2(M1)
)

.

Again we mention that the terms in (24) involving ∇hM would vanish if our boundary condition
was constant. Otherwise they are dealt with in a similar way to the first estimate, except that
we use Hölder’s inequality everywhere rather than Young’s inequality. In this way we keep the
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M dependence in these terms through hM . Explicitly, we have for the terms that involve another
gradient using points one and three of Remark 4.9,

∫

U

∫ T

0

∇hM ·
(

∇Φ(ρ) + α∇ρ+ 1

2
F1(σ

′(ρ))2∇ρ
)

= T

∫

∂U

∂hM
∂η̂

(

f̄ + αΦ−1(f̄) + Ψσ(Φ
−1(f̄))

)

≤ cT
∥

∥S′
M (Φ−1(f̄))

∥

∥

H1(∂U)

(

∥

∥f̄
∥

∥

L2(∂U)
+ α

∥

∥Φ−1(f̄)
∥

∥

L2(∂U)
+
∥

∥Ψσ(Φ
−1(f̄))

∥

∥

L2(∂U)

)

.

For the remaining two terms, the bound in point eight of Assumption 4.2 alongside Hölder’s inequal-
ity and point two and three of Remark 4.9 gives

∫

U

∫ T

0

∇hM · (−ν(ρ) + σ(ρ)σ′(ρ)F2) ≤ c‖∇hM‖L2(U)

∫

U

∫ T

0

(1 + ρ+Φ(ρ))

≤ c
∥

∥S′
M (Φ−1(f̄))

∥

∥

H1(∂U)

∫

U

∫ T

0

(1 + ρ+Φ(ρ)).

The final two terms can be dealt with using Proposition 4.12, just as in the first estimate. Here we
can’t absorb the gradient term that appears, and it stays on the right hand side of the estimate,
and it is bounded as a consequence of the first estimate.
To complete the estimate we move the first term on the left hand involving ΨSM in (24) to the right
hand side. To handle it, the definition of ΨSM implies that ΨSM (x, ρ) = SM (ρ)−h(x)ρ. Furthermore
the product hMρ0 and

∫

U
SM (ρ(x, T )) are non-negative so can be removed from the estimate. Using

the bound SM (ρ0(x)) ≤ (ρ0(x) −M1)+ and Holder’s inequality to bound the boundary terms and
integral of hρT , noting that the L2(U) norm of ρT is bounded using the first estimate, completes
the estimate.

Our goal is to use the above estimates to prove fractional Sobolev spacial regularity of the
solution. We will need the below lemma that will allow us to prove regularity of (fractional) spacial
derivatives of the solution, see Lemma 5.11 of [FG24] for proof.

Lemma 4.15. Let Φ satisfy Assumption 4.2. Let z ∈ H1(U) be non-negative. If Φ satisfies (17)
(allows us to handle 0 < m < 1) then

‖∇z‖L1(U ;Rd) ≤ ‖z‖θL1(U)‖∇ΘΦ‖L2(U ;Rd).

If Φ satisfies (18) (allows us to handle m ≥ 1) then for every β ∈ (0, 1 ∧ 2/q), for c ∈ (0,∞)
depending on β,

‖z‖Wβ,1(U) ≤ c

(

‖z‖L1(U) + ‖∇ΘΦ‖
2
q

L2(U ;Rd)

)

.

We have the following regularity estimate.

Corollary 4.16 (Regularity of solution to regularised equation). Let ξF ,Φ, σ and ν satisfy Assump-
tions 2.2, 4.2 and 4.6, and fix the regularisation α ∈ (0, 1) and terminal time T ∈ [1,∞). Let further
ρ0 ∈ L2(Ω;L2(U)) be non-negative and F0 measurable, Θν,i and Ψσ be defined as in Assumption 4.2
and g be the PDE defined in Definition 4.8 satisfying Assumption 4.10. Let ρ be a weak solution of
(4) in the sense of Definition 4.7.

• If Φ satisfies (17), then for c ∈ (0,∞) independent of α and T , we have

E
(

‖ρ‖L1([0,T ];W 1,1(U))

)

≤ c‖ρ0 − g‖2L2(U) + cT

(

1 + ‖ΘΦ(g)‖H1(U) +

d
∑

i=1

∫

∂U

Θν,i(Φ
−1(f̄)) · η̂i

)

+ cT
(

‖σ2(Φ−1(f̄))‖L1(∂U) + ‖f̄‖2L2(∂U) + ‖Ψσ(Φ−1(f̄))‖2L2(∂U) + (1 + α)‖Φ−1(f̄)‖2H1(∂U)

)

.
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• If Φ satisfies (18), then for all β ∈ (0, 2/q ∧ 1) there is a constant c ∈ (0,∞) depending on β,
but independent of α and T , such that

E
(

‖ρ‖L1([0,T ];Wβ,1(U))

)

≤ c‖ρ0 − g‖2L2(U) + cT

(

1 + ‖ΘΦ(g)‖H1(U) +

d
∑

i=1

∫

∂U

Θν,i(Φ
−1(f̄)) · η̂i

)

+ cT
(

‖σ2(Φ−1(f̄))‖L1(∂U) + ‖f̄‖2L2(∂U) + ‖Ψσ(Φ−1(f̄))‖2L2(∂U) + (1 + α)‖Φ−1(f̄)‖2H1(∂U)

)

.

Proof. For both estimates we can use Proposition 4.12 to bound the L1
tL

1
x norms with ǫ = 1. The

first estimate then follows from the first item in Lemma 4.15, Young’s inequality, the fact that
θ ∈ [0, 1/2] and Proposition 4.14.
The second estimate follows from the second point in Lemma 4.15, the fact that q ∈ [1,∞) and
Proposition 4.14.

The final result we want to show is a higher order space-time regularity of solutions cut away
from their zero set. The result will be useful when proving the existence of a weak solution of
equation (4) with smooth and bounded σ, and will subsequently motivate the introduction of a new
metric on L1

xL
1
t , see Definition 4.33.

Definition 4.17 (Cutoff away from zero). For β ∈ (0, 1) let φβ be the piecewise linear cutoff in

Definition 3.2. Let φ̃β ∈ C∞([0,∞)) be a smooth approximation of φβ. That is to say 0 ≤ φ̃β ≤ 1

is non-decreasing and satisfies φ̃β(ξ) = 1 for ξ ≥ β, φ̃β(ξ) = 0 for ξ ≤ β/2 with |φ̃′β(ξ)| ≤ c/β for
constant c ∈ (0,∞) independent of β.
For each δ ∈ (0, 1) define Φβ ∈ C∞([0,∞)) by

Φβ(ξ) = φ̃β(ξ)ξ.

Proposition 4.18. Let ξF ,Φ, σ and ν satisfy Assumptions 2.2, 4.2 and 4.6, and let α ∈ (0, 1).
Let further ρ0 ∈ L2(Ω;L2(U)) be non-negative and F0 measurable, Θν,i and Ψσ be defined as in
Assumption 4.2 and g be the PDE defined in Definition 4.8 satisfying Assumption 4.10. Let ρ be a
weak solution of the regularised equation (4) in the sense of Definition 4.7.
For every δ ∈ (0, 1/2) and s > d

2 + 1 there is a constant c ∈ (0,∞) depending on β, δ and s but
independent of α and T such that

E
(

‖Φβ(ρ)‖W δ,1([0,T ];H−s(U))

)

≤ cT ‖ρ0 − g‖2L2(U)

+ cT 2

(

1 + ‖ΘΦ(g)‖H1(U) +
d
∑

i=1

∫

∂U

Θν,i(Φ
−1(f̄)) · η̂i + ‖σ2(Φ−1(f̄))‖L1(∂U)

)

+ cT 2
(

‖f̄‖2L2(∂U) + ‖Ψσ(Φ−1(f̄))‖2L2(∂U) + (1 + α)‖Φ−1(f̄)‖2H1(∂U)

)

.

The proof is analogous to Proposition 5.14 [FG24], we just give the main idea below.

Proof. Similarly to the derivation of the kinetic equation, it follows by Itô’s formula and then bringing
the Φ′

β(ρ) inside the derivative and using the product rule, that

dΦβ(ρ) = Φ′
β(ρ)dρ+

1

2
Φ′′
β(ρ)d〈ρ〉

= ∇ ·
(

Φ′
β(ρ)∇Φ(ρ) + αΦ′

β(ρ)∇ρ− Φ′
β(ρ)σ(ρ)dξ

F − Φ′
β(ρ)ν(ρ)

)

+∇ ·
(

1

2
F1Φ

′
β(ρ)(σ

′(ρ))2∇ρ+ 1

2
Φ′
β(ρ)σ(ρ)σ

′(ρ)F2

)

− Φ′′
β(ρ)∇ρ · ∇Φ(ρ)− αΦ′′

β(ρ)|∇ρ|2 +Φ′′
β(ρ)σ(ρ)∇ρ · dξF +Φ′′

β(ρ)∇ρ · ν(ρ)

+
1

2
Φ′′
β(ρ)

(

σ(ρ)σ′(ρ)F2 · ∇ρ+ F3σ
2(ρ)

)
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Doing so will allow us to compute the the fractional Sobolev norm more easily. Integrating in time,
and writing some derivatives in terms of the function ΘΦ, we have for fixed x ∈ U the decomposition
Φβ(ρ(x, t)) = Φβ(ρ0(x)) + If.v.t + Imartt with

Imartt := −
∫ t

0

∇ ·
(

Φ′
β(ρ)σ(ρ)dξ

F
)

+

∫ t

0

Φ′′
β(ρ)σ(ρ)(Φ

′(ρ))−1/2∇ΘΦ(ρ) · dξF ,

and

If.v.t :=

∫ t

0

∇ ·
(

Φ′
β(ρ)(Φ

′(ρ))1/2∇ΘΦ(ρ)
)

−
∫ t

0

Φ′′
β(ρ)|∇ΘΦ(ρ)|2 + α

∫ t

0

∇ · (Φ′
β(ρ)∇ρ)

− α

∫ t

0

Φ′′
β(ρ)|∇ρ|2 +

1

2

∫ t

0

∇ ·
(

F1Φ
′
β(ρ)

(σ′(ρ))2

(Φ′(ρ))1/2
∇ΘΦ(ρ)

)

+
1

2

∫ t

0

∇ ·
(

Φ′
β(ρ)σ(ρ)σ

′(ρ)F2

)

+
1

2

∫ t

0

Φ′′
β(ρ)

σ(ρ)σ′(ρ)

Φ′(ρ)1/2
F2 · ∇ΘΦ(ρ) +

1

2

∫ t

0

Φ′′
β(ρ)F3σ

2(ρ)−
∫ t

0

∇ · (Φ′
β(ρ)ν(ρ))

−
∫ t

0

∇ · (Φ′
β(ρ)ν(ρ)) +

∫ t

0

Φ′′
β(ρ)∇ρ · ν.

We begin by showing the martingale term is in W δ,2([0, T ];H−s(U)), that is

‖Imartt ‖2W δ,2([0,T ];H−s(U)) :=

∫ T

0

‖Imartt ‖2H−s(U) dt+

∫ T

0

∫ T

0

‖Imartt − Imarts ‖2H−s(U)

|t− s|1+2δ
ds dt <∞.

Since s > d
2 +1 the Sobolev embedding theorem tells us that for test functions φ that we use in the

definition of negative fractional Sobolev norm, there is a constant c ∈ (0,∞) such that

‖φ‖L∞(U) + ‖∇φ‖L∞(U ;Rd) ≤ c‖φ‖Hs(U) (25)

Using this and an argument similar to Lemma 2.1 of [FG95] alongside the Burkholder-Davis-Gundy
inequality, the fact that Φ′′

β is supported on [β/2, β] as well as the bounds in Assumption 4.2, that
the second term in the definition of the norm satisfies

E

(

∫ T

0

∫ T

0

‖Imartt − Imarts ‖2H−s(U)

|t− s|1+2δ
ds dt

)

≤ cE

(

∫ T

0

‖ΘΦ(ρ)1β/2≤ρ≤β‖2L2(U) + ‖σ(ρ)‖2L2(U) ds

)

≤ cE

(

|U |T +

∫ T

0

∫

U

(

|ρt|+ |∇ΘΦ|2 + |Φ(ρ)|
)

)

.

Analogously for the first term in the norm we have the same bound

∫ T

0

‖Imartt ‖2H−s(U) dt ≤ cE

(

|U |T +

∫ T

0

∫

U

(

|ρt|+ |∇ΘΦ|2 + |Φ(ρ)|
)

)

.

Putting these together, it follows from Proposition 4.12 that

‖Imartt ‖2W δ,2([0,T ];H−s(U)) ≤ cE

(

T + T ‖ΘΦ(g)‖H1(U) +

∫ T

0

∫

U

|∇ΘΦ|2
)

.

We next show that the finite variation term is in W 1,1([0, T ];H−1(U)), that is

∥

∥If.v.
∥

∥

W 1,1([0,T ];H−s(U))
:=

∫ T

0

∥

∥If.v.
∥

∥

H−s(U)
+

∫ T

0

∥

∥

∥

∥

d

dt
If.v.

∥

∥

∥

∥

H−s(U)

<∞.
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It follows from (25), the fact that Φ′
β and Φ′′

β are supported on [β/2,∞) and [β/2, β] respectively
and Young’s inequality, that we can bound the first term by

∫ T

0

∥

∥If.v.
∥

∥

H−s(U)
≤ c

∫ T

0

∫

U

∫ t

0

(

Φ′(ρ)1ρ>β/2 + |∇ΘΦ(ρ)|21ρ>β/2 + α|∇ρ|1ρ>β/2

+
σ′(ρ)4

Φ′(ρ)
1ρ>β/2 + |σ(ρ)σ′(ρ)|1ρ>β/2 +

(σ(ρ)σ′(ρ))2

Φ′(ρ)
1ρ>β/2 + |ν(ρ)|1ρ>β/2

+(1− α)|∇ρ|21β/2<ρ<β + σ2
1β/2<ρ<β + |ν|21β/2<ρ<β

)

ds dx dt.

Using the fundamental theorem of calculus, the second finite variation term consists of the same
terms but without the inner ds integral. Using that the inner integral is increasing in t, the fact
that α ∈ (0, 1) and so αx ≤ 1+αx2, the fact that the three terms in the final line are bounded over
the indicator set, points three six and eight of Assumption 4.2 to bound the various coefficients and
using Proposition 4.12 analogously to the martingale term, we have

E
∥

∥If.v.
∥

∥

W 1,1([0,T ];H−s(U))
≤ c(1 + T )E

(

T + T ‖ΘΦ(g)‖H1(U) +

∫ T

0

∫

U

(

|∇ΘΦ|2 + α|∇ρ|2
)

)

.

Using the trivial fact that there is a constant c such that (1+T ) < cT , the estimate then follows by the
first energy estimate in Proposition 4.14 alongside the continuous embeddings W β,2,W 1,1 →֒ W β,1

for every β ∈ (0, 1/2).

4.2 Entropy estimate

In this section we prove an entropy estimate for weak solutions of the regularised Dean-Kawasaki
equation, following Proposition 5.18 of [FG24]. The estimates will not be used in the remainder
of the work, but they are provided because of their connection with the study of large deviation
principles, see for instance the introduction of [FG23].
We begin with the definition of entropy space where the initial condition will live, followed by the
assumptions needed for the entropy type estimate. These are analogous to Definition 5.16 and
Assumptions 5.17 of [FG24], see also Remark 5.15 there.

Definition 4.19 (Entropy space). The space of non-negative, L1(U) functions with finite entropy
is the space

Ent(U) :=

{

ρ ∈ L1(U) : ρ ≥ 0 almost everywhere, with

∫

U

ρ log(ρ) <∞
}

.

We say that a function ρ : Ω → L1(U)∩Ent(U) is in the space L1(Ω;Ent(U)) if ρ is F0 measurable
and

E

[

‖ρ‖L1(U) +

∫

U

ρ log(ρ)

]

<∞.

Assumption 4.20 (Entropy assumptions). Let Φ, σ ∈ C([0,∞)) and ν ∈ C([0,∞);Rd) satisfy the
following assumptions from Assumptions 5.17 of [FG24].

1. There exists a constant c ∈ (0,∞) such that |σ(ξ)| ≤ cΦ1/2(ξ) for every ξ ∈ [0,∞).

2. There exists a constant c ∈ (0,∞) such that for every ξ ∈ [0,∞)

Φ′(ξ) ≤ c(1 + ξ +Φ(ξ)). (26)

3. We have ∇ · F2 = 0.

4. We have that log(Φ) is locally integrable on [0,∞).

Furthermore, we have the two additional new assumptions, analogous to the new assumptions
in Assumption 4.2.
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5. Either F2 = 0 or the unique function ΘΦ,σ defined by

ΘΦ,σ(1) = 0, Θ′
Φ,σ(ξ) =

Φ′(ξ)σ′(ξ)σ(ξ)

Φ(ξ)

satisfies ΘΦ,σ(Φ
−1(f̄)) ∈ L1(∂U).

6. For i = 1, . . . , d, the unique functions ΘΦ,ν,i defined by

ΘΦ,ν,i(0) = 0, Θ′
Φ,ν,i(ξ) =

Φ′(ξ)νi(ξ)

Φ(ξ)

satisfy ΘΦ,ν,i(Φ
−1(f̄)) · ηi ∈ L1(∂U).

We give remarks about the new assumptions.

Remark 4.21. • In the model case the function in point five is given by ΘΦ,σ(ξ) = m log(ξ).
In the case of zero boundary conditions we therefore require F2 = 0.

• We can without loss of generality consider ν(0) = 0, and since ν is lipschitz in the model case
we have that the function in point six is ΘΦ,ν,i(ξ) = cξ for some constant c ∈ (0,∞) and the
assumption is satisfied.

We now introduce the family of PDEs {vδ}.
Definition 4.22. For every δ ∈ (0, 1) let vδ satisfy the PDE

{

−∆vδ = 0, in U,

vδ = log(f̄ + δ), on ∂U,
(27)

where f̄ is the boundary condition in (1).

We will need to bound normal derivatives of vδ in the δ → 0 limit, motivating the below assump-
tion.

Assumption 4.23 (Assumption on vδ). Either the boundary data f̄ is constant or the solution of
the PDE v0 defined by

{

−∆v0 = 0, in U,

v0 = log(f̄), on ∂U,

satisfies log(f̄) ∈ H1(∂U), where the norm is defined as the Lp1(∂D) norm in page 176 of [FJJR78].

We now present the entropy estimate, the proof follows Proposition 5.18 of [FG24]. We once
again repeat the comment in Remark 4.11 and emphasise that the below analysis is simplified if the
boundary condition is constant.

Proposition 4.24 (Entropy estimate). Let ξF ,Φ, σ and ν satisfy Assumptions 2.2, 4.2, 4.6 and
4.20, and suppose Assumption 4.23 concerning v0 is satisfied. Let the functions ΘΦ,σ, {ΘΦ,ν,i}di=1,Ψσ
be defined as in Assumption 4.20. Let α ∈ (0, 1), T ∈ [1,∞) and suppose the weak solution of the
regularised equation (4) has F0-measurable initial condition satisfying ρ0 ∈ L1(Ω;Ent(U)). For the
function ΨΦ,0 : U × [0,∞) → R defined by ΨΦ,0(x, 0) = 0 and ∂ξΨΦ,0(x, ξ) = log(Φ(ξ)) − v0(x), we
have, for a constant c ∈ (0,∞) independent of α and T , the bound

E

∫

U

ΨΦ,0(x, ρ(x, t)) dx + 4E

∫ T

0

∫

U

|∇Φ1/2(ρ)|2 + αE

∫ T

0

∫

U

Φ′(ρ)

Φ(ρ)
|∇ρ|2

≤ E

∫

U

ΨΦ,0(x, ρ0(x)) dx + cT + cT ‖ΘΦ(g)‖H1(U) + cE

∫ T

0

∫

U

|∇ΘΦ(ρ)|2

+ cT

∫

∂U

ΘΦ,σ(Φ
−1(f̄)) + T

d
∑

i=1

∫

∂U

ΘΦ,ν,i(Φ
−1(f̄)) · η̂i + T ‖f̄‖2L2(∂U)

+ αT ‖Φ−1(f̄)‖2L2(∂U) + T ‖Ψσ(Φ−1(f̄))‖2L2(∂U) + c(1 + α)T ‖ log(Φ−1(f̄))‖2H1(∂U).
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Proof. To obtain the bound, apply Itô’s formula to the regularised function ΨΦ,δ : U × [0,∞) → R

defined by ΨΦ,δ(x, 0) = 0 and ∂ξΨΦ,δ(x, ξ) = log(Φ(ξ) + δ)− vδ(x), where vδ satisfies the PDE (27)
in Definition 4.22 and once again ensures that ∂ξΨΦ,δ(x, ρ) vanishes along the boundary. We get
after integrating the first order term by parts, that

∫

U

ΨΦ,δ(x, ρ(x, t)) dx

∣

∣

∣

∣

T

s=0

=

∫ T

0

∫

U

−|∇Φ(ρ)|2
Φ(ρ) + δ

− αΦ′(ρ)|∇ρ|2
Φ(ρ) + δ

+
σ(ρ)Φ′(ρ)∇ρ · dξF

Φ(ρ) + δ
+

Φ′(ρ)∇ρ · ν(ρ)
Φ(ρ) + δ

+
Φ′(ρ)σ′(ρ)σ(ρ)∇ρ · F2

2(Φ(ρ) + δ)
+
F3Φ

′(ρ)σ2(ρ)

2(Φ(ρ) + δ)

+

∫ T

0

∫

U

∇vδ ·
(

∇Φ(ρ) + α∇ρ− σ(ρ)dξF − ν(ρ) +
1

2
F1[σ

′(ρ)]2∇ρ+ 1

2
σ′(ρ)σ(ρ)F2

)

. (28)

The terms are handled in an analogous way to energy estimates already seen thus far in Propositions
4.14 and 4.29, so we are brief. We move the first two terms to the left and side of the estimate,

noting that the distributional inequality allows us to rewrite the first term as ∇Φ1/2(ρ) = Φ′(ρ)
2Φ1/2(ρ)

∇ρ
∫

U

|∇Φ(ρ)|2
Φ(ρ) + δ

=

∫

U

4Φ(ρ)

Φ(ρ) + δ
|∇Φ1/2(ρ)|2.

After taking expectation the third term is killed as well as the noise term in the second line. The
fourth and fifth terms can be re-written as boundary integrals. For the fourth, we use the functions

ΘΦ,ν,δ,i for i = 1, . . . , d defined by ΘΦ,ν,δ,i(0) = 0,Θ′
Φ,ν,δ,i(ξ) =

Φ′(ξ)νi(ξ)
Φ(ξ)+δ , and for the fifth we define

the unique function ΘΦ,σ,δ satisfying ΘΦ,σ,δ(0) = 0,Θ′
Φ,σ,δ(ξ) =

Φ′(ξ)σ′(ξ)σ(ξ)
Φ(ξ)+δ , and note that either

F2 = 0, or use integration by parts alongside the assumptions ∇ · F2 = 0 and the fact that F2 · η̂
is bounded. For the final term in the first line of (28), by the assumption σ ≤ cΦ1/2, the fact that
x
x+δ < 1 for every δ > 0 and the assumption Φ′(ξ) ≤ c(1 + ξ +Φ(ξ)), we obtain

1

2

∫ T

0

∫

U

F3Φ
′(ρ)σ2(ρ)

Φ(ρ) + δ
≤ c

∫ T

0

∫

U

Φ′(ρ) ≤ c

(

|U |T +

∫ T

0

∫

U

(ρ+Φ(ρ))

)

.

The terms involving ∇vδ in (28) would all vanish if the boundary condition was constant. Otherwise
they are handled in the way described in points one and two of Remark 4.9. The first, second and
fifth terms in (28) with other gradient terms are handled using integrate by parts and turn into
boundary terms. As for the terms without derivatives, using the L2(U) integrability of ∇vδ implied
by point two of Remark 4.9, Young’s inequality, the boundedness of F2, the equation (27) satisfied
by vδ and Assumption 4.2, we have

∫ T

0

∫

U

∇vδ · (−ν(ρ) +
1

2
σ′(ρ)σ(ρ)F2) ≤ cT ‖ log(f̄ + δ)‖2H1(∂U) + c

∫ T

0

∫

U

(1 + ρ+Φ(ρ)) dx dt.

Putting everything together we get

E

∫

U

ΨΦ,δ(x, ρ(x, t)) dx + 4E

∫ T

0

∫

U

Φ(ρ)

Φ(ρ) + δ
|∇Φ1/2(ρ)|2 + αE

∫ T

0

∫

U

Φ′(ρ)

Φ(ρ) + δ
|∇ρ|2

≤ E

∫

U

ΨΦ,δ(x, ρ0(x)) dx + c

(

|U |T + E

∫ T

0

∫

U

(|ρ|+ |Φ(ρ)|)
)

+ cT

∫

∂U

ΘΦ,σ,δ(Φ
−1(f̄)) + T

d
∑

i=1

∫

∂U

ΘΦ,ν,δ,i(Φ
−1(f̄)) · η̂i

+ T

(∫

∂U

f̄
∂vδ
∂η̂

+ α

∫

∂U

Φ−1(f̄)
∂vδ
∂η̂

+

∫

∂U

Ψσ(Φ
−1(f̄))

∂vδ
∂η̂

+ c‖ log(f̄ + δ)‖2H1(∂U)

)

. (29)
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Once again we used the fact that that the boundary terms in the final two lines are deterministic and
don’t depend on time. To obtain the desired estimate, we wish to take the δ → 0 limit in equation
(29), and therefore we need a handle over the boundary terms which all depend on δ. Alongside
Young’s inequality, the new assumptions in Assumption 4.20 and Assumption 4.2 precisely allow us
to do this. Finally, to bound the integral of ρ and Φ(ρ) in the second line, we use Proposition 4.12 in

the same manor as the energy estimates, noting that we can’t absorb the term involving |∇ΘΦ(ρ)|2
into the left hand side, but the term is bounded by the first energy estimate (20). The estimate is
proven.

Remark 4.25 (Comparing entropy estimate with proof of kinetic measure at zero). Note that the
entropy estimate could be used to prove a statement about the kinetic measure at zero if we include

the assumption that Φ(ξ)
Φ′(ξ) ≤ cξ. We have

2β−1
E (q(U × [β/2, β]× [0, T ])) ≤ lim inf

α→0
E

(

∫ T

0

∫

U

∫

R

1

ξ
1β/2≤ξ≤βdq

α

)

.

Subsequently the assumption gives

1

ξ
dqa =

1

ξ
δ0(ξ − ρα)

(

4Φ(ρα)

Φ′(ρα)
|∇Φ1/2(ρα)|2 + α|∇ρα|2

)

≤ cδ0(ξ − ρα)

(

4|∇Φ1/2(ρα)|2 + α
Φ′(ρ)

Φ(ρ)
|∇ρα|2

)

.

One sees that this is the precise quantity which we showed was bounded in the entropy estimate above.
Consequently by dominated convergence theorem, with the indicator present, the kinetic measures go
to zero.
The reason we don’t use this estimate is due to the first term on the right hand side of the estimate,
which requires ρ0 ∈ L1(Ω;Ent(U)). For the definition of stochastic kinetic solution, Definition 2.8,
we only have ρ0 ∈ L1(Ω;L1(U)). We circumvent this in the sequel by choosing a test function that
cuts off the logarithm at 1.

4.3 Decay of kinetic measure at zero

In this section we will prove the decay of the kinetic measure at zero required in the uniqueness
proof,

lim inf
β→0

(

β−1q(U × [β/2, β]× [0, T ])
)

= 0.

First of all we begin with a remark that illustrates why we can’t bound the decay of the kinetic
measure using the kinetic equation as in Proposition 4.6 of [FG24].

Remark 4.26. Adapting the proof of Proposition 4.6 of [FG24], test the kinetic equation (5) against
smooth approximations of the product ζMφβιγ and subsequently take the limit in the approximations.
We end up with an additional term when the spacial gradient hits the cutoff ιγ . Taking expectation
to kill the noise term and taking the limit as γ → 0 (which we need to take before M,β limits due to
Remark 2.4) one needs to consider the term

− lim
γ→0

E

(∫ t

0

∫

U

ζM (ρ)φβ(ρ)

(

Φ′(ρ)∇ρ+ 1

2
F1[σ

′(ρ)]2∇ρ+ 1

2
σ′(ρ)σ(ρ)F2

)

· ∇ιγ(x) dx ds
)

.

We can not make sense of this limit because we don’t have sufficient regularity of the first two terms.
For example to take the limit in the first term we would need to use the trace theorem and therefore
require ∇Φ(ρ) ∈ H1

loc(U). However, we only have Φ(ρ) ∈ H1
loc(U), i.e. ∇Φ(ρ) ∈ L2

loc(U).
Note that similar terms arose in the uniqueness proof, for instance recall equation (14). Crucially,
there the terms appear as a difference of two solutions and can only be handled because the first two
terms above have a sign for every fixed γ > 0.

33



We consider the following PDE, where the boundary condition is the logarithm cutoff at 1.

Definition 4.27 (The PDE v). Let f̄ be the boundary condition of the regularised equation (4).
Define the function S : [0,∞) → [0,∞) by S(0) = 0 and S′′(ξ) = 1

ξ10≤ξ≤1. Define the harmonic
PDE v : U → R by

{

−∆v = 0 on U,

v = S′(Φ−1(f̄)) on ∂U.

By integrating we have that S′(ξ) = log(ξ ∧ 1) and S(ξ) = (ξ ∧ 1) log(ξ ∧ 1)− (ξ ∧ 1).

Assumption 4.28 (Assumptions for kinetic measure). 1. Either the boundary data f̄ is con-
stant or the solution of PDE v satisfies S′(Φ−1(f̄)) ∈ H1(∂U), where the norm is defined
as the Lp1(∂D) norm in page 176 of [FJJR78].

2. We have that v ∈ L2(U).

3. Either F2 = 0, or the unique function Θσ defined by Θσ(1) = 0, Θ′
σ(ξ) = σ(ξ)σ′(ξ)

ξ satisfies

Θσ(Φ
−1(f̄) ∧ 1) ∈ L1(∂U).

4. Either f̄ is constant, or for the unique function Ψσ defined by Ψσ(0) = 0, Ψ′
σ(ξ) = F1[σ

′(ξ)]2,
we have Ψσ(Φ

−1(f̄)) ∈ L2(∂U).

For point three, note that the L1(∂U) integrability of Θσ is guaranteed if, for example, σ(ξ)σ′(ξ) ≤
cξα, where α > 0 and c ∈ (0,∞).

Proposition 4.29. Let ξF ,Φ, σ and ν satisfy Assumption 2.2, 3.1 and Assumption 4.28. Let further
ρ0 ∈ L1(Ω;L1(U)) be non-negative and F0 measurable and v be defined as in Definition 4.27. If ρ is
a stochastic kinetic solution of (3) in the sense of Definition 2.8, then it follows almost surely that

lim inf
β→0

(

β−1q(U × [β/2, β]× [0, T ])
)

= 0.

Proof. Let us begin by noting that, whilst we don’t know the precise form of the limiting measure
q due to the presence of a parabolic defect measure in the limit (see [CP03]), for the regularised
equation we have a precise equation for the kinetic measures (see proof of Proposition 5.21 of [FG24])
given by

dqα = δ0(ξ − ρα)
(

Φ′(ρα)|∇ρα|2 + α|∇ρα|2
)

.

However, by Fatou’s lemma for measures, we have

lim inf
β→0

2β−1
E (q(U × [β/2, β]× [0, T ])) ≤ lim inf

β→0
E

(

∫ T

0

∫

U

∫ β

β/2

1

ξ
dq

)

= lim inf
β→0

E

(

∫ T

0

∫

U

∫

R

1

ξ
1β/2≤ξ≤β dq

)

≤ lim inf
α→0

lim inf
β→0

E

(

∫ T

0

∫

U

∫

R

1

ξ
1β/2≤ξ≤βdq

α

)

.

Analogous to the energy estimates of Proposition 4.14 and to the entropy estimate of Proposition
4.24, apply Itô’s formula to a regularised version of the function Ψ : U × [0,∞) → R defined by
Ψ(x, 0) = 0, ∂ξΨ(x, ξ) = S′(ξ) − v(x). One obtains, for the functions Θσ and Ψσ as in Assumption
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4.28, Θν,i defined by Θν,i(0) = 0, Θ′
ν,i(ξ) = νi(ξ)/ξ, that there is a constant c ∈ (0,∞) such that

E

(∫

U

∫ t

0

∫

R

1

ξ
10≤ξ≤1 dq

α

)

= E

(∫

U

∫ t

0

1

ρ
10≤ρ≤1

(

Φ′(ρ)|∇ρ|2 + α|∇ρ|2
)

)

≤ E

∫

U

(Ψ(x, ρ0)−Ψ(x, ρt)) + cT + T

d
∑

i=1

∫

∂U

Θν,i(Φ
−1(f̄) ∧ 1) · η̂i + cT

∫

∂U

Θσ(Φ
−1(f̄) ∧ 1)

+ T ‖ log(Φ−1(f̄) ∧ 1)‖H1(∂U)

(

‖f̄‖L2(∂U) + α‖Φ−1(f̄)‖L2(∂U) + ‖Ψσ(Φ−1(f̄))‖L2(∂U)

)

+ T ‖∇v‖L2(U)

(

c‖σ(ρ)σ′(ρ)‖L2(U) + ‖ν(ρ)‖L2(U ;Rd)

)

(30)

Since
∫

∂U |∇v|2 =
∫

∂U v
∂v
∂η̂ =

∫

∂U log(Φ−1(f̄) ∧ 1)∂v∂η̂ , if Φ
−1(f̄) > 1 then the terms in the final two

lines vanish since log(1) = 0.
Furthermore, we have for the first term on the right hand side, that

Ψ(x, ρ0) = S(ρ0)− ρ0v(x) = (ρ0 ∧ 1) log(ρ0 ∧ 1)− (ρ0 ∧ 1)− ρ0v(x).

And so by the non-negativity of the solution, the initial condition and v, we have by disposing of
the negative terms,

E

∫

U

(Ψ(x, ρ0)−Ψ(x, ρt)) ≤ E

∫

U

((ρ0 ∧ 1) log(ρ0 ∧ 1) + (ρt ∧ 1)− ρtv(x)) .

Using Hölder’s inequality, the second assumption of Assumption 4.28 and the L2(U) energy estimate
(20), this term is bounded.
Hence putting everything together, we showed that the right hand side of (30) the final term in the
above inequality is bounded. However, by working along the dyadic scale β(i) = 2−i for i = 0, 1, . . .,
we have

∞
∑

i=0

E

(∫

U

∫ t

0

∫

R

1

β(i)
1β(i)/2≤ξ≤β(i) dqα

)

≤ E

(∫

U

∫ t

0

∫

R

1

ξ
10≤ξ≤1 dq

α

)

≤ c.

The infinite sum being bounded by a constant (that is decreasing in α) implies that the individual
elements of the sum converge to zero, which proves the claim.

4.4 Existence of solution to generalised Dean-Kawasaki equation

In what follows the arguments are identical to that on the torus and so follow Chapter 5 of [FG24].
We are therefore brief and just provide the main ideas for completeness.
In this subsection we start in Proposition 4.30 by proving the existence of a weak solution of the
regularised Dean-Kawasaki equation with smooth and bounded σ (in the sense of Assumption 4.6).
We then show that the constructed weak solution is also a stochastic kinetic solution, in the sense
that it satisfies a kinetic equation similar to equation (5).
The goal will then subsequently be in Lemma 4.32 to remove the assumption that σ is smooth
and bounded, which will be done with an approximation argument. To take the regularisation α
limit, showing the existence of a solution to the generalised Dean-Kawasaki equation (3) is done in
Theorem 4.38.

Proposition 4.30 (Existence of weak solution to regularised equation (4) with smooth and bounded
σ). Let ξF ,Φ, σ and ν satisfy Assumptions 2.2, 4.2 and 4.6, and let α ∈ (0, 1). Let further ρ0 ∈
L2(Ω;L2(U)) be non-negative and F0 measurable.
Then there exists a weak solution of the regularised equation (4) in the sense of Definition 4.7.
Additionally the solution satisfies the energy estimates of Proposition 4.14.

Proof. The idea is to approximate all coefficients by regular ones, use Galerkin projection argument
to show existence and then take limits in the correct order.
Start by considering a sequence {Φn}n∈N of smooth bounded non-decreasing functions starting at
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zero such that Φn and Φ′
n converge locally uniformly to Φ and Φ′ as n→ ∞.

Next consider sequence {νn}n∈N of smooth approximations of ν that converge to ν locally uniformly
as n→ ∞.
For K ∈ N consider the finite dimensional approximation of the noise ξF,K :=

∑K
k=1 fk(x)B

k
t , and

also the truncated coefficients FK1 :=
∑K

k=1 f
2
k , F

K
2 :=

∑K
k=1 fk∇fk.

For {ek}k∈N an orthonormal basis in L2(U) which is orthogonal in H1(U) and M ∈ N, define
ΠM : L2(U × [0, T ]) → L2(U × [0, T ]) be the projection onto the first M orthonormal basis vectors.
That is to say, for any g ∈ L2(U × [0, T ]),

ΠMg(x, t) :=
M
∑

k=1

gk(t)ek(x)

where gk(t) :=
∫

U
g(x, t)ek(x) dx. For brevity denote the space of projected L2 function by L2

M :=
ΠM (L2(U × [0, T ])). Consider the below projected equation with regularised coefficients posed on
the space L2(Ω;L2

M )

dρ =ΠM
(

∆Φn(ρ) dt+ α∆ρ dt−∇ · (σ(ρ) dξF,K + νn(ρ) dt)
)

+ΠM

(

1

2
∇ · (FK1 [σ′(ρ)]2∇ρ+ σ′(ρ)σ(ρ)FK2 ) dt

)

.

The equation is equivalent to a finite dimensional stochastic differential equation. Since Φn, νn, σ
are all smooth and bounded functions, the system has a unique strong solution.
Then we pass to the various limits, first as M → ∞, followed by K → ∞ and finally the limit
as n → ∞. We rely on simpler versions of the energy estimates of the previous section (e.g.
equation (4.14) and Proposition 4.18) and the compact embedding given by Aubin-Lions-Simon
lemma ([Aub63, Lio69, Sim86]) to do this.
The resulting solution is continuous in L2(U) as a consequence of Itô’s formula. The non-negativity
of solution follows by applying Itô’s formula to approximations of min(0, ρ), similar to what was
done in estimate (21).

Proposition 4.31 (Stochastic kinetic solution of regularised DK equation (4) with smooth and
bounded σ). Let ξF ,Φ, σ and ν satisfy Assumptions 2.2, 4.2 and 4.6, and let α ∈ (0, 1). Let
ρ0 ∈ Lm+1(Ω;L1(U)) ∩ L2(Ω;L2(U)) be non-negative and F0 measurable.
Let ρ be a weak solution of (4) with smooth and bounded σ in the sense of Definition 4.7, and
χ(x, ξ, t) = 10<ξ<ρ(x,t) be the kinetic function on U × (0,∞)× [0, T ]. Then ρ is a stochastic kinetic
solution in the sense that, almost surely, for every ψ ∈ C∞

c (U × R), t ∈ [0, T ]:

∫

R

∫

U

χ(x, ξ, t)ψ(x, ξ) dx dξ =

∫

R

∫

U

χ(x, ξ, t = 0)ψ(x, ξ) dx dξ − α

∫ t

0

∫

U

∇ρ · ∇ψ(x, ξ)|ξ=ρ

−

∫ t

0

∫

U

(

Φ′(ρ)∇(ρ) +
1

2
F1[σ

′(ρ)]2∇ρ+
1

2
σ
′(ρ)σ(ρ)F2

)

· ∇ψ(x, ξ)|ξ=ρ dx dt

−

∫ t

0

∫

U

∂ξψ(x, ρ)Φ
′(ξ)|∇ρ|2 − α

∫ t

0

∫

U

∂ξψ(x, ρ)|∇ρ|
2

+
1

2

∫ t

0

∫

U

(

σ
′(ρ)σ(ρ)∇ρ · F2 + σ(ρ)2F3

)

∂ξψ(x, ρ) dx dt

−

∫ t

0

∫

U

ψ(x, ρ)∇ · (σ(ρ)dξF ) dx−

∫ t

0

∫

U

ψ(x, ρ)∇ · ν(ρ).

The derivatives of the test function are again interpreted in the sense of Remark 2.9.

Proof (idea). The proof follows precisely the steps for deriving the stochastic kinetic equation (5).
Begin by using Itô’s formula to derive an equation for S(ρ) for a smooth and bounded function
S : R → R. Secondly derive a formula for the integral

∫

U

S(ρ)ψ(x)
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for test function ψ ∈ C∞
c (U) using Definition 4.7 of a weak solution. Finally the kinetic equation is

derived, noting the density of linear combinations of functions of the form S′(ξ)ψ(x) in C∞
c (U ×R).

One noteworthy point is that, as mentioned above, the kinetic measure corresponding to the solution
ρ constructed above is

q = δ0(ξ − ρ)Φ′(ξ)|∇ρ|2 + αδ0(ξ − ρ)|∇ρ|2 = δ0(ξ − ρ)
(

|∇ΘΦ(ρ)|2 + α|∇ρ|2
)

.

The measure is finite due to the estimates of Proposition 4.14 and satisfies the other assumptions of
a kinetic measure as in Definition 2.8 due to Assumption 4.2.
For further details see proof of Proposition 5.21 of [FG24].

Next we wish to extend the well-posedness to the generalised Dean-Kawasaki equation (3). The
first step is to dispense of the regularity assumption on σ of Assumption 4.6.

Lemma 4.32 (Approximating σ in C1
loc). Let σ satisfy Assumption 4.2. Then one can find a

sequence {σn}n∈N such that for each n, σn satisfies Assumption 4.6. Further, the sequence uniformly
satisfy Assumption 4.2 and σn → σ in C1

loc((0,∞)).

The proof follows from constructing smooth bounded approximations by convolution which can
be done due to the regularity of σ from Assumption 4.2.
The difficulty in extending the well-posedness to (3) is that the weak solution constructed in Propo-

sition 4.30 does not have a stable W β,1
t H−s energy estimate. We only have stable W β,1

t H−s for the
solution bounded away from its zero set, as in Proposition 4.18. We deal with this by defining the
below metric on L1

tL
1
x. Tightness of the cutoff solution Φδ(ρ) as in Definition (4.17) will be proved

with respect to this metric.

Definition 4.33 (New metric on L1
tL

1
x). For δ ∈ (0, 1) let Ψδ be defined as in Definition (4.17).

Define D : L1([0, T ];L1(U)) → [0,∞) by

D(f, g) =

∞
∑

k=1

2−k
( ‖Ψ1/k(f)− Ψ1/k(g)‖L1([0,T ];L1(U))

1 + ‖Ψ1/k(f)−Ψ1/k(g)‖L1([0,T ];L1(U))

)

.

Lemma 4.34. The function D defined above is a metric on L1([0, T ];L1(U)). The metric topology
defined by D coincides with the strong norm topology on L1([0, T ];L1(U)).

The proof of the above lemma can be found as Lemma 5.24 in [FG24]. Instead of assuming σ in
the regularised equation (4) satisfies Assumption 4.6, we define an approximate equation with σn as
defined in Lemma 4.32 approximating σ.

Definition 4.35 (Regularised and smoothed σ equation). Let ξF ,Φ, σ and ν satisfy Assumptions
2.2 and 4.2, and let T ∈ [1,∞). Let ρ0 ∈ L2(Ω;L2(U)) be non-negative and F0 measurable, and σn
as in Lemma 4.32.
For every n ∈ N and α ∈ (0, 1), define ρa,n to be the stochastic kinetic solution of

dρα,n = ∆Φ(ρα,n) dt+ α∆ρα,n dt−∇ · (σn(ρα,n) dξF + ν(ρα,n) dt)

+
1

2
∇ · (F1[σ

′
n(ρ

α,n)]2∇ρα,n + σ′
n(ρ

α,n)σn(ρ
α,n)F2) dt, (31)

in U × (0, T ) with initial data ρ0 and boundary condition Φ(ρ) = f̄ as constructed in Proposition
4.31.

The below proposition is a key element of the existence proof. The proof can be found in
Proposition 5.26 and 5.27 of [FG24].

Proposition 4.36 (Tightness of laws of ρα,n in L1
tL

1
x and of martingale term in Cγt ). Let ξF ,Φ, σ

and ν satisfy Assumptions 2.2 and 4.2. Let ρ0 ∈ L2(Ω;L2(U)) be non-negative and F0 measurable,
σn as in Lemma 4.32 and kinetic solutions ρα,n be as in Definition 4.35.
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1. The laws of {ρα,n}α∈(0,1),n∈N are tight on L1([0, T ];L1(U)) with respect to the strong norm
topology.

2. For each test function ψ ∈ C∞
c (U × (0,∞)), γ ∈ (0, 1/2) the laws of the martingales

Mα,n,ψ
t :=

∫ t

0

∫

U

ψ(x, ρα,n)∇ · (σn(ρα,n)dξF )

are tight on Cγ([0, T ]).

One of the main results to prove existence will come from the below technical lemma, see Lemma
1.1 of [GK96] for proof.

Lemma 4.37. Let (Ω,F ,P) be a probability space and X̄ be a complete separable metric space.
Then a sequence {Xn : Ω → X̄} of X̄ valued random variables converges in probability as n→ ∞ if
and only if for every pair of sequences (nk,mk)

∞
k=1 with nk,mk → ∞ as k → ∞, there is a further

sub-sequence (nk′ ,mk′)
∞
k=1 such that the joint laws (Xnk′

, Xmk′
) converge weakly as k′ → ∞ to a

probability measure µ on X̄ × X̄ satisfying µ({(x, y) ∈ X̄ × X̄ : x = y}) = 1.

We state the main existence result, which is stated as Theorem 5.29 in [FG24]. The full proof
can be found there, we will just explain the main idea by putting all the previous results from this
section together.

Theorem 4.38 (Existence of solution to (3)). Let ξF ,Φ, σ and ν satisfy Assumptions 2.2 and 4.2.
Let ρ0 ∈ L1(Ω;L1(U)) be non-negative and F0 measurable.
Then there exists a stochastic kinetic solution to the generalised Dean-Kawasaki equation (3) in the
sense of Definition 2.8. Furthermore, the solution satisfies the estimates of Proposition 4.14.

Proof. We provide the main steps of the proof and omit the technical details.

1. Tightness.

Recall the stochastic kinetic solutions {ρα,n}α∈(0,1),n∈N as defined in Definition 4.35, martin-

gales Mα,n,ψ as introduced in Proposition 4.36 and introduce the measures

qα,n := δ0(ξ − ρα,n)
(

|∇ΘΦ(ρ
α,n)|2 + α|ρα,n|2

)

.

Proposition 4.31 gives us existence of the solutions and the energy estimate of Proposition 4.14
allows us to deduce that {qα,n}α∈(0,1),n∈N are finite kinetic measures.
Using the kinetic equation given in Proposition 4.31, one can write an an equation for the
kinetic functions χα,n of ρα,n. Fixing a dense sequence of functions {ψj}j∈N of C∞

c (U×(0,∞))
in the strong Hs(U × (0,∞)) topology (for s > d/2 + 1), we consider the random variables
coming from the kinetic equation of χα,n:

Xα,n := (ρα,n,∇ΘΦ,p(ρ
α,n), α∇ρα,n, qα,n, (Mα,n,ψj )j∈N)

on the space

X̄ := L1(U × (0, T ))× L2
(

U × (0, T );Rd
)2 ×M(U × (0,∞)× [0, T ])× C

(

[0, T ])N
)

.

Equip X̄ with the product topology, with the strong topology on L1(U × (0, T )), the weak
topologies on L2(U × (0, T );Rd) and M(U × (0,∞)× [0, T ]) and topology of component wise
convergence in the strong norm on C([0, T ])N, in particular using the norm constructed before:

DC((fk), (gk)) =
∞
∑

k=1

2−k
( ‖fk − gk‖C([0,T ])

1 + ‖fk − gk‖C([0,T ])

)

.

To show convergence in probability of the random variablesXα,n we try to use Lemma 4.37. To
this end, we consider two subsequences (αk, nk), (βk,mk) such that αk, βk → 0 and nk,mk →
∞ as k → ∞ Consider the laws on Ȳ := X̄ × X̄ × C([0, T ])N of

(Xαk,nk , Xβk,mk , B),
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where B = (Bj)j∈N are the Brownian motions defined in the noise ξF in Definition 2.1.
The energy estimate in Proposition 4.14 alongside the two tightness results in Proposition 4.36
show that the laws of (Xα,n) are tight on X̄.

2. Skorokhod representation theorem.

By Prokhrov’s theorem, passing to a sub-sequence still denoted by k → ∞, there is a probability
measure µ on Ȳ such that (Xαk,nk , Xβk,mk , B) → µ as k → ∞.
X̄ being separable implies that Ȳ is separable, so we can apply Skorokhod representation
theorem. It tells us that there is an auxiliary probability space (Ω̃, F̃ , P̃) such that for every k,

(Ỹ k, Z̃k, β̃k) = (Xαk,nk , Xβk,mk , B) in law on Ȳ ,

(Ỹ , Z̃, β̃) = µ in law on Ȳ ,

and we have the almost sure convergence as k → ∞:

(Ỹ k, Z̃k, β̃k) → (Ỹ , Z̃, β̃)

in the space X̄ and C([0, T ]). To apply Proposition 4.37 we will show Ỹ = Z̃.

3. Characterising Ỹ .

It follows from the equality in law of Ỹ k and Xαk,nk that there is a ρ̃k ∈ L∞(Ω× [0, T ];L1(U))
and G̃k1 , G̃

k
2 , q̃

k, (M̃k,ψj )j∈N in the appropriate spaces such that

Ỹ k = (ρ̃k, G̃k1 , G̃
k
2 , q̃

k, (M̃k,ψj )j∈N).

By converting various expectations Ẽ into expectations E by using the equalities in law above,
and further using that αk∇ρk ⇀ 0 in L2

tL
2
x by energy estimates (Proposition 4.14) tells us

that in the limit as k → ∞

Ỹ = (ρ̃,∇(ΘΦ,p(ρ̃), 0, q̃, (M̃
j)j∈N),

where p̃ ∈ L1(Ω̃× [0, T ];L1(U)) and q̃ is the corresponding kinetic measure.
It remains to characterise M̃ j , and to do this we first need to characterise β̃k.

4. The path β̃ is a Brownian Motion.

Writing for each k, β̃k := (β̃k,j)j∈N, and the limiting process β̃ = (β̃j)j∈N, one obtains using

the same trick of interchanging expectations Ẽ and E using equalities in law that, by proving
first for β̃k,j then passing to the limit in k, that for any F : Ȳ → R, 0 ≤ s ≤ t ≤ T , j ∈ N

Ẽ

(

F
(

Ỹ |[0,s], Z̃|[0,s], β̃|[0,s]
)(

β̃jt − β̃js

))

= 0.

Identically for i, j ∈ N, 0 ≤ s ≤ t ≤ T ,

Ẽ

(

F
(

Ỹ |[0,s], Z̃|[0,s], β̃|[0,s]
)(

β̃jt β̃
i
t − β̃js β̃

i
s − δij(t− s)

))

= 0,

where δij is the Kronecker delta. Using these and the fact that β̃j has almost surely continu-

ous paths,we conclude using Lévy’s characterisation that β̃j are independent one dimensional
Brownian motions with respect to the filtration

Gt = σ(Ỹ |[0,t], Z̃|[0,t], β̃|[0,t]).

By continuity and uniform integrability β̃ is a Brownian motion with respect to the augmented
filtration Ḡ of G.
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5. (M̃ j)j∈N are Ḡt martingales.

The statement follows using a similar technique as the previous point. First showing for j ∈ N,
0 ≤ s ≤ t ≤ T and k ∈ N,

Ẽ

(

F
(

Ỹ k|[0,s], Z̃k|[0,s], β̃k|[0,s]
)(

M̃
k,ψj

t − M̃k,ψj
s

))

= 0.

The result follows by taking the limit as k → ∞ using the uniform integrability of the martin-
gales.

6. (M̃ j)j∈N are stochastic integrals with respect to β̃.
Again this follows from the same techniques as before. First proving the results for the ap-
proximations and then taking a limit as k → ∞, we can prove that

Ẽ

(

F
(

Ỹ |[0,s], Z̃|[0,s], β̃|[0,s]
)

(

M̃ j
t β̃

i
t − M̃ j

s β̃
i
s −

∫ t

s

∫

U

ψj(x, ρ̃)∇ · (σ(ρ̃)fi)
))

= 0,

where recall fi are defined as the spacial components of the noise ξF . Hence this shows for
each i ∈ N,

M̃ j
t β̃

i
t −

∫ t

s

∫

U

ψj(x, ρ̃)∇ · (σ(ρ̃)fi) is a G −martingale.

It is easy to see by uniform integrability and continuity that the process is also a Ḡt martingale.
Identical arguments show that for j ∈ N

(M̃ j
t )

2 −
∫ t

0

∞
∑

k=1

(∫

U

ψj(x, ρ̃)∇ · (σ(ρ̃)fk)
)2

is a continuous Ḡt martingale. Putting everything together, due to an explicit calculation using
the quadratic variation of Brownian motion, for every j ∈ N, t ∈ [0, T ],

Ẽ

(

(

M̃ j
t −

∫ t

0

∫

U

ψj(x, ρ̃)∇ · (σ(ρ̃)ξ̃F )
)2
)

= 0,

where ξ̃F is defined analogously to ξF but with Brownian Motion β̃ on Ω̃. It follows that
M̃ j
t =

∫ t

0

∫

U
ψj(x, ρ̃)∇ · (σ(ρ̃)ξ̃F ).

7. Tying up loose ends.

One needs to show the following technical steps in order to finish the proof.

(a) Show the limiting kinetic measure q̃ is almost surely a kinetic measure for p̃.

(b) Show that σ(ρ̃) is in L2.

(c) Remove the set A := {t ∈ [0, T ] : q̃({t} × U × R) 6= 0}. Outside A there is no ambiguity
when writing the kinetic equation for the kinetic function χ̃.

(d) Show that ρ̃ ∈ L1([0, T ];L1(U)).
This is quite a technical step, it involves looking at left and right continuous represen-
tations of ρ̃. One needs to study properties of the left and right kinetic functions χ±.
Conclude by showing that the measure q̃ almost surely has no atoms in time.

8. Conclusion.

We showed the existence of ρ̃ with representative in L1(Ω̃ × [0, T ];L1(U)) ρ̃ is a stochastic
kinetic solution in the sense of Definition 2.8 with respect to Brownian Motion β̃ and filtration
(Ḡt)t∈[0,T ]. That is to say, we showed the existence of a probabilistically weak solution. We
now explain how to extend this to a probabilistically strong solution.
Repeating all steps from Step 3 of the above, it follows that we can characterise Z̃ as

Z̃ = (ρ̄,∇(ΘΦ,p(ρ̄), 0, q̄, (M̄
j)j∈N).
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Continuing, one shows there is an L1 continuous representation of ρ̄ which is a stochastic ki-
netic solution in the sense of Definition 2.8 with respect to Brownian Motion β̃ and filtration
(Ḡt)t∈[0,T ].
The uniqueness theorem, Theorem 3.5 tells us ρ̃ = ρ̄ almost surely in L1

tL
1
x.

By Lemma 4.37, it follows that after passing {ρa,n} to a sub-sequence αk, nk on the original
probability space (Ω,F ,P), there is a random variable ρ ∈ L1(Ω × [0, T ];L1(U)) such that
ραk,nk converges to ρ in probability.
Working along a further sub-sequence we have that ραk,nk converges almost surely to ρ. Re-
peating the steps again above we can show ρ is a stochastic kinetic solution of the generalised
Dean-Kawasaki equation (3) in the sense of Definition 2.8. Noting that ρα,n are all proba-
bilistically strong solutions, ρ is also a probabilistically strong solution. The energy estimates
follow from the estimates for the regularised equations and the weak lower semicontinuity of
the Sobolev norm.
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solutions to the stochastic porous media equation via kolmogorov equations: the de-
generate case. Journal of Functional Analysis, 237(1):54–75, 2006.

[BDPR08a] Viorel Barbu, Giuseppe Da Prato, and Michael Röckner. Existence and uniqueness
of nonnegative solutions to the stochastic porous media equation. Indiana University
mathematics journal, pages 187–211, 2008.

[BDPR08b] Viorel Barbu, Giuseppe Da Prato, and Michael Röckner. Some results on stochastic
porous media equations. Boll. Unione Mat. Ital.(9), 1(1):1–15, 2008.

[BDPR09] Viorel Barbu, Giuseppe Da Prato, and Michael Röckner. Existence of strong solu-
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