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Abstract

Despite extensive experimental efforts over the past two decades, the quest for Majorana fermions

in superconductors remains inconclusive. We propose an experimental method that can con-

clusively confirm, or rule out, the existence of these quasiparticles: Firstly, we shift focus from

superconductors, whose very topological nature is disputed, to the unambiguous topological su-

perfluid 3He. Secondly, we identify the interaction between surface waves and the chiral Majorana

current in the bulk of a topological superfluid of varying density. The proposed experiment pro-

vides a path towards the detection of the Majorana fermion, an 80-year-old theoretical prediction.

It is realistically achievable based on the advent of microscopic superfluid resonators coupled to

optical cavities. The proposal may open the door to experiments ranging from simulations of exotic

cosmological particles to topological acoustics and fault tolerant quantum computing.

INTRODUCTION

One of the major breakthroughs in modern condensed matter physics is the incorpo-

ration of topology in material classifications, beyond traditional classifications based on

symmetry [1]. However, despite the successful experimental realization of topological in-

sulators [2, 3] and subsequently topological semimetals [4–6], topological superconductors

remain an elusive goal [7, 8]. Perhaps the most intriguing prediction about topological

superconductors is that their boundaries are a potential host to a quasiparticle known as

the Majorana fermion [7, 8]. The Majorana fermion, a particle with the unusual property

of being its own antiparticle, was first theoretically proposed more than 80 years ago [9].

Despite the lack of experimental observation, its theoretical properties have been intensely

studied, as have their implications for particle physics [10, 11] and fault-tolerant quantum

computing [12–15]. Direct synthesis of such a superconductor [16] has been found to be

unsuccessful [17]. A more subtle strategy of combining two or more materials [18], each

exhibiting non-trivial topology and superconductivity separately, led to observations that

suggested the existence of Majorana fermions [19–22]. However, the interpretation of these

observations has since been questioned [23–26].

While nearly all of these efforts have been focussed on topological superconductors

[12, 27], the advent of topology also shed new light on a long-known system: Superfluid

helium-3. Unlike in any known superconductor, the p-wave nature of superfluid 3He’s order
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parameter is unequivocally established in its A- and B-phases. Thus, it is widely expected

to contain Majorana fermions. There are a number of experimental reports of the exis-

tence of surface states in superfluid 3He [28–30] which suggest the existence of the Majorana

fermions. However, direct experimental confirmation of the topological nature of the bulk

order parameter or the Majorana nature of these boundary states is still an outstanding

challenge. One of the most powerful ways in which non-trivial topology reveals itself in

a condensed matter system is in the form of a quantized conductance whose quantization

is strongly tied to the topological invariants of a system. Given the analogy between the

quantum Hall system and topological chiral superconductivity, quantized Hall conductivity

is expected with the chiral edge current carried by Majorana fermions. However, quantum

Hall measurements rely on the presence of charge in the system and are thus inapplicable

to liquid 3He.

In this work, we propose an experiment that can directly and unambiguously measure

the chiral Majorana current by leveraging the to-date barely considered spatially distributed

current, which arises in response to local density variations in a p-wave superconductor or

superfluid. We show how this effect arises dynamically due to sound modes in superfluid

3He-A, and how it can be directly detected via its dispersive interaction with these very sound

modes [31]. In a two-dimensional picture, sound-induced deformations in the surface can be

thought of as fluctuations in planar density. Such fluctuations induce a transverse current in

the direction perpendicular to the density gradient, an effect reminiscent of the transverse

current induced in response to a voltage gradient in a Hall system. We term this spatially-

and temporally varying effect the dynamic chiral current, as opposed to the conventionally

predicted static chiral edge current at the superfluid boundary [32]. This dynamical effect

can be interpreted as a manifestation of the dissipationless quantum Hall viscosity [33]

with the strain rate and subsequent momentum current being orthogonal to each other.

Despite significant research efforts, this effect has been obscured in electronic quantum hall

systems by the presence of the lattice [34–36]. We show that this transverse current couples

orthogonal pairs of superfluid sound modes and as a result lifts the degeneracy between them.

We calculate the magnitude of this effect and investigate potential obstacles to unambiguous

experimental detection. We find that its magnitude scales inversely with the resonator size,

so that to obtain a clear signature, microscale superfluid resonators are essential. Recent

advances in miniaturized superfluid thin-film resonators, in which superfluid surface modes
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are read out optically [37–41], hence open the door to detecting this deformation-induced

Majorana current.

Experimental observation of the dynamical chiral current in superfluid 3He would provide,

for the first time, incontrovertible evidence of quantized Hall effect and chiral Majorana

fermions. Moreover, the proposed experiment would constitute the first realistic method

to study dissipationless quantum Hall viscosity. This could open the door to employing

these elusive quasi-particles to study non-Abelian statistics, to simulate exotic fundamental

particles and cosmological phenomena [10, 11], to realize topological acoustics [42, 43], and

may even enable fault-tolerant topological quantum computing [12–15].

RESULTS

Coupling between chiral edge current and sound modes

The mass current density in superfluid 3He-A at zero temperature is given by [44, 45]:

g⃗ = ρ v⃗ +
ℏ

4M
∇⃗ × ρ l⃗ − ℏ

2M
c0 l⃗

(
l⃗ · ∇⃗ × l⃗

)
(1)

where v⃗ is the superfluid velocity, ℏ the reduced Planck constant, M = 5.0 · 10−27 kg the

mass of a helium-3 atom, ρ the local superfluid density, l⃗ the local anisotropy axis, and c0 is

an integral over single-particle momentum states which asymptotes to ρ as the temperature

goes to zero [46] . In the case of a helium thin film, ρ can be understood as the bulk density

ρ0 of superfluid helium-3, locally scaled with the film thickness variation: ρ = ρ0 · (1+η/h0),

with ρ0 = 82 kg/m3, h0 the equilibrium film height, and η the film height perturbation

due to the acoustic wave. The first term corresponds to an irrotational mass current, such

as that arising from center-of-mass motion or acoustic waves. The second term describes

the chiral current, in analogy to the bound current density j in a conductor of varying

magnetization M⃗ , (j ∝ |∇⃗× M⃗ |), and can be thought of as arising due to the Cooper pairs’

orbital angular momentum [45]. The third term, which generates an essentially out-of-plane

current, is neglected in the following, as its coupling to the in-plane flow due to sound modes

is minimal.

In this work, we shall consider the case of a helium-3 surface-sound resonator and focus

on the role of the second term in Eq. (1). Spatial variations in l⃗ or in ρ lead to net mass

currents. The direction of the current depends on the preferred orientation of the orbital
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angular momentum l̂, which is to first order either aligned or anti-aligned with the resonator’s

surface normal ẑ [47]. Here, we consider the large wavelength, small amplitude limit, where

the acoustic wavelength λ is much larger than the film thickness h, which is in turn much

larger than the out-of-plane displacement amplitude η of the film. This implies that the

motion of the fluid is essentially in-plane and hence out-of-plane motion is negligible (see

Methods for details). Such a condition arises naturally in experiments, where a resonator

substrate is coated with a film of superfluid helium (see e.g. [39, 48]).

Under the assumptions of the previous paragraph, the second term in Eq. (1) can be

expanded as
ℏ

4M
∇⃗ × ρ l⃗ = g⃗edge + g⃗dyn. (2)

Here, g⃗edge is the conventional static chiral edge current [32, 49], while g⃗dyn is a dynamic

current which arises due to the presence of the sound modes and which we evaluate for the

first time in this work. These two contributions to the in-plane mass current are illustrated

in Fig. 1. The static mass current, shown in Fig. 1 (a), results from the steady-state

variations in the film’s thickness due to physical confinement within the resonator geometry.

In the case where the film thickness and density are uniform, and the thickness drops to

zero at an abrupt specular boundary, it corresponds to the ground-state angular momentum

Nℏ/2 [49, 50], with N the number of helium nuclei contained in the film. The dynamic

mass current, shown in Fig. 1 (b), is proportional to the gradient of the (temporally and

spatially varying) superfluid film height due to the sound mode.

Both the static and the dynamic contributions to the chiral edge current couple to acoustic

waves via their direct overlap with the flow fields of the sound modes. In the static case,

the chiral mass current leads to a time-independent flow field that superposes with the

flow field of acoustic waves. The energy of an acoustic mode increases if the interference

is constructive, and decreases if it is destructive. On the other hand, the dynamic chiral

current arising from the density perturbation due to one acoustic mode can interfere with

the flow field of another mode, leading to a “dynamic coupling” between acoustic modes.

Dynamic coupling

We investigate first the effect of the dynamic coupling in the analytically tractable case of

a circular superfluid surface-wave resonator [51]. The restoring forces are surface tension, the
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Figure 1: Illustration of static and dynamic chiral currents. (a) Static chiral edge current,

arising only at the boundary of the resonator. Red arrows show direction and location of

the induced flow, black arrow on top shows the rotation direction of the fluid antinode. (b)

Dynamic chiral current, arising as a result of the acoustic mode-induced height variation, and

present throughout the resonator. The green arrow shows the direction of the induced flow,

and the black curved arrow shows the rotational direction of the clockwise rotating sound

mode. h0 and η(not to scale) indicate equilibrium film height and acoustic perturbation,

respectively.

van-der-Waals force, and gravity, either of which can be dominant depending on resonator

radius, film thickness, and reservoir height. Note that while we consider surface waves here,

this discussion is also valid for density waves, such as first sound, with the appropriate trans-

formations (see Supplementary Note 1). For a thin-film superfluid surface-wave resonator

with equilibrium film height h0, using simple vector calculus (see Methods), the dynamic

part of the chiral current can be written as (c.f. Eq. (2))

g⃗dyn = −ρ0
ℏ

2M h0

ẑ × ∇⃗η + gtorque, (3)

where η ≪ h0 is the surface-deflection due to the sound wave (see Fig. 1), and gtorque is

the out-of-plane component of the chiral mass current, which is negligible for the resonators

considered here (see Methods). Without loss of generality, we have assumed the anisotropy

axis l⃗ to be aligned with the normal to the surface ẑ, i.e. l̂ = ẑ.

To illustrate the effect of the chiral current on the acoustic eigenmodes, let us first con-

sider the lowest frequency excitation of a circular resonator of radius R with free boundary

conditions, where the fluid oscillates back and forth from one side of the resonator to the

other, corresponding to the lowest-frequency Bessel-mode [52]. In the absence of chiral cur-

rents, this type of excitation can be described in the standing wave basis formed by the two
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frequency-degenerate normal modes shown in Fig. 2(a), where the sound velocity field v⃗s is

represented by the black arrows. The presence of the sound-induced density gradient η leads

via Eq. (3) to an additional mass current g⃗dyn (and associated flow field v⃗dyn) in a direction

orthogonal to the height gradient, represented by the green arrows. This net mass flow will

either interact constructively or destructively with the sound-induced flow, leading to a cou-

pling between previously orthogonal standing wave modes. In the presence of this coupling,

clockwise (CW) and counterclockwise (CCW) propagating surface-sound waves become the

diagonal mode basis. The coupling introduces a frequency splitting between these waves, in

a mechanism which is reminiscent of the third-sound splitting due to the presence of quan-

tized vortices [39, 48, 53–55]. We propose that this splitting provides a mechanism by which

the chiral current can be detected experimentally, e.g. by optomechanical readout [39].

This lifting of the degeneracy between normal modes is experimentally resolvable if its

rate ∆f exceeds the acoustic mode’s linewidth Γ/(2π) [39, 54, 55], as shown in Fig. 2(b).

A better understanding of the newly formed eigenmodes can be gained by shifting to the

more appropriate CW and CCW rotating-mode basis (see Fig. 2(c)). Here we see that

the induced flow is respectively aligned or anti-aligned with the CW and CCW sound flow,

leading to an effective Doppler shift. This implies that the acoustic mode with the same

rotation direction as the induced chiral mass current will be frequency up-shifted, while

that of opposite handedness is frequency downshifted. This can alternatively be viewed as

arising from the fact that, while possessing an irrotational flow field, a sound wave can carry

angular momentum, as more fluid advances under the peaks than recedes under the troughs

[55]. The acoustic eigenmode where sound and chiral current angular momentum vectors

are aligned therefore corresponds to a higher energy and frequency state than the one where

these point in opposing directions.

We first estimate the magnitude ∆f of the splitting due to the dynamic coupling using

a perturbative approach, following [55] (see also Methods). We assume the distortion of

the acoustic modeshape due to the chiral current to be small, so that the surface deflection

profile η (r, θ, t) due to a surface-sound wave of frequency f = Ω/2π confined to a circular

domain of radius R can be expressed in cylindrical coordinates as [52, 55]:

η (r, θ, t) = η0 Jm

(
ζ
r

R

)
ei(mθ±Ω t) (4)

where η0 is the wave amplitude, Jm the Bessel function of the first kind, with m the mode’s
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chiral flow CW mode CCW mode

Figure 2: Dynamic coupling mechanism. (a) Standing wave basis illustration of the lowest

frequency (m = 1;n = 1) sound eigenmode of a circular resonator with free boundary

conditions [52]. Background color: height profile η (r, θ); Black arrows: superfluid surface-

sound flow field v⃗s; Green arrow: dynamically induced chiral flow v⃗dyn due to Helium-3A’s

orbital angular momentum (see Eq. 1). (b) Sound mode frequency splitting ∆f arising

from Helium-3A’s ground state orbital angular momentum. (c) Computed flow fields and

displacement profiles for (m = 1;n = 1) Bessel mode with free boundary conditions (see

also [52]). Left panel: Mass current vector field ∝ v⃗dyn obtained from Eq. 1) (green arrows)

caused by the height profile η (displayed as the background color code). As expected, the

chiral flow is orthogonal to the height gradient. Middle & right panels: Instantaneous flow

fields for the clockwise and counter-clockwise sound modes respectively (black arrows). Note

the good overlap between the chiral and CW flow fields, and the destructive interference

between the chiral and CCW flow fields.

azimuthal order, and ζ a parameter which depends on the mode radial order n and the

boundary conditions [52]. This approximation is justified if the ratio of the mass currents

due to the chiral flow to that of the acoustic mode is small. In our case,
gdyn
gs

=
vdyn
vs

∝ κ3

Rcs
,

with gs the mass current associated with the surface wave (corresponding to the first term

in Eq. (1)), cs the speed of sound, and κ3 = πℏ
M

the circulation quantum in 3He. For the

resonators considered here, this ratio does not exceed a few percent (see Methods).

We can directly identify the chiral current velocity from Eq. (3) as v⃗dyn = g⃗dyn/ρ0. The

fluid-flow velocity associated with the surface waves, corresponding to the first term in Eq.
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(1), can be calculated from Eq. (4) to be v⃗s = ±ic2s∇⃗η/(h0Ω), where ’+’ and ’−’ correspond

to CW and CCW modes, respectively [52]. The energy difference ∆E between the two sound

eigenmodes arising from this overlap takes the form [55]:

∆Edyn =
ρ0h0

2

∫ ∫
(v⃗s + v⃗dyn)

2 − (v⃗s − v⃗dyn)
2 r dr dθ

= 2ρ0h0

∫ ∫
v⃗s · v⃗dyn r dr dθ.

(5)

The resulting frequency splitting ∆f between the two counter-rotating sound modes is given

by (see Methods for full derivation):

∆fdyn =
κ3m

4π2

η2 (R)∫ R

0
η2 (r) r dr

. (6)

The splitting is independent of acoustic mode amplitude and vanishes for fixed boundary

conditions, for which η (R) = 0.

The existence of an induced transverse flow in the hydrodynamic oscillation of a superfluid

3He-A film had been noted [56], and alluded to in the context of superfluid third sound

resonators [31]. However, the splitting of sound modes scales inversely with resonator area

(see Methods), and hence a measurable effect only becomes possible with the advent of the

microscopic superfluid resonators [37, 39, 40] considered in this work.

Static chiral edge current

The static chiral edge current, which resides within a layer of a depth of the healing length

ξ = 100 nm from the resonator boundary in the case of an abruptly vanishing superfluid

density is given by [32, 49] (see Methods)

g⃗edge = − ℏ
4M

l⃗ × ∇⃗ρedge =
ℏρ0
4M ξ

êθ, (7)

where ∇⃗ρedge quantifies the drop-off of the condensate density at the boundary. Here we can

identify the superfluid velocity v⃗edge = g⃗edge/ρ0 ≈ 5 cm/s, independently of the resonator

geometry.

For a circular resonator with abruptly vanishing superfluid density (see e.g. [57–59]), we

find ∆fedge = −∆fdyn, so that dynamic- and static contributions cancel out. An illustrative

explanation is shown in Supplementary Figure 1. On the other hand, if the film thickness
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increases at the boundary, the contributions add constructively. The boundary can be

engineered: A reduced superfluid film thickness is associated with a stiffer van der Waals

interaction, and such a constraint is typically associated with a fixed (or Dirichlet) boundary

condition. A thickening of the film on the other hand is associated with a slower speed of

sound, and a free (or Von Neumann) boundary condition for the film motion. In circular He-

3 surface-sound resonators, both types of boundary conditions have been encountered [31],

the transition between the two regimes being associated with changes in film thickness [60].

The latter configuration is realized which in our typical experimental designs, such as helium-

coated microtoroids [37, 39] and silicon-on-insulator pillar designs [61].

Experimental feasibility and perspectives

The first observation of 3He third sound employed a R ∼ 2 cm resonator, for which

the magnitude of the splitting ∆f would have been in the hundreds of µHz, and thus

undetectable. Only recently, advances in miniaturization and the fabrication of micrometer-

sized third sound resonators [37, 39, 40], have put this observation within reach. Indeed, for

a circular resonator of 20 micron diameter and a film thickness of 100 nm, the magnitude

of the dynamic splitting is appreciable: 47 Hz for the (m = 1;n = 1;Ω/(2π) = 5.1 kHz)

mode and 555 Hz for the (m = 6;n = 1;Ω/(2π) = 70 kHz) mode. This splitting would be

detectable with sound quality factors on the order of 102 in both cases. For comparison, in

superfluid 4He-resonators of the size and shape considered here, quality factors in excess of

103 are common [37, 40].

As a concrete example we propose silicon-on-insulator pillar designs, which we already

fabricate for optomechanical experiments with surface-waves in helium-4 , with standard

pillar-height of 220 nm. These resonators have recently been shown to be able to confine

superfluid surface-sound modes and allow for optomechanical readout [61]. Sound waves

arise from both vdW-and surface tension in comparable magnitudes (see Methods). The

acoustic mismatch at the boundary leads to strong confinement for the higher order Bessel

modes defined by the resonator geometry [39, 40]. A range of readout mechanisms may be

able to resolve the Majorana-induced splitting of sound waves, such as capacitive readout

[54] or torque sensing [32]. Here, as a concetrete example, we focus on optical readout via

an optical whispering-gallery mode (WGM) confined on the perimeter of the pillar [61, 62].
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Optomechanical experiments with 3He are inherently challenging because of its low su-

perfluid transition temperature. Heating issues can be minimized through techniques such

as pulsed optical operation [63]. Recently, through optimization of the superfluid fountain

pressure interaction and high-precision optomechanical detection techniques, the ability to

detect and strongly drive superfluid 4He third sound modes with optical powers down to the

femtowatt range [41], corresponding to less than one average intracavity photon has been

realized. Mechanical modes are optically resolvable if the optomechanical cooperativity is

larger than the inverse of the average thermal phonon number C = 4n̄cavg
2
0/(κΓ) > n̄−1

th ,

where n̄cav is the average intracavity photon number, g0 is the single-photon optomechan-

ical coupling rate, and κ the optical decay rate [64]. A temperature of 1 mK yields

n̄th = ℏΩ/(kBT ) = 4.7 · 103 for the (m=1;n=1) mode and parameters considered above.

With values from the experiment Ref. [40], we find C = n̄cav · 2.5 · 10−3, allowing the

mechanical modes to be resolved with an average of less than one intracavity photon.

Of paramount importance in any experiment searching for Majorana modes, as demon-

strated by recent discoveries of ambiguities [24] in claimed sightings of such modes, is the

challenge of unambiguously distinguishing signatures of the Majorana mode from other ef-

fects [23, 26]. Known effects that can produce a sound-mode splitting in superfluid helium

resonators are geometric splitting and vortex-induced splitting [39]. As the hydrodynamic

equations describing momentum density for the A-and B-phases of superfluid 3He are iden-

tical except for the terms relating to the chiral Majorana current [65], these spurious sources

of splitting can be calibrated out by transitioning the film between the A- and B-phases, by

tuning temperature and film thickness [58] or magnetic field. Hence, any observed change

in mode splitting between the A- and the B-phase can be attributed to chiral Majorana

modes.

Another potential limitation is the uniformity of the l⃗ vector. For a thin film, the l⃗

vector can to first order only be aligned or anti-aligned with the surface normal. The

twofold degeneracy in l⃗ can nevertheless lead to multiple domains in the film, whose opposite

contributions to the sound coupling would cancel out. The splitting values quoted in the text

are applicable to resonators covered by single domains, and constitute therefore an upper

bound on the observable signal. The use of microscale resonators, with dimensions much

below the typical domain size [66] increase here the likelihood of single domain coverage, and

a specific cool-down procedure can be tailored for single-domain growth [32]. The possibility
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of alignment of anisotropic superfluids by flow [67] also offers the prospect of optomechanical

control of the domains.

DISCUSSION

We have proposed an optomechanical method of measuring chiral Majorana fermions

in quasi two-dimensional 3He-A as the prototypical px + ipy superfluid. The sound can

be considered as an oscillation of a deformed free surface in a superfluid film with the

velocity along the film height gradient. A transverse surface current, orthogonal to the

height gradient, is generated in a chiral superfluid with broken time reversal symmetry such

as 3He-A. The transverse nature of this current couples two degenerate sound modes in

orthogonal directions, and hence lifting their degeneracy. The resulting frequency splitting

is perfectly suited for optomechanical detection based on the coupling between the sound

and optical whispering gallery mode of micropillar optical resonator on which thin film of

superfluid 3He-A is deposited. We suggest a concrete realization of our proposal based on

already existing silicon-on-insulator designs [61, 62].

The splitting of the two modes is a direct consequence of the long-sought-after quantum

Hall effect predicted in 3He-A. The Majorana-detection mechanism based on the surface

waves relies on the coupling of deformation (strain) to a momentum current orthogonal to

the strain direction. Therefore, the splitting can be viewed as a direct consequence of the

quantum Hall viscosity which has not been experimentally verified despite various theoretical

proposals. The deformation-induced current corresponds to the chiral Majorana current in

a px + ipy superfluid. Thus the proposed method offers a mean to detect the illusive chiral

Majorana fermions. The flow of chiral Majorana fermions could be controlled if a particular

surface deformation could be engineered by exciting and superposing different sound modes.

This could be potentially useful in topological quantum computation based on braiding

Majorana fermions. 3He-A’s intrinsic chiral nature may have other implications such as

enabling topological acoustics [42, 43] and time-reversal symmetry breaking, without the

need for any gain or drive of the medium [68].
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METHODS

SOUND MODES IN A SUPERFLUID THIN FILM

For the superfluid resonators considered here, the relevant restoring forces are surface

tension, van-der-Waals force and gravity. The respective speeds of sound are given by

cσ =
ζ

R

√
h0 · σST

ρ0
, c3 =

√
3αvdW

h3
0

and cg =
√
ggh0, (8)

with σST = 1.56 · 10−4 J/m2 the surface tension of superfluid helium [69] ρ0 = 82 kg/m3

the density of superfluid 3He [70], αvdW = 3.5 · 10−24 m5/s2 the van der Waals coefficient of

silicon, and gg = 9.8 m/s2 the gravitational acceleration The total speed of sound is given

by cs =
√

c2σ + c23 + c2g and the sound frequency is

ν =
Ω

2π
=

ζcs
2πR

. (9)

For the resonator dimensions and film thickness considered in this work (radius R = 10 µm

and film thickness d = 100 nm), we find f = 2πν = 5.1 kHz for the (m=1;n=1) mode, and

f = 70 kHz for the (m=6;n=1) mode, with the gravitational contribution being negligible

in this case [71].

VALIDITY OF APPROXIMATIONS

Perturbative approach for the frequency shift

The perturbative approach used in the estimation of the frequency shift induced through

both the dynamic and the static coupling between edge current and surface-sound modes is

valid in the limit vs ≫ vdyn. For a given film displacement amplitude η0 we find

vdyn ≃ ℏ η0
4M dR

and vs ≃
c2s η0
Ω dR

=
csη0
ζd

. (10)

The ratio between the two is given by vdyn/vs =
κ3 ζ

4π R cs
, which is on the order of one percent

for the dimensions considered here, justifying the use of a perturbative approach to consider

its effect on the sound waves.
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In-plane and out-of-plane chiral currents

The chiral mass current is given by the second term of Eq. (1). For a thin-film surface-

wave resonator, it can be recast as

g⃗dyn = ρ0
ℏ

4M h0

∇⃗ × (h0 + η) l⃗. (11)

Simple vector calculus yields

∇⃗ × (h0 + η) l⃗ = (h0 + η)
(
∇⃗ × l⃗

)
− l⃗ × ∇⃗η. (12)

We consider, without loss of generality, that l⃗ is approximately aligned with ẑ. As l⃗ remains

normal to the film surface, we find

l⃗ =


−∂η

∂r

−1
r
∂η
∂θ

1

 and ∇⃗ × l⃗ =


0

0

− ∂
∂r

(
1
r
∂η
∂θ

)
+ 1

r
∂
∂θ

(
∂η
∂r

)
 (13)

at the film surface. Taking into account that l⃗ is aligned with the substrate at z = 0, whereas

it is aligned with the film surface at z = h0 + η ≈ h0, we find the anisotropy axis below the

film’s surface:

l⃗ =


−∂η

∂r
z
h0

−1
r
∂η
∂θ

z
h0

1

 and ∇⃗ × l⃗ =
1

h0


∂η
∂y

−∂η
∂x

− ∂
∂r

(
1
r
∂η
∂θ

)
z + 1

r
∂
∂θ

(
∂η
∂r

)
z

 . (14)

Inserting Eq. (14) into Eq. (12) and neglecting terms proportional to η2, we find

∇⃗ × (h0 + η) l⃗ ≃ −2ẑ × ∇⃗η. (15)

Inserting above equation into Eq. (11), we obtain Eq. (3).

The out-of-plane chiral current g⃗torque is suppressed by a factor of h0/R (which is about

1% for the resonators considered in this work) compared to the in-plane current and will

hence be neglected here.
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CALCULATION OF THE DYNAMIC COUPLING ON A DISK

The energy difference ∆E between the two sound eigenmodes arising from a background

flow is:

∆E (t) =
1

2
ρ0

∫ 2π

θ=0

∫ R

r=0

∫ h0+η(r, θ, t)

z=0(
||v⃗s (r⃗, t) + v⃗dyn (r⃗)||2 − ||v⃗s (r⃗, t)− v⃗dyn (r⃗)||2

)
r dr dθ dz.

(16)

Since v⃗s and v⃗dyn are independent of z, Eq.(16) becomes [55]:

∆E (t) = 2ρ0

∫ 2π

θ=0

∫ R

r=0

v⃗s (r, θ, t) · v⃗dyn (r, θ) (h0 + η (r, θ, t)) r dr dθ (17)

Since η ≪ h0, we find:

∆E(t) = 2ρ0h0

∫ 2π

θ=0

∫ R

r=0

v⃗s · v⃗dyn r dr dθ. (18)

Expressing the velocities as function of height perturbation (c.f. [55])

v⃗s = ± ic2s
Ωh0

∇⃗η and v⃗dyn =
ℏ

4M h0

∇⃗ × ηẑ (19)

and using Eq. (4), and performing straightforward vector calculus we obtain:

∆E(t) =
ρ0 ℏ c2s m
2M Ωh0

∫ R

0

∫ 2π

0

η (r) η′(r)
(
cos2 (mθ ± Ω t) + sin2 (mθ ± Ω t)

)
dr dθ, (20)

where η (r) = η0Jm (ζr/R) and η′ = ∂η/∂r . Noting that ∆E is now independent of time,

this simplifies to:

∆E =
π ρ0 ℏ c2s m
M Ωh0

∫ R

0

η (r) η′(r) dr. (21)

The energy E stored in the sound mode is given for m > 0 modes by [52]:

E =
πρ0c

2
s

2h0

∫ R

0

η2(r) r dr. (22)

The fractional change in energy is thus:

∆E

E
=

2 ℏm
MΩ

∫ R

0
η (r) η′(r) dr∫ R

0
η2(r) r dr

. (23)

For a harmonic oscillator, E is proportional to Ω2, and ∆E
E

= 2∆Ω
Ω
, hence the frequency

splitting ∆f between the two counter-rotating sound modes is given by:

∆f =
Ω

4π

∆E

E
=

κ3m

2 π2

∫ R

0
η (r) η′ (r) dr∫ R

0
η2 (r) r dr

=
κ3m

4 π2

η2 (R)∫ R

0
η2 (r) r dr

. (24)
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Since η(R) = 0 for fixed boundary conditions, this type of coupling only arises for free (or

mixed) boundary conditions [71]. For a more general geometry, Finite-Element Modelling

can be employed [55]

The inverse scaling of the mode-splitting with resonator area can be understood as follows:

For a given wave amplitude, the magnitude of the surface gradient, and hence of the induced

chiral flow velocity, is inversely proportional to R. The frequency shift ∆fdyn is proportional

to R−2. This can be seen from Eq. (6) as, in average, η2(r) and η2(R) are independent of

R, while
∫ R

0
rdr ∝ R2.

CALCULATION OF THE STATIC COUPLING ON A SPECULAR BOUNDARY

If ρ drops from ρ0 to 0 at the boundary within a length scale ξ, and l⃗ =


0

0

1

 is constant,

then the chiral current density at the resonator boundary is

g⃗edge = − ℏ
4M

l⃗ × ∇⃗ρedge =
ℏρ0
4M ξ

êθ (25)

The angular momentum Lz associated to this mass current density g⃗edge is, with R >> ξ:

Lz = mvR = gedge (2π R) ξ R =
ℏ
2

π R2 ρ0
M

=
ℏ
2
N, (26)

where N is the number of particles in the fluid.

From Eq. (25), we can identify the velocity of the edge current

v⃗edge ≃
ℏ

4M ξ
êθ. (27)

For the case of an abrupt and specular boundary, ξ is given by the healing length ξ ∼ 100 nm.

In this case, vedge is on the order of 5 cm/s. The presence of the edge current leads to a

background flow, which will lead to an energy difference ∆E between CW and CCW modes.

We follow Ref. [55] in calculating the resulting frequency splitting:

∆E = 2ρ0

∫ 2π

θ=0

∫ R

r=0

(h0 + η) v⃗s · v⃗edge r dr dθ. (28)

Due to symmetry,
∫∫

v⃗s · v⃗edge = 0, and hence

∆E = 2ρ0

∫ 2π

θ=0

∫ R

r=0

η(r) v⃗s · v⃗edge r dr dθ. (29)
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The energy difference ⟨∆E⟩ averaged over an oscillation period T is given by:

⟨∆E⟩ = 1

T

∫ T

0

∆E (t) t

= 2 ρ0

∫ 2π

θ=0

∫ R

r=0

r

(
v⃗edge · êr

1

T

∫ T

0

v⃗s · êr η dt+ v⃗edge · êθ
1

T

∫ T

0

v⃗s · êθ η dt
)

dr dθ

(30)

From Eqs. (4) & (19) we see that v⃗s · êr and η are out-of-phase and v⃗s · êθ and η are in-phase.

Hence, the first part of the integral in Eq. (30) is zero and the remaining integral becomes

1
2
|v⃗s · êθ||η|.

Performing the integral and inserting Eqs. (4) & (19), we find the same form as in Eq.

(21), and hence the same magnitude of spitting as for the dynamic case:

∆fedge =
κ3m

4 π2

η2(R)∫ R

0
η2 (r) r dr

. (31)

It is important to note here that ∆fedge is calculated with respect to CW and CCW rotating

modes, whereas ∆f in the previous section was computed in the standing mode basis.

As discussed in the main text, for the simple case of vanishing superfluid density at the

boundary, the two contibutions have opposite signs and cancel each other.
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linear nonreciprocity in a compact acoustic circulator,” Science, vol. 343, no. 6170, p. 516,

2014.

[69] M. Iino, M. Suzuki, A. J. Ikushima, and Y. Okuda, “Surface tension of liquid 3He down to

0.3 K,” Journal of Low Temperature Physics, vol. 59, no. 3, p. 291, 1985.

[70] A. M. R. Schechter, Third Sound in Superfluid Helium-3. PhD thesis, 1999. University of

California, Berkeley.

[71] C. G. Baker and S. Forstner, “https://zenodo.org/records/10867829,” 2024.

24



SUPPLEMENTARY NOTE 1. TRANSFORMATIONS FOR FIRST SOUND

The method for detection of chiral current proposed in this work could also be applied

to density waves in a three-dimensional superfluid 3He resonator. Using current technology,

this approach appears significantly less promising than using surface waves for the following

reasons: Firstly, a resonator without boundaries, as proposed in the main test, can not be

realized, so that the unpredictable effect of the edge current has to be taken in to account

when interpreting experimental results. Secondly, our preliminary calculations show that the

expected frequency shift to sound modes in the bulk would be several orders of magnitude

smaller than for surface waves, and hence very hard to detect. Nevertheless, it might be

useful to consider this effect in future experiments, including long-term goals such as braiding

of Majorana fermions or topological acoustics.

Surface acoustics Bulk acoustics

film height perturbation density perturbation

η(r⃗, t) δρ(r⃗, t)

unperturbed film height static density

h0 ρ0

dynamic chiral current(1-D) dynamic chiral current(2-D)

g⃗dyn,1D = −ρ0
ℏ

2M h0
ẑ × ∇⃗η + gtorque g⃗dyn,2D = − ℏ

2M l̂ × ∇⃗ρ+ gtorque

static chiral current(1-D) static chiral current(2-D)

g⃗edge =
ℏρ0
4M ξ êθ g⃗surface =

ℏρ0
4M ξ l̂ × n̂

surface speed of sound bulk speed of sound

cs =
√
c2σ + c23 (see Appendix ) cbulk =

√
K1/ρ0

TABLE I: Transformations for chiral current dynamics between surface waves and bulk

density waves. n̂ is the surface normal of the three-dimensional resonator, and K1 the bulk

modulus of first sound in superfluid 3He.
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SUPPLEMENTARY NOTE 2. ILLUSTRATION OF THE CANCELLATION OF

DYNAMIC- AND EDGE CURRENT IN A DISK RESONATOR WITH ABRUPT,

SPECULAR BOUNDARY

CW
a) b)

CCW

Figure 3: (a) Illustration of the directionality of dynamic chiral current. ∇⃗h(r⃗) = ∇⃗η(r⃗)

(purple arrow) points toward the peak of the acoustic wave. The direction of the dynamical

chiral current (green arrow) is given by −ẑ × ∇⃗h(r⃗), so that it points toward the right-

hand side of the peak, increasing the energy of the clockwise (CW) rotating acoustic mode

(curved black arrow). The trough and peak of the acoustic mode are indicated by dashed

vertical lines, and the sound velocity is indicated by a black arrow. All arrows are shown

on the bottom of the superfluid resonator for ease of illustration, although the fluid flow is

distributed through the whole film. (b) Illustration of the directionality of the static edge

current. ∇⃗h(r⃗) = −êrh0δ(r−R) (purple arrow) points toward the inside of the resonator at

its boundary. The direction of the edge current (curved red arrow) is given by −ẑ × ∇⃗h(r⃗)

and points in the counterclockwise (CCW) direction, hence increasing the energy of the

CCW acoustic mode. By analogy, if the film thickness increases at the resonator boundary

(so that ∇⃗h(r⃗) points outward, not shown in figure),the static part of the chiral current

increases the energy of the CW mode. While (a) and (b) refer to the same resonator, in (b)

the deformation due to the sound mode is not shown to clarify that it does not cause any

static current.
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