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DEEP DECOMPOSITION METHOD FOR THE LIMITED APERTURE INVERSE
OBSTACLE SCATTERING PROBLEM

YUNWEN YIN* AND LIANG YAN

Abstract. In this paper, we consider a deep learning approach to the limited aperture inverse obstacle scattering
problem. It is well known that traditional deep learning relies solely on data, which may limit its performance for
the inverse problem when only indirect observation data and a physical model are available. A fundamental question
arises in light of these limitations: is it possible to enable deep learning to work on inverse problems without labeled
data and to be aware of what it is learning? This work proposes a deep decomposition method (DDM) for such
purposes, which does not require ground truth labels. It accomplishes this by providing physical operators associated
with the scattering model to the neural network architecture. Additionally, a deep learning based data completion
scheme is implemented in DDM to prevent distorting the solution of the inverse problem for limited aperture data.
Furthermore, apart from addressing the ill-posedness imposed by the inverse problem itself, DDM is a physics-aware
machine learning technique that can have interpretability property. The convergence result of DDM is theoretically
proven. Numerical experiments are presented to demonstrate the validity of the proposed DDM even when the incident
and observation apertures are extremely limited.

Keywords: inverse scattering problem; limited aperture; deep learning; deep decomposition method.

1. Introduction. Inverse scattering problems are common in many industrial and engineering
applications, such as nondestructive testing [I], radar imaging [§] and medical imaging [27]. The
majority of inverse scattering problems are non-linear and specifically ill-posed, meaning that the
solution may not exist or may not be unique, and, more importantly, it fails to depend continuously
on the data, causing a minor perturbation in the data to cause a massive deviation in the solution. As
a result, achieving stable and accurate numerical solutions is extremely difficult. There are numerous
numerical methods using full aperture data for such inverse problems, such as the Newton-type
iterative method [26 [I7], the optimization method [24], the recursive linearization method [4, 6], the
linear sampling method [9, [13], the direct sampling method [19, 29] and the factorization method [25]
[43]. However, the incident and observation apertures are typically restricted due to the limitations
of practical settings; consequently, inverse scattering problems with limited aperture data result in
increased non-linearity and ill-posedness. Several reconstruction techniques have been proposed [3|
[5, 18, 21], by directly utilizing limited aperture measurements. Unfortunately, no classical numerical
method can maintain the high-quality inversions for limited aperture problems, not even quantitative
optimization or iterative methods. Reconstruction techniques using the recovered full aperture data
are a natural remedy that involves first recovering data for all incident and observation angles
[14, 32 [16]. Because the inversion process is split into two parts, this approach also increases
the computational cost even though the inversion quality is improved. Furthermore, the inverse
problems in traditional approaches must inevitably be solved again when new observation data are
used, which restricts the potential for real-time reconstructions, particularly for iterative algorithms.

Recently, deep neural networks(DNNs) have demonstrated their promising features in a variety
of inverse problems [28| [15], [48] 44} 37, [30, 39, B]. In contrast to classical physics-based inversion
methods, DNNs typically do not rely on the underlying physics, but the trade-off is that they
are restricted to be purely data-driven and rooted in the big data regime. As a result, they will
always be unable to solve the inverse problem: one can not obtain the quantity of interest known as
labeled data, but only indirect observation data and a physical model. To address these issues, one
natural solution is to provide DNNs with the governing physics. In [41], physics-informed neural
networks (PINNs) were proposed for solving the forward and inverse problems by constraining
physical knowledge of governing equations into the loss function. However, in the original forms of
PINNs, unknown parameters in inverse problems are only taken into account as constants, and they
are updated together with weights and biases of neural networks. In order to develop PINNs for the
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scenario where the unknown parameters are functions, two networks must be trained concurrently:
one for the partial differential equation solutions and another for the unknown parameters; see
33, 42], [45, [47] and the references therein. We also strongly refer the readers to [7] for other
relevant work called weak adversarial network[46] that possesses the similar methodology for inverse
problems. Although PINNs have shown great potential in solving various inverse problems, similar
to classical methods, they have to be learned again for given new observation data.

We argue that learning the inverse operator directly is the more effective way to effectively
avoid the retraining issues. In this scenario, real-time reconstructions can be achieved by the neural
network once it has been trained. However, due to the ill-posedness of the inverse problems, the
inverse operator is often an unbounded operator and always lacks the existence and uniqueness,
making this an extremely difficult task. This also explains why the current little effort is focused
only on learning the inverse operator through data-driven methods. The works [40] [36] focused on
constraining forward mappings into their loss functions in order to take advantage of physics infor-
mation. They proposed physics-aware neural networks and model-constrained Tikhonov networks,
respectively. The works [22] [35], in contrast to [40, [36], concentrated on carefully planning the hid-
den layer structures in neural networks by utilizing the properties of the analyzed inverse problems.
These works provide two effective methods to leverage physics information; on the other hand, there
are still many inverse problems for which an alternative approach must be found due to the high
difficulty of embedding the forward operators into the loss functions or indirectly introducing physics
information into the hidden layers.

Inspired by the aforementioned discussions, we present in this work a physics-aware deep de-
composition approach for the limited aperture inverse obstacle scattering problem. Due to the
unbounded nature of the inverse operator associated with acoustic obstacle scattering and the high
ill-posedness caused by the limited aperture, learning the inverse operator will be extremely chal-
lenging. As a result, regularization techniques must be used in the network structure or optimization
process. This is accomplished by constraining a penalty term created by the Herglotz operator into
the deep decomposition method (DDM) loss function. Moreover, we use the scattering informa-
tion, which includes the Herglotz operator, the far-field operator, and the fundamental solution, in
place of the forward mapping to construct the loss function. In fact, it is numerically intractable to
directly embed the forward mapping of the acoustic obstacle scattering problem into the network
because the forward solver, which is typically based on the boundary integral equation method or
the finite element method, is quite complicated. On the other hand, DDM takes into consideration
a deep learning-based data retrieval strategy that incorporates a convolution neural network, which
is motivated by the research presented in [I6]. To the best of our knowledge, the proposed DDM is
the first work both retrieving full aperture data and exploiting the physical information associated
with the acoustic obstacle scattering model in the neural network for the impenetrable obstacle
detection. In DDM, the parameters of neural network are updated simultaneously, allowing for the
reconstruction of both the boundary and the entire aperture data at the same time, unlike the works
[14, B2}, [16] where the inversion process is split into two parts. We summarize the main features and
novelties of our proposed DDM as follows:

e DDM is the first physics-aware machine learning approach to tackle the limited aperture
inverse obstacle scattering problem. It combines deep learning, physical information, data
retrieval, and boundary recovery techniques. More importantly, DDM is more aware of what
it is learning and has some interpretability thanks to the physical information.

e DDM does not require exact boundary information, also referred to as labeled data, during
the training phase. DDM can resolve the ill-posedness caused by the relevant inverse problem
by adding a regularization term associated to the Herglotz operator into the loss function.
Because DDM is trained with the guidance of the underlying physics information, it can
learn the regularized inverse operator more efficiently.

e Theoretically, we rigorously prove DDM’s convergence result using the properties of the
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far-field and Herglotz operators. We also demonstrate that adding relatively small noise
to measured limited aperture data is useful for investigating additional properties of the
inverse operator.

e We demonstrate the effectiveness of our proposed DDM using numerical examples. It clearly
shows that DMM can produce satisfactory reconstructions even when the incident and
observation apertures are both extremely limited. Moreover, DDM has the benefit of real-
time numerical computation because, once trained, it can solve the inverse problem in terms
of forward propagation.

The rest of the paper is organized as follows. In the following section, we present the basis setup
and preliminary results for the acoustic inverse obstacle scattering model. In Section 3, we present
the DDM with its convergence result and discretization form. Numerical experiments are given in
Section 4 to show the promising features of DDM and conclusions are finally made in Section 5.

2. Problem setup and preliminaries. Assume that D C R? is an open and bounded simply
connected domain with a C?-boundary dD. The incident field ' is given by

u'(x) = u'(x,d) = "z € R? (2.1)

where i := /1 is the imaginary unit, k& € Ry is the wavenumber and d € S := {z € R? : [z| = 1}
is the direction of the propagation. The presence of the impenetrable obstacle D interrupts the
propagation of the incident wave u’, yielding the exterior scattered field u®. The direct scattering
problem for the sound-soft obstacle is to find u® = u — u’ satisfying the Helmholtz equation

Av® + k*u® =0, in R*\D, (2.2)
with the Dirichlet boundary condition
u® +u' =0, ondD, (2.3)

where u is the total field. In addition, the following Sommerfeld radiation condition

o fouw o\ _
rlingorz <67“ —iku ) =0, r= |z, (2.4)

holds, which characterizes the outgoing nature of the scattered field w®. It is well known that the
forward scattering problem (2.2)-(2.4) is well-posed (cf. [10, B4]). The scattered field u® also has
the asymptotic behavior

ikr

wi(a) = {uoo(a?)—i—(’) (i)} r = |z] = oo, (2.5)

NG

uniformly in all directions & = z/|z| € S. Here, u® (&), which is called the far-field pattern of the
scattered field, is an analytic function on S. In what follows, we write u®(Z,d) to signify such
far-field data and specify its dependence on the observation direction  and the incident direction d.

The inverse scattering problem we are concerned with is to recover the boundary dD from the
limited aperture data u™(%,d) for (2,d) € v° x 4% at a fixed wavenumber k, where v° C S and
~% C S are respectively the limited observation and incident aperture. Fig. shows an illustration
of the inverse problem. Define a non-linear forward operator G that maps the boundary to the
corresponding far-field pattern, the above mentioned inverse problem can be formulated as follows:

oD = G (u™>(2,d)), (2,d) € v° x 7" (2.6)

In this work, we aim to apply a physics-aware machine learning approach to solve the inverse
problem ([2.6). In contrast to traditional purely data-based neural networks, we focus on providing
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Fic. 2.1. A schematic illustration of the limited aperture inverse obstacle scattering problem.

a specially constructed neural network in conjunction with the physics information. To this end,
the remainder of this section summarizes the preliminary results for the acoustic inverse obstacle
scattering model using the full aperture data. We first define a superposition of the incident plane
waves by

vi(z) = Leikx'dg(d)ds(d), r € R?, (2.7)

with the weight function g. In this case, v’ is also referred to a Herglotz wave function, where g is
the Herglotz kernel.

Let us define the following interior boundary value problem, assuming that k2 is not a Dirichlet
eigenvalue to the negative Laplacian in D:

vi(z) = —®(x, 2), on 0D, (2:8)

{Avi(x) + k?vi(x) =0, in D,
where ®(z, z) = iH(()l) (k|z—z]|) is the outgoing Green function of Helmholtz equation in R? and H(gl)
is the Hankel function of the first kind of order zero. Moreover, the point z is contained in the sound-
soft obstacle D. Then, we can connect this boundary value problem (2.8)) to the scattering problem

[.2)-(2.4). Taking v* in (2.7)) as the incident wave to (2.2)-(2.4), one can have the corresponding
far-field pattern that is associated with the far-field operator F : L(S) — L?(S)

(Fo)(@) = [ (@ d)gla)ds(a), & € 5. (2.9)
s

Indeed, the connection between (2.7) and (2.9) is essentially based on the incident field u’(x) and

the far-field pattern u® (&, d). Since v* with the kernel g is the solution of (2.8]), then by using the

relationship between the boundary values of radiating solutions and their corresponding far-field

pattern, we can obtain the integral equation of the first kind

Fg=0>(z,2z2), (2.10)
where ®(%,2) = %e‘ikﬁz is the far-field pattern of the fundamental solution ®(z,z). The

equation (2.10) is ill-posed, and hence the regularization scheme is required for solving g. Using
the solved Herglotz kernel g in (2.10)), the boundary point x € 9D can be determined from the
non-linear equation

v (x) + ®(x,2) = 0. (2.11)
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Define the Herglotz operator H : L2(S) — L?(A)

(Hg)(z) = /5 ckdg(d)ds(d), o € A, (2.12)

where A is the admissible surface in the suitable class U. The inverse obstacle scattering problem
can be reformulated as an optimization problem with a regularization term using the cost function
shown below:

N2 2
J(g. A @) o= [|[Fg = (&, 2)|72(5) + ol Holl L2y + [1Hg + (2, 2) 724 » (2.13)

where I' is the C2-surface which contains A in its interior and o € R is the regularization parameter.
We briefly mention here that the procedure described above is comparable to the Colton-Monk
method presented in [10, 1], 12]. Tt is worth noting that may work similarly to the neural
network’s loss function. This is the mathematical basis for creating a scattering-based network
architecture in the following section.

3. Deep decomposition method. In this section, we propose a deep decomposition method
(DDM) to approximate the inverse map G~! by creating a parametric map NNy, where § € © and
O is a finite dimensional parameter space. Furthermore, we will discuss its convergence result and
discretization form.

3.1. DDM for the inverse obstacle scattering problem. DDM mainly consists of two
parts, namely, the data retrieval and the boundary recovery. Therefore, in order to retrieve the full
aperture data, a data completion network (DCnet) is designed in the first phase of DDM, that is

ug” (2,d)|sxs = DCnet(u™(Z, d)|yo x~i ), (3.1)

where u™ (&, d)|yox~i denoting u™(z,d) for (&,d) € v° x 4" is the input of DDM and ug®(z,d)|sxs
means the recovered u3®(Z,d) for (z,d) € S x S. (3.1) can be done by minimizing the following
functional

Ipc(ug (2,d)) ?/S/S\um(i‘,d)*U?(i,d)lzdS(d)dS(i) (3.2)

After finding u3° (2, d), inspired by the preliminary results for the full aperture data, we further
build a Herglotz kernel network named as HKnet for g and a boundary reconstruction network
named as BRnet for A in the second phase of DDM. To do so, we first define a new far-field operator
Fy : L*(S) — L?(S)

(Pon)(@) = [ 5" (&, din(@)as(@). & € 5. (33)
where
9o = HKnet(ug®(£,d)|sxs)- (3.4)
Then, one can further have
Ay = BRnet(gy), (3.5)

where Ay is the final output of DDM. As seen in formulas , and , in the DDM,
the recovered u3°(Z,d)|sxs and go can be viewed as intermediate quantities. More specifically,
ug®(&,d)|sxs is not only the output of the DCnet but also the input of the HKnet, and gg is not
only the output of the HKnet but also the input of the BRnet. Analogous to , minimizing the
cost functional

00 (4 2 2
Tohy (90, Mo; @) = || Foge — D% (, 2)| sy + all Haoll L2 (r,) + 1 Hgo + (@, 2)l|z2(s,y»  (3-6)
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Fic. 3.1. A schematic illustration of DDM.

gives rise to gy and Ag, where the C?-surface I'y contains Ay in its interior.
In summary, the proposed DDM aims to minimize the combined cost functional

Ippm(ug”(2,d), go, Ao @) = Tphy (g6, Mo &) + BpcTIpc(ug” (2, d)), (3.7)

for determining the optimal Ay~ by finding the optimal parameter * € ©, and Sp¢ is a penalty
factor that balances the physic-based loss Jp,4, and the data-based loss Jpc. The designed loss
function can well address both the nonlinearity and the ill-posedness caused by the inverse
problem itself. From , and , the parametric map NNy constructed by DDM for
approximating the inverse operator can be summarized as

NNy = BRnet(HKnet(DCnet))). (3.8)

The general workflow of DDM is presented in Fig.

REMARK 3.1. As we have pointed out earlier, retrieving the full aperture data and recovering
the boundary from given limited aperture data are addressed simultaneously in the learning stage of
DDM, since the above proposed three networks are simultaneously trained and they share the same
parameter 6.

3.2. Convergence analysis. We are going to investigate the convergence results of the DDM
in this subsection. To this end, we first introduce the Herglotz wave function

v(z) = /Seik”dg(d)ds(d), r € RY (3.9)

which shares the same form of (2.7). Similarly to [10], we present the following definition of an
optimal surface.
DEFINITION 3.1. Given the (measured) limited aperture far-field u™(&,d) € L?(° x ') and

a regularization parameter a € Ry, a boundary Ao~ € U is called optimal if there exists a optimal
ug2(&,d) € L*(S x S) such that
inf jDDM(ugi(i’ad)?gavAG*;a) = m<a)7 (310)
go€L2(S)

where

m(a) = inf JDDM(USO(f,d)7997A0§a)7
g (&,d)EL?(Sx 5),90 €L (S), Ao €U

6



U is the compact admissible class and 0* is called the optimal parameter which shall be learned in
the DDM.

The next two lemmas, which represent the convergence property of the cost functional and the
existence of the optimal surface, respectively, are provided for the DDM convergence analysis.

LEMMA 3.1. For each a € Ry, there exists an optimal surface Ag« € U.

Proof. Let (u3s (%, d), ggn, Agn) be a minimizing sequence from L?(S x S) x L%(S) x U, that is,

Jim Ippm(ugn (2, d), gon, Aon; ) = m(a).

Assume that Agn — Ag«,n — o0, since U is compact. We can further assume that the sequence
(Hggn) is weakly convergent in the space L?(I'g»), due to the following boundness

OLHHQG"”%,Q(FBFL) < jDDM(ug?‘ (i‘vd)vgf)"vAG";O[) - m(a)a n — o0.

By Theorem 5.26 in [10], the weak convergence of the boundary data (Hggn) on I'pn» implies that
the Herglotz wave functions v, defined in (3.9) converge uniformly to a solution of the Helmholtz
equation on the compact subsets of the interior of the surface I'gn with the Herglotz kernel ggn.
Then,

. 2 . 2
T [[Hgon + (@, 2) [ 2aa,) = T [ Hgge + B, 2)[Fa(n, ) - (3.11)
holds. Therefore, it is clear that
Jim Tppw(ugn (2, d), gon, Agns @) = lim_Tppar(ugs (2, d), gon, Mo+ ).

This completes the proof. O

LEMMA 3.2. Let u®(&,d) be the exact far-field pattern of the obstacle D for all incident direc-
tions d such that 0D belongs to U. Moreover, assume that given €1 and o, the recovered far-field
pattern ug®(Z,d) and far-field operator Fy satisfy

[u™ (2, d) — ug® (2, d)|| 12(sxs) < €1, |F — Fyll < ea. (3.12)
Then, the functional m(a) is convergent to zero when the parameter « tends to zero, i.e.,
iig%) m(a) = 0. (3.13)
Proof. Using Theorem 5.21 in [10] with given e3, there exists gy € L?(S) which satisfies

1Hgo + ®(z,2)||20p) < €3

Define a bounded and injective operator A : L?(D) — L?(S) mapping the boundary values of
radiating solutions onto their corresponding far-field pattern. Then, it holds that

[Fgg — (2, 2)[|2(s) < [ Alll[Hgo + (2, 2)||L2(oD).-
From (3.12)), we further have
[ Foge — (2, 2)[|L2(s)
<||Fgo — ®>(, 2)||L2¢s) + [ Fogs — Fyollr2(s)
<|[A[[l[Hgo + ®(, 2)||L2op) + [ Fo — Flllgallr2(s)
<es||All +e2llg6llL2(s)-
Using (3.12)) again, we have
jDDM(ugo(i‘7 d)? g6, 8D7 Oé)
< Bpoet + (el Al + e2llg0ll2(s))? + el Hgoll 72 (r,) + €3

— ﬂDc{:‘% + (€3HAH + 52||99||L2(S))2 +€§, a— 0.
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Since €1, €5 and €3 are arbitrary, follows. This completes the proof. O

Now, we are ready to present the main convergence result.

THEOREM 3.1. Let (o) be a null sequence and (Agn) be a corresponding sequence of optimal
surfaces for the regularization parameter ou,. Then, there exists a convergent subsequence of (Agn).
Suppose that for all incident directions u® (&, d) is the exact far-field pattern of a sound-soft obstacle
D such that 0D belongs to the compact set U. For j — oo, the recovered far-field pattern ugf(Z,d)
and far-field operator Fy; are assumed to satisfy

[0 (&, d) = ugs (,d)||L2(sxs) = 0, |F' = Fos || = 0. (3.14)

Furthermore, assume that the solution v* to the associated interior Dirichlet problem can be
extended as a solution to the Helmholtz equation across the boundary 0D into the interior of Ty
with continuous boundary values on Ty. Then every limit point Ag- of (Agn) denotes the surface on
which the boundary condition to the interior Dirichlet problem is satisfied, that is,

vi(x) + B(x,2) =0, o€ Age. (3.15)

Proof. Because of the compactness of U, there exists a convergent subsequence of (Agn). Denote
the limit point by Ag~. Similarly, assume that Agn — Ap«,n — oo. By Theorem 5.21 in [I0] and
[2.7), there exists a sequence (gg;) in L?(S) satisfying

|Hggs — v'll2(r,,) =0, j — oo. (3.16)

Then, using Theorem 5.26 in [I0], one can have that the Herglotz wave functions with the kernel
gp; uniformly converge to v* on the compact subsets of the interior of I'y;. Furthermore, in view of
the boundary condition in (2.8)) for v* on 0D, we have

||Hggj + (I)(.%',Z)HLz(aD) — 0, j — oo. (3.17)

Using the operator A : L?(0D) — L*(S) mapping the boundary values of radiating solutions onto
their corresponding far-field pattern, we further have

||Fg9_7’ — @Oo(i'7Z)HL2(S) — 07 _7 — OQ. (3.18)
Since AjjnéU |Hggs + <I>(;v,z)||2L2(Aej) < ||[Hgepi + @(x,z)”%z(am, by the definition of m(a) we can
obtain

m(a) < BpoTpo(ugs (&, d)) + | Foiges — (&, 2)[|72(s)
+ aHHQGJ’H%z(Fej) + [ Hges + @(%Z)H%%a[))

oo o n o (3.19)
< BoeIpc(ugs (&,d)) + [ Fysgoi — (2, 2) [ 12(s)
+ al|Hggs — UZ||2L2(r9j) + OKHUZH%Z(FQJ») + | Hgos + ®(z,2) 1725
Then for 7 — oo and all « € Ry, combining ([3.14) and (3.16))-(3.19) together gives rise to
m(a) S (1||Ui||%2(pej)7 (320)
In addition, by Lemma for each n there exists gon € L?(S) satisfying
Tppum (ugs (&,d), gon, Aon; ) < m(a,) + a?. (3.21)

By (3.20), (3.21) and «,||Hggn ”%2(1“9”) < Ippm(ugs(£,d), gon, Agn; o), for all n we have that

[Hgon 12 (rpny < 101122000y + s
8



which implies that the sequence Hggn is weakly convergent in L?(T'g»). Then, by Theorem 5.26 in
[10], the Herglotz wave functions v, with kernels go» converge uniformly to the solution v* of the
Helmholtz equation on compact subsets of the interior of I'gn. Moreover, by Lemma[3.2] we obtain
m(ay,) — 0,n — oo. From (3.21)), we also have

1Fpn gor — (2, 2)|[72(5) < mlam) + o

Therefore, there exists v,, which satisfies A(v,, + ®(z,2)) = Fggn — ®>°(&, 2) for the boundary 9D,
then

[A(vn + (2, 2)) || L2(s)
=[|Fggn — (&, 2)[172(s)

<m(an) + ai, + [|Fgon — Fongon [|72(s)-
By , for n — oo, we have
[A(vn + ®(2, 2))[|L>(s) = 0,
and
A(w* 4+ ®(x, z)) = 0.
The fact in [I0] that the operator A is injective yields
v* 4+ ®(x,2) =0, on dD. (3.22)

From (2.8)) and (3.22)), we find that v* and v have the same boundary condition on D, implying
that they possess the same Herglotz kernel. Therefore, one can further have v’ = v* since k2 is
assumed not to be the Dirichlet eigenvalue for the obstacle D. From (3.21)), we obtain

[lvn + ®(x, z)||%z(A <m(ap) + a2 =0, n— oo, (3.23)

on)
which then gives rise to . This completes the proof. O

Under additional assumptions, we can further get the convergence towards the exact boundary
of the obstacle.

THEOREM 3.2. Assume that D is contained in a circle Cy, of radius r, such that 0 < k < %,
where ko1 means the first zero of the Bessel function Jo. Then the sequence {Agn} only has one limit
point Ag+, which coincides with 0D.

Proof. Suppose that Agi, Ag2 € U are distinct limit points of {Ag~}, which are respectively
related to two obstacles Dy, Do. Define a non-empty domain D1y := D1\(D; N D3), where D1y C
C,,\D. By the Theorem vi(z) + ®(x, 2) is an eigenfunction of the negative Laplacian in D1

2
with the Dirichlet eigenvalue k2. For C,,, the smallest positive eigenvalue is kb% Denote k2012 the

first positive eigenvalue of the negative Laplacian in Djy. Since Dis C C),, we can get i—% < k%m.
By the assumption 0 < £ < kr—obl, we further have k < kp,,, this contradicts the monotonicity of the
Dirichlet eigenvalues. Therefore, if 0 < k < 1%1’ the sequence {Agn} only has one limit point Ag«.
Since D is contained in a circle C,, and v’(z) + ®(x,z) = 0 is also satisfied on the boundary 9D,
then the only one limit point is Ag- = dD. O

REMARK 3.2. The conditions and are theoretically attainable by the universal
approximation theorem of the deep neural network. In fact, the subsequent numerical experiments
also verify the convergence of DDM. Although we restrict ourselves to the limited aperture case,
clearly, the methodology of DDM can be applied to the full aperture case in which DCnet, the condition
and the condition are not required. Moreover, in the full aperture case, higher accuracy

can be achieved because we do not need to deal with the approxzimation error generated by (3.2).
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3.3. The discretization of DDM. This section presents the discretization of DDM for the
subsequent numerical computation. To this end, we first give the discretization of the exact full
aperture data u™ (&, d)|sxs, which is regarded as multi-static response matrix (MSRM) F;. Taking

T = %,i =1,2,---,2m, we can determine the direction of the incident and observation by
d; :== (cosT,sinT;), i =1,2,---,2m,

and
Zj := (cosTj,sint;), j=1,2,---,2m.

Thus, the corresponding MSRM is

uoo(i.17d1)7uoo<'%17d2);"' auoo(*%ladQM)
uoo(j\:27dl)7uoo(i‘27d2))"' auoo(jj27d2m)
Fy = _ _ _ _ . (3.24)
uw(£2m7dl)7uw<i‘2m;d2)7"' 7uoo(',i.2m7d2m)

Denote the limited incident aperture 4 and limited observation aperture v° by
= (cos®,sinv), ¥ C [0, 27,
and
~° 1= (cos ¢, sin ¢), ¢ C [0, 27].

Similar to MSRM, the discretization of the DDM input, which is the exact limited aperture data
u® (&, d)|yox~i, is defined as

uoo(i‘n“vdni)vuoo(i‘noa dni-‘rl)a e 7uoo(£n”adNi)
u™(Enot1, dpi ), u™(Enoy1, dpigr), - u™(Enoyr, dyi)
F; = . . . . , (3.25)
UOO(JA?NO, dni)’ Uoo(i‘NO,dni_;'_l), e ,Uoo(i‘NO,dNi)
with the same step size 7-. For example, if ¢ = [0,7] and 1 = [0,27], then n® = 1, N® = m,

n'=1and N* =2m. If ¢ = [0,7/2] and ¢ = [r/2,37/2], then n® =1, N° = m/2, n’ = m/2 + 1
and N* = 3m/2. In addition, the discretization of the recovered full aperture data u3°(Z,d)|sxs by
DChnet is given by

ug® (&1, d1), ug® (21, dz), - -+, ug® (21, d2m)
ug® (Za, dr), ug® (&2, da), - -, ug® (&2, dom)
Fos=| = . : 0 . (3.26)
ugo(1%2m;d1);ugo(j2m»d2);"' 7ugo(é§2m;d2m)

Therefore, using (3.24) and (3.26)) for discretizing the functional (3.2 derives

2m 2m

Ipc(Fo 5) Z STIFYY —F§Y%, (3.27)

i=1 j=1
where

Y = u(,dy), ) = uf (iy,dy).
10



Next, we shall discretize the recovered Herglotz kernel go(d) and recovered surface Ag. Discretizing
go(d) yields

9o = : . (3.28)
9o (d2m)

To work with Ag numerically, we assume Ay is a star-like surface with respect to the origin, which
is defined by

Ag = e%® (cost, sint), t € [0,27], (3.29)

where gp(t) is in the form of truncated fourier expansion

an cos(nt)

Na .
q(t) = % +y (n \/; + fb’;SH\l/(;t)) : (3.30)

and N, is the cut-off frequency, s controls the decreasing rate of the corresponding Fourier coefff-
cients. Instead of directly expanding e% () the expansion form (3.30) is conducive to ensuring the
back propagation of DDM. Note that Ay is uniquely determined by a finite set

Q@ = (qualablaa2ab27 e aa/NA7bNA) S RQNA+1a (331)

which implies that determining Ay is equivalent to determining Q. Let ¢; 2” UW A=1,2--- [ Ny,

where V; is the number of surface discretization. Then, each boundary point 2 Ae € Ay is defined by

:vs\lz = eq"(tl)(costl,sintl)7 1=1,2,---,N;. (3.32)

Moreover, throughout the paper, to meet the above theoretical requirement, we set I'y = 1.001A¢

to ensure that Ay is contained in the interior of I'y. Clearly, each point xé) elyis x(l) = 1.001x§\lz.

Therefore, discretizing the functional . derives

Tphy (G0, Qo; @)

2m 2m
T m (J4)~(i) 00 (4
'*EZ EZM; 9y’ — ®(,2)
j=1 i=1

2

2

N 2m (3.33)
27 s ik d; ~(i)
+a— E — E e "To
Ne i |m o %

Zelk“ L0 o) 2)

)

where §éi) = go(d;). We would like to point out that, the Jacobian terms e%(*), /1 + (g,(t;))? and
1.001e% ) /1 + (g (t))? are omitted in (3.33) for simplicity, which will not destroy the solution of
the inverse problem. Finally, to learn § in DDM, we focus on minimizing

Tppu(Fo g, ge,x(A ;@) = Tpny (99, Qo; @) + BocTpe (Fo.z). (3.34)

The aforementioned discussions are based on the noise-free case. Next, we show that adding
the relatively small noise to the input F; will promote DDM to learn more properties of the inverse

11



operator G~!. Since Fo.7, go and Ag are functions with respect to IF;, we write jDDM(IF‘l) to specify
the dependence of DDM on the input F;. Let E[-] signify the expectation. To analyze the influence
of the noise, we perturb the limited aperture data F; in the form

Fin =T +n, (3.35)

where E[n] = 0 and the elements of 7 are independent of each other. Then the following theorem
holds.
THEOREM 3.3. Let Iy, be the noisy input defined in the form (3.35)), then

= Ak 0> Ippur i
E Fi,, F) — =222 __E[(nY )]+ E 2 ,
[Tpoa (Fiy)] = Tppw (F) Z Z R gy (7)) ]+ Elo(lInll#)],  (3.36)
Jl =n° ]1 nt l l
where nUY) is the element located at the jth row and the ith column of n, and || - || is the Frobenius
norm.

Proof. For T pom (Fi), we perform the Taylor expansion around F; up to second-order to get

~ N° aj
jDDM(Fl,n) jDDM ]Fl Z Z F(Djii\f (Jljl)

J1=n° G =ni

O l 1 2 - s
SGYY Y Y %n”m)n“l“+o<||nu%>.

(J272) J1J1)
]2 =n° j2 ni 31—n"J1 nt F 8Fl

Since E[n] = 0 and the elements of r] are independent of each other, then it immediately follows that

E[jDDM(Fl )] is in the form .0
It is observed in that E[jDDM(Fl »)] is the sum of the original loss jDDM(IE‘l) and the

. ?JIppu

induced regularlzatlon terms. These regularization terms deeply rely on PREERPSGTTE Since Jpc
Lo~

is mainly concerned with the data completion, we only need to focus on 9" Tphy Here,

oF(1191) gplinin) ©

32 jphy

— oo = can be written as
aFl.ilﬂl a]FlJlJl

927,
.':'jphy.*: :P1+P2+P37
aFl(JlJl)aFl(Jlﬂl)

where

2m Ar(iD)=(i) \ 2
2m ™ 3Fe,f 9o
Pr=" Z ( Z CamGi)

m = a]Fl(le)

o 2m - 2m ()~ x 2m aQFé];)’gVél)
oS (e e (23 TR

i=1 - mgl(hh)aFl(Jm)

N, 2m eikx(rl; ~di»gv§z')

4 0
SIS

= = a]Fl(jljl)

Ny 2m 2m ke .d; ~(i)

A Z 4 ike®) .d; ~(4) ™ 9% e Yigy
toy oy E :e fo — E T RO
Nei= (m i=1 % mia aFl(J”l)(‘?]Fl(j”l)
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and

2m 1 ’L'()
py - Ay (200h0) x50 )
3 N, = 8Fl(31J1) m = 8F(]1]1)
4 t 1:() " 82(1) T 82 1k3cA v~(z)
o W P e e
ot — 8F(7171)8F(]1J1) 8F(hh (9F ]1]1)

The original loss j ppou (Fr) ensures that Ag is close to the boundary 9D, as described in Theorem
P1, P2 and P53 not only further strengthen this closeness, but also improve the smoothness
of Fo ¢, go and Ay. In addition, Ps shows that the first derivative and the second derivative of

2m () g

(gcxz, )+ oy i g(gz) are required to be small. Therefore, by adding the relatively small
i=1

noise, the parametric map N Ay is capable of approximating the inverse operator G~ up to the

second derivative.

4. Numerical experiments. In this section, we will present numerical examples to show the
effectiveness of DDM for the limited aperture inverse scattering problem (2.6)).

4.1. Experiment Setup. In all the following examples, the noise n in ([3.35)) is generated by
the formula

n= JAIFZ,

where o refers to the noise level, A is a random number drawn from the uniform distribution
U(—1,1). F; is generated by the boundary integral equation method with the single layer potential.
Unless otherwise specified, we shall use the following parameters: k = 3, m = 16, N; = 64, Ny = 8,
s =1, a=10"% and z = (0,0). Next, we introduce data generation and network structure for
training DDM in detail.

Data genemtion and Network structure.To generate training and test samples, simi-
lar to (3:29)-(3.31), the boundary set {9D") } °_, is built by q(()"s) ~ U(0.5,1.5), a o) pire)

/\/’(070.2),71 =1,2,3,4 and a&"*),bﬁf*) L{(07O.1),n = 5,6,7,8. Here, the total number of sam-
ples N; is chosen to be Ny = 5000. 0.8N, instances and 0.2N, instances are used for training
and testing, respectively. Ubing the boundary integral equation method, one can further have a
data of pairs {Fj,.n,,Ffn, }n _, for training DDM, where F;,.,, denotes the ngsth noisy input
sample and Fy,, is the nsth exact full aperture data. Clearly, note that DDM does not require
the boundary set {6D("* } ,1 during the online training stage. Therefore, instead of using data
pairs {Fi n.n,, Frin, ,0D(s) } _; in purely data-driven networks, DDM employs {F; ., Ffin, }ns,l
with underlying physical operators to effectively address the ill-posedness and well make itself inter-
pretable.

Then, we introduce the network structures of DDM. The structure of DCnet is a feed-forward
stack of four sequential combinations of the convolution, batch normalization and ReLU layers, fol-
lowed by one fully connected layer. The number of filters in the four convolutional layers of DCnet
are respectively 4, 8, 16 and 1. HKnet is a feed-forward stack consisting of four sequential combi-
nations of the convolution, batch normalization and ReLU layers, followed by two fully connected
layers. The number of filters in these four convolutional layers are 16, 32, 8 and 1, respectively. Fur-
thermore, the two fully connected layers in HKnet have 512 and 4m neurons, respectively. Finally,
the architecture of BRnet consists of two fully connected layers, in which the number of neurons
are 32 and 2N, + 1, respectively. In all the convolutional layers of DDM, one-stride, zero-padding
and 3 x 3 kernel are employed, as well as the biases are discarded. See Fig. for the schematic
illustration of the network structure of DDM in all the numerical examples.

Loss function for a mini-batch.With the above constructed structure of DDM, we train
DDM using the Adam optimizer [23] for 800 epochs with an initial learning rate of 0.0002 which
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F1G. 4.1. A schematic illustration of the network structure of DDM in all the numerical examples.

is halved every 200 epochs. In addition, to learn 6, a mini-batch of N, samples are used in each
iteration, where N, < N;. We set N, = 64. Thus, the loss function Lppys for Ny, samples in every
iteration is defined as

Lppm = Lphy + BpcLlpe,

where
AL
Lophy = Z jphy genb)7Q(nb) @), Lpo = Ny Z jDC(FéTvL;))'
nb 1 nb:l

For convenience, we set Spc = 10.

4.2. Numerical examples. To demonstrate that DDM can recover complex scatterers, we
will perform the following three types of examples:

e Case 1: best-case scenario: The boundary has the form described by (3.29) and ( -
Specifically, the exact solution was selected at random from the following reahzatlons qo ~
U(0.5,1.5), an, by, ~ N(0,0.2),n=1,2,3,4 and ay,, b, ~U(0,0.1),n =5,6,7,8.

e Case 2: a pear-shaped obstacle. The boundary is parameterized as:

x(t) = (1.5 4+ 0.3sin 3t)(cos t,sint), 0 <t < 2.

e (Case 3: a rounded square-shaped obstacle. The boundary is parameterized as:

3
z(t) = 1(cos3t+ cost,sin®t +sint), 0 <t < 27.

Here, case 1 has the same distribution as the training set, and is used to detect in-distribution
generalization. The last two scenarios, particularly the rounded square, are out of distribution. The
pear-shaped obstacle is used to compare DDM reconstructions to those of the traditional Colton-

Monk method in the star-like case. The rounded square-shaped obstacle is primarily used to test
14



generalization in the out-of-distribution case. For each of these examples, we also show the nu-
merical results obtained using the direct sampling method (DSM) proposed in [31] for comparison,
demonstrating the present approach’s fast computation and high-quality reconstructions. DSM is a
popular method that is computationally efficient but only provides rough reconstructions. In this
work, the indicator functional of DSM is

)

I(R) := |o(h; —d)FL " (h; )

wherega(h d) ( —ikh-d,; e —ikh-d 1+1 e e~ ikh- dN’)anng(h JZ) — ( ikh-Zno oikh- :rnaﬂ ... ik mNu)'
We set h € V, where V is a grld of 100 x 100 equally spaced sampling pomts on [—4,4] x [— 4 ,4].

To demonstrate the superior performance of DDM, we numerically investigate its convergence
property. The discrete relative error Err used to show convergence can be defined as follows:

Z ||Q91) trueH2
=1 ||Qtrue||2

where Qg?ue is the ¢th exact parameter set and Q((f) is the ¢th recovered parameter set.

Example 1: Different observation apertures. In this example, we look at how the obser-
vation aperture affects the solution of the inverse problem using noise-free data. To this end, we set
different observation apertures ¢ = [0,7/2], ¢ = [0, 7] and ¢ = [r/2,37/2]. The incident aperture is
given by ¢ = [0, 27].

Fig. shows the relative error Err, the loss functions Lppas, and Lypy. As shown in Fig.
c)7 the predicted Ay gradually converges to the exact boundary 0D during the training process,
which confirms to Theorem Besides, Fig. shows that the narrower observation aperture will
lead to the larger loss functions and relative error. The recovered real parts of three obstacles for
¢ =1[0,7/2], ¢ = [0,n] and ¢ = [r/2,37/2] are shown in Fig. The corresponding recovered
imaginary parts are shown in Fig. We find that the far-field data of these three obstacles is
accurately recovered especially for ¢ = [0, 7] and ¢ = [7/2,37/2]. This phenomenon occurs due to
the fact that, in such two cases, there is more information that can be utilized. The far-field data
can also be recovered to a certain satisfactory level for ¢ = [0,7/2]. The boundary reconstructions
by DDM for ¢ = [0,7/2], ¢ = [0,7] and ¢ = [7/2,37/2] are presented in Fig. For the
comparison, the reconstructions by DSM are shown in Fig. It is obvious that our DDM can
provide satisfactory reconstructions even for the case of ¢ = [0,7/2], but only illuminated part of
0D can be well recovered by DSM. This is reasonable because a deep learning based data retrieval
called DCnet is deployed in DDM, and hence DDM can maintain high inversion quality for the
limited observation aperture case. It is also noticed in Fig. [£.6] that the reconstructions are further
distorted when the observation aperture becomes smaller. Moreover, compared to results in [20]
by the classical Colton-Monk method, DDM can obtain higher reconstruction accuracy and require
very little computational cost. As expected, the reconstructions of traditional inversion methods are
deeply influenced by the limited aperture data, but DDM can well overcome this issue.

Exzample 2: Different noise levels. The influence of the noise level o is considered in this
example. To do so, we set the different noise levels ¢ = 0.02, 0 = 0.1 and ¢ = 0.5. The observation
aperture and the incident aperture are, respectively, ¢ = [0, 7/2] and ¢ = [0, 27].

We first present loss functions Lppar, Lphy and the relative error Err in Fig@ The convergence
nature is theoretically prove in the noise free case, nonetheless, we find that DDM is also capable of
converging to the exact boundary 9D for the noisy case. Furthermore, as the noise level ¢ increases,
the relative error shall become large, which is reasonable because the larger noise will bring more
uncertainties. The recovered real parts of three obstacles for ¢ = 0.02, 0 = 0.1 and ¢ = 0.5 are
plotted in Fig. and the recovered imaginary parts are presented in Fig. It is noted that
even for the noise level o = 0.5, DDM also can effectively recover the far-field data. The boundary
reconstructions by DDM with ¢ = 0.02, 0 = 0.1 and ¢ = 0.5 are shown in Fig. Similarly, we
plot the reconstructions of DSM in Fig. [f.11] for the comparison. According to these figures, DDM
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F1G. 4.2. The loss function Lppar (left), the loss function Lyp, (middle) and the relative error Err (right) for
Example 1.

Exact real parts ¢ = [0, 7] ¢ = [n/2,31/2]

6 =1[0,/2]

Fic. 4.3. The real parts of obstacles using observation apertures. Case 1: best-case scenario (Top), Case 2: a
pear-shaped obstacle (middle) and Case 3: a rounded square-shaped obstacle (bottom).

is very robust to observational noise. This is possible owing to the reason that the recovered far-field

data is integrated into the far-field operator (3.3), and hence to some extent the added noise can be

alleviated. Although DSM is robust to noise, as shown in Fig. [4.11] its results are still influenced
by the limited aperture data.

Example 3: Different incident apertures. In the above two examples, we only consider
that the observation aperture is limited. However, the incident aperture is additionally limited in
many real-world scenarios. Thus, the effect of the incident aperture is considered in this example.
We set the different incident apertures ¢ = [0, 7], ¥ = [7/2,37/2] and ¢ = [r, 27]. The observation
aperture is ¢ = [0, /2] and the noise level is 0 = 0.1. We would like to emphasize that the considered
incident aperture and the observation aperture are both extremely limited, which shall make the
inverse problem more challenging. Furthermore, in practice, the measured or computed data is
typically noisy, which promotes us to also perturb the full aperture data by the same form

Frny =Fz+ny,

where ny = 0 AF;. From [2] we know that the noise added to the output of the neural network only
16
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| WA A

F1G. 4.4. The imaginary parts of obstacles using observation apertures. Case 1: best-case scenario (Top), Case
2: a pear-shaped obstacle (middle) and Case 3: a rounded square-shaped obstacle (bottom).

changes the loss function by a constant. Therefore, in this example, we use {F; ..., Fy.p, f;ns}ﬁjs °_, to
learn the inverse operator.

The loss functions Lppar, Lpny and the relative error Err of DDM are displayed in Fig. Ff_fZl
It is clearly shown in Fig. [£.12]c) that DDM can gradually approximate the exact boundary 9D
for the situation that the incident and observation aperture are both limited. In Fig. we show
the recovered real parts of three obstacles, while Fig. shows their recovered imaginary parts.
The figures show that DDM can recover far-field data for ¢ = [0, 7]. However, for ¢ = [7/2,37/2]
and 1 = [m,27], the recovered far-field data loses some accuracy. Figures and show the
boundary reconstructions of DDM and DSM, respectively. It is observed that DDM can reconstruct
the boundaries of the three obstacles with satisfactory inversion quality, whereas DSM is completely
ineffective in this example because the limited observation data can only provide little physical and
geometric information. Furthermore, we discovered that even when the aperture size is the same
but the direction is different, the reconstruction results are still affected.

5. Summary. In this paper, we propose the deep decomposition method (DDM), a scattering-
based neural network for determining the shape of a sound-soft obstacle from limited aperture
data at a fixed wavenumber or frequency. In DDM, a data completion scheme based on deep
learning is implemented to prevent any distortion of the reconstructions. On the other hand, we
incorporate the scattering information, such as the far-field operator, the Herglotz operator, and the
fundamental solution, into the loss function of DDM for the boundary recovery in order to better
utilize the underlying physics information for learning the regularized inverse operator. Because
physical information is present, DDM does not require exact shape data during the training stage.
Moreover, DDM is a physics-aware machine learning method that can handle ill-posedness in addition
to having interpretability. The convergence of DDM is demonstrated, and numerical examples are
provided to illustrate the validity of DDM.

Our methodology in this work can be directly extended to other boundary condition cases, the
inhomogeneous medium case and even the three-dimensional case. Using multifrequency data to
construct the loss function of the scattering-based neural network is also a practical and interesting
direction, which shall broaden the detectable range. Furthermore, because the data retrieval com-
ponent of DDM is entirely data-driven, it is worthwhile to develop a physics-driven data completion
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¢ =[n/2,37/2]

F1G. 4.5. Reconstructions made by DDM using observation apertures: best-case scenario (Top), a pear-shaped
obstacle (middle) and a rounded square-shaped obstacle (bottom).

deep learning. These extensions will be considered in future works.
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Fic. 4.11. Reconstructions made by DSM wusing various noise levels: best-case scenario (Top), a pear-shaped
obstacle (middle) and a rounded square-shaped obstacle (bottom).

Lppum Lphy

= y=lo.m
~ = w=in2,3n2)
== y=im2m

Togi0(cen,)

- \\\ \‘ t;‘:\;\‘«(&:: ) o \\

______ - .
o Srmfzy O £ S e o e o 4 o 5 e o

SIS IIC

0 100 200 300 400 500 600 700 800 6 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Epoch Epoch Epoch

F1G. 4.12. The loss function Lppr (left), the loss function Lpp, (middle) and the relative error Err (right) for
Ezxample 3.

neural networks. Journal of Computational Physics, 440:110414, 2021.

[41] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational physics, 378:686-707, 2019.

[42] M. Rasht-Behesht, C. Huber, K. Shukla, and G. E. Karniadakis. Physics-informed neural networks (pinns)
for wave propagation and full waveform inversions. Journal of Geophysical Research: Solid Earth,
127(5):€2021JB023120, 2022.

[43] J. Yang, B. Zhang, and H. Zhang. Reconstruction of complex obstacles with generalized impedance boundary
conditions from far-field data. SIAM Journal on Applied Mathematics, 74(1):106-124, 2014.

[44] W.Yin, W. Yang, and H. Liu. A neural network scheme for recovering scattering obstacles with limited phaseless
far-field data. Journal of Computational Physics, 417:109594, 2020.

22



Exact real parts

Y = [0, 7] Y = [r/2,37/2] Y = [, 27]

Z B D
o —_— f:f

F1G. 4.13. The real parts of obstacles using various incident apertures. Case 1: best-case scenario (Top), Case
2: a pear-shaped obstacle (middle) and Case 3: a rounded square-shaped obstacle (bottom).
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Case 2: a pear-shaped obstacle (middle) and Case 3: a rounded square-shaped obstacle (bottom).
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Fic. 4.16. Reconstructions made by DSM using various incident apertures: best-case scenario (Top), a pear-
shaped obstacle (middle) and a rounded square-shaped obstacle (bottom).
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