
A theoretical framework for the design and analysis of
computational thinking problems in education

Giorgia Adorni · Alberto Piatti · Engin Bumbacher · Lucio Negrini ·
Francesco Mondada · Dorit Assaf · Francesca Mangili · Luca
Gambardella

Abstract The field of computational thinking educa-
tion has grown in recent years as researchers and ed-
ucators have sought to develop and assess students’
computational thinking abilities. While much of the re-
search in this area has focused on defining computa-
tional thinking, the competencies it involves and how
to assess them in teaching and learning contexts, this
work takes a different approach. We provide a more sit-
uated perspective on computational thinking, focusing
on the types of problems that require computational
thinking skills to be solved and the features that sup-
port these processes.

We develop a framework for analysing existing com-
putational thinking problems in an educational context.
We conduct a comprehensive literature review to iden-
tify prototypical activities from areas where computa-
tional thinking is typically pursued in education. We
identify the main components and characteristics of
these activities, along with their influence on activat-
ing computational thinking competencies. The frame-

G. Adorni · F. Mangili · L. Gambardella
Dalle Molle Institute for Artificial Intelligence (IDSIA), Univer-
sità della Svizzera Italiana and University of Applied Sciences and
Arts of Southern Switzerland (USI-SUPSI), Lugano, Switzerland

A. Piatti · L. Negrini
Department of Education and Learning (DFA), University of Ap-
plied Sciences and Arts of Southern Switzerland (SUPSI), Lo-
carno, Switzerland

E. Bumbacher
Haute école pédagogique du canton de Vaud (HEP-VD), Lau-
sanne, Switzerland

F. Mondada
Mobile Robotic Systems Group (MOBOTS), Ecole Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, Switzerland

D. Assaf
School of Education, University of Applied Sciences and Arts
Northwestern Switzerland (FHNW), Windisch, Switzerland

work provides a catalogue of computational thinking
skills that can be used to understand the relationship
between problem features and competencies activated.

This study contributes to the field of computational
thinking education by offering a tool for evaluating and
revising existing problems to activate specific skills and
for assisting in designing new problems that target the
development of particular competencies. The results of
this study may be of interest to researchers and educa-
tors working in computational thinking education.

Keywords Computational thinking · Competence
development · Educational framework · Learning
contexts · Situated cognition

1 Introduction

Computational thinking (CT) has emerged as a cru-
cial skill for students to acquire in the 21st century.
As a result, there has been an increased effort to inte-
grate computer science education into K-12 classrooms
(Weintrop et al. 2021). This initiative was triggered by
Jeannette Wing’s introduction of the term CT in (Wing
2006). Despite the impressive growth in tools, activities
and curricula for teaching CT, significant challenges re-
main in successfully integrating this new concept into
schools. One critical challenge is the lack of a precise,
universally accepted definition of CT, a relatively am-
biguous concept (Weintrop et al. 2021). Instead, dif-
ferent definitions with varying purposes, each focusing
on different aspects of CT, have been proposed (La-
fuente Martínez et al. 2022). This lack of consensus
has made it difficult for the field to advance beyond
the exploratory stage. To address this issue and sys-
tematically develop and evaluate different approaches
to teaching, developing, and assessing CT, it is neces-
sary to have a precise and comprehensive formalisation

ar
X

iv
:2

40
3.

19
47

5v
1

 [
cs

.H
C

]
 2

8
M

ar
 2

02
4

2 Giorgia Adorni et al.

of the concept and to identify widespread best prac-
tices. Therefore, efforts are needed to establish a clear
and standardised definition of CT that reflects the di-
verse perspectives and purposes of the field. However,
there is no easy way to define CT (Shute et al. 2017).
Prevailing approaches have focused on decomposing it
into sub-dimensions and explicitly specifying each, e.g.,
Brennan and Resnick (2012); Grover and Pea (2017).
These dimension-based approaches have been used to
categorise existing assessment tasks based on analysing
the underlying skills associated with a task, e.g., La-
fuente Martínez et al. (2021). However, creating tasks
for developing and assessing these sub-dimensions has
been difficult. A recent study developed a reliable and
validated CT assessment for adults by combining ex-
isting items (Lafuente Martínez et al. 2022). While ex-
perts identified several CT sub-dimensions to be ad-
dressed by the items, statistical analyses suggested a
one-dimensional model as the best solution. A core prob-
lem is that sub-dimensions such as decomposition, gen-
eralisation, or pattern recognition are closely interwo-
ven and hard to separate (Lafuente Martínez et al.
2021). Similar issues are observed with other complex
constructs, such as scientific inquiry or practices, as
noted by previous studies (Osborne 2014; Ford 2015).

In this article, we propose an alternative, more sit-
uated approach by focusing on the types of problems
that require CT to be solved, which we call compu-
tational thinking problems (CTPs). This approach is
based on the idea that CT can be better understood
by examining the problems that elicit it and the fea-
tures that support CT processes rather than attempt-
ing to define CT itself. The idea behind incorporating
a situated approach in this context is that CT is not
just a collection of skills. Still, it is also closely tied to
the specific context in which it is being applied and
allows understanding the complexity of CT. The theo-
ries of situated learning proposed by (Roth and Jornet
2013; Heersmink 2013) stress that learning is most ef-
fective within authentic and meaningful contexts. They
argue that knowledge is constructed through interac-
tions with the environment and the community rather
than abstract instruction.

Our framework for analysing, evaluating and revis-
ing existing CTP and designing new CTP is first based
on the theory proposed by Piatti et al. (2022). They
emphasise that CT should be considered a situated ac-
tivity and contextualised and embedded in real-world
problem-solving situations. They also highlight that CT
should be seen as a dynamic and adaptive problem-
solving process rather than a fixed set of competencies
or skills. Their view combines the original definition of
CT from Wing (2006) – “Computational thinking is the

thought processes involved in formulating problems and
their solutions so that the solutions are represented in
a form that an information-processing agent can effec-
tively carry out.” – which has been widely cited and
considered the foundation of the field of CT, with the
situated theories of learning (Roth and Jornet 2013;
Heersmink 2013).

To avoid creating a novel CT competence model, we
have adopted state-of-the-art frameworks (Brennan and
Resnick 2012; Weintrop et al. 2016; Shute et al. 2017)
and reviewed relevant literature (Tikva and Tambouris
2021; Bocconi et al. 2016, 2022). Our approach resulted
in a catalogue of commonly recognised CT competen-
cies widely used to develop and assess student abilities
in CT. These competencies, also called dimensions or
skills, represent the essential capacities students need to
develop to solve CTPs effectively. We established a di-
rect link between our catalogue of CT competencies and
our framework by showing how specific skills are more
likely to be activated when solving CTPs with specific
characteristics. Finally, the framework is applied to a
variety of prototypical problems from standard CT do-
mains, demonstrating that it allows for systematically
analyse and evaluate CTPs based on the competencies
they are intended to elicit and to assess student abilities
in a targeted and efficient manner.

Answering research questions such as “What are the
characteristics of problems requiring CT to be solved?”,
“Which characteristics should a CTP have to activate
one (or more) CT competencies?” and “Which CT di-
mensions are activated in a CTP with certain charac-
teristics?”, can provide a better understanding of how
to design and assess CTPs that effectively develop CT
skills. Our proposed framework offers a systematic ap-
proach for identifying the characteristics of CTPs and
the corresponding CT competencies required to solve
them. This approach enables the selection or design of
tasks effective in developing and assessing the desired
skills, ultimately improving the quality of the tasks and
assessment process.

This article is divided into four main sections. Sec-
tion 2 presents a theoretical framework for analysing,
evaluating, revising and designing CTPs. This approach
is based on a catalogue of CT skills, which are com-
monly used to develop and evaluate student abilities.
To determine how the characteristics of a CTP impact
the development of CT skills, we defined a mapping
between skills and characteristics, which is discussed in
detail in Appendix A. Section 3 validates the framework
through a qualitative analysis of various CTPs found in
the literature, focusing on unplugged, robotic, and vir-
tual activities. It is important to note that readers are
not required to read the entire section. They can choose

A theoretical framework for the design and analysis of computational thinking problems in education 3

to read one example per category or skip this section
altogether and move directly to Sections 4 and 5. Addi-
tionally, Appendix B provides graphical templates that
offer a visual representation of how each CTP discussed
in the article aligns with the CT competencies outlined
in the study. Section 4, includes an overview of the rela-
tionship between CT competencies and different activ-
ity domains. It outlines the strengths, weaknesses and
areas for improvement of each category analysed. Sec-
tion 5, summarises the study’s key contributions, limi-
tations and implications for future research and practice
in the field of CT competencies development.

2 Methods

This section presents a theoretical framework for anal-
ysing, evaluating, revising and designing computational
thinking problems (CTPs) in educational contexts.

Through a thorough analysis of prototypical activ-
ities from various classic areas of the literature where
computational thinking (CT) is typically pursued, we
identify the main characteristics and components of
these problems. Relying on existing frameworks and lit-
erature on CT competencies, we present a catalogue of
skills typically used to assess student abilities in this
area. We then define a mapping between the identified
characteristics of the CTPs and these competencies to
determine how these features influence the development
of CT abilities.

2.1 Computational thinking problems (CTPs)

The increasing emphasis on the development and as-
sessment of students’ CT skills has led to a need for a
structured approach to analyse, evaluate, revise, and
design CTPs. Although several initiatives have been
launched to introduce computer science education in
classrooms, there is currently no universally accepted
definition of CT. This lack of a standardised defini-
tion presents significant challenges in creating appro-
priate assessment tasks and identifying the various sub-
dimensions of CT. Therefore, it is crucial to establish
a clear and precise definition of CT that reflects the
diverse perspectives and purposes of the field to facil-
itate the development and assessment of effective CT
pedagogical interventions.

To address this issue, we followed the approach in
Piatti et al. (2022), which is more closely aligned with
the complex, multi-faceted settings in which CT is typ-
ically activated, such as educational environments or
situations involving multiple people and rich physical
environments. They combine the original view of Wing

(Wing 2006) with the situated theories of learning (Roth
and Jornet 2013; Heersmink 2013). According to Piatti
et al. (2022), CT activities are shaped by the physical
and social context in which they occur and involve ex-
ternal cognitive artefacts. Piatti et al. (2022) proposed

int
 a

= 8
;

int
 a

= 8
;

int
 a

= 8
;

</>

?

int
 a

= 8
;

int
 a

= 8
;

int
 a

= 8
;

</>

?

int
 a

= 8
;

int
 a

= 8
;

int
 a

= 8
;

</>

?problem setting

assessment

algorithm

inactive role

autonomous
active role

non-autonomous
active role

embodied

formal

symbolic

ac
tiv

ity

artefactual environment

autonomy

Fig. 1 Visualisation of the computational thinking cube
(CT-cube) (From Piatti et al. (2022)). This model consid-
ers the type of activity (problem setting, algorithm, assessment),
the artefactual environment (embodied, symbolic, formal), and
the autonomy (inactive role, non-autonomous active role, or au-
tonomous active role).

a framework called computational thinking cube (CT-
cube), illustrated in Fig. 1, for the design of CTPs and
the assessment of CT. This model considers the type of
CT activity being performed or required (problem set-
ting, algorithm, assessment), the artefactual environ-
ment in which the activities occur, represented by the
tools used (embodied, symbolic, formal), and the social
interactions and individual’s level of autonomy a priori
and/or during the task (inactive role, non-autonomous
active role, or autonomous active role). It is important
to note that the steps in the activity dimension may be
iterated as needed to arrive at a satisfactory solution.

Based on the formulation of CT from Piatti et al.
(2022), we define CTPs by considering the context in
which the activity is being performed. According to our
framework, every CTPs consists of several components:
the system, comprising the environment and the agent,
the problem solver, and the task.

The environment is a physical and/or a virtual space,
characterised by one or more variables, called “descrip-
tors”, which may change over time according to the dy-
namics of this space.

The agent is a human, robotic or virtual being ca-
pable of performing “actions” on the environment to

4 Giorgia Adorni et al.

change the value of its descriptors and therefore alter
its state. An algorithm is a finite set of instructions
that an agent should follow to perform actions in the
environment to solve the task. Algorithms for different
types of agents can take various forms, such as code for
a virtual agent, behaviour for a robot, or a verbal or
written set of instructions for a human agent.

The problem solver is a human or group of peo-
ple who can solve tasks that require the use of algo-
rithms, such as designing, implementing, or communi-
cating them to an agent to change the state of an en-
vironment. They have access to reasoning tools, which
are cognitive artefacts used to think about the task, for
example, whiteboards employed to organise ideas and
understand the logic of a problem or solution. Some of
these tools, known as interaction tools, also allow the
problem solver to interface with the system. An exam-
ple is a programming platform used to write a program
that controls a robotic arm. In this case, the tool serves
as both a reasoning tool, enabling the problem solver
to plan and design the code, and as an interaction tool,
allowing the execution of the algorithm and the obser-
vation of its effect on the system. The set of all tools
is collectively known as artefactual environment and is
described in the works of Heersmink (2013) and Piatti
et al. (2022).

The task is the activity that the problem solver per-
forms to find one or more solutions to a CTP. A solu-
tion is a combination of initial states, algorithms, and
final states that meets the system’s requirements for
a particular environment, with its set of states, and a
given agent, with its set of algorithms. The initial state
is the starting configuration of the environment, while
the final state is the state of the environment after the
algorithm is performed. For a solution to be valid, the
execution of the algorithm on the initial state must pro-
duce the final state.

Fig. 2 conveys the framework’s components and their
interactions. Each component is depicted in a distinct
colour consistently throughout the article.

The proposed framework, in addition to defining
CTPs and their components, allows classify them ac-
cording to their characteristics, which are relevant for
eliciting and assessing CT skills in educational contexts.

Definition 1 (Artefactual environment) Tools
and resources used by a problem solver to reason,
understand a problem or interact with a system.

The first characteristic we defined in our framework is
the artefactual environment, in line with the definition
from Piatti et al. (2022) and the model of the three

System

Agent

Actions Descriptors

Environment

Task

A
lg

or
ith

m

Initial
state

Final
state

Problem solver
Reasoning tools

Interaction tools

Artefactual environment

Fig. 2 Visualisation of the components of a CTP. Accord-
ing to the framework, a CTP includes: (1) the problem solver (in
green) characterised by the artefactual environment, i.e., the set
of reasoning and interaction tools, (2) the system, which consists
of an environment with its descriptors (in blue) and an agent with
its actions (in violet), and (3) the task (in yellow) characterised
by the set of initial states, algorithms and final states.

worlds of mathematics by Tall (2006, 2013, 2020). In
particular, tools can be distinguished into “embodied”
or ecological and iconic representational cognitive arte-
facts based on embodiment and perception, “symbolic”
cognitive artefacts used to conceive and apply proce-
dures and rules, and “formal” cognitive artefacts used
to create, generalise and represent structures.

Definition 2 (Tools functionalities) Specific fea-
tures and functions provided by a tool or resource
that enable a problem solver to express a wide
range of instructions and operations to the agent.

Another aspect of CTPs that is closely related to the
previous one is the set of tools functionalities. These
functionalities can include defining and manipulating
“variables”, using different types of “operators”, creating
“sequences” of actions, “repeating” actions, using “condi-
tional” statements, defining “functions”, executing tasks
in “parallel” and triggering “events”. For example, a
symbolic artefact, such as a block-based programming
platform, may have many functionalities, such as se-
quences, repetitions, conditionals, etc. In contrast, the
programming interface may have limited functionalities
during a robotic activity, for example, it could only con-
sent to the use of operators (like moving forward) or
events.

A theoretical framework for the design and analysis of computational thinking problems in education 5

Definition 3 (Problem domain) The category
of an activity depending on the nature of the agent
and of the environment in which the task is per-
formed.

The domain classification of a CTP is useful for gain-
ing insights into the task’s context and identifying its
specific characteristics, challenges, and considerations.
Three main categories of domains are commonly recog-
nised in cognitive task paradigms, these include: “un-
plugged” activities, which involve a human agent and
a physical environment, “robotic” activities, in which
the agent is a robot and the environment is physical,
and “virtual” activities, where both agent and environ-
ment are virtual, such as a simulated entity. It is worth
noting that the agent may be “embedded“ in the en-
vironment, so its descriptors may likewise be used to
describe it. Furthermore, in some cases, the problem
solver and agent may be “overlapped”, meaning they
are the same entity.

Definition 4 (System resettability) The prop-
erty of a system to be restored to its initial state.
It can be achieved either through the direct in-
tervention of the problem solver on the system
(agents and environment) or indirectly through the
reversibility of actions within the system.

Resettability is another characteristic of CTPs. An ac-
tion is reversible if it is possible to undo its effects,
allowing the system to be restored to a previous state.
A system is considered non-resettable if it cannot be
returned to its initial state. This characteristic is cru-
cial in educational contexts as it enables the problem
solver to experiment, make mistakes and try different
solutions without being constrained by the previous ac-
tions. Imagine a task where the problem solver must
draw a picture on a piece of paper using a pencil. If he
makes a mistake, he can easily erase it and start over.
The system is directly resettable because the problem
solver can directly intervene and reset the system to its
initial state. Alternatively, the system is not resettable
if the problem solver can only use a pen. If he makes a
mistake, it can not be erased, and the problem solver
must continue with the picture in its current state. An
example of indirect resettability would be if the prob-
lem solver is drawing a picture on a digital tablet. He
can use the undo button to wipe out the previous action
and return to a previous state.

Definition 5 (System observability) The prop-
erty of a system that pertains to the ability of
the problem solver to observe the effects of actions
taken within the system and their impact on the
system’s state.

Observability is another aspect that can vary between
CTPs. Systems can be classified as partially observable,
in which only the aggregate effects of a limited number
of actions can be perceived, totally observable, in which
every single action and its consequences are visible, or
not observable, in which the problem solver is unable
to directly see the results of the agent’s actions and the
system’s state and must infer it from other information.
For example, in a chess game, the problem solver can see
the state of the board and the pieces all the time, mak-
ing the system fully observable. In a game of poker, con-
versely, the problem solver can only see his own cards
and the community cards, but not those held by the
other players, making the system partially observable.
In a scenario where the problem solver remotely con-
trols a robot to explore an underground cave, the person
cannot directly see the environment and robot’s actions
and must rely on sensor data to determine its location
and progress. As a result, the system is non-observable,
and decisions are based on limited information.

Definition 6 (Task type) The category of an ac-
tivity influenced by both the number and type of
objectives that need to be achieved to solve the
task.

The last important set of CTP features are those re-
lated to the task. Each element that composes the task
(initial state, algorithm, final states) can be “given” or
is “to be found”. The tasks are divided into six cate-
gories, which differ depending on the number of objec-
tives. Tasks with a single objective are classified into
the following types: (1) find the initial state: given the
final state and the algorithm that produced it, the prob-
lem solver must infer the initial state on which the al-
gorithm was applied; (2) find the algorithm: given the
initial and the final states, the problem solver must de-
vise and describe an algorithm, or a part of it, that the
agent can execute to transform the system from the ini-
tial to the final state; (3) find the final state: given the
initial state and an algorithm, the problem solver must
derive the final state. Tasks with multiple objectives
fall into the following types: (4) creation act : given an
initial state, the problem solver must determine a de-
sired final state and an algorithm that the agent can

6 Giorgia Adorni et al.

use to transform the system from the initial to the fi-
nal state; (5) application act : given an algorithm, the
problem solver must identify one or more pairs of initial
and final states on which the algorithm can be applied
successfully; (6) project act : given a desired final state,
the problem solver must define an initial state and an
algorithm that the agent should use to transform the
system from the initial to the final state.

Definition 7 (Task cardinality) The proportion
between the number of given elements to the num-
ber of elements to be found to solve the task.

In a task, it is possible for each of the given elements
and elements that need to be found to be singular or
multiple. The relationship between the number of given
elements and the number of elements to be found can
be “one-to-one”, “many-to-one” or “many-to-many”. For
example, a task with a one-to-one cardinality can be
one where the problem solver is provided with a single
initial and final state and is expected to find a single
algorithm that transforms the initial state into the final
state. In contrast, a task with a many-to-one cardinality
can be one where multiple initial states are given, and
the problem solver is expected to find a single algorithm
that transforms all the initial states into a single final
state. Finally, a task with a many-to-many cardinality
can be one where the problem solver is provided with
multiple initial states and a single final state and is
expected to find multiple algorithms that transform all
possible initial states into the desired final state. This
type of task can be traced back to many tasks with a
many-to-one cardinality.

Definition 8 (Task explicitness) The level of ex-
plicitness or implicitness in the presentation of the
given task’s elements.

The way the elements of the task are stated can be used
to distinguish a CTP by its level of explicitness. A task
with “explicitly” specified elements is directly usable in
the problem-solving process, while a task with “implic-
itly” expressed through constraints requires additional
interpretation to be understood. For example, in a task
where a robot must turn on its lights as soon as it finds
a ball in a playground, the given elements are the ini-
tial state (the robot lights switched off, the robot and
the ball positions) and the final state (the robot lights
turned on and the robot positioned in front of the ball),
while the element to be found is the algorithm (the set
of actions the robot should perform to find the ball).

The position of the ball can be described either explic-
itly using coordinates, or implicitly by stating that it is
located in the playground.

Definition 9 (Task constraints) The limitations
or specific requirements that must be adhered to
on the elements of a task to be found for the solu-
tion to be considered as valid.

A CTP can be distinguished by the type of constraints
on the elements of the task that need to be found.
In particular, the elements that have to be found are
distinguished in “unconstrained”, meaning they can be
freely chosen from all possible states and algorithms,
without any limitations or specific requirements that
need to be met to consider the solution valid, and “con-
strained”, meaning they must belong to a specified sub-
set of the respective universe set of states or algorithms.
Referring to the previous example, the algorithm to be
found can be unconstrained if the robot can perform
any action to find the ball (moving in a random di-
rection, using sensors to detect the ball, or following
a predefined path) or constrained if the programming
platform limits the commands the robot can execute
(moving only in specific directions, using only specific
sensors or following a particular set of predefined paths
to find the ball).

Definition 10 (Algorithm representation) The
mean by which an algorithm is conveyed.

Finally, how the algorithm is represented is a significant
task characteristic. An algorithm can be “manifest” if
it is directly expressed or “latent” if it is not stated but
is tacit or inferred by the problem solver. Manifest al-
gorithms can be further classified as “written” if it is
represented by an external and persistent representa-
tion of it, such as through a programming language, or
“not written” if it is communicated verbally or through
other non-permanent means. When the problem solver
and the agent are the same entity, the algorithm used
to solve the task is often not explicitly expressed or
written down, as the problem solver is carrying out the
steps of the algorithm directly through their actions as
the agent.

Fig. 3 graphically represent the components and
characteristics of a CTP according to our framework.

A theoretical framework for the design and analysis of computational thinking problems in education 7

Reasoning tools

Problem solver

Artefactual environment

Interactions tools IT_2
 ☐ embodied ☐ symbolic ☐ formal

 IT_1
 ☐ embodied ☐ symbolic ☐ formal

 RT_2
 ☐ embodied ☐ symbolic ☐ formal

 RT_1
 ☐ embodied ☐ symbolic ☐ formal

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic

 A3
 ☐ reversible ☐ not reversible

 A2
 ☐ reversible ☐ not reversible

 A1
 ☐ reversible ☐ not reversible

☐ virtual

Descriptors

Environment

 D3 D2 D1

☐ physical ☐ virtual

☐ unplugged ☐ robotic ☐ virtual

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

If given:

If to be found:
☐ explicit
☐ one

☐ implicit
☐ many

If given:

If to be found:

☐ explicit
☐ one

☐ implicit
☐ many

If given:

If to be found:

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

☐ constrained
☐ one

☐ unconstrained
☐ many

☐ constrained
☐ one

☐ unconstrained
☐ many

☐ constrained
☐ one

☐ unconstrained
☐ many

Fig. 3 Graphical template for the analysis of CTPs. Template suitable for graphically analysing the components of any CTP
according to our framework. Colours represent the CTP components and characteristics following the same colour scheme of Fig. 2.

2.2 A catalogue of computational thinking (CT) skills

In this study, we have identified a set of CT competen-
cies commonly used to assess student abilities in CT.
These competencies, also called dimensions or skills,
represent the fundamental abilities students need to de-
velop to solve CT problems effectively. We decided to
draw from various state-of-the-art competency models
to select and define our taxonomy of CT competencies
rather than relying on a single model. Our selection
process was inspired by the literature reviews of Tikva
and Tambouris (2021) and Bocconi et al. (2016, 2022),
which provides a comprehensive overview of CT skills
and their potential for compulsory education. Of great
importance is the framework of Brennan and Resnick
(2012). They proposed a list of CT skills divided into
three dimensions: computational concepts, practices, and
perspectives. This characterisation is often used in lit-
erature, but it was limited for our purposes because
it only considered virtual activities, while we also in-
vestigated robotics and unplugged ones. Therefore, we
extended this list by partially following the taxonomy
of CT in Science, Technology, Engineering and Math
(STEM) courses proposed by Weintrop et al. (2016).
This classification consists of four main categories: data
practices, modelling and simulation practices, compu-
tational problem-solving, and systems thinking prac-
tices. Another work we based on is that of Shute et al.

(2017). They developed a competence model based on
a review of the relevant definitions of CT in the liter-
ature, including those of Brennan and Resnick (2012)
and Weintrop et al. (2016).

To facilitate the assessment of competencies and en-
sure that it is focused and efficient, we have organised
CT skills into a hierarchy with layers of dimensions and
sub-dimensions, depicted in Fig. 4. The skills taxon-
omy is based on the activity dimension of the CT-cube
framework by Piatti et al. (2022), introduced in the
previous section, representing the individual’s role in
the cognitive system at each moment of the task. The
activity sub-dimensions have been developed mainly us-
ing the frameworks of Brennan and Resnick (2012);
Shute et al. (2017); Weintrop et al. (2016). Competen-
cies related to the activity dimension involve a wide
range of operations and cognitive processes. For ex-
ample, the “problem setting” competence may require
recognising and understanding various components of
the framework within the given CTPs, as well as mod-
elling the problem. The “algorithm” competence may
involve the comprehension and exploitation of different
instructions with varying difficulty levels, often influ-
enced by the type of artifactual environment involved.
The “assessment” competence may consider determin-
ing whether a solution is correct or its quality is sat-
isfactory. Table 1 summarises the competencies of the

8 Giorgia Adorni et al.

Pattern
recognition

Analysing Modelling

AbstractionDecomposition

Representing

Problem setting

Repetitions

Operators Control
structures Functions ParallelismVariables Events

Algorithm

Sequences Conditionals

Algorithm
debugging

System state
verification

Constraints
validation Optimisation

Correctness Effectiveness

Generalisation

Assessment

Data
collection

Fig. 4 Visualisation of our taxonomy of CT competencies. The overall structure is based on the CT-cube (Piatti et al. 2022).
The sub-skills are derived from validated CT models (Brennan and Resnick 2012; Weintrop et al. 2016; Shute et al. 2017). The three
skills groups are represented with the same colour scheme used for the CT-cube dimensions in Fig. 1.

first level of the hierarchy, defining all the possible val-
ues that the activity dimension can assume.

Table 1 Main competencies of the framework and their
definition. The skills listed are based on the values of the ac-
tivity dimension of the CT-cube framework (Piatti et al. 2022).

Competence Definition

Problem setting
Recognise, understand, reformulate or
model a CTP and its components so that
its solution can be computed.a

Algorithm

Conceive and represent a set of agent’s
actions that should be executed by a hu-
man, artificial or virtual agent to solve
the task.b

Assessment Evaluate the quality and validity of the
solution in relation to the original task.c

a See Table 2 for sub-competencies.
b See Table 3 for sub-competencies.
c See Table 4 for sub-competencies.

Tables 2 to 4 provide a detailed breakdown of the
sub-dimensions for the three possible values of the CT-

Table 2 Problem setting sub-competencies and their
definition. The skills listed are based on leading-edge compe-
tence models (Brennan and Resnick 2012; Shute et al. 2017; Thal-
heim 2000; Weintrop et al. 2016; Wing 2011; Bocconi et al. 2016;
Selby and Woollard 2013; Angeli et al. 2016; Csizmadia et al.
2015; Selby 2014; Barr and Stephenson 2011).

Competence Definition

Analysing
Collect, examine and interpret data
about the system: environment descrip-
tors and agent actions.

Data
collection Gather details about the system.

Pattern
recognition

Identify similarities, trends, ideas and
structures within the system.

Modelling
Restructure, clean and update knowl-
edge about the system.

Decomposition Divide the original task into sub-tasks
that are easier to be solved.

Abstraction Simplify the original task, focus on key
concepts and omit unimportant ones.

Representing Illustrate or communicate information
about the system and the task.

A theoretical framework for the design and analysis of computational thinking problems in education 9

cube activity class (problem setting, algorithm, assess-
ment). In the tables, each row represents a specific skill.
The parent skill is distinguished from the lower-level
skills by a dashed line, while the lower-level competen-
cies of a particular competence are separated by dotted
lines. This helps to visually organise the table to dif-
ferentiate between the different skill levels and make it
easier to understand their relationships.

Table 3 Algorithm sub-competencies and their defini-
tion. The skills listed are based on leading-edge competence
models (Brennan and Resnick 2012; Cui and Ng 2021; Rodríguez-
Martínez et al. 2020; Bocconi et al. 2016, 2022; Shute et al. 2017).
The following definitions are about the algorithmic concepts re-
lated to the skill since the skill definition varies based on the arti-
factual environment: in embodied contexts, it involves recognis-
ing or describing concepts through senses; in symbolic contexts,
it involves applying them; and in formal contexts, it involves un-
derstanding properties to structure complex algorithms.

Competence Definition

Variables
Entity that stores values about the sys-
tem or intermediate data.

Operators

Mathematical operators (such as addi-
tion (+), subtraction (−) etc.), logi-
cal symbols (such as and (&), or (|),
and not (!)) or for comparison (such as
equal to (==), greater than (>), and less
than (<)), or even specific commands
or actions (such as “turn left” or “go
straight”).

Control
structures

Statements that define the agent ac-
tions flow’s direction, such as sequential,
repetitive, or conditional.

Sequences Linear succession of agent actions.

Repetitions Iterative agent actions.

Conditionals Agent actions dependent on conditions.

Functions Set of reusable agent actions which pro-
duce a result for a specific sub-task.

Parallelism Simultaneous agent actions.

Events
Variations in the environment descrip-
tors that trigger the execution of agent
actions.

It is important to note that the activation of the
activity sub-dimensions, especially the algorithmic one,
is closely related to the type of artefactual environment
being considered. The task-related artefactual environ-
ment combines the tools given and the type of problem
involved. The activation of a competence may vary de-
pending on the context in which it is being applied or
whether the task is performed with embodied, symbolic,
or formal artefacts. When considering algorithmic sub-

Table 4 Assessment sub-competencies and their defi-
nition. The skills listed are based on leading-edge competence
models (Brennan and Resnick 2012; Shute et al. 2017; Weintrop
et al. 2016; Bocconi et al. 2016).

Competence Definition

Correctness Assess whether the task solution is cor-
rect.

Algorithm
debugging

Evaluate whether the algorithm is cor-
rect, identifying errors and fixing bugs
that prevent it from functioning cor-
rectly.

System states
verification

Evaluate whether the system is in the
expected state, detecting and solving po-
tential issues.

Constraints
validation

Evaluate whether the solution satisfies
the constraints established for the sys-
tem and the algorithm, looking for and
correcting eventual problems.

Effectiveness Assess how effective is the task solution.

Optimisations

Evaluate whether the solution meets
the standards in a timely and resource-
efficient manner, and eventually identify
ways to optimise the performance.

Generalisation
Formulate the task solution in such a
way that can be reused or applied to dif-
ferent situations.

competencies, for example, to activate these skills it
is necessary to consider the tool used to represent the
algorithm and the type of abstraction of the reason-
ing required. In embodied environments, knowledge is
represented through sensory experiences, such as see-
ing, hearing, or touching. In this context, these skills
may be activated simply by recognising and describ-
ing algorithmic concepts using physical interactions. In
symbolic environments, knowledge is represented using
symbols, such as words and numbers, or languages, such
as natural or formal languages. Common types of for-
mal language include those used to code, such as block-
based and textual programming languages. In this con-
text, reasoning requires the problem solver to be able to
apply these competencies to solve problems and accom-
plish tasks. In formal environments, knowledge is repre-
sented with abstractions, such as mathematical models,
logical systems and proofs. In this context, it is neces-
sary to have a deeper understanding of how these skills
work and what their properties are to be able to struc-
ture and apply them effectively, creating a complex sys-
tem.

10 Giorgia Adorni et al.

2.3 Map CTP characteristics to CT skills

To formalise our framework, clarifying the role of CTP
characteristics in CT skills assessment, we utilise the
previously established definition of CTP to identify the
components of these problems and their characteristics
and to understand how different features may influence
the assessment of CT competencies. We establish a di-
rect link between our catalogue of CT competencies and
the proposed framework, demonstrating how particular
CT dimensions are more likely to be activated when
solving CTPs with specific characteristics. The link be-
tween the two is discussed in detail in Appendix A,
which explains how the various characteristics of CTPs
can impact the development of CT competencies and
how certain skills are more likely to be used when solv-
ing CTPs with specific characteristics. This approach
enables the assessment of student abilities in a targeted
and efficient manner.

Our analysis of the relationships between charac-
teristics and competencies revealed four different types
of connections. From the perspective of the features, a
certain characteristic can either be required to activate
a certain competence, prevent its activation, trigger its
activation or be irrelevant to its activation. Conversely,
from the perspective of the competencies, a skill is ac-
tivated if it has all required features and none of the
preventing ones, can be encouraged by triggering fea-
tures or is inhibited if it has a preventing feature or only
irrelevant features. The relationship between features
and skills can vary based on the type of environment
in which the problem is presented. Table 5 provides a
comprehensive explanation of the symbols used to rep-
resent the relationship between the characteristics of a
CTP and CT competencies.

Table 6 has been realised to offer a practical under-
standing of the relationship between different features
of CTPs we identified and our catalogue of CT com-
petencies enabling us to assess student abilities in a
targeted and efficient manner. Each column is a char-
acteristic of the CTP and every row represents a skill.
Overall, this table provides a clear visual representation
of how different features of the CTP can influence the
assessment of CT competencies and how the different
dimensions of CT skills are more likely to be activated
when solving CTPs with specific characteristics.

This framework, supported by Table 6, is intended
to be used as a tool to analyse existing CTPs, under-
stand which CT competencies can be assessed by the
available features, evaluate the problem effectiveness for
intended educational purposes and eventually revise it
if it is unsuitable. To use the framework, the first step
is to identify the CTP profile and list all of its features.

Table 5 Overview of the notation for representing the
relationship between characteristics and skills.

Symbol Meaning

✓
The characteristic is required for the compe-
tence activation

✗
The characteristic prevents the competence ac-
tivation

+
The characteristic promotes the competence
activation

none
The characteristic is irrelevant for the compe-
tence activation

✓*
The characteristic is one of the possible char-
acteristics required for the competence activa-
tion

✓SF / ✗SF
The characteristic is required for / prevents
the competence activation in the symbolic and
formal environments

✓F / ✗F
The characteristic is required for / prevents
the competence activation in the formal envi-
ronment

If the CT competencies to be measured have not been
specified in the activity, the framework can be used to
determine which skills can be assessed from the avail-
able features. On the other hand, if the CT competen-
cies are outlined, the framework can be used to com-
pare the problem’s characteristics with those associated
with the specified competencies and determine the CTP
effectiveness for intended educational purposes. The ef-
fectiveness of a CTP can be classified into five categories
based on the relationship between its features and the
CT competencies.

Definition 11 (Minimal CTP) A complete and
optimised CTP in which its characteristics per-
fectly match the features essential to activate the
CT competence it is intended to elicit.

In other words, the problem is designed to activate the
intended CT skill with the minimum required features
without any irrelevant or distracting elements.

Definition 12 (Extensive CTP) A complete and
rich CTP that, in addition to having all of the nec-
essary characteristics to activate a certain CT com-
petence, also has features that act as a stimulus to
activate that skill or others.

These additional features make the problem more en-
gaging and provide additional opportunities for stu-

A theoretical framework for the design and analysis of computational thinking problems in education 11

Table 6 Comprehensive overview of the relationship between different CTP characteristics and CT competencies.
The table shows the relationship between the characteristics of CTPs (columns) and CT competencies (rows). The CTP features
considered include the tools’ functionalities, the system’s property, and the task trait. The meaning of the symbols used is provided
in Table 5. The same colour schemes used for the CT-cube dimensions in Fig. 1 and for the CTP components in Fig. 2 are employed
to present the skills and features, respectively.

Tool functionalities System Task
V
ar

ia
bl

es

O
pe

ra
to

rs

Se
qu

en
ce

s

R
ep

et
it
io

ns

C
on

di
ti
on

al
s

Fu
nc

ti
on

s

P
ar

al
le

lis
m

E
ve

nt
s

Sy
st

em
re

se
tt
ab

le

Sy
st

em
no

t
re

se
tt
ab

le

Sy
st

em
(p

ar
ti
al

ly
)

ob
se

rv
ab

le

Sy
st

em
no

t
ob

se
rv

ab
le

In
it
ia

l
or

fin
al

st
at

e
to

be
fo

un
d

A
lg

or
it
hm

to
be

fo
un

d

O
ne

-t
o-

on
e

ca
rd

in
al

it
y

M
an

y-
to

-o
ne

ca
rd

in
al

it
y

E
xp

lic
it

el
em

en
ts

Im
pl

ic
it

el
em

en
ts

U
nc

on
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

nt

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

no
t
w
ri

tt
en

Data collection ✓ + + + + + + + + + + + + +

Pattern recognition + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ + + + + + + + + + + + + +

Variables ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences + + ✓ + + + + ✓F + + + + + + +

Repetitions + + + ✓ + + ✓F + + + + + + + +

Conditionals + + ✓ + + + ✓F + + + + + + + + +

Functions + + + + ✓ + ✓F + + + + + + + +

Parallelism + + ✓ + ✓F + + + + + +

Events + + + ✓ + ✓F + + + + +

Algorithm debugging + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation + + + + + + + + ✓ ✗ +

Generalisation ✓ + + + ✓ + ✓ ✗ + + + +

dents to demonstrate their CT abilities. The problem is
considered complete and rich, as the additional features
enhance the overall learning experience and provide a
more comprehensive evaluation of the student’s skills.

Definition 13 (Unfocused CTP) A CTP in which
some of the features are irrelevant to activate the
skill it is intended to elicit.

These irrelevant features can create confusion and dis-
tract the students from focusing on the essential aspects
of the problem, hindering the optimisation of the prob-
lem in activating the desired competencies and affect-
ing the accuracy of the assessment. An unfocused CTP
should be revised to remove these unnecessary features
to improve its effectiveness.

Definition 14 (Adjustable CTP) A CTP where
some essential features required to activate a cer-
tain competence are missing.

This type of problem can be modified to include the
missing features, optimising it to activate the relevant
CT skills. This can be done by modifying the problem
statement, the system, or the artefactual environment.

Definition 15 (Unsuitable CTP) A CTP that
is not appropriate for its intended purpose, which
lacks some essential features but has some unwanted.

This type of problem makes it difficult or impossible to
effectively used to assess certain CT competencies and

12 Giorgia Adorni et al.

it would require too many changes to be useful, and
it may be better to design or choose another problem
instead.

Additionally, Table 6 can be used when creating or
choosing a new CTP to assess specific CT competen-
cies. The first step, in this case, would be to define the
skills to be evaluated and then use the table to list the
necessary features and those that are not needed. The
table can also be used to find existing problems that
match the list of characteristics or to design a new ac-
tivity from scratch.

3 Results

To examine and validate our method in-depth, we ap-
plied the proposed framework to a range of computa-
tional thinking (CT) activities that are widely recog-
nised as representatives in educational settings. We fo-
cused on three categories of computational thinking
problems (CTPs), unplugged, robotic, and virtual ac-
tivities, to provide a more nuanced understanding of
each type of activity’s unique features and challenges.
The selection of activities serves as a means to demon-
strate the effectiveness and practicality of the frame-
work and is not exhaustive. Through this analysis, we
aim to provide a comprehensive account of the frame-
work’s applicability and identify best practices and ar-
eas for improvement in the design and assessment of
CT activities, with the ultimate goal of contributing to
the field of CT education.

For each CTP presented in this section, we provided
in Appendix B the graphical template used for their
analysis, describing the component and the character-
istics of the CTP, and the table that summarises the
relationship between the characteristics of the CTPs
and the CT competences the that can be activated or
not.

3.1 Unplugged activities

In the context of CT, an unplugged activity is an ac-
tivity that does not involve the use of a computer or
technology (Brackmann et al. 2017; Del Olmo-Muñoz
et al. 2020). As per our framework, unplugged activities
refer to CTPs where the agent is a human rather than
a virtual or robotic agent. These activities have a com-
mon feature of involving physical and non-technological
artefactual environments, as they require manipulating
physical objects rather than using technology for ma-
nipulation. Unplugged activities are designed to help
students develop CT skills often related to problem set-
ting, such as pattern recognition and fundamental com-

puter science concepts through hands-on and tangible
activities before they are introduced to more abstract,
technology-based activities (Bell et al. 2009). Examples
of unplugged CTPs include puzzles, games, and other
activities that involve manipulating physical materials,
such as blocks or cards.

3.1.1 Cross Array Task

The Cross Array Task is an unplugged activity designed
by Piatti et al. (2022) using the CT-cube to assess the
development of algorithmic skills in compulsory schools.

support
schema

A
ge

nt

reference
schema

colouring
schema

screen

P
ronlem

solver

Fig. 5 The Cross Array Task activity adapted from Pi-
atti et al. (2022). The task requires the problem solver to in-
struct the agent to reproduce a reference schema solely through
verbal communication, with the option of supplementing instruc-
tions via gesturing on a support schema if deemed necessary. A
removable screen separates the participant and researcher to reg-
ulate potential visual cues.

Components The Cross Array Task, illustrated in Fig. 5,
involves a student and a researcher in a classroom set-
ting, seated at a table and separated by a removable
screen. The student has to communicate an algorithm
to colour a white cross array to match a reference schema.
– Problem solver : the student who has to communi-

cate an algorithm corresponding to the sequence of
instructions to reproduce the colouring of the ref-
erence schema. The artefactual environment com-
prises cognitive tools such as the support and the
colouring schemes, available to the problem solver
to reason about the task. Additionally, the prob-
lem solver can interact with the system to com-
municate the algorithm. This can be achieved us-
ing a natural language such as the voice (symbolic)
or gestures (embodied) on the empty cross array.
Moreover, by removing the screen that separates

A theoretical framework for the design and analysis of computational thinking problems in education 13

the problem solver from the agent, he can have vi-
sual feedback (embodied) of the cross array being
coloured.

– Agent : the researcher, executor of the problem solver’s
instructions, responsible for filling the colouring schema
according to the problem solver’s algorithm. The
agent’s actions are not resettable.

– Environment : the cross array to be coloured, whose
state is described by the colour of each dot (white,
yellow, blue, green, or red).

– Task : find the algorithm. The system’s state is de-
fined by the colouring cross status, initially white
and, at the end the same as the reference schema.
The algorithm is the set of agent instructions to
achieve this transformation.

Characteristics The characteristics of this activity have
been analysed using the graphical templates shown in
Fig. B.1 in Appendix B.
– Tool functionalities: voice and gestures provide var-

ious functionalities associated with algorithmic con-
cepts, suitable to design the algorithm, including (i)
variables can represent different colours of the cross
array dots; (ii) operators are used to change the
colour of the dots performing actions such as colour-
ing a dot, a row, a square and so on; (iii) sequences
determine the order in which the actions should be
executed to achieve the desired outcome; (iv) repeti-
tions allow for repeating specific sequences of oper-
ations, such as colouring the first column in red and
repeating it every two columns; (v) functions con-
sist of operations that perform a specific task and
can be applied to different inputs, for example, cre-
ating a pattern of alternating red and yellow dots in
a square and applying it to different positions of the
cross array; (vi) parallelism involves executing mul-
tiple actions simultaneously and can be associated
with using symmetries to describe the pattern.

– System resettability : the system is not resettable
since it is impossible to reverse the agent’s actions.

– System observability : the system is partially observ-
able since the cross array being coloured by default
is not seen until the end of the task unless the prob-
lem solver demands otherwise.

– Task cardinality : the task has a one-to-one mapping,
with given one initial and one final state, and an
algorithm to be found.

– Task explicitness: all elements are given explicitly.
– Task constraints: the algorithm is unconstrained.
– Algorithm representation: the algorithm is repre-

sented through voice commands or gestures. It is
considered manifest, because it can be seen, but not
written since it is not stored in a permanent format.

Enabling features for competencies development The re-
lationship between features and skills is summarised in
Appendix B in Table B.1. This paragraph explores the
enabling characteristics that support the development
of competencies within the task.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences, rep-
etitions and functions in the tool functionalities.
The presence of many tool functionalities, the non-
resettability of the system and the algorithm rep-
resentation positively affect and boost problem set-
ting skills. The system observability supports data
collection and pattern recognition. The one-to-one
cardinality, in addition, stimulates decomposition.
The explicit and unconstrained definition of the task
elements also promotes pattern recognition, decom-
position and abstraction.

– Algorithm: all competencies associated with the al-
gorithmic concepts enabled by the tool functionali-
ties, meaning variables, operators, sequences, repe-
titions and functions, can be activated in all three
artefactual environments and promote one another.
The form of representation of the algorithm, the
system observability, and the explicit and uncon-
strained definition of the task elements further en-
hance these. The one-to-one cardinality helps to en-
hance some of these skills as well.

– Assessment : since the system is not resettable, no
assessment skills can be developed.

Inhibiting features for competencies development
– Conditionals and events: non-activable as these func-

tionalities are unavailable in the platform. A way to
make conditionals available in the tool functionali-
ties would be allowing the problem solver to change
a dot colour, for example by communicating instruc-
tions such as: “if the dot is red, then colour it yel-
low”. By doing this, the problem solver engages with
the concept of conditionals and can develop their al-
gorithmic skills. The completion of each row in the
cross array can be considered an event. The problem
solver can specify that they want to fill the cross line
by line, and once a line is complete, the researcher
will move on to the next line. This allows the prob-
lem solver to list only the sequence of colours with-
out repeating the instructions for where to go. The
change in the environment (completing a row) trig-
gers the researcher to move to the next row. Us-
ing conditionals and events can greatly enhance the
complexity of the solutions that can be generated
and help develop advanced CT skills.

– Assessment skills: the inability to reset the system
impairs the development of the student’s skills. One

14 Giorgia Adorni et al.

possible solution to this issue is enabling the stu-
dent to reset the colouring scheme using a voice
command. This would return the schema to its ini-
tial blank state, allowing the student to start the
task from the beginning and practice their assess-
ment skills. To develop system state verification, it is
also essential to not reveal the initial or final states.
Moreover, constraints should be imposed on the al-
gorithm to develop constraint validation skills, for
example, limiting the use of specific operators or
the number of times they can be used, allowing the
problem solver to develop the ability to think about
the constraints and limitations in their algorithms.

3.1.2 Graph Paper Programming

Graph Paper Programming is an unplugged activity
from Code.org (2015), a nonprofit organisation that
aims to provide students with the opportunity to learn
computer science as part of their education, offering
various activities designed to increase diversity in com-
puter science and reach students at their skill level and
in ways that inspire them to continue learning.

The Graph Paper Programming activity can be di-
vided into two parts, each with a different task. In the
first part, the student is given a 4× 4 grid of white and
black squares and asked to write explicit instructions
for another classmate to reproduce the image without
letting the other person see the original drawing. In the
second part, the same student follows the instructions
they previously wrote to reproduce the image. By di-
viding the activity into these two parts, we can gain
a deeper understanding of the cognitive processes and
skills involved in each task and understand the poten-
tial for this activity to support the development of CT
abilities.

Use the symbols to write a program that would draw the image.

steps array

reference schema symbols

Fig. 6 The first part of the Graph Paper Programming
(GPP) activity, adapted from Code.org (2015). The task
requires the problem solver to instruct the agent to reproduce the
reference schema with instructions written on a steps array using
a predefined set of arrow symbols.

Components (part 1) The first part of the activity is
illustrated in Fig. 6.
– Problem solver : the student who writes the set of

instructions for the agent to follow. The artefactual
environment comprises cognitive tools such as the
reference schema (embodied) and the support and
the set of arrow symbols (embodied) available to
the problem solver to reason about the task. Ad-
ditionally, the problem solver can interact with the
system to communicate the algorithm, writing the
arrow symbols in the steps array (symbolic). These
can be considered as a programming language and
its programming platform.

– Agent : the other student who executes the problem
solver’s instructions by filling the colouring schema
accordingly. Its actions are not resettable.

– Environment : the schema to be coloured, described
by the colour of each square (white or black).

– Task : find the algorithm. The system’s state is de-
fined by the colouring schema status, initially white
and, at the end the same as the reference schema.
The algorithm is the set of agent instructions to
achieve this transformation.

Read the program above and draw the image that it describes.

program

colouring schema

Fig. 7 The second part of the Graph Paper Program-
ming (GPP) activity, adapted from Code.org (2015).
The task requires the problem solver to fill the empty colouring
schema following the program provided. The figure illustrates the
expected final state.

Components (part 2) The second part of the activity is
illustrated in Fig. 7.
– Problem solver and Agent : they overlap and corre-

spond to the student who follows the instructions
to recreate the image. The only action the agent
can perform is to paint the colouring schema with-
out the possibility of undoing it. The artefactual
environment comprises cognitive tools such as the
colouring schema (embodied) available to the prob-
lem solver to reason about the task. As before, the
arrow symbols on the steps array (symbolic) are also
used to interact with the system. Moreover, being

A theoretical framework for the design and analysis of computational thinking problems in education 15

the agent and the problem solver overlapped, visual
feedback (embodied) is always given.

– Environment : the schema to be coloured, described
by the colour of each square (white or black).

– Task : find the final state. The system’s state is de-
fined by the colouring schema status, initially white.
However, the final state is not given and has to be
found using the provided algorithm.

Characteristics The characteristics of this activity have
been analysed using the graphical template presented
in Appendix B. Fig. B.2 refers to the first part of the
activity, while Fig. B.3 refers to the second.
– Tool functionalities: in both parts of the activity,

the tools provide various functionalities associated
with algorithmic concepts suitable to design the al-
gorithm, including (i) variables can represent differ-
ent colours of the schema squares; (ii) operators cor-
respond to the arrow symbols used to instruct the
agent to move from one square to another, determin-
ing whether a square is coloured black or white; (iii)
sequences determine the order in which the actions
should be executed to achieve the desired outcome;
(iv) repetitions allow for repeating specific sequences
of operations; (v) functions can be represented by
a group of instructions that perform a specific task,
such as colouring a particular shape on the grid,
that can be used multiple times.

– System resettability : the system is not resettable
since it is impossible to reverse the agent’s actions.

– System observability : in the first part of the activity,
the system is not observable, as there is no visual
feedback about the agent’s actions; in the second
part of the activity, the visual feedback consented
thanks to the problem solver and agent overlapping,
makes the system totally observable.

– Task cardinality : both tasks have a one-to-one map-
ping, with one initial state, final state and algo-
rithm.

– Task explicitness: the task elements are explicit.
– Task constraints: the final state is unconstrained.
– Algorithm representation: the algorithm is manifest

and written, represented through the arrow symbols
written in the steps array.

Enabling features for competencies development This
paragraph explores the enabling characteristics that sup-
port the development of competencies within this CTP.
The relationship between features and skills in the two
parts of the activity are summarised in Appendix B in
Tables B.2 and B.3.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences, rep-
etitions and functions in the tool functionalities.

The presence of many tool functionalities, the non-
resettability of the system and the algorithm rep-
resentation positively affect and boost problem set-
ting skills. In the first part of the activity, the in-
ability to observe the systems further supports the
development of all these competencies, while in the
second part, the system observability sustains only
data collection and pattern recognition. The one-
to-one cardinality in addition stimulates data col-
lection and pattern recognition but also decompo-
sition. The explicit and unconstrained definition of
the task elements also promotes pattern recognition,
decomposition and abstraction.

– Algorithm: the competencies associated with algo-
rithmic concepts, including variables, operators, se-
quences, repetitions, and functions, can be devel-
oped in the first part of the activity through the
use of the tool functionalities in all artefactual envi-
ronments. However, in the second part of the activ-
ity where the algorithm is given, these competencies
cannot be developed in the formal environment but
only in the embodied and symbolic environments.
The algorithm representation, the system observ-
ability, and the explicit and unconstrained defini-
tion of the task elements further enhance all these
skills.

– Assessment : since the system is not resettable, no
assessment skills can be developed.

Inhibiting features for competencies development
– Conditionals, parallelism and events: non-activable

as these functionalities are unavailable in the plat-
form. Activating conditionals would be allowed by
providing a new arrow symbol that determines the
colour of a square based on certain conditions, for
example, the colour of the square above. Parallelism
can be enabled by operating a new arrow symbol
instructing the agent to colour two squares simulta-
neously. An event that could be taken into account
is that every time a cell is filled with black, the in-
structions in the steps array move to the next row
rather than continuing from that specific cell.

– Assessment skills: the inability to reset the system
impairs the development of the student’s skills. In
the first part of the activity, where the problem
solver is writing the set of instructions for the agent,
to solve this issue the system can be reset by sim-
ply starting over with a new blank graph array and
writing a new set of instructions, or simply offering
the possibility to use pencil and eraser. In the sec-
ond part of the activity, where the problem solver
and the agent are the same people, the system can
be reset by either using a new colouring schema or

16 Giorgia Adorni et al.

erasing the previously produced image and starting
over.

3.1.3 Triangular Peg Solitaire

Triangular Peg Solitaire is a strategy game that can
be played in two variants: the classic, on a triangu-
lar board with 15 holes and pegs, and the paper and
pencil modality. The board is initially filled with pegs,
except for one hole, which is left empty (see the top
of Fig. 8). This game is often used to teach problem-
solving, logic and strategy skills, requiring the player
to determine the most efficient sequence of moves to
remove all the pegs on the board except one. Research
has shown that the second activity variant can effec-
tively promote problem-solving skills even in older stu-
dents (Barbero 2020). The game is played by following
the rules, which dictate that a peg can only be moved
by jumping over a neighbouring peg on the diagonal or
horizontal lines (see the bottom of Fig. 8). By analy-
sing the two versions of this game, we aim to understand
their impact on promoting problem-solving and critical
thinking skills, evaluating advantages and limitations
and providing insights into how they can be used for
CT development.

Fig. 8 The Triangular Peg Solitaire. The game is played
on a board containing 15 spots, with 14 pegs placed on it at the
start of the game (top). The task requires the problem solver to
strategically move one peg at a time to eliminate all other pegs on
the board until only one remains (bottom), jumping a peg over
a neighbouring peg on the diagonal or horizontal lines, with the
constraint that there must be a free landing spot for the jumping
peg (adapted from Berlekamp et al. (2004)).

Components (board variant) The first variant of the ac-
tivity, illustrated in Fig. 8, requires solving the game on
a physical board.

– Problem solver and Agent : they overlap and corre-
spond to the player who must determine the most
efficient sequence of moves to remove all the pegs on
the board. The only action the agent can perform
is to move the pegs on the board without the pos-
sibility of undoing it. The artefactual environment
comprises tools for reasoning and interacting with
the system. Being the agent and the problem solver
overlapped, visual feedback (embodied) of the state
of the board is always given. Moreover, the prob-
lem solver can physically interact with the system
by moving the pegs on the board (embodied).

– Environment : the wooden board, described by the
number of pegs on it.

– Task : find the algorithm. The system’s initial state
is the board with 14 pegs. The final state is the
board with one peg. The algorithm to be found spec-
ifies the sequence of moves to remove all the pegs.

vacate b3
b5-b3, d4-b4, d5-b5, b2-d4, a2-c4, a4-a2,
e5-c3-c5, b5-d5, a1-a3-c5, d5-b5, a5-c5
11 moves

Fig. 9 A Triangular Peg Solitaire solution adapted
from Bell (2007, 2008) and Barbero and Gómez-Chacón
(2018). The task requires the problem solver to solve the game
using paper and pencil by meticulously documenting their en-
tire thought process. The solution can be presented in multiple
ways, such as graphically using a Cartesian notation (top) or by
numbering the boxes progressively and expressing the movements
used (bottom).

Components (paper & pencil variant) The first variant
of the activity, illustrated in Fig. 9, requires solving
the game with paper and pencil by documenting the
thought process and devising a winning strategy.
– Problem solver and Agent : they overlap and corre-

spond to the player who must determine the most
efficient sequence of moves to remove all the pegs
on the board. The only action the agent can per-
form is to write the thinking process and strategy
to remove the pegs on the board without the pos-
sibility of undoing it. The artefactual environment
comprises tools for reasoning and interacting with
the system. Being the agent and the problem solver
overlapped, visual feedback (embodied) of the state

A theoretical framework for the design and analysis of computational thinking problems in education 17

is always given. Moreover, the problem solver can
physically interact with the system by writing the
thinking process (symbolic).

– Environment : the board drawn in the thinking pro-
cess, described by the number of pegs on it.

– Task : find the algorithm. The system’s initial state
is the board with 14 pegs. The final state is the
board with one peg. The algorithm to be found spec-
ifies the sequence of moves to remove all the pegs.

Characteristics The characteristics of this activity have
been analysed using the graphical template presented in
Appendix B. In particular, Fig. B.4 refers to the board
version of the activity, while Fig. B.5 refers to the paper
and pencil variant.
– Tool functionalities: in both variants of the activity,

the tools provide various functionalities associated
with algorithmic concepts suitable to design the al-
gorithm, including (i) variables can represent the
state of the board and in particular the number of
pegs on it; (ii) operators correspond to the moves
made by the player to change the state of the board
by removing or moving pegs from one hole to an-
other; (iii) sequences determine the order of moves
made by the player; (iv) repetitions allow for re-
peating certain moves or sequences of moves; (v)
conditionals refer to the possible decisions that the
plays may need to make, such as where to jump in
one direction or another; (vi) functions can be rep-
resented by a group of instructions that perform a
specific task, for example, a function to delete pegs
in a row which can be applied to several rows.

– System resettability : in the board variant, the sys-
tem is not resettable meaning that once the player
has made a move, it cannot be undone. However,
the system is resettable in the paper and pencil
version, even though the player’s actions are not
reversible. This is because the informal setting, in
which the player documents their thought process,
allows for experimentation and exploration without
fear of judgement or negative consequences. In other
words, the player can freely make mistakes, express
uncertainty, and experiment with different strate-
gies without permanently impacting the game.

– System observability : in both variants, the system
is observable because the agent and problem solver,
that overlap, can see the state of the board anytime.

– Task cardinality : both activity variants have a one-
to-one mapping, with one initial state, one final state
and one algorithm.

– Task explicitness: the initial state of the system is
given explicitly, while the final one is given implicitly

since the task instruction does not specify which is
the position of the last remaining peg.

– Task constraints: the algorithm is constrained by
the game rules which dictate that a peg can only be
moved by jumping over a neighbouring peg on the
diagonal or horizontal lines and that there must be
a free landing spot for the jumping peg.

– Algorithm representation: in the board variant of
the game, the algorithm is latent since it is per-
formed physically through the player’s moving the
pegs, it is not permanently recorded and cannot be
revisited. On the other hand, in the paper and pencil
modality, the player writes down the algorithm, and
it becomes a permanent record that can be reviewed
and used as a reference. This allows the player to ex-
periment freely and change their approach without
having to start over each time. The written repre-
sentation of the algorithm in the paper and pencil
modality provides a clear and concrete way to rep-
resent the player’s thought process and strategy.

Enabling features for competencies development This
paragraph explores the enabling characteristics that sup-
port the development of competencies within this CTP.
The relationship between features and skills in the two
activity variants are summarised in Appendix B in Ta-
bles B.4 and B.5.
– Problem setting : all competencies can be activated

in both variants of the game thanks to the presence
of variables, sequences, repetitions and functions in
the tool functionalities. The presence of many tool
functionalities, the non-resettability of the system
(in the board version of the game), the implicit
and constrained definition of the task elements and
the algorithm representation positively affect and
boost problem setting skills. The system’s observ-
ability sustains data collection and pattern recogni-
tion skills, while the one-to-one cardinality and the
resettability of the system (in the paper and pencil
variant of the game) also stimulate decomposition.

– Algorithm: the competencies associated with algo-
rithmic concepts, including variables, operators, se-
quences, repetitions, conditionals and functions, can
be developed in all artefactual environments. The
system observability, the implicit and constrained
definition of the task elements, and the manifest
written representation of the algorithm (in the pa-
per and pencil variant of the game) can further en-
hance these skills.

– Assessment : no assessment skills can be developed
in the board variant of the activity since the system
is not resettable. In the paper and pencil version of
the activity, algorithm debugging can be activated

18 Giorgia Adorni et al.

in all artefactual environments due to the resetta-
bility of the system and the manifest and written
representation of the algorithm; constraint valida-
tion can be developed because there are constraints
on the algorithm that can be verified since the sys-
tem is resettable; optimisation can be activated as
it only requires the resettability of the system; gen-
eralisation can be activated through the system’s
resettability and the presence of variables and func-
tions. Tool functionalities as well as the system ob-
servability help develop these competencies.

Inhibiting features for competencies development
– Parallelism and events: non-activable as these func-

tionalities are unavailable in the platform. It is pos-
sible to develop parallelism and events in the game
by incorporating a variant where multiple pegs can
be moved simultaneously or by introducing multi-
ple players who can make moves simultaneously. A
way to incorporate events would be to use technol-
ogy such as a computer program or app to play the
game, creating programmed events that the player’s
actions could trigger. For example, if the player re-
moves a certain peg, the computer could trigger an
event that changes the board’s appearance or dis-
plays a message. However, it is important to note
that these changes would result in a different game
with a different set of objectives and challenges and
might not necessarily have the same educational
benefits as the original Triangular Peg Solitaire.

– Assessment skills: the inability to reset the system
impairs the development of the student’s skills in
the first variant of the activity. In the paper and
pencil version, only system state verification is non-
activable because both the initial and final states
are provided. The task can be adjusted by modify-
ing the game such that only the initial state is pro-
vided and the final state is unknown. For example,
letting the player determine the specific peg posi-
tion for the last peg This would make the task more
challenging and require the player to develop their
skills in system state verification.

3.1.4 Computational Thinking Test (CTt)

The Computational Thinking Test (CTt) is an assess-
ment tool designed to evaluate the CT skills of students
between the ages of 12 and 13 (Román-González 2015;
Román-González et al. 2017b,a; Román-González et al.
2018). It aligns with the work of researchers such as
Brennan and Resnick (2012); Kalelioğlu (2015), who
have identified key computational concepts related to
algorithmic skills. Additionally, the CTt is designed to

align with the standard interfaces used by organisations
universally recognised in this context, such as Code.org,
which utilise visual blocks to teach coding. The test con-
sists of 28 multiple-choice questions. However, we will
only analyse two.

The instructions should make the artist draw the following
rectangle once (50 pixels wide and 100 pixels high).
In which step of the instruction is there a mistake?

step 1

step 2
step 3
step 4

Fig. 10 Item 7 of the Computational Thinking Test
(CTt) adapted from Román-González et al. (2017b). The
task requires the problem solver to correct a set of instructions
that should make the agent draw a rectangle.

Components (item 7) The first CTP analysed, called
“item 7”, is depicted in Fig. 10 and has been designed to
evaluate the student’s ability to identify and fix errors
in code, in a script that does not involve computational
nesting concepts but only the concept of repetitions.
– Problem solver : the student taking the test presented

with a wrong code script that must be fixed. The
artefactual environment comprises only cognitive tools,
thus is impossible to interact with the system, which
is considered static. The reasoning tool provided in-
cludes the sketch in the problem description (em-
bodied) and the visual blocks interface (symbolic),
which allows the student to think about the instruc-
tions and imagine to test different solutions.

– Agent : the artist responsible for drawing the rectan-
gle according to the instructions provided. It is an
abstract representation, not a physical entity that
can be observed or interacted with. The actions it
can perform are moving and turning, considered re-
versible since they must be corrected.

– Environment : the place where the imaginary rect-
angle should be drawn, described by the number of
drawn rectangle segments, length and orientation.

– Task : find the algorithm. The system’s initial state
is the imaginary rectangle not yet being drawn, while
the final state is the 50×100 pixels rectangle drawn.
The algorithm is not valid, for this reason, the final
and correct version of it has to be found.

A theoretical framework for the design and analysis of computational thinking problems in education 19

Which instruction take Pac-Man to the ghost by the path
marked out?

option A option B

option C option D

Fig. 11 Item 14 of the Computational Thinking Test
(CTt) adapted from Román-González et al. (2017b). The
task requires the problem solver to select the correct set of in-
structions to make the agent cross a predefined path to reach a
desired position.

Components (item 14) The second CTP analysed, called
“item 14”, is depicted in Fig. 11 and has been designed
to evaluate the student’s ability to organise a set of
commands in a logical and orderly manner in a script
that does not involve computational nesting concepts
but only two specific computational concepts: repeti-
tions and conditionals.

– Problem solver : the student taking the test is given
four sets of code scripts from which he must select
the appropriate set of moving instructions. The arte-
factual environment comprises only cognitive tools,
including the sketch of the maze in the problem de-
scription (embodied) and the four sets of instruction
in the form of visual blocks (symbolic), thus is im-
possible to interact with the system.

– Agent : Pac-Man, a representation of an abstract en-
tity that can move in the maze to reach the Ghost
following the predefined pattern marked out. Its ac-
tions are reversible since they must be corrected.

– Environment : the maze, described by the Pac-Man
and the Ghost positions, and the path to be fol-
lowed.

– Task : find the algorithm. The system’s initial state
corresponds to the Pac-Man and the Ghost in their
starting position, while in the final state, Pac-Man is
in front of the Ghost and has crossed the predefined
path. The algorithm is not given since four sets of
codes are provided, and the correct one has to be
found to reach the desired outcome.

Characteristics The characteristics of this activity have
been analysed using the graphical template presented
in Figs. B.6 and B.7 in Appendix B.
– Tool functionalities: in both variants of the activity,

the tools provide various functionalities associated
with the visual blocks interface, including (i) vari-
ables; (ii) operators correspond to the agent actions
contained in the blocks in turquoise; (iii) sequences;
(iv) repetitions represented by the loop in the pink
blocks; (v) conditionals described by the if state-
ments in the blue blocks (only in the second activ-
ity); (vi) functions.

– System resettability : even if the problem solver can-
not interact with the system, the system is reset-
table in both activities since the algorithm has to
be correct or selected from a set.

– System observability : in both tests, the system is not
observable because the agents in question, the artist
and Pac-Man, are imaginary entities and their ac-
tions, such as drawing or moving, are not physically
visible. The problem solver must rely on the instruc-
tions provided to understand the actions taken by
the agent, and cannot observe their actual outcome.

– Task cardinality : both CTP have a one-to-one map-
ping, with one initial state, final state and algo-
rithm.

– Task explicitness: all elements are given explicitly.
– Task constraints: the algorithms in both tasks are

constrained since the computational concepts ad-
dressed are already determined and limited to the
specific notions presented.

– Algorithm representation: the algorithm is manifest
and written in both activities.

Enabling features for competencies development This
paragraph explores the enabling characteristics that sup-
port the development of competencies within this CTP.
The relationship between features and skills in the two
activity variants is summarised in Appendix B in Ta-
bles B.6 and B.7.
– Problem setting : all competencies can be activated

in both activities thanks to the presence of variables,
sequences, repetitions and functions in the tool func-
tionalities. The presence of many tool functionali-
ties, the system’s non-observability, the algorithm’s

20 Giorgia Adorni et al.

constrained definition, and its written representa-
tion promote the development of all problem setting
skills. The system resettability, the one-to-one car-
dinality and the explicit representation of elements
support other competencies.

– Algorithm: the competencies associated with algo-
rithmic concepts provided by the tool functionalities
can be developed in all artefactual environments.
The non-observability of the system, the explicit
and constrained definition of the task elements, and
the manifest written representation of the algorithm
can further enhance these skills.

– Assessment : algorithm debugging can be activated
in all artefactual environments due to the resetta-
bility of the system and the written algorithm; since
the system can be reset, also the constraints on the
algorithm can be checked and corrected, allowing for
the development of constraint validation; similarly
optimisation can be activated since the resetting ca-
pability is sufficient; generalisation can be developed
thanks to the system’s resettability and the presence
of variables and functions. The tool functionalities
available further encourage the development of these
competencies.

Inhibiting features for competencies development
– Conditionals: non-activable in the first activity since

this functionality is not present in the visual blocks
provided to the students.

– Parallelism and events: non-activable in both activ-
ities, as before, because they are not available in the
visual blocks provided to the students. To activate
these skills, the visual blocks must include the tools
for creating parallelism and events in the algorithm.

– System state verification: non-activable because the
initial and final states are provided.

3.2 Robotics activities

In robotics, educational robotics and physical comput-
ing activities involve using physical robotic hardware
equipped with controllers, sensors, and actuators. These
robotic agents are programmed to perform specific be-
haviours in response to the environment. To achieve
this, problem solvers are typically provided with a pro-
gramming platform allowing interaction with the robot.

There are numerous commercially available program-
ming platforms for educational robots, each offering
its own set of hardware and programming platforms
(Bravo et al. 2017). The agents can be programmed
using formal textual programming languages, such as
Python (Noone and Mooney 2018), or symbolic visual
programming languages, which are often based on blocks,

like Blockly or Scratch (Shin et al. 2014). Some plat-
forms also allow for embodied physical interactions, en-
abling users to manipulate the robot through touch but-
tons or tangible symbols that are scanned and executed
(Bers and Horn 2010; Mussati et al. 2019).

In this section, we aim to analyse various activities
based on different types of agents, including the Thymio
II, the Ozobot, and the Micro:bit.

3.2.1 Thymio Lawnmower Mission

Thymio Lawnmower Mission is an educational robotics
activity designed by Chevalier et al. (2020) to promote
the development of students’ CT skills through the Thymio
II robot. The Thymio II, for instance, is a widely used
educational robot equipped with various sensors, in-
cluding proximity sensors, an accelerometer, a remote
control receiver, motors, a speaker, and LEDs, distributed
throughout its body (Riedo et al. 2013; Shin et al.
2014). The authors aimed to address the issue of stu-
dents spending excessive time programming and not
enough time problem-solving, referred to as the trial-
and-error loop, by conducting an instructional inter-
vention on two groups of primary school students.

Components In the Thymio Lawnmower Mission, illus-
trated in Fig. 12, the Thymio II robot must systemati-
cally traverse all green lawn squares, much like a lawn-
mower would mow a lawn.
– Problem solver : the group of students performing

the task who must program the agent’s lawnmower
behaviour. The artefactual environment comprises
tools designed for reasoning and interaction, includ-
ing a graphical programming environment called VPL
(symbolic), which allows for the creation of sensor-
action relationships to determine the robot’s be-
haviour, the agent (embodied) and the visual feed-
back (embodied).

– Agent : the Thymio II, whose actions consist in mov-
ing around the playground, by changing velocity and
orientation, and using sensors to detect obstacles.
All actions are considered irreversible.

– Environment : the playground, i.e., a lawn area sur-
rounded by a fence, divided into eight green squares
and one grey square, the garage. Its state is defined
by the grass condition or the number of squares
passed over by the agent.

– Task : find the algorithm. The initial state is the
lawn with tall grass, meaning the robot is not passed
over any of the squares that compose it. The final
state is the same lawn with the grass mowed, mean-
ing the robot passes over all green squares. The al-
gorithm is the set of moving actions to reach the
system’s final state from the initial.

A theoretical framework for the design and analysis of computational thinking problems in education 21

Fig. 12 The Thymio Lawnmower Mission adapted from Chevalier et al. (2020). A group of pupils must program the
Thymio II robot to pass over all eight green lawn squares and avoid the fence (left). A special visual programming language platform,
with graphical icons that are straightly interpretable, is used for this task (right).

Characteristics In the Thymio Lawnmower Mission, the
students who participated in the activity were divided
into two groups, the control group and the test group,
to which different conditions were imposed. The con-
trol group was allowed to complete the task without
any constraints. In contrast, the test group was sub-
jected to an instructional intervention that blocked the
programming interface at certain times to overcome the
trial-and-error loop. As a result, the two activity vari-
ants have distinct characteristics, analysed using the
graphical templates shown in Figs. B.8 and B.9 in Ap-
pendix B.

– Tool functionalities: the system provides a compre-
hensive set of tools for the problem solver to create
and control the behaviour of the agent to solve the
task, including (i) variables such as the values of
sensors or the state of the robot; (ii) operators rep-
resent the basic actions that the agent can perform;
(iii) sequences are not represented by a specific block
in the VPL interface, but can be created by arrang-
ing blocks in a specific order; (iv) functions are not
represented by blocks in the VPL but refer to the
possibility of conceptually grouping blocks of code
associated with a particular behaviour to produce
outputs given inputs; (v) events are directly rep-
resented in the graphical interface by sensor-action
relationships, allowing the robot to perform actions
in response to stimuli, such as detecting an obstacle.

– System resettability : in the control group, the prob-
lem solvers can reset the system directly by phys-
ically moving the Thymio II agent in the environ-
ment and restarting the task by repositioning it in
the garage. On the other hand, those in the test
group do not have this option as they cannot di-

rectly interact with the agent and cannot modify
the algorithm since it has to be first written and
then executed.

– System observability : the platform provides real-time
visual feedback, making the system observable.

– Task cardinality : the task has a one-to-one mapping,
with an initial and final state and an algorithm.

– Task explicitness: the elements of the task are given
explicitly, as the student is provided with clear in-
structions on what the outcome should look like.

– Task constraints: the algorithm is unconstrained.
– Algorithm representation: the algorithm is written

in the workspace and expressed by the set of blocks
and their connections.

Enabling features for competencies development This
paragraph explores the enabling characteristics that sup-
port the development of competencies within the task.
The relationship between features and skills in the two
activity variants are summarised in Appendix B in Ta-
bles B.8 and B.9.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences and
functions in the tool functionalities. The presence
of many tool functionalities positively affects and
boosts problem setting skills. The manifest and writ-
ten representation of the algorithm can further en-
courage the development of these skills. In the con-
trol group, being the system resettable, data col-
lection, pattern recognition and decomposition are
promoted, while in the test group, abstraction and
data representation are also encouraged. The one-
to-one cardinality of data elements also facilitates
data collection, pattern recognition and decompo-

22 Giorgia Adorni et al.

sition. The system observability also supports data
collection and pattern recognition.

– Algorithm: all competencies associated with the al-
gorithmic concepts enabled by the tool functionali-
ties, meaning variables, operators, sequences, func-
tions and events, can be activated in all three arte-
factual environments and promote one another. These
are further enhanced by the manifest and written
algorithm representation, system observability, and
the explicit and unconstrained definition of the task
elements. The one-to-one cardinality helps to de-
velop variables and operators further.

– Assessment : regarding the control group, algorithm
debugging can be activated in all artefactual envi-
ronments since the algorithm has to be found, the
system is resettable, and the algorithm is manifest
and written; optimisation can be developed thanks
to the resettability of the system; generalisation can
be activated through the system’s resettability and
the presence of variables and functions. The tool
functionalities available and the system observabil-
ity help develop these skills as well. On the other
hand, the system is non-resettable in the test group,
and no assessment skills can be developed.

Inhibiting features for competencies development The
lack of specific features may hinder the development of
particular skills.
– Repetitions, conditionals and parallelism: non-activable

in both control and test groups, as these functional-
ities are unavailable in the VPL programming plat-
form. Therefore, to develop these skills, it is nec-
essary to change the programming language to a
textual programming language such as ASEBA.

– Algorithm debugging : non-activable in the test group
since the system is not resettable.

– System state verification: non-activable, in both con-
trol and test groups, because the initial and final
states of the system are given, and in the test group,
also because the system is not resettable.

– Constraint validation: non-activable, in both control
and test groups, due to the absence of constraints
on the algorithm, and in the test group because the
system is not resettable.

– Optimisation: non-activable in the test group be-
cause the system is not resettable.

– Generalisation: non-activable in the test group due
to the non-resettability of the system.

3.2.2 Remote Rescue with Thymio II (R2T2)

Remote Rescue with Thymio II (R2T2) is another col-
laborative educational robotics activity, presented by

Mondada et al. (2016) to promote Science, Technology,
Engineering and Math (STEM) education in schools
and encourage students towards careers in these fields.

Components The R2T2 activity, illustrated in Fig. 13,
is a rescue operation on a Mars station, whose goal is
to assess the damage of the power plant and restart
the main generator by remotely controlling 16 Thymio
II robot. The activity is divided into five phases, each
with a specific objective. In the first phase, the robots
must enter the station and push away an obstacle block-
ing the main door. In the second phase, the robots must
stand on control spots to activate access to the gener-
ator. In the third phase, the robots must look into the
generator through a small window. In the fourth phase,
the robots must turn on a light when detecting the gen-
erator rotor using proximity sensors and off when it is
no longer visible, thus estimating the generator speed.
In the final phase, the generator is restarted, and the
mission is completed.
– Problem solver : the group of students performing

the task who must program the agents’ behaviours
to restart the main generator. The artefactual en-
vironment comprises tools designed for reasoning,
such as paper and pencils and another robot that is
physically accessible. Tools available also to inter-
act with the system include the programming plat-
form (symbolic) with the two available program-
ming environments, VPL and ASEBA, a textual
programming language (Magnenat et al. 2011), and
the five webcams, installed around the playground,
provide a delayed continuous visual feedback (em-
bodied) through YouTube video streams.

– Agent : the 16 remote-controlled Thymio II, which
can move around the playground accelerating and
rotating, use proximity sensors and turn some lights
on and off. All actions are considered irreversible.

– Environment : the playground, i.e., the Mars station,
characterised by different descriptors used in the dif-
ferent mission stages, such as the obstruction by the
obstacle, covering of the control spots and finally,
the restart of the generator.

– Task : find the algorithm. In the initial state, the
generator is not working, while it has been restarted
at the end. The algorithm is the set of moving ac-
tions to reach the system’s final state from the ini-
tial.

Characteristics Fig. B.10 in Appendix B provides the
graphical template used to analyse the task components
and characteristics.
– Tool functionalities: the system provides a compre-

hensive set of tools for the problem solver to cre-
ate and control the agent’s behaviour to solve the

A theoretical framework for the design and analysis of computational thinking problems in education 23

Fig. 13 The Remote Rescue with Thymio II (R2T2) mission on Mars adapted from Mondada et al. (2016). Sixteen
worldwide teams of pupils collaborate with 16 Thymio to restart the main generator of a simulated damaged power Mars station (left)
in five phases using a visual programming language or textual programming language programming platforms (right).

task, depending on the programming environment
used. VPL offers the possibility to use variables, op-
erators, sequences, functions and events. Addition-
ally, ASEBA offers control flows such as repetitions
and conditionals. Furthermore, parallelism is pos-
sible since it refers to the ability to run multiple
processes simultaneously, in this case, the Thymio
II robots performing the rescue operation in paral-
lel. The agents can execute their tasks concurrently
without waiting for each other to complete them.

– System resettability : the system cannot be reset due
to the irreversible nature of the actions carried out
by the robots. Once the robots take an action, the
change in the system’s status is permanent and can-
not be undone. Furthermore, the physical separation
between the problem solvers and the system means
no immediate way to reset the system.

– System observability : the delayed but continued sys-
tem visual feedback makes it totally observable.

– Task cardinality : the task has a one-to-one mapping,
with an initial and final state and an algorithm.

– Task explicitness: all elements are given explicitly.
– Task constraints: the algorithm is unconstrained.
– Algorithm representation: the algorithm is manifest

and written in the programming platform.

Enabling features for competencies development The re-
lationship between features and skills is summarised in
Appendix B in Table B.10.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences and
functions in the tool functionalities. The presence of
all tool functionalities, the manifest written repre-
sentation of the algorithm and the non-resettability
of the system further encourage the development of
these skills. The system observability supports data
collection and pattern recognition. The one-to-one

cardinality, in addition to these skills, stimulates de-
composition. The explicit and unconstrained defi-
nition of the task elements also promotes pattern
recognition, decomposition and abstraction.

– Algorithm: competencies across all artefactual envi-
ronments can be triggered since the tool’s function-
alities enable all algorithmic concepts. The system
observability, the explicit and unconstrained defini-
tion of the task elements, and the manifest written
algorithm representation further enhance these.

– Assessment : since the system is not resettable, there
are no assessment skills activable.

Inhibiting features for competencies development The
inability to reset the system restricts the activation of
all assessment skills. The task can be adjusted by incor-
porating a mechanism for resetting the system to a pre-
vious state, enabling the problem solver to correct er-
rors made during the implementation of the algorithm,
explore different solutions, and learn from their mis-
takes. Additionally, it is necessary to omit the initial or
final states to verify the system’s state. Furthermore, to
develop the constraint validation skill, it is necessary to
incorporate constraints into the algorithm.

3.2.3 Ozobot maze

The Ozobot Maze activity is a screenless robotics task
proposed by Bryndová and Mališů (2020) aimed at teach-
ing primary school students in the Czech Republic CT
skills. The educational robot used in this task is the
Ozobot, a small programmable robot, used to intro-
duce students to coding, equipped with sensors to fol-
low black lines and read colour patterns called Color
Codes to change speed, direction and movements.

24 Giorgia Adorni et al.

Left at Intersection

G RBK

Straight at Intersection

B RBK

Right at Intersection

B GR

Fig. 14 The Ozobot maze adapted from Bryndová and
Mališů (2020). The task requires the pupil to instruct the
Ozobot to cross a maze avoiding obstacles and reaching the room
where the red person is. Commands such as increasing the speed,
changing direction and making some cool movements (spinning
like a tornado) are given in Color Codes.

Components In the Ozobot Maze activity, illustrated
in Fig. 14, the robot should be guided through a maze
to reach the room where the red person is.
– Problem solver : the student who creates a suitable

sequence of instructions using Color Codes to guide
the Ozobot through the maze. The artefactual envi-
ronment comprises tools for reasoning and interact-
ing with the system. Predefined stickers or mark-
ers to fill the empty Codes with colour sequences
(embodied) are used to give the robot the correct
instructions to achieve the goal. The visual feed-
back (embodied) lets the problem solver observe the
agent and its movements in the playground.

– Agent : the Ozobot agent, which can move around
in the playground by changing velocity and orienta-
tion. This action is not reversible.

– Environment : the playground, i.e., the house map,
whose state is defined by the agent’s position rela-
tive to the red person.

– Task : find the algorithm. The initial state is the
empty maze with the Ozobot positioned near the
starting point. The system’s final state is the Ozobot
reaching the end of the maze, in the room with the
red person, and all the Color Codes being filled. The
algorithm is the set of agent instructions, shown by
the Color Codes, to reach the system’s final state
from the initial.

Characteristics The characteristics of this activity have
been analysed using the graphical templates shown in
Fig. B.11 in Appendix B.

– Tool functionalities: the system provides a compre-
hensive set of tools for the problem solver to create
and control the behaviour of the agent to solve the
task, including (i) variables can be used to store val-
ues such as the position of the robot in the maze;
(ii) operators are basic actions that the agent can
perform, represented by Direction Codes such as
moving straight, turning left or right; (iii) sequences
represent the set of instructions used to control the
behaviour of the robot in a step-by-step manner and
that the Ozobot must follow to complete the task;
(iv) repetitions are a way of repeating the same in-
structions multiple times and refer to the possibility
of repeating the same Color Code multiple times,
for example, if the agent encounters the same type
of intersection repeatedly in the path and the same
Color Code is used to specify the direction the agent
should take; (v) conditionals are used to make de-
cisions based on certain conditions, for example un-
derstanding what to do at an intersection; (vi) func-
tions can be reflected in the different types of Color
Codes that can be reused in different situations and
map inputs to outputs, such as mapping a specific
type of intersection to a specific direction.

– System resettability : the system is not resettable
since it is impossible to change the Color Codes once
they have been filled in.

– System observability : the real-time visual feedback
makes the system observable.

– Task cardinality : the task has a one-to-one mapping.
– Task explicitness: the elements of the task are given

explicitly, as the student is provided with clear in-
structions on what the outcome should look like.

– Task constraints: the algorithm is unconstrained.
– Algorithm representation: the algorithm is manifest

and written, expressed by the set of Color Codes.

Enabling features for competencies development The re-
lationship between features and skills is summarised in
Appendix B in Table B.11. This paragraph explores the
enabling characteristics that support the development
of competencies within the task.
– Problem setting : all competencies can be activated

thanks to tool functionalities such as variables, se-
quences and functions. The manifest and written al-
gorithm representation, as well as the non-resettability
of the system, can further encourage the develop-
ment of these skills. The system observability sup-
ports data collection and pattern recognition. The
one-to-one cardinality, in addition, stimulates de-
composition. The explicit and unconstrained defini-
tion of the task elements promotes pattern recogni-
tion, decomposition and abstraction.

A theoretical framework for the design and analysis of computational thinking problems in education 25

– Algorithm: all competencies associated with the al-
gorithmic concepts enabled by the tool functionali-
ties, meaning variables, operators, sequences, repeti-
tions, conditionals and functions, can be activated in
all three artefactual environments and promote one
another. These are further enhanced by the mani-
fest and written representation of the algorithm, the
system observability, and the explicit and uncon-
strained definition of the task elements. The one-to-
one cardinality helps to enhance some of these skills
as well.

– Assessment : since the system is not resettable, there
are no assessment skills activable.

Inhibiting features for competencies development
– Parallelism and events: non-activable since the re-

lated features are missing in the tool functionali-
ties. To develop these skills, it is possible to switch
to a different interaction tool, such as OzoBlockly,
a visual programming language designed to code
Ozobots Evo and includes these functionalities.

– Assessment skills: The non-resettable feature of the
system hinders the development of assessment abil-
ities. In this sense, by allowing the problem solver
to reset the system to a previous state, for exam-
ple by letting them change the Color Codes stickers
and move the robot back to the starting position,
the activity can be improved. This way, the problem
solver can correct any mistakes made during the im-
plementation of the algorithm, experiment with dif-
ferent solutions, and learn from their mistakes. To
develop system state verification, it is also essential
to not reveal the initial or final states. Moreover,
constraints should be imposed on the algorithm to
develop constraint validation skills.

3.2.4 Mini-golf challenge with micro:bit

In robotics, physical computing activities involve us-
ing microcontrollers, sensors, and other electronic com-
ponents to build and program interactive systems. To
enhance the learning experience, various off-the-shelf
robotic kits have been developed that allow students
to construct robots easily and control them through a
graphical user interface.

In these activities, students are often engaged in an
initial phase of actively constructing the system using
recycled materials, electronic circuits and programming
the robot. These activities evaluate the students’ un-
derstanding of algorithmic concepts, problem-solving
skills, knowledge of physics and engineering, creativity,
and ability to work collaboratively.

Fig. 15 The BBC micro:bit (left) and its block program-
ming interface (right).

One such physical computing activity is the Mini-
golf challenge, proposed by Assaf et al. (2021). In this
activity, students are tasked with programming a mini-
golf lane’s moving and interactive elements using the
BBC micro:bit (Ball et al. 2016; Microbit 2016). The
micro:bit, depicted in Fig. 15, is a pocket-sized com-
puter that can be programmed using Microsoft’s Make-
Code editor (Makecode 2016), which provides a user-
friendly interface with colour-coded blocks similar to
Scratch and the ability to switch to JavaScript to view
the text-based code.

Fig. 16 The Mini-golf challenge challenge adapted from
Assaf et al. (2021). The task requires a group of pupils to define
the behaviour of the mini-golf lane movable obstacles, sounds, and
lights by programming the BBC micro:bit.

Components In the Mini-golf challenge, illustrated in
Fig. 16, the objective is to program a mini-golf lane’s
moving and interactive elements.
– Problem solver : the group of students who must

program the micro:bit. The artefactual environment
disposed of paper and pencil (embodied), a cogni-
tive tool to support the thinking phase. Other tools
are provided to interact with the system, including
the toolkit (embodied) whose components can be
assembled and disassembled at will, the visual pro-
gramming language offered by the MakeCode editor
(symbolic), and the visual feedback (embodied).

26 Giorgia Adorni et al.

– Agent : the micro:bit, which can use sensors, control
the movement and actions of the mini-golf elements,
and turn LEDs and speakers on and off. All actions
are considered not reversible.

– Environment : the assembled toolkit, which consists
of various components, including a ball, speakers,
and lights. Its state is described by the state of its
elements, including the ball position, lights illumi-
nation and speakers ignition.

– Task : creation act. The initial state is given by the
toolkit assembled. The system’s final state and the
students’ algorithm are open-ended, which defines
the mini-golf station elements’ behaviour.

Characteristics The characteristics of this activity have
been analysed using the graphical templates shown in
Fig. B.12 in Appendix B.
– Tool functionalities: the MakeCode editor allows us-

ing all the tool functionalities we defined.
– System resettability : the system can be directly re-

set by physically moving the ball back to its starting
position, and resetting the state of the lights and
speakers, for example, by turning them off. Addi-
tionally, the MakeCode editor includes a convenient
button to streamline the agent’s reset process.

– System observability : the real-time visual feedback
makes the system observable.

– Task cardinality : the task has a one-to-one mapping.
– Task explicitness: the initial state of the toolkit, in-

cluding the ball’s position, the state of the lights,
and the speakers, is not specified.

– Task constraints: no constraints are imposed on the
two elements to be found.

– Algorithm representation: the algorithm is manifest
and written in the programming platform.

Enabling features for competencies development The map-
ping between features and skills is summarised in Ap-
pendix B in Table B.12. This passage analyses the char-
acteristics that support the development of competen-
cies within the task.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences and
functions in the tool functionalities. The availabil-
ity of numerous tool functionalities, the written al-
gorithm representation and the non-resettability of
the system encourage the development of problem
setting skills. The implicit description of the task
elements creates an environment of uncertainty, al-
lowing for multiple interpretations and solutions,
stimulating problem setting skills. The system’s ob-
servability allows the development of data collection

and pattern recognition, while the one-to-one cardi-
nality also encourages decomposition. The uncon-
strained definition of task elements fosters pattern
recognition, decomposition, and abstraction.

– Algorithm: all competencies can be activated since
the tool functionalities enable all algorithmic con-
cepts in all three artefactual environments. The sys-
tem observability, the implicit and unconstrained
definition of the task elements and the algorithm’s
manifest written representation further enhance these.
The one-to-one cardinality helps to enhance some
algorithmic skills as well.

– Assessment : algorithm debugging and system state
verification can be developed in all artefactual en-
vironments by the direct resettability of the system
and the written representation of the algorithm; op-
timisation can be activated as the resettability of the
system alone is sufficient; generalisation is enabled
through the system’s resettability and the presence
of variables and functions. Tool functionalities, sys-
tem observability and the implicit definition of the
task elements further support their development.

Inhibiting features for competencies development The
constraint validation skill cannot be developed as the
algorithm and the final state to be found are uncon-
strained. To encourage the development of this compe-
tence, the activity can be adapted by introducing de-
fined constraints, such as a maximum number of moves
for the ball to reach the hole or that certain elements
of the mini-golf station must be activated in a specific
order. These constraints will require students to evalu-
ate the feasibility of their solutions within the specified
limitations and assess their adherence to the established
criteria.

3.3 Virtual activities

The last domain of educational activities analysed in-
cludes CTPs characterised by the presence of a virtual
system. These activities typically involve programming
a virtual agent to perform a specific or a set of tasks
in a virtual environment. In contrast to CTPs with a
physical environment, virtual activities always provide
a virtual interface, often including a comprehensive pro-
gramming platform that allows the problem solver to
use different types of programming languages, such as
textual programming language and visual programming
language. In some virtual games, the problem solver can
interact directly with the agent by clicking on it. This
allows for greater flexibility in terms of how the prob-
lem solver can program the virtual agent. Additionally,
virtual activities often include debugging tools, which

A theoretical framework for the design and analysis of computational thinking problems in education 27

allow the problem solver to identify and fix errors in
their code.

3.3.1 Classic Maze

In addition to unplugged activities, Code.org is a plat-
form that offers many coding activities for children based
on Blockly, a Google framework for block-based pro-
gramming (Lovett 2017). The Classic Maze is part of
the Hour of Code offered by Code.org, a worldwide
effort to broaden participation in the computer sci-
ence field (Studio.code.org 2020b). Participants must
use block-based programming to guide different charac-
ters through a maze in this activity. The creatures in-
clude ones from popular franchises such as Angry Birds,
Plants vs Zombies, and Scrat from Ice Age. In this way,
they learn the foundations of computer science and al-
gorithmic concepts by successfully guiding the charac-
ters through the maze. We decided to analyse two ac-
tivities of the Classic Maze. Appendix B includes the
graphical template used to analyse the components and
characteristics of the task, found in Figs. B.13 and B.14,
and the mapping between the CTP features and the
competencies in Tables B.13 and B.14.

Components In the first activity of the Classic Maze,
presented in Román-González et al. (2018) and illus-
trated in Fig. 17, the Angry Bird should be guided
through a maze to reach and hit a Green Pig.
– Problem solver : the student performing the task who

must program the agent’s behaviour. The artefac-
tual environment comprises tools designed for rea-
soning and interacting with the system simultane-
ously, including the programming platform composed
of the virtual scenario (embodied artefact), the blocks
and the workspace (symbolic artefacts). The sys-
tem also furnishes various hints to users (embodied
artefact), including video tutorials, guidance on how
to use the platform, command recommendations,
suggestions on the number of blocks required to
solve the task, and feedback on the problem solver’s
progress towards a solution.

– Agent : the Angry Bird, programmed to navigate a
maze and hit the other character. The agent’s ac-
tions comprise moving forward, turning left, and
right. Moving forward is considered a non-reversible
action, whereas the turning is reversible, as a turn
left can be easily undone by a turn right, and vice
versa.

– Environment : the virtual scenario where the two
creatures are located, described by their positions.

– Task : find the algorithm. The initial state corre-
sponds to the animals’ initial positions, while in the

final, the characters are in the same position. The
algorithm is the set of moving actions to reach the
system’s final state from the initial.

Characteristics

– Tool functionalities: the programming platform en-
ables problem solvers to reason about the task at
hand and program the movements of the red bird
by employing a set of predefined blocks, each repre-
senting a specific action the agent is authorised to
perform: (i) variables, while not explicitly delivered
in the blocks of the programming platform, can be
inferred from the visual feedback provided by the
system, allowing the problem solver to store values
such as the position of the characters; (ii) opera-
tors represent the basic actions that the agent can
perform, such as moving or turning and are repre-
sented by distinct blocks in the visual programming
language depicted in cyan by the platform; (iii) se-
quences are a series of blocks to be executed in a
specific order and are implicitly conveyed by the
collection of blocks; (iv) functions, which are self-
contained blocks of code that perform a specific task
and can be executed multiple times with different in-
puts (e.g., different initial positions of characters),
are a concept of relative complexity. It is not certain
that the problem solver will recognise them as such
rather than just blocks.

– System resettability : the platform provides a direct
means of resetting the task through the “start over”
button, even if some agent actions are irreversible.
This allows the problem solver to start over and try
a different approach if necessary.

– System observability : the system provides real-time
visual feedback through animations and graphical
representations of the system state and its changes,
making it observable. The problem solver can mon-
itor the effects of the agent’s actions on the system,
allowing him to have a complete understanding of
the system’s current state and to make informed de-
cisions in their problem-solving process.

– Task cardinality : the task has a one-to-one mapping,
with only one starting position for the animal ele-
ments, one final position for the Angry Bird to be
placed, and only one algorithm to be found.

– Task explicitness: the elements of the task are given
explicitly through the depiction of the scenario that
clearly shows the animals’ positions.

– Task constraints: there are no constraints on the
elements to be found. All the blocks provided are
available without limitations.

28 Giorgia Adorni et al.

Fig. 17 The Angry Bird hitting the Green Pig maze adapted from Studio.code.org (2020a). The problem solver must
write a program to get the Angry Bird through the maze to hit the Green Pig (left) by selecting the instruction blocks (middle) and
assembling them in the workspace (right).

Fig. 18 The Plants vs Zombies maze adapted from Studio.code.org (2020c). The problem solver must write a program to
get the Zombie through a maze to eat the plant (left) by selecting the instruction blocks (middle) to be assembled in the workspace
(right).

– Algorithm representation: the algorithm is written
in the workspace and expressed by the set of blocks
and their connections.

Enabling features for competencies development This
paragraph explores the enabling characteristics that sup-
port the development of competencies within the task.
Certain features play a crucial role in activating skills,
while others can further enhance and encourage the de-
velopment of these competencies.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences, and
functions in the tool functionalities. The manifest
and written algorithm representation can further
encourage the development of these skills. The reset-
tability of the system and the one-to-one cardinal-
ity of data elements facilitate data collection, pat-
tern recognition and decomposition. Observing the
system also supports data collection and pattern

recognition. Using variables boosts pattern recog-
nition and decomposition, while explicit and uncon-
strained elements, in addition to these two skills,
encourage abstraction. Sequences positively affect
pattern recognition, abstraction and data represen-
tation, which is also facilitated by functions. Oper-
ators also encourage decomposition.

– Algorithm: all competencies associated with the al-
gorithmic concepts enabled by the tool functional-
ities, meaning variables, operators, sequences, and
functions, can be activated in all three artefactual
environments. Features such as variables, operators,
sequences, and functions help activate the algorith-
mic skills in a task. These are further enhanced by
the manifest and written algorithm representation,
system observability, and the explicit and uncon-
strained definition of the task elements. The one-to-
one cardinality enhances variables and operators.

A theoretical framework for the design and analysis of computational thinking problems in education 29

– Assessment : algorithm debugging can be activated
in all artefactual environments due to the resetta-
bility of the system and the manifest and written
representation of the algorithm; optimisation can be
activated as it only requires the resettability of the
system; generalisation can be activated through the
system’s resettability and the presence of variables
and functions. Features such as variables, opera-
tors, sequences, functions and system observability
help develop algorithm debugging and optimisation,
while sequences can also foster generalisation.

Inhibiting features for competencies development This
paragraph explores the impact of missing features on
skill activation, focusing on how adjusting the task can
enable the development of certain competencies.
– Repetitions, conditionals, parallelism, and events:non-

activable due to the absence of specific tool func-
tionalities. These competencies cannot be triggered
until these functionalities are added to the tool.

– System state verification: non-activable because both
the initial and final state are provided. The task can
be adjusted to activate this skill by making one of
these states to be found. For instance, by not pro-
viding the position of the Green Pig to the problem
solver, who must then determine its location, the
system’s final state becomes unknown, and the sys-
tem state verification activable.

– Constraint validation: non-activable because the al-
gorithm to be found is unconstrained. Some con-
straints can be imposed on the blocks used in the
task’s programming platform to activate this skill,
such as limiting the agent’s ability to turn right.

Comparison of two Classic Maze activities The activi-
ties proposed in the Classic Maze exhibit a progressive
increase in difficulty. For example, the Plants vs Zom-
bies maze, illustrated in Fig. 18, is a similar task requir-
ing finding the algorithm. The main differences between
this task and the previous are the characters involved,
the difficulty of the path that the agent, in this case,
the Zombie, must traverse to reach the plant, and the
set of actions available to the agent. The programming
platform for this activity also includes the possibility of
using repetitions, represented in pink, adding another
layer of difficulty. The features of the CTP remain un-
changed from the previous task, except for the addition
of the repetition functionality in the tool, which enables
the activation of the related competence.

3.3.2 Store the Marbles

Store the Marbles is a virtual programming activity,
presented by Algorea, an online resource designated

by France-IOI, for learning the basics of programming
(ALGOREA 2020; France-IOI.org 2004). The activity
is designed to teach students problem-solving skills and
programming concepts using a visual block-based pro-
gramming language. The activity is part of a series of
progressive difficulty courses and exercises available on
the France-IOI website.

Components In this activity, illustrated in Fig. 19, the
robot should pick up the marble on his path and drop
it into a hole.
– Problem solver : the student who must program the

agent’s behaviour. The artefactual environment com-
prises tools designed for reasoning and interacting
with the system simultaneously, including the pro-
gramming platform composed of the virtual scenario
(embodied artefact), the blocks and the workspace
(symbolic artefacts). The system also furnishes sug-
gestions on the number of blocks required to solve
the task (embodied artefact), but it does not pro-
vide additional hints beyond this information.

– Agent : the virtual robot, programmed to move on
the path to collect the marble and drop them in the
hole. The agent’s actions comprise moving eastward,
picking up a marble, and dropping a marble. The
simple movement is considered irreversible, whereas
picking up and dropping a marble are considered
reversible actions, as they are the reverse of each
other. The agent’s actions comprise moving forward,
turning left, and right. Moving forward is consid-
ered a non-reversible action, whereas the turning is
reversible, as a turn left can be easily undone by a
turn right, and vice versa.

– Environment : the virtual scenario where the robot
and the marble are located, which is described by
their respective positions.

– Task : find the algorithm. The initial state corre-
sponds to the robots’ initial positions and the maze
distribution of marbles. The final state corresponds
to the robot positioned on the hole and the marbles
inside it. The algorithm is the set of moving actions
to reach the system’s final state from the initial.

Characteristics Fig. B.15 in Appendix B provides the
graphical template used to analyse the task components
and characteristics.
– Tool functionalities: the system provides a compre-

hensive set of tools for the problem solver to imple-
ment the algorithm to solve the task, including (i)
variables allows the problem solver to store values
such as the position of the robot, marble, and hole;
(ii) operators represent the basic actions that the
agent can perform, such as moving or turning and

30 Giorgia Adorni et al.

Program the robot to pick up the marble,
then drop it in the hole.
Be careful, your program must work on all three tests.

9 blocks remaining out of 15

Robot program

repeat until

repeat until

not

pick up the marble

drop the marble

on a marble

on a marble

drop the marble

pick up the marble

advance eastward

advance eastward

advance eastward

West

West

West

Fig. 19 The Store the Marbles activity adapted from ALGOREA (2020). The task requires the problem solver to program
the robot to produce an algorithm valid for different situations using a visual programming language.

are represented by the blue blocks of the visual pro-
gramming language; (iii) sequences are obtained by
concatenating a series of blocks to be executed in a
specific order, allowing the problem solver to plan
and execute a series of actions to reach the goal;
(iv) repetitions are offered by a specific orange block
and allow the problem solver to repeat a sequence
of actions until a specific condition is met; (v) func-
tions are self-contained blocks of code that perform
a specific task and can be executed multiple times,
providing a flexible and reusable component in the
algorithm design. The platform places importance
on the design of the algorithm as a function that
can adapt to changing inputs, such as the different
starting conditions of the task.

– System resettability : the platform allows for reset-
ting the task through a button, enabling the prob-
lem solver to start over and try a different approach.

– System observability : the platform provides real-time
visual feedback, making the system observable.

– Task cardinality : the task has a many-to-one cardi-
nality, with many initial and final states given and
only one algorithm to be found. The challenge in this
activity is for the program to work with multiple ini-
tial states, as the problem solver is given three dif-
ferent configurations of marble and hole positions.
The solution must successfully sort the marbles into
the correct locations.

– Task explicitness: the task elements are given ex-
plicitly through the depiction of the scenario that
clearly shows the positions of the robot, marble, and
hole.

– Task constraints: the algorithm is unconstrained.
– Algorithm representation: the algorithm is manifest

and written, expressed through a set of blocks.

Enabling features for competencies development This
paragraph explores the enabling characteristics that sup-
port the development of competencies within the task.
The relationship between features and skills is sum-
marised in Appendix B in Table B.15.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences, rep-
etitions and functions in the tool functionalities.
The manifest and written representation of the algo-
rithm and the many-to-one cardinality can further
encourage the development of these skills. The re-
settability of the system facilitates data collection,
pattern recognition and decomposition. The system
observability supports data collection and pattern
recognition. Using variables boosts pattern recog-
nition and decomposition, while explicit and un-
constrained elements in addition to these two skills
encourage abstraction. The use of sequences posi-
tively affects pattern recognition, abstraction and
data representation, which is also facilitated by func-
tions. Operators also encourage decomposition, while
repetitions promote decomposition abstraction and
data representation.

– Algorithm: all competencies associated with the al-
gorithmic concepts enabled by the tool functionali-
ties, i.e., variables, operators, sequences, repetitions
and functions, can be activated in all three artefac-
tual environments. Features such as variables, op-
erators, sequences, repetitions and functions help
activate the algorithmic skills in a task. These are
further enhanced by the manifest and written rep-
resentation of the algorithm, system observability,
the explicit and unconstrained definition of the task
elements, and the many-to-one cardinality.

– Assessment : algorithm debugging can be activated
in all artefactual environments due to the resetta-
bility of the system and the manifest and written

A theoretical framework for the design and analysis of computational thinking problems in education 31

representation of the algorithm; optimisation can be
developed as it only requires the resettability of the
system; generalisation can be activated through the
system’s resettability and the presence of variables
and functions. Features such as variables, opera-
tors and functions help develop algorithm debugging
and optimisation. Sequences, repetitions and system
observability foster algorithm debugging, optimisa-
tion, and generalisation. The many-to-one cardinal-
ity influences the development of generalisation as
well.

Inhibiting features for competencies development The
absence of certain features can limit the activation of
certain skills.
– Conditionals, parallelism, and events: non-activable

as the platform does not supply them.
– System state verification: non-activable because the

initial and final states of the system are given. The
skill can be promoted by making the initial or final
state to be found.

– Constraint validation: non-activable due to the al-
gorithm’s absence of constraints. The task is ad-
justable by imposing constraints on it.

3.3.3 Zoombinis Allergic Cliffs Puzzle

The Zoombinis activity is a popular CT learning game
where the player must guide little blue creatures with
distinct personalities and appearances through different
puzzles to escape imprisonment (Zoombinis 2021; Rowe
et al. 2021).

Fig. 20 The Allergic Cliffs Puzzle from Zoombinis
(2021). The player must find out which characteristics allow
the Zoombinis to cross the bridge without being sent back. The
bottom cliff does not accept creatures with flat hair, while the
top cliff rejects all others.

Components In the Allergic Cliffs Puzzle, depicted in
Fig. 20, the task is to find a procedure that allows all

Zoombinis to cross the bridge. Each cliff accepts differ-
ent attributes of the creatures. who must find the cor-
rect combination of Zoombini attributes that will allow
each creature (the agents) to cross the bridge
– Problem solver : the player who must find the correct

combination of Zoombini attributes that will allow
each creature to cross the bridge. The artefactual
environment comprises tools designed for reasoning
and interacting with the system simultaneously, in-
cluding the click and drag platform (embodied arte-
fact) and the visual feedback of the virtual scenario
(embodied artefact). The system provides feedback
on whether the Zoombini’s attributes match the re-
quirements of the bridge (embodied artefact), allow-
ing the player to adjust their strategy accordingly.

– Agent : the Zoombinis character, which can be dragged
to the entrance of a bridge and the only action is al-
lowed to do is to cross it or be sent back in case of
failure. This action cannot be reset.

– Environment : the virtual scenario described by the
Zoombinis’ positions and the number of Zoombinis
that have crossed a bridge.

– Task : find the algorithm. the state of the system de-
pends on the number of creatures that crossed the
bridge, initially none and at the end all. The algo-
rithm is the set of moving actions to reach the final
state. The problem solver can try different combi-
nations of attributes, testing one attribute’s value
by holding one attribute constant and testing the
others, or even proceed by changing values and at-
tributes until all Zoombinis have crossed the bridges.

Characteristics Fig. B.16 in Appendix B provides the
graphical template used to analyse the task components
and characteristics.
– Tool functionalities: (i) variables are used to refer to

the attributes of the Zoombinis such as hair colour
or eye shape, which can have different values and
must be combined correctly to cross the bridge; (ii)
operators can be used to combine the conditions for
the Zoombinis to cross the bridge, for example the
player could use a logical AND operator to require
that the creature have two specific attributes in or-
der to cross the bridge; (iii) sequences can be the
order in which the Zoombinis are moved to cross the
bridge; (iv) repetitions are used to try multiple com-
binations of Zoombini attributes until the problem
solver find the correct solution; (v) conditionals are
reflected in the requirement of the bridges to accept
certain attributes of the Zoombinis, as the player
must determine if the Zoombini’s attributes match
the requirements of the bridge; (vi) functions are
the combination of Zoombini attributes that allows

32 Giorgia Adorni et al.

all creatures to cross the bridges, as it maps inputs
(the Zoombini attributes) to outputs (the success or
failure of the Zoombinis crossing the bridges); (vii)
events correspond to the Zoombini being sent back
as it occurs as a result of a wrong player’s combina-
tion of Zoombini attributes.

– System resettability : the platform provides a direct
means of resetting the game.

– System observability : the system provides real-time
visual feedback through animations and graphical
representations of the system state and its changes,
making the system observable.

– Task cardinality : the task presented in the scenario
is a one-to-one mapping.

– Task explicitness: the system’s state is explicit and
is represented by the number of Zoombinis that have
crossed the bridge.

– Task constraints: there are no constraints on the
elements to be found. All the blocks provided are
available without limitations.

– Algorithm representation: the algorithm is latent be-
cause the problem solver only performs actions such
as dragging the characters across the bridge, but the
underlying logic and steps to reach the final goal of
having all Zoombinis cross the bridge are not explic-
itly defined by the player.

Enabling features for competencies development Cer-
tain features play a crucial role in activating skills, while
others can further enhance and encourage the develop-
ment of these competencies. The relationship between
features and skills is summarised in Appendix B in Ta-
ble B.16.
– Problem setting : all competencies can be activated

thanks to the presence of variables, sequences, and
functions in the tool functionalities. The latent al-
gorithm can further encourage the development of
these skills. The resettability of the system and the
one-to-one cardinality facilitate data collection, pat-
tern recognition and decomposition. Observing the
system also supports data collection and pattern
recognition. Explicit and unconstrained elements boost
pattern recognition, decomposition and abstraction.
Moreover, all tool functionalities have a positive im-
pact on the problem setting learning process, help-
ing the problem solver to understand the problem
and find a solution more effectively.

– Algorithm: all competencies associated with the al-
gorithmic concepts enabled by the tool functionali-
ties can be activated in all three artefactual environ-
ments, and foster the development also of the other
algorithmic concepts related skills. These are fur-
ther enhanced by the systeme observability and the

explicit and unconstrained definition of the task ele-
ments. The one-to-one cardinality helps to enhance
variables, operators ad conditionals further.

– Assessment : optimisation can be activated by the
resettability of the system while generalisation can
be developed through the system’s resettability and
the presence of variables and functions. The tool’s
functionalities and the system’s observability aid in
developing these skills.

Inhibiting features for competencies development This
activity has some missing features on skill activation,
with a focus on how adjusting the task can enable the
development of certain competencies.
– Parallelism: non-activable due to the absence of the

specific tool functionalities. The design of the activ-
ity could be altered to include multiple Zoombinis
acting at the same time, allowing for the simultane-
ous execution of multiple actions.

– Algorithm debugging : non-activable because the al-
gorithm is implicit and in the form of dragging and
dropping the characters to cross the bridge. With-
out the ability to debug, the problem solver must
rely on their understanding of the rules and ability
to identify any issues through trial and error. To in-
tegrate debugging, the algorithm needs to be made
explicit, either by writing down the steps as text or
in code form. Then the user can test and debug the
algorithm by checking if each step is performed cor-
rectly and if the final result matches expectations,
thereby improving their debugging skills.

– System state verification: non-activable because both
the initial and final state are provided. The task can
be adjusted to activate this skill by making one of
these states to be found.

– Constraint validation: non-activable since the algo-
rithm to be found is unconstrained. Constraints can
be imposed to activate this skill, such as the order
in which the Zoombinis can cross the bridge.

4 Discussion

This study provides a theoretical framework for anal-
ysing, evaluating and revising existing computational
thinking problems (CTPs) and designing new ones for
educational contexts. By analysing prototypical activi-
ties from various classic areas of the literature, we iden-
tified the principal characteristics of these problems and
the competencies they can activate.

A theoretical framework for the design and analysis of computational thinking problems in education 33

4.1 Relating problem domain features to the
activation of CT skills

This section aims to provide a comprehensive overview
of computational thinking (CT) skills and their rela-
tionship to different activity domains, including un-
plugged, robotics, and virtual. It is is important to note
that the characteristics and design of CTPs can signif-
icantly vary, impacting the activation of CT skills and
the effectiveness of the CTP in achieving its intended
competencies. By exploring these areas, we aim to gain
a deeper understanding of the unique features and chal-
lenges of each type of problem domain. Ultimately, this
will provide insights into how CT skills can be devel-
oped across various contexts and how the characteris-
tics of CTP can influence the activation of competen-
cies. Our goal is to identify the problem domains that
are most suitable for activating specific CT competen-
cies, facilitating the choice and design of more effective
CTPs in educational contexts.

4.1.1 Unplugged activities

Unplugged activities are a popular teaching method in
computer science education, used to foster the develop-
ment of CT competencies without relying on a com-
puter. These activities can involve various materials
such as paper & pencil, physical objects and manip-
ulatives, which allow learners to develop their problem-
solving and algorithmic skills in a hands-on and tangi-
ble way.

To better understand the relationship between un-
plugged activities’ features and CT competencies’ acti-
vation, we analysed four prototypical unplugged activi-
ties from the literature, including the Cross Array Task,
Graph Paper Programming, Triangular Peg Solitaire,
and Computational Thinking Test (CTt). Through this
analysis, we identified the key characteristics of these
problems and provided insights into how different as-
pects of a CTP can influence the development of CT
competencies.
– Tool functionalities: unplugged activities often rely

on simple tools that can help develop problem set-
ting skills such as abstraction, decomposition and
pattern recognition.

– System resettability : it is common for unplugged
activities to lack system resettability. In such in-
stances, students cannot easily undo their actions or
reset the system to a previous state, which can posi-
tively or negatively affect the activation of CT skills.
On the one hand, the lack of reset functionality can
encourage students to plan and think more carefully
about their actions, leading to a more thoughtful ap-

proach to problem setting that can activate compe-
tencies such as abstraction, decomposition, and al-
gorithmic thinking. On the other hand, it may make
it more difficult for students to experiment and ex-
plore different approaches to a problem, hindering
the activation of competencies related to assessment
and evaluation such as debugging.

– System observability : unplugged activities have vary-
ing degrees of observability. Some CTPs may be
highly observable, with clear steps and processes
that are easy to follow and understand, while oth-
ers may be more abstract or open-ended, making
it more challenging to observe and analyse the pro-
cesses involved. In activities with a higher level of
observability, learners may easily identify and apply
CT competencies. Conversely, activities with a lower
level of observability may require learners to engage
in more exploratory, creative thinking, potentially
activating problem setting competencies.

– Task type: typically, unplugged activities are de-
signed with a single objective that requires the learner
to find one specific element, such as the algorithm,
initial state, or final state. Different aspects of CT
competencies can be developed depending on the
task’s specific objective. For example, tasks that
focus on the development of algorithms are par-
ticularly effective in fostering learners’ algorithmic
thinking skills. In a formal learning environment,
such tasks can give learners a deeper understanding
of algorithm design principles and an opportunity
to practice algorithm creation and refinement. Con-
versely, tasks that focus on identifying the initial
or final state may be particularly useful in develop-
ing learners’ problem setting skills. By recognising
and defining a problem’s key elements, learners can
develop the necessary skills to construct effective so-
lutions and assess them.

– Task cardinality : unplugged activities often involve
tasks with low cardinality, meaning they can be
completed in small steps. This can be advantageous
for CT skill development, as learners can focus on
developing specific skills.

– Task explicitness: in unplugged activities, the given
task elements are often explicit and easy to under-
stand, which can be beneficial for novice learners
who are in the early stages of developing their CT
skills. This feature can aid in developing algorithm
design and problem setting skills.

– Task constraints: unplugged activities often have
few constraints, allowing learners to experiment and
explore different solutions. This can help develop
computational problem setting competencies as well
as algorithmic concepts.

34 Giorgia Adorni et al.

– Algorithm representation: in unplugged activities,
the algorithm is often represented visually or phys-
ically, which can encourage the development of al-
gorithm design and problem setting skills.
Based on the features, specific CT competencies are

more likely to be activated in unplugged activities, in-
cluding problem setting skills, such as pattern recogni-
tion, decomposition and abstraction, and fundamental
computer science concepts.

However, unplugged activities also have some limi-
tations, such as limited tool functionalities, the frequent
lack of a tool to write the algorithm, and the inability
to reset the system. These drawbacks can hinder the
development of assessment competencies and should be
considered when using or designing CT activities to en-
sure a balance between developing different CT compe-
tencies.

4.1.2 Robotics activities

Robotic activities can be an effective means of pro-
moting the activation of CT skills. In this discussion,
we will analyse the enabling and inhibiting features
of four different robotic activities, namely the Thymio
Lawnmower Mission, Remote Rescue with Thymio II,
Ozobot maze and Mini-golf challenge with micro:bit,
and how these features relate to the activation of CT
skills.
– Tool functionalities: robotics activities typically in-

volve a wide range of tool functionalities that stu-
dents can access, spanning from basic programming
concepts, such as variables and sequences, to more
advanced ones like loops, parallelism, and events.
This abundance of functionalities enables diverse
problem-solving approaches, but it may also pro-
mote a trial-and-error approach, where students re-
sort to trying out various functionalities without
comprehending their underlying principles or the
most effective ways to use them. To overcome this
limitation, robotics activities often encourage the
development of problem setting competencies by lim-
iting access to the programming interface. While
still allowing students to explore and experiment
with the tool functionalities, it can foster deeper
engagement with the problem and facilitate cog-
nitive processes related to problem understanding,
idea generation, and solution formulation, which are
critical components of CT abilities.

– System resettability : in the context of robotics ac-
tivities, it is common for problem solvers to have
direct control over the system by repositioning the
agent in the environment and restarting the task.
Additionally, the programming platforms used for

these activities often provide a reset functionality,
which enables students to test and refine their de-
signs through iterative experimentation. The ability
to reset the system allows for efficient debugging,
a critical component of problem-solving and CT.
However, it is worth noting that the trial-and-error
approach to programming, where the algorithm is
developed incrementally based on feedback received,
can be time-consuming and may not be an optimal
learning strategy for all students.

– System observability : in robotics activities, the abil-
ity to observe the system is of paramount impor-
tance, as it enables students to monitor the robot’s
behaviour and analyse the results of their algorithms.
The system’s observability, coupled with the reset
feature, allows students to test and refine their algo-
rithms based on the robot’s behaviour. Nevertheless,
relying solely on this approach can result in an end-
less cycle of trial and error. By physically separating
the problem solvers from the system, and providing
limited visual feedback that is asynchronous and de-
layed, students are encouraged to cultivate problem
setting skills in addition to algorithmic ones, over-
coming the trial and error limitation.

– Task type: the type of task used in educational robotics
and physical computing activities can significantly
impact the development of students’ competencies.
While educational robotics tasks typically have a
single objective, usually finding the algorithm, phys-
ical computing activities often involve multiple ob-
jectives, which require students to achieve many goals
to complete the task successfully. For example, a
physical computing task may require finding both
the algorithm and the final state of the robot. Novice
learners may find activities with a single objective
more beneficial, as they provide a clear and specific
goal for the learner to work towards. Such tasks also
enable students to apply appropriate strategies and
techniques to solve the task, thereby promoting the
development of algorithmic thinking skills in a for-
mal environment. However, this approach may limit
the development of advanced problem setting skills,
which are essential for tackling complex real-world
problems. Therefore, physical computing activities
with multiple objectives may be more effective in
developing these skills, as they require learners to
engage in more extensive problem-solving activities
and develop their skills in identifying and assessing
the critical components of a problem.

– Task cardinality : in educational robotic activities,
the task cardinality is often one-to-one.

– Task explicitness: in educational robotic activities,
the tasks are typically characterised by explicit in-

A theoretical framework for the design and analysis of computational thinking problems in education 35

structions and well-defined elements. On the other
hand, physical computing activities tend to have
fewer explicit elements and may require more criti-
cal thinking and problem-solving skills. Tasks with
more explicit elements may limit critical thinking
and require less problem setting, as students can
rely more on following instructions. In contrast, less
explicit tasks require students to engage in prob-
lem setting, utilising skills such as pattern recogni-
tion, abstraction, decomposition, and data represen-
tation. Consequently, in the former case, students
may be more inclined to jump directly into pro-
gramming the agent’s behaviour, while in the latter
case, they may focus more on analysing the task’s
elements to develop a solution.

– Task constraints: robotics activities are typically un-
constrained, providing students with more freedom
and opportunities to experiment with various ap-
proaches to algorithm design without necessarily un-
dergoing a rigorous problem setting phase. Novice
learners may benefit from this feature, as it can en-
courage them to be more creative and exploratory
in their problem-solving process. However, it may
also limit the development of more advanced com-
petencies.

– Algorithm representation: in robotics activities, the
algorithm is an essential component, which is typ-
ically manifest and written. Engaging students in
activities that involve a written algorithm can of-
fer several benefits, such as promoting more logical
thinking and problem-solving skills. By requiring
the students to read and interpret the algorithm,
they are encouraged to think critically about the
problem and use logical reasoning to understand the
steps required to achieve the task’s objectives.
Robotics activities effectively promote the develop-

ment of a range of CT competencies. The nature of the
activity, as well as its goals and constraints, play an im-
portant role in developing different types of CT skills.
Some activities emphasise the cultivation of problem
setting skills, promoting critical and logical thinking,
while others prioritise algorithmic thinking, fostered by
trial and error approaches.

While robotics activities have many benefits for de-
veloping CT skills, they also have some limitations.
Robotics activities typically involve specific tasks or
challenges that limit students’ ability to explore their
ideas and creativity. This often leads to a trial and error
approach, wherein students focus solely on finding a so-
lution that works rather than developing a robust and
efficient algorithm that underlies the problem. Nonethe-
less, strategies can be implemented to mitigate such is-
sues that encourage students to engage in deeper think-

ing before executing their solutions. Disincentive strate-
gies such as blocking access to the programming inter-
face, physically separating the system from the problem
solver, and inserting a time delay in the visual feedback
can encourage students to think critically about their
solutions and develop a comprehensive understanding
of the problem at hand.

4.1.3 Virtual activities

Virtual activities offer a wide range of possibilities for
the development of CT skills, making them an ideal
tool for CTP implementation. The three virtual activ-
ities presented in this study, Classic maze, Store the
Marbles, and Zoombinis Allergic Cliffs Puzzle, have dif-
ferent characteristics and features that impact the ac-
tivation of CT skills and the overall effectiveness of the
CTP in eliciting the competencies they are intended to
develop.
– Tool functionalities: typically, virtual activities offer

programming platforms or virtual games, with the
former providing more tool functionalities than the
latter. Despite the availability of tool functionalities
in virtual activities, concepts such as parallelism and
events are often overlooked in both cases. Activities
that offer a wide range of tool functionalities can
enable learners to experiment with various concepts,
providing opportunities for them to explore their
functions and ultimately develop their CT skills.

– System resettability : virtual activities offer the con-
venience of a reset function, allowing learners to
start over the activity easily. This characteristic ren-
ders virtual activities useful for developing algorith-
mic thinking and performing assessment tasks. For
instance, learners can utilise this feature to debug
the code and verify the solution’s correctness. Fur-
thermore, learners can leverage the reset function to
explore the generalisation and optimisation of the
solution, promoting more advanced competencies.
This unique feature offers a significant advantage
over other learning activities, which may not offer
the same level of flexibility for learners to test dif-
ferent solutions and refine their approaches.

– System observability : virtual activities provide learn-
ers with a high degree of observability, as they of-
ten include features that offer immediate feedback
on the outcome of a user’s decisions. Such real-time
feedback can be highly valuable in promoting the
development of CT skills, allowing learners to ex-
periment with different strategies and observe their
impact in real time. Moreover, the observability of
virtual activities, combined with the ability to re-
set the system, can also enhance learners’ problem

36 Giorgia Adorni et al.

setting skills by enabling them to analyse a given
situation and evaluate the effectiveness of their cho-
sen strategy based on the system’s outcomes.

– Task type: in virtual activities, there is typically only
one objective, often centred around finding the al-
gorithm to solve a problem. While this approach
can effectively develop learners’ algorithmic think-
ing skills in a controlled environment, it may not
fully represent the complexity of real-world prob-
lems often requiring multiple objectives.

– Task cardinality : virtual activities often involve many-
to-one cardinality of tasks, which can provide learn-
ers with opportunities to develop and practice dif-
ferent CT skills. This feature can enhance learn-
ers’ ability to develop problem setting skills such
as decomposition and pattern recognition, as multi-
ple scenarios must be considered to achieve a task
solution. As a result, learners are encouraged to ex-
plore multiple ways of approaching a problem, ex-
perimenting with different solutions, practising break-
ing complex problems into smaller, more manage-
able parts and identifying common patterns that
can be applied to solve related problems. This can
help learners develop their abstraction and algorith-
mic thinking skills by identifying and implementing
reusable strategies for solving related problems.

– Task explicitness: virtual activities typically pro-
vide learners with explicit instructions for complet-
ing the task, which can limit their critical thinking
and problem setting skills. This is because learners
are not required to engage in the process of identify-
ing the problem or generating possible solutions on
their own. Instead, they are presented with a spe-
cific problem and given clear instructions for solving
it.

– Task constraints: virtual activities often lack con-
straints, limiting the development of critical think-
ing and problem solving skills among learners. With-
out constraints, learners may not be challenged to
think deeply about how to approach a problem and
may not consider multiple possible solutions or eval-
uate the effectiveness of their chosen solution.

– Algorithm representation: virtual activities that re-
quire learners to engage in coding can provide op-
portunities for them to develop algorithmic thinking
skills and practice debugging. In contrast, virtual
games that allow the problem solver to interact di-
rectly with the environment without using external
tools may limit the debugging abilities. However,
they may promote more problem setting skills, such
as identifying patterns and developing strategies to
tackle complex situations. This is because learners
must rely on their own problem-solving skills and

strategies to progress through the game rather than
following predefined coding concepts.
When considering the development of CT compe-

tencies through virtual activities, the specific compe-
tencies that are activated can vary depending on the
characteristics of the activity. One advantage of virtual
activities is their high degree of observability, allow-
ing for immediate feedback and the opportunity for ex-
perimentation and iteration, which can lead to the de-
velopment of assessment skills such as debugging, sys-
tem state verification, constraint verification optimisa-
tion and generalisation. Virtual coding activities aim
primarily at developing learners’ algorithmic thinking
skills, typically providing learners with tools and func-
tionalities to experiment with different concepts and ex-
plore their functions. On the other hand, virtual games
are designed to enhance learners’ problem setting skills,
such as problem decomposition, pattern recognition,
and abstraction.

Despite their potential benefits in developing CT
skills, virtual activities may have some limitations. Firstly,
some virtual activities may require learners to rely on
trial and error, limiting their ability to develop prob-
lem setting skills. Secondly, the absence of physical ob-
jects in virtual activities may undermine learners’ in-
volvement and pleasure in the learning process. Finally,
virtual activities may provide limited creativity, explo-
ration, and experimentation opportunities. These draw-
backs highlight the importance of designing virtual ac-
tivities that balance the development of various CT
competencies while considering learners’ engagement,
motivation, and enjoyment.

5 Conclusion

In this article, we presented a comprehensive frame-
work for evaluating and refining existing computational
thinking problems (CTPs) in education or problems
that require computational thinking (CT) skills to be
solved and creating new ones, to assess CT competen-
cies effectively.

One of the main contributions of this study is that
CTPs consist of several components, including the sys-
tem, problem solver, and task. The system comprises
the environment and the agent, while the problem solver
is a human or group of people who can solve tasks re-
quiring algorithms. Our study has identified that the
artefactual environment, or the set of reasoning and in-
teraction tools available to the problem solver, plays a
crucial role in developing CT abilities.

The proposed framework allows for the systematic
analysis of CTPs according to their characteristics, which

A theoretical framework for the design and analysis of computational thinking problems in education 37

are relevant for eliciting and assessing CT skills in ed-
ucational contexts. These characteristics include tool
functionalities, system observability and resettability,
task details, such as type, cardinality, constraint and ex-
plicitness, and the algorithm representation. Our study
provides a catalogue of skills typically used to assess
student abilities in this area and defines a mapping be-
tween the identified characteristics of the CTPs and
these competencies, drawing from existing frameworks
and literature. This mapping can be used to deter-
mine how these features influence the development of
CT abilities, offering a clear understanding of the rela-
tionship between the features of the problems and the
CT skills they activate, those that can be promoted
or cannot be activated. This framework ultimately can
be used to define, analyse, revise, and create learning
activities.

The developed framework was demonstrated through
its application to a diverse set of CTPs from the liter-
ature, including unplugged, robotic, and virtual educa-
tional activities. The resulting analysis provided a com-
prehensive understanding of each activity category’s
unique features and challenges, as well as the specific
CT competencies they activate. With this information,
it is possible to identify the best category of activities
to develop a specific category of expertise.

Unplugged activities are the best-suited category of
CTPs for developing problem setting skills due to their
hands-on and tangible approach, which allows learners
to engage with problems physically and interactively.
Virtual games can also effectively develop problem set-
ting skills as they often provide a contextualised and
engaging environment. Physical computing activities in
the robotics domain effectively develop problem setting
skills. These activities necessitate programming robots
to attain multiple objectives involving the manipulation
and interaction of real-world objects. As a result, learn-
ers must use critical thinking when attempting to solve
problems and consider all factors of the task at hand.
Additionally, the implicit elements within these activ-
ities, which may not be immediately obvious, further
promote the ability to set achievable goals and identify
the necessary steps to attain them.

When it comes to developing algorithmic skills, both
robotic and virtual activities are the most effective.
Robotic activities, in particular, provide an excellent
opportunity to enhance algorithmic thinking by involv-
ing learners in designing the algorithmic sequence for
the robot to fulfil the given task. Virtual coding activ-
ities, on the other hand, focus on developing learners’
algorithmic thinking skills by providing them with tools
and functionalities to implement algorithms and exper-
iment with different concepts. In contrast, unplugged

activities are not as effective in formally developing
algorithmic competencies, as they do not provide the
same level of complexity and sophistication as robotic
and virtual activities.

For the development of assessment skills, virtual ac-
tivities are the best choice, as they often provide imme-
diate feedback and allow learners to test and improve
their solutions, whereas unplugged and robotic activi-
ties do not offer the same level of feedback or refinement
options.

In conclusion, the proposed framework enables edu-
cators not only to determine which skills are developed
by a particular CTP and to revise it appropriately to
align with the desired learning objectives but also to se-
lect activities that target specific CT skills, thereby fa-
cilitating efficient and effective learning. Moreover, the
framework can be used to create new CTPs in educa-
tional settings.

Notwithstanding the contributions of this study, there
are limitations to consider. The presented framework is
based on a restricted set of activities, which may not
represent all possible scenarios. To improve the frame-
work’s validity and applicability, future research should
expand this set and further validate and refine the frame-
work. Additionally, the study’s focus on a specific set of
CT skills, which may not cover the full range of com-
petencies that can be developed through CTPs. There-
fore, further empirical studies should aim to validate the
framework and the catalogue of competencies. While
the framework is primarily designed for CTPs in educa-
tional contexts, future research could explore its appli-
cability in other contexts and investigate the impact of
different task types, age groups, cultural backgrounds,
and educational levels on the framework’s validity and
generalisability.

Abbreviations

CT computational thinking
CT-cube computational thinking cube
CTP computational thinking problem
CTt Computational Thinking Test
R2T2 Remote Rescue with Thymio II
STEM Science, Technology, Engineering and Math

Conflict of interest

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

38 Giorgia Adorni et al.

Funding

This research was funded by the Swiss National Sci-
ence Foundation (SNSF) under the National Research
Program 77 (NRP-77) Digital Transformation (project
number 407740_187246).

References

ALGOREA AFi (2020) Ranger les billes. https://parcours.
algorea.org/contents/4707-4702-1471479157476024035-
1312565015631453321-1609762309306083784-
4230985342204608/, [Accessed 24 January 2022]

Angeli C, Voogt J, Fluck A, Webb M, Cox M, Malyn-Smith J,
Zagami J (2016) A k-6 computational thinking curriculum
framework: Implications for teacher knowledge. Journal of
Educational Technology & Society 19(3):47–57

Assaf D, Betschart S, Moser A, Curtins J, Steiner M, Walker N
(2021) «iMake-IT»: Invent, Code, and Shape Your World! a
workshop live stream from a science communication project
where 5th grade students work in a makerspace on open-
ended projects. In: FabLearn Europe/MakeEd 2021-An In-
ternational Conference on Computing, Design and Making
in Education, pp 1–3

Ball T, Protzenko J, Bishop J, Moskal M, De Halleux J, Braun
M, Hodges S, Riley C (2016) Microsoft touch develop and
the bbc micro: bit. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C),
IEEE, pp 637–640

Barbero M (2020) Backward reasoning in problem-solving situ-
ations: a multidimensional model. PhD thesis, Universidad
Complutense de Madrid, Facultad de Ciencias Matemáticas

Barbero M, Gómez-Chacón IM (2018) Analysing regressive rea-
soning at university level. In: INDRUM 2018

Barr V, Stephenson C (2011) Bringing computational think-
ing to k-12: What is involved and what is the role of
the computer science education community? ACM Inroads
2(1):48–54, DOI 10.1145/1929887.1929905, URL https://
doi.org/10.1145/1929887.1929905

Bell GI (2007) Triangular peg solitaire unlimited. https://doi.
org/10.48550/ARXIV.0711.0486

Bell GI (2008) Solving triangular peg solitaire. Journal of Integer
Sequences 11(2):3

Bell T, Alexander J, Freeman I, Grimley M (2009) Computer sci-
ence unplugged: school students doing real computing with-
out computers. The New Zealand Journal of Applied Com-
puting and Information Technology 13

Berlekamp ER, Conway JH, Guy RK (2004) Winning ways for
your mathematical plays, volume 4. AK Peters/CRC Press,
LocationNew York

Bers MU, Horn MS (2010) Tangible programming in early child-
hood. High-tech tots: Childhood in a digital world 49:49–70

Bocconi S, Chioccariello A, Dettori G, Ferrari A, Engelhardt K,
Kampylis P, Punie Y (2016) Developing computational think-
ing: Approaches and orientations in k-12 education. In: Ed-
Media+ Innovate Learning, Association for the Advancement
of Computing in Education (AACE), pp 13–18

Bocconi S, Chioccariello A, Kampylis P, Dagienė V, Wastiau P,
Engelhardt K, Earp J, Horvath MA, Jasutė E, Malagoli C,
et al. (2022) Reviewing Computational Thinking in Compul-
sory Education. Tech. rep., Joint Research Centre (Seville
site), DOI 10.2760/126955

Brackmann CP, Román-González M, Robles G, Moreno-León J,
Casali A, Barone D (2017) Development of Computational

Thinking Skills through Unplugged Activities in Primary
School. In: Proceedings of the 12th Workshop on Primary and
Secondary Computing Education, Association for Comput-
ing Machinery, New York, NY, USA, WiPSCE ’17, p 65–72,
DOI 10.1145/3137065.3137069

Bravo FA, González AM, González E (2017) A review of intuitive
robot programming environments for educational purposes.
In: 2017 IEEE 3rd Colombian Conference on Automatic Con-
trol (CCAC), IEEE, pp 1–6

Brennan K, Resnick M (2012) New frameworks for studying
and assessing the development of computational thinking. In:
Proceedings of the 2012 annual meeting of the American edu-
cational research association, Vancouver, Canada, vol 1, p 25

Bryndová L, Mališů P (2020) Assessing the current level of the
computational thinking within the primary and lower sec-
ondary school students using educational robotics tasks. In:
2020 The 4th International Conference on Education and
Multimedia Technology, Association for Computing Machin-
ery, New York, NY, USA, ICEMT 2020, p 239–243, DOI
10.1145/3416797.3416819

Chevalier M, Giang C, Piatti A, Mondada F (2020) Foster-
ing computational thinking through educational robotics: a
model for creative computational problem solving (CCPS).
International Journal of STEM Education 39, DOI 10.1186/
s40594-020-00238-z

Codeorg (2015) Instructor Handbook-Code Studio Lesson Plans
for Courses One, Two, and Three. https://code.org/
curriculum/docs/k-5/complete.pdf, [Accessed 4 May 2022]

Csizmadia A, Curzon P, Dorling M, Humphreys S, Ng T, Selby
C, Woollard J (2015) Computational thinking-a guide for
teachers. Tech. rep., Computing at School, URL https:
//eprints.soton.ac.uk/424545/

Cui Z, Ng OL (2021) The interplay between mathematical and
computational thinking in primary school students’ mathe-
matical problem-solving within a programming environment.
Journal of Educational Computing Research 59(5):988–1012

Del Olmo-Muñoz J, Cózar-Gutiérrez R, González-Calero JA
(2020) Computational thinking through unplugged activities
in early years of Primary Education. Computers & Education
150:103832, DOI 10.1016/j.compedu.2020.103832

Ford MJ (2015) Educational Implications of Choosing “Prac-
tice” to Describe Science in the Next Generation Science
Standards. Science Education 99(6):1041–1048, DOI https:
//doi.org/10.1002/sce.21188

France-IOIorg (2004) France-IOI. http://www.france-ioi.org,
[Accessed 24 January 2022]

Grover S, Pea R (2017) Computational Thinking: A Competency
Whose Time Has Come. Computer science education: Per-
spectives on teaching and learning in school 19:1257–1258

Heersmink R (2013) A taxonomy of cognitive artifacts: Function,
information, and categories. Review of Philosophy and Psy-
chology 4(3):465–481, DOI 10.1007/s13164-013-0148-1

Kalelioğlu F (2015) A new way of teaching programming skills
to K-12 students: Code.org. Computers in Human Behavior
52:200–210, DOI 10.1016/j.chb.2015.05.047

Lafuente Martínez M, Lévêque O, Benítez Baena I, Hardebolle
C, Dehler Zufferey J (2021) Assessing Computational Think-
ing: Development and Validation of the Algorithmic Thinking
Test for Adults. Journal of Educational Computing Research
DOI 10.1177/07356331211057819

Lafuente Martínez M, Lévêque O, Benítez I, Hardebolle C,
Zufferey JD (2022) Assessing computational thinking: De-
velopment and validation of the algorithmic thinking test
for adults. Journal of Educational Computing Research p
07356331211057819

https://parcours.algorea.org/contents/4707-4702-1471479157476024035-1312565015631453321-1609762309306083784-4230985342204608/
https://parcours.algorea.org/contents/4707-4702-1471479157476024035-1312565015631453321-1609762309306083784-4230985342204608/
https://parcours.algorea.org/contents/4707-4702-1471479157476024035-1312565015631453321-1609762309306083784-4230985342204608/
https://parcours.algorea.org/contents/4707-4702-1471479157476024035-1312565015631453321-1609762309306083784-4230985342204608/
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.48550/ARXIV.0711.0486
https://doi.org/10.48550/ARXIV.0711.0486
https://code.org/curriculum/docs/k-5/complete.pdf
https://code.org/curriculum/docs/k-5/complete.pdf
https://eprints.soton.ac.uk/424545/
https://eprints.soton.ac.uk/424545/
http://www.france-ioi.org

A theoretical framework for the design and analysis of computational thinking problems in education 39

Lovett A (2017) Coding with Blockly. Cherry Lake Publishing,
Ann Arbor, Michigan

Magnenat S, Rétornaz P, Bonani M, Longchamp V, Mondada F
(2011) Aseba: A modular architecture for event-based control
of complex robots. IEEE/ASME Transactions on Mechatron-
ics 16(2):321–329, DOI 10.1109/TMECH.2010.2042722

Makecode (2016) Microsoft MakeCode for Micro:bit. https://
makecode.microbit.org, [Accessed 4 May 2022]

Microbit (2016) BBC’s Make It Digital initiative, Micro:bit Ed-
ucational Foundation. https://microbit.org, [Accessed 4
May 2022]

Mondada F, Bonnet E, Davrajh S, Johal W, Stopforth R
(2016) R2t2: Robotics to integrate educational efforts in
south africa and europe. International Journal of Advanced
Robotic Systems 13(5):1729881416658165, DOI 10.1177/
1729881416658165

Mussati A, Giang C, Piatti A, Mondada F (2019) A Tangible
Programming Language for the Educational Robot Thymio.
In: 2019 10th International Conference on Information, In-
telligence, Systems and Applications (IISA), IEEE, pp 1–4,
DOI 10.1109/IISA.2019.8900743

Noone M, Mooney A (2018) Visual and textual programming
languages: a systematic review of the literature. Journal of
Computers in Education 5(2):149–174

Osborne J (2014) Teaching Scientific Practices: Meeting the
Challenge of Change. Journal of Science Teacher Education
25(2):177–196, DOI 10.1007/s10972-014-9384-1

Piatti A, Adorni G, El-Hamamsy L, Negrini L, Assaf D, Gam-
bardella L, Mondada F (2022) The CT-cube: A framework
for the design and the assessment of computational thinking
activities. Computers in Human Behavior Reports 5:100166,
DOI https://doi.org/10.1016/j.chbr.2021.100166

Riedo F, Chevalier M, Magnenat S, Mondada F (2013) Thymio
ii, a robot that grows wiser with children. In: 2013 IEEE
workshop on advanced robotics and its social impacts, IEEE,
pp 187–193

Rodríguez-Martínez JA, González-Calero JA, Sáez-López JM
(2020) Computational thinking and mathematics using
scratch: an experiment with sixth-grade students. Interactive
Learning Environments 28(3):316–327

Román-González M (2015) Computational thinking test: Design
guidelines and content validation. In: EDULEARN15 Pro-
ceedings, IATED, pp 2436–2444

Román-González M, Moreno-León J, Robles G (2017a) Comple-
mentary Tools for Computational Thinking Assessment. In:
Proceedings of International Conference on Computational
Thinking Education (CTE 2017), S. C Kong, J Sheldon, and
K. Y Li (Eds.). The Education University of Hong Kong, pp
154–159

Román-González M, Pérez-González JC, Jiménez-Fernández C
(2017b) Which cognitive abilities underlie computational
thinking? criterion validity of the computational thinking
test. Computers in human behavior 72:678–691

Román-González M, Pérez-González JC, Moreno-León J, Rob-
les G (2018) Can computational talent be detected? Predic-
tive validity of the Computational Thinking Test. Interna-
tional Journal of Child-Computer Interaction 18:47–58, DOI
10.1016/j.ijcci.2018.06.004

Roth WM, Jornet A (2013) Situated cognition. Wiley Inter-
disciplinary Reviews: Cognitive Science 4(5):463–478, DOI
10.1002/wcs.1242

Rowe E, Almeda MV, Asbell-Clarke J, Scruggs R, Baker R,
Bardar E, Gasca S (2021) Assessing implicit computational
thinking in Zoombinis puzzle gameplay. Computers in Hu-
man Behavior 120:106707, DOI 10.1016/j.chb.2021.106707

Selby C, Woollard J (2013) Computational thinking: the develop-
ing definition. Tech. rep., University of Southampton, URL
https://eprints.soton.ac.uk/356481/

Selby CC (2014) How can the teaching of programming be used
to enhance computational thinking skills? PhD thesis, Uni-
versity of Southampton

Shin J, Siegwart R, Magnenat S (2014) Visual programming lan-
guage for thymio ii robot. In: Conference on interaction de-
sign and children (idc’14), ETH Zürich

Shute VJ, Sun C, Asbell-Clarke J (2017) Demystifying compu-
tational thinking. Educational Research Review 22:142–158,
DOI 10.1016/j.edurev.2017.09.003

Studiocodeorg (2020a) Angry birds hitting the green pig
maze. https://studio.code.org/hoc/1, [Accessed 24 Jan-
uary 2022]

Studiocodeorg (2020b) Classic Maze. https://studio.code.org/
s/hourofcode, [Accessed 24 January 2022]

Studiocodeorg (2020c) Plants vs Zombies maze. https://studio.
code.org/hoc/12, [Accessed 24 January 2022]

Tall D (2006) A Theory of Mathematical Growth Through Em-
bodiment, Symbolism and Proof. ANNALES de DIDAC-
TIQUE et de SCIENCES COGNITIVES, IREM de STRAS-
BOURG 11:195 – 215

Tall D (2013) How Humans Learn to Think Mathematically: Ex-
ploring the Three Worlds of Mathematics. Cambridge Uni-
versity Press, Cambridge, DOI 10.1017/CBO9781139565202

Tall D (2020) Making Sense of Mathematical Thinking over the
Long Term: The Framework of Three Worlds of Mathematics
and New Developments. MINTUS: Beiträge zur mathematis-
chen, naturwissenschaftlichen und technischen Bildung Wies-
baden: Springer URL https://homepages.warwick.ac.uk/
staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf

Thalheim B (2000) The database design process. In: Entity-
Relationship Modeling, Springer, Berlin, Heidelberg, pp 13–
28

Tikva C, Tambouris E (2021) Mapping computational thinking
through programming in K-12 education: A conceptual model
based on a systematic literature Review. Computers & Edu-
cation 162:104083, DOI 10.1016/j.compedu.2020.104083

Weintrop D, Beheshti E, Horn M, Orton K, Jona K, Trouille
L, Wilensky U (2016) Defining computational thinking for
mathematics and science classrooms. Journal of Science Ed-
ucation and Technology 25(1):127–147

Weintrop D, Rutstein DW, Bienkowski M, McGee S (2021) As-
sessing computational thinking: an overview of the field.
Computer Science Education 31(2):113–116, DOI 10.1080/
08993408.2021.1918380

Wing J (2011) Research notebook: Computational think-
ing—what and why. The link magazine 6:20–23

Wing JM (2006) Computational thinking. Communications of
the ACM 49(3):33–35, DOI 10.1145/1118178.1118215

Zoombinis (2021) Zoombinis. https://www.terc.edu/
zoombinis/about/, [Accessed 4 May 2022]

A The relationship between CTP and CT skills

This section provides a detailed analysis of the content of Table 6,
organised by the main levels of the activity dimension: problem
setting, algorithm, and assessment. For each dimension, we first
describe the link between skills and the required features, then
the link between the skills and the characteristics that act as
catalysts.

The computational thinking problem (CTP) features we con-
sidered are the functionalities allowed to the problem solver by

https://makecode.microbit.org
https://makecode.microbit.org
https://microbit.org
https://eprints.soton.ac.uk/356481/
https://studio.code.org/hoc/1
https://studio.code.org/s/hourofcode
https://studio.code.org/s/hourofcode
https://studio.code.org/hoc/12
https://studio.code.org/hoc/12
https://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf
https://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf
https://www.terc.edu/zoombinis/about/
https://www.terc.edu/zoombinis/about/

40 Giorgia Adorni et al.

the tools, the property of the system, such as resettability and
observability, and finally, the trait of the task, including the ele-
ments required to be found, the type of cardinality of the elements
given and to be found, the presence of constraints and the type
of representation of the algorithm.

A.1 Indispensable features to activate problem setting
competencies

Starting from the problem setting skills, to activate the “data
collection” competence, the only requirement is that the tools
available allow the use and recognition of variables. Without vari-
ables, there would be nothing to collect data on. The “pattern
recognition” competence requires the presence of repetitions or
functions since they allow the identification of repeating patterns
in the data. The “decomposition” competence requires the pres-
ence of functions or sequences that can be used to break down
a complex problem into smaller more manageable components.
The “abstraction” competence demands the presence of variables
to represent key concepts and functions to encapsulate and reuse
specific behaviour within a single, self-contained unit, simplifying
the original task and allowing the problem solver to reason about
the problem at a higher level of abstraction. Finally, the “data
representation” competence requires only variables to represent
data.

A.2 Features triggering problem setting competencies

Generally, the attributes of the problem not required directly to
activate the skills can influence them in some way. In the case of
the characteristics of the tools, for example, variables also play
a role in “pattern recognition” and “decomposition”, as they can
be used to store patterns or parts of a complex problem. Then,
operators can be useful for the “decomposition” of the problem
into smaller parts. At the same time, sequences can contribute
to the processes of “pattern recognition” and “abstraction”, help-
ing the problem solver to identify patterns or regularities in the
data, as well as the key concepts or essential elements of a prob-
lem, but also in “data representation” to organise and present
data in a clear and meaningful way. Repetitions can influence
the activation of the problem setting skills of “decomposition”,
“abstraction”, and “data representation” because they can make
the task more complex thus requiring the problem solver to use
these practices. Similarly, conditionals can help to structure and
simplify a problem, making it more manageable and easier to
solve, enabling “pattern recognition”, “decomposition”, “abstrac-
tion” and “data representation”. Functions can influence the ac-
tivation of “data representation” by helping the problem solver
organise and structure data. Parallelism can influence the activa-
tion of the problem-solving skill of “decomposition” as it allows
for breaking the problem into independent subtasks that can be
executed simultaneously. Finally, events can trigger “data collec-
tion” at a specific point in time. For the sake of the characteristic
of the system, resettability allows the problem solver to start
over and try different approaches to solving the problem, thus
stimulating can problem setting skills such as “data collection”,
“pattern recognition”, and “decomposition”, as they can test dif-
ferent strategies and collect data on their effectiveness. On the
other hand, if the system is not resettable, the problem solver
may have to rely more on “abstraction” and “data representation”
skills to find a solution, as they cannot try different approaches
and must work with the information they have available. In gen-
eral, a resettable system allows more freedom for the problem

solver, giving a chance to explore different solutions. In contrast,
a non-resettable system may require more creativity to find a
solution. If the system is observable, the problem solver would
likely use skills related to “data collection”, as he can directly
perceive and then gather information about the system’s state
and properties. Additionally, he may use skills related to “pat-
tern recognition”, such as identifying patterns or trends in the
data collected. These skills can help the problem solver under-
stand the system’s current state and make informed decisions
about how to solve the task. Conversely, suppose the system is
not observable. In that case, the problem solver may need to rely
on abstract and hypothetical reasoning to devise a solution, acti-
vating “pattern recognition”, “decomposition”, and “abstraction”
to understand the problem and identify possible solutions. Also
“data collection” may be necessary to gather information about
the system and its behaviour, even if that information is not di-
rectly observable. Additionally, the “data representation” skill can
be used to organise and interpret the information they have col-
lected to make sense of the problem and develop a solution. When
there is a many-to-one cardinality in the system, it means that
there is a large amount of data that needs to be processed, and
multiple inputs or sources of information can be used to achieve
a single goal or outcome. In this scenario, the “data collection”
skill will likely be activated because the problem solver needs to
gather a large amount of information to understand the problem
and find a solution. Since there are multiple instances of a certain
element or pattern, recognising the commonalities and differences
among them would be essential to understand the overall system,
leading to the use of more complex data collection and analysis
strategies, thereby activating the “pattern recognition” compe-
tence. The “decomposition” and the “abstraction” skills will also
likely be activated as the problem solver needs to break down the
problem into smaller manageable parts and find the underlying
principles and concepts in the problem to understand the overall
system and find a solution. Finally, as there are multiple instances
of a specific element, it would be essential to communicate them
clearly and concisely, thus activating the “data representation”
skill. By contrast, if there is a one-to-one cardinality in the sys-
tem, the competencies of problem setting that are likely to be
activated include “data collection”, “pattern recognition”, and “de-
composition”. The skills “abstraction” and “data representation”
are less likely to be activated since the direct correspondence be-
tween the system elements means there is less need to abstract or
represent the information. It can be assumed that with implicit
elements, the “data collection”, “pattern recognition”, “decompo-
sition” and “abstraction” competencies may be activated as the
problem solver needs to infer information from the context or the
environment, understand the underlying concepts or patterns in
the task, decompose the problem into smaller sub-problems, and
create abstract representations of the system. The same reasoning
can be applied to constrained elements. Moreover, it is possible
that the competence “data representation” may be activated as
implicit or constrained elements may require the problem solver
to think about how to represent the data in a way that accurately
reflects the underlying information or constraints. Likewise, with
explicit elements, the “pattern recognition”, “decomposition”, and
“abstraction” competencies may also be activated, as the problem
solver needs to understand and make sense of the given informa-
tion, and the presence of unconstrained elements to be found may
allow for more flexibility and creativity in problem-solving, poten-
tially activating these skills, as problem solvers may need to find
novel ways to organise or make connections among the elements.
In this scenario, the “data collection” and “data representation”
competencies may be more straightforward and not as crucial,
especially when the elements are explicit and thus the informa-
tion is already provided in a structured format. Regarding the

A theoretical framework for the design and analysis of computational thinking problems in education 41

representation of the algorithm, overall all problem setting com-
petencies may be activated. Nevertheless, a manifest algorithm
makes the problem solver’s task easier by providing a clear set of
instructions and reducing the need for “pattern recognition” and
“decomposition”. However, a not manifest algorithm can promote
more “pattern recognition”, “decomposition”, and “abstraction” as
the problem solver needs to infer the algorithm from the problem
statement and available information and cannot represent it.

A.3 Indispensable features to activate algorithmic
competencies

For the algorithm dimension, each competence to be activated
requires that the corresponding characteristic of the tool is en-
abled. For example, to activate the “variable” skill, the tools used
by the problem solver should include variables. Moreover, in a
formal artefactual environment, the task requires that the algo-
rithm is not given but has to be found. Otherwise, it is possible
only to assess the problem solver ability to recognise these skills
and apply them, but not create an algorithm from scratch.

A.4 Features triggering algorithmic competencies

Again, some characteristics can also influence the activation of
algorithmic competencies. Regarding the characteristics of the
tools, for example, the presence of variables may influence the
activation of all the other algorithmic skills, since they provide
a fundamental building block for creating algorithms and can be
used in conjunction with other algorithmic structures. Similarly,
operators influence the activation of all algorithmic skills. The
presence of sequences may influence the activation of “variables”,
“operators”, “repetitions” and “functions”; repetitions may influ-
ence the activation of “variables”, “operators”, “sequences” and
“functions”; the presence of conditionals may influence the acti-
vation of “variables”, “operators” and “events”; functions may in-
fluence the activation of “variables”, “operators”, “sequences” and
“repetitions”; the presence of parallelism may influence the acti-
vation of “variables” and “operators”; while events may influence
the act “variables”, “operators” and “conditionals”. The resettabil-
ity or non-resettability of a system is not relevant for activating
or not algorithmic competencies. The system’s observability, or
the ability to observe the agent’s actions and the system’s state,
allows tracking of how the algorithm is executing and makes it
easier for the problem solver to identify these procedures used
by the agent. Instead, a non-observable system may activate the
skills of “variables”, “operators”, “sequences”, and “conditionals”,
since the problem solver may need to rely more heavily on their
ability to reason about the system and make inferences based on
limited information. Regarding the ratio of elements given and
to be found, from one side, a one-to-one cardinality may influ-
ence the activation of the algorithmic skill “variables” that can
be used to define the direct correspondence between the elements
in the system and their representations, but also of “operators”
and “conditionals” proper to manipulate them and necessary to
ensure the correct mapping. On the other side, a many-to-one
cardinality can make it more challenging to understand the re-
lationship between the given elements and those to be found,
impacting the ability to understand the algorithm and its parts
and enforcing the use of certain types of structures. For example,
the problem solver can keep track and map multiple instances
to a single object using “variables”. If the task at hand involves
processing multiple pieces of data and producing a single result, a

“repetition” can be used to iterate over the inputs. Similarly, “con-
ditionals” can be used if the task requires selecting one output out
of multiple possibilities based on certain conditions. In contrast
“functions” can be used to modularise the code and make it more
organised and maintainable. Finally, “parallelism” can be used to
speed up the processing of multiple inputs by running multiple
iterations simultaneously. Further, explicit elements provide clear
and specific information about the task that must be solved, al-
lowing the problem solver to use all the algorithmic structures
to manipulate and work with that information to achieve the de-
sired outcome. Besides, the presence of implicit elements in the
task makes it more difficult for the problem solver to understand
and determine the necessary steps to solve the task, thus some
algorithmic structures may need to be used to compensate for
this shortcoming. For example, “variables” would be necessary to
store and track the values of implicit elements, “operators”, “se-
quences”, “repetitions”, “conditionals”, and “functions” would help
make decisions and perform actions based on the values of these
variables. These algorithmic structures would allow the problem
solver to explain the implicit elements effectively and develop
more sophisticated and efficient solutions. Similarly, the space
for possible solutions is limited when constrained elements are
involved in the task and it may be necessary to use some algo-
rithmic structures to ensure those constraints are met. For exam-
ple, while solving a puzzle, the final state and algorithm have to
be found, and they have constraints: the problem solver has to
fit several pieces together to form a complete image, pieces must
fit together to form a specific figure, and certain pieces can only
be placed in certain orientations. To solve this task, the problem
solver might use a combination of algorithmic structures such as
“variables” to keep track of the current state of the puzzle and the
position of the pieces, “operators” to manipulate the pieces and
move them around, “sequences” to try different combinations of
pieces, “repetitions” to keep trying different combinations until
the puzzle is complete, and “conditionals” to check if the cur-
rent combination of pieces meets the constraints. Additionally,
“functions” could also be used to group sets of repeated actions.
Finally, how the algorithm is represented can affect the activation
of various algorithmic structures depending on the type of rep-
resentation used. Considering different types of tools, each can
be more suited to activating one skill rather than another. If the
algorithm is represented in a mathematical notation, the use of
“operators” may be more prominent. On the one hand, if the
algorithm is represented in a visual block-based programming
language, the use of “sequences”, “repetitions” and “conditionals”
may be more intuitive and easier to activate. On the other hand,
if the algorithm is represented in a text-based programming lan-
guage, the use of “variables” and “functions” may be more natural
to activate. Finally, robotic programming languages are usually
designed for detecting and responding to “events”, such as sensor
readings or other inputs. They often have built-in functionalities
for concurrent execution of multiple instructions, allowing “par-
allelism”. Overall, the choice of representation can affect the ease
and familiarity of activating different algorithmic structures and
may also shape the problem solver’s understanding and ability to
apply them effectively.

A.5 Indispensable features to activate assessment
competencies

Finally, in the assessment category, all skills have in common the
need for the system to be resettable for the skill to be activated.
For example, in “algorithm debugging”, if the instruction cannot
be reversed, it is impossible to revise and test the previous code

42 Giorgia Adorni et al.

versions. Thus, resettability is necessary to debug the algorithm
in a controlled and repeatable environment. The same applies to
correcting errors in the state and constraints and improving the
solution’s performance or generalising it. In the specific case of
“algorithm debugging”, this skill can be activated in all the arte-
factual environments if the algorithm has to be found and if it is
manifest because it allows the user to understand and check the
logic and the flow of the algorithm. This is essential to identify
and fix any bugs or errors in the algorithm. While it becomes in-
creasingly important to have a written algorithm as the difficulty
level of the artifactual environment rises, it may still be possible
to solve the problem without one. However, the absence of a writ-
ten algorithm may make it more challenging to analyse or modify
the solution in a formal setting, as the artefactual environment
is more abstract and requires a more in-depth understanding.
For this reason, we considered the skill required in this context.
The “system state verification” competence can be activated in all
three artefactual environments if at least one between the initial
and final states must be found. In embodied environments, direct
physical interactions with the system provide a way to observe
its state without needing a manifest algorithm. However, in sym-
bolic and formal environments, a manifest representation of the
algorithm, written in the case of formal environments, is crucial
to fully understand its logical flow, verify the system state, and
perform formal reasoning about its correctness. This may involve
analysing the symbolic representation to understand how it im-
pacts the system state. To activate the “constraints validation”
competence, it is blatant that the other necessary characteristic
is having constraints on the states to be found. To enable “op-
timisation”, additional features are not required, while for “gen-
eralisation”, variables and functions are necessary to reuse and
apply the task solution to different problems.

A.6 Features triggering assessment competencies

Each tool functionality available to the problem solver can be a
potential cause of error in the algorithm. For example, if the prob-
lem solver is unfamiliar with one of them or does not understand
how to use it correctly, he may not use it at all or misuse it. This
can lead to errors in the algorithm and potentially result in the
problem not being solved correctly. This is why functionalities
of the tools if available can activate “algorithm debugging”. Also
for “constraints validation”, all the characteristics of the tools
are influential. Above all, variables, operators, conditional and
functions may allow the problem solver to perform various cal-
culations and comparisons to check if the values assigned to the
variables meet the specified constraints. Further, it could be that
the constraint imposed is precisely on the algorithm and pro-
hibits using some of these structures. The functionality of the
tools available to the problem solver can greatly impact the “op-
timisation” of the algorithm in several ways. Parallelism allows for
multiple tasks or processes to be executed simultaneously, which
can greatly reduce the overall time required to complete a task.
Sequences and other structures, such as loops, can also help to im-
prove efficiency by allowing for the automation of repetitive tasks
and the ability to perform actions in a specific order. Additionally,
using functions and subroutines can improve the readability and
maintainability of the algorithm, making it easier to identify and
fix any errors that may occur. However, having access to a wide
range of functionalities can make it challenging for the problem
solver to choose the appropriate one for a specific task, leading to
a revision of the solution to increase efficiency and performance.
The competence “generalisation” can also be influenced by other
characteristics of the tools. The presence of sequences and rep-
etitions in the toolset enables the problem solver to apply the

same algorithm to different parts of a problem or task. Similarly,
the inclusion of conditionals allows for the application of differ-
ent algorithms depending on the specific conditions of the task.
Furthermore, the presence of events in the toolset allows for cre-
ating algorithms that can respond to different triggers within the
problem, leading to a greater generalisation of the solution and
the ability to adapt to changes within the problem. In terms of
observability, an observable system allows the problem solver to
have a clear understanding of the system’s state and the output of
the algorithm, which can aid in identifying and addressing errors
and inefficiencies and performance issues, as well as recognising
patterns or regularities that can be generalised to new or different
situations. However, it is essential to note that while observabil-
ity can aid in all assessment skills, it is not strictly necessary for
their activation. For example, one could still perform “algorithm
debugging” and “system state verification” on a non-observable
system, though it may be more difficult. Similarly, “generalisa-
tion” can still occur without perfect observability, but it may be
harder to identify patterns and regularities without direct access
to the system state. If the system has a many-to-one cardinality,
the competence of “generalisation” may be activated as it would
be necessary to apply the same algorithm to different inputs or
outputs. If the system contains implicit elements, the competen-
cies “algorithm debugging” and “system state verification” may be
activated as the problem solver may need to identify and trou-
bleshoot any issues with the algorithm that are not immediately
apparent or infer the current state of the system based on the
implicit information provided. Also “generalisation” may be acti-
vated as the problem solver may need to apply the algorithm to
different situations based on the implicit information provided.
Finally, suppose in the system there are elements to be found
with constraints. In that case, the “generalisation” skill may be
activated because it requires the problem solver to adapt the task
to the specific constraints and can be intended as solving a new
problem using the knowledge acquired in a previous situation and
adapting it to a new one.

B Analysis of the 16 prototypical CTPs

This section provides supplementary materials for the 16 activi-
ties examination presented in the “Results” section of this study.
For this purpose, we adapted the graphical template from Fig. 3
describing the various components and characteristics of the spe-
cific computational thinking problems (CTPs). Additionally, we
adjusted Table 6 to illustrate the relationship between the CTP
characteristics and the computational thinking (CT) competen-
cies. Notably, the tables highlight the columns corresponding to
the activity features in light grey, while white columns indicate
the absence of a given feature. In addition, the tables highlight
the green checkmarks and the red crosses, respectively green and
red, to indicate which features enable or inhibit a particular skill.
Furthermore, the tables include an additional column absent in
the original Table 6. This column provides insight into which CT
competencies can be activated based on the various characteris-
tics of the CTP.

By providing a comprehensive analysis of activity features
and their potential impact on CT development, this section sup-
ports the findings presented in the “Results” section. This in-
formation could be useful for educators seeking to integrate CT
into their teaching practices, as it offers practical insights into
how specific activities can be used to promote the development
of CT competencies.

A theoretical framework for the design and analysis of computational thinking problems in education 43

Reasoning
tools

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment

 Colours of the dots on the
 colouring schema

☐ physical ☐ virtual

✓

✓ ✓✓ ✓
✓✓

 Reference schema
 ☐ embodied✓

 Support schema
 ☐ embodied✓

✓ ✓

 Paint the colouring schema
 ☐ reversible ☐ not reversible✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: white colouring schema

To be found: set of colouring actions

✓

✓

✓
✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: colouring schema same as the reference
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Interactions
tools

 Voice
 ☐ symbolic✓

 Gestures
 ☐ embodied✓

 Visual feedback
 ☐ embodied✓

Fig. B.1 Graphical template for analysing the Cross Array Task.

Table B.1 Relationship between the Cross Array Task characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V O V V O O V V O O V V O V O V O V O O V

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✓ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

44 Giorgia Adorni et al.

Reasoning
tools

Problem solver

Artefactual environment

Interactions
tools

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic

 Paint the colouring schema
 ☐ reversible ☐ not reversible

☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

 Steps array
 ☐ symbolic✓

 Reference schema
 ☐ embodied✓

 Symbols
 ☐ embodied✓

✓ ✓

✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: white colouring schema

To be found: set of symbols on the steps array

✓

✓

✓
✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: colouring schema same as the reference
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

 Symbols on
 the steps array

 Colours of the squares
 on the colouring schema

✓

Fig. B.2 Graphical template for the analysis of the Graph Paper Programming (part 1).

Table B.2 Relationship between the Graph Paper Programming (part 1) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V O V O O O V O V O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 45

Reasoning
tools

Problem solver (Agent)

Artefactual environment

Interactions
tools

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent (Problem solver)
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: white colouring schema

Given: set of symbols on the steps array

✓

✓

✓
✓

✓
✓ To be found: schema reproducing the program

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓
✓

 Couloring schema
 ☐ embodied✓

☐ explicit
☐ one

☐ implicit
☐ many

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

 Symbols on
 the steps array

 Colours of the squares
 on the colouring schema Paint the colouring schema

 ☐ reversible ☐ not reversible✓ Visual feedback
 ☐ embodied✓

 Steps array
 ☐ symbolic✓

✓

Fig. B.3 Graphical template for analysing the Graph Paper Programming (part 2).

Table B.3 Relationship between the Graph Paper Programming (part 2) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V O V O O O V V O V O V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ES ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ES + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ES + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ES + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ES + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

46 Giorgia Adorni et al.

Problem solver (Agent)

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent (Problem solver)
☐ human

Actions

☐ virtual☐ robotic

 Move the pegs
 ☐ reversible ☐ not reversible

☐ virtual

Descriptors

Environment

 Number of pegs on board

☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: full board with one peg missing

To be found: set of moving actions

✓

✓

✓
✓

✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: empty board with only one peg present
✓

✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

Interactions
tools

Reasoning
tools Movements on the board

 ☐ embodied✓

☐ constrained
☐ one

☐ unconstrained
☐ many

✓
✓

 Visual feedback
 ☐ embodied✓

✓

Fig. B.4 Graphical template for analysing the Triangular Peg Solitaire (board variant).

Table B.4 Relationship between the Triangular Peg Solitaire (board variant) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V O O O V V O O V V O O V O V O V O O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 47

Reasoning
tools

Problem solver (Agent)

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent (Problem solver)
☐ human

Actions

☐ virtual☐ robotic

 Write the thinking process
 ☐ reversible ☐ not reversible

☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: full board with one peg missing

To be found: winning strategy

✓

✓

✓
✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: empty board with only one peg present
✓

✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓✓

 Number of pegs on board

☐ constrained
☐ one

☐ unconstrained
☐ many

✓
✓

Interactions
tools Written thinking process

 ☐ embodied✓

 Visual feedback
 ☐ embodied✓

Fig. B.5 Graphical template for analysing the Triangular Peg Solitaire (paper & pencil variant).

Table B.5 Relationship between the Triangular Peg Solitaire (paper & pencil variant) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V O O V O V O O V V O O V O V V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✓ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

48 Giorgia Adorni et al.

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: the artist has not yet drawn any segment

To be found: set of drawing instructions

✓

✓

✓
✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: the artist has drawn a 50X100px rectangle
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

 Move/Turn
 ☐ reversible ☐ not reversible✓

Reasoning
tools

 Segment length Segment direction

 Number of drawn
 segments

☐ constrained
☐ one

☐ unconstrained
☐ many

✓
✓

 Drawing instructions
 ☐ symbolic✓

 Sketch in the problem description
 ☐ embodied✓

Fig. B.6 Graphical template for analysing the Computational Thinking test (item 7).

Table B.6 Relationship between the Computational Thinking test (item 7) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V O V O O V O O V O V V O V O O V V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✓ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 49

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

☐ manifest
☐ written

☐ latent
☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: Pac-Man and Ghost starting positions

To be found: instructions describing the path

✓

✓

✓
✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Pac-Man has reached the Ghost position
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

 Move/Turn
 ☐ reversible ☐ not reversible✓

Reasoning
tools

 Four sets of moving instructions
 ☐ symbolic✓

 Sketch in the problem description
 ☐ embodied✓

✓

 Pac-Man position Ghost position

☐ constrained
☐ one

☐ unconstrained
☐ many

✓
✓

 Path

Fig. B.7 Graphical template for analysing the Computational Thinking test (item 14).

Table B.7 Relationship between the Computational Thinking test (item 14) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V O O V O O V O V V O V O O V V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✓ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

50 Giorgia Adorni et al.

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment

 Number of crossed squares

☐ physical ☐ virtual

✓

✓ ✓✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: Thymio has not yet crossed the playground

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Thymio crossed all the playground squares
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

Reasoning
tools

✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

 Move
 ☐ reversible ☐ not reversible

 Use sensors
 ☐ reversible ☐ not reversible✓

✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Interactions
tools

 Programming platform
 ☐ symbolic✓

 Visual feedback
 ☐ embodied✓

 Thymio II
 ☐ embodied✓

Fig. B.8 Graphical template for analysing the Thymio Lawnmower Mission (control group).

Table B.8 Relationship between the Thymio Lawnmower Mission (control group) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V O O V O V V O V O O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✗ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✓ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 51

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment

 Number of crossed squares

☐ physical ☐ virtual

✓

✓ ✓✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: Thymio has not yet crossed the playground

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Thymio crossed all the playground squares
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

Reasoning
tools

✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

 Move
 ☐ reversible ☐ not reversible

 Use sensors
 ☐ reversible ☐ not reversible✓

✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Interactions
tools

 Programming platform
 ☐ symbolic✓

 Visual feedback
 ☐ embodied✓

 Thymio II
 ☐ embodied✓

Fig. B.9 Graphical template for analysing the Thymio Lawnmower Mission (test group).

Table B.9 Relationship between the Thymio Lawnmower Mission (test group) characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V O O V O V O V V O O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✗ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✓ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

52 Giorgia Adorni et al.

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: the generator is not working

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: the generator has been restarted
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓✓ ✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools

Interactions
tools Programming platform

 ☐ symbolic✓

 Thymio
 ☐ embodied✓

 Visual feedback
 ☐ embodied✓

 Paper & pencils
 ☐ embodied✓

✓

 Generator
 condition

 Obstacle
 obstruction

 Control spots
 coverage

 Move
 ☐ reversible ☐ not reversible✓

 Use sensors / lights
 ☐ reversible ☐ not reversible✓

Fig. B.10 Graphical template for analysing the R2T2 mission.

Table B.10 Relationship between the R2T2 mission characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V V V O V V O O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✓ + + ✓ + ✓F + + + + + +

Events ✓ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 53

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: Ozobot startign position

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Ozobot reached the red person
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools Color Codes / Markers

 ☐ embodied✓

 Visual feedback
 ☐ embodied✓

 Ozobot position
 Move
 ☐ reversible ☐ not reversible✓

 Red person position

Interactions
tools

Fig. B.11 Graphical template for analysing the Ozobot maze.

Table B.11 Relationship between the Ozobot maze characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V O O O V V O O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✗ + + + + + + + + ✓ ✗ +

Generalisation ✗ ✓ + + + ✓ + ✓ ✗ + + + +

54 Giorgia Adorni et al.

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓ ✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: toolkit assembled

To be found: instruction for the micro:bit

✓

✓

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many

To be found: mini-golf station
✓

✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools

 Use sensors
 ☐ reversible ☐ not reversible✓ Lights illumination

 Paper & pencils
 ☐ embodied✓

Interactions
tools Programming platform

 ☐ symbolic✓

 Toolkit
 ☐ embodied✓

 Visual feedback
 ☐ embodied✓

✓ ✓

 Use speakers / lights
 ☐ reversible ☐ not reversible✓ Speakers ignition

 Ball position

Fig. B.12 Graphical template for analysing the Mini-golf challenge.

Table B.12 Relationship between the Mini-golf challenge characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V V V V O V O V V V O O V V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✓ + + ✓ + ✓F + + + + + +

Events ✓ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✓ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 55

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: animals starting positions

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Angry bird has reached the Green pig
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools

 Move
 ☐ reversible ☐ not reversible✓ Angry bird position

Interactions
tools

 Green pig position

 Programming platform
 ☐ symbolic✓

 Visual feedback
 ☐ embodied✓

 System hints
 ☐ embodied✓

✓

 Turn
 ☐ reversible ☐ not reversible✓

Fig. B.13 Graphical template for analysing the Angry Bird Classic Maze.

Table B.13 Relationship between the Angry Bird Classic Maze characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V O O V O O V O V O O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✗ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

56 Giorgia Adorni et al.

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: Zombie and Plant starting positions

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Zombie has reached the Plant
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools

 Zombie position

Interactions
tools

 Programming platform
 ☐ symbolic✓

 Visual feedback
 ☐ embodied✓

 Plant position

✓

 System hints
 ☐ embodied✓

 Move
 ☐ reversible ☐ not reversible✓

 Turn
 ☐ reversible ☐ not reversible✓

Fig. B.14 Graphical template for analysing the Plant vs Zombie Classic maze.

Table B.14 Relationship between the Plant vs Zombie Classic Maze characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V O V O O V O V O O V V O V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

A theoretical framework for the design and analysis of computational thinking problems in education 57

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: Marble out of the hole

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: Marble in the hole
✓

✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

☐ manifest
☐ written

☐ latent
☐ not written

✓
✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools

 Move
 ☐ reversible ☐ not reversible✓ Robot position

✓

 Pick up / Drop the marble
 ☐ reversible ☐ not reversible✓

 Marble position

 Hole position

Interactions
tools

 Programming platform
 ☐ symbolic✓

 Visual feedback
 ☐ embodied✓

 System hints
 ☐ embodied✓

Fig. B.15 Graphical template for analysing the Store the Marbles activity.

Table B.15 Relationship between the Store the Marbles characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V O V O O V O V O O V O V V O V O V O V O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✗ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✗ + + + ✓ + ✓F + + + + +

Algorithm debugging ✓ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

58 Giorgia Adorni et al.

Problem solver

Artefactual environment

☐ variables ☐ operators ☐ sequences ☐ repetitions
☐ conditionals ☐ functions ☐ parallelism ☐ events

☐ single ☐ group

System

Agent
☐ human

Actions

☐ virtual☐ robotic ☐ virtual

Descriptors

Environment
☐ physical ☐ virtual

✓

✓ ✓✓

✓ ✓

Task

Initial state
Algorithm

☐ written ☐ not written

Final state

☐ one-to-one cardinality ☐ many-to-one cardinality

☐ find the initial state ☐ find the algorithm ☐ find the final state ☐ creation act ☐ application act ☐ project act

☐ explicit
☐ one

☐ implicit
☐ many

Given: no Zoombinis have crossed the bridge

To be found: set of moving actions

✓

✓

✓
✓

☐ explicit
☐ one

☐ implicit
☐ many

Given: all Zoombinis have crossed the bridge
✓
✓

☐ unplugged ☐ robotic ☐ virtual

☐ resettable ☐ not resettable

☐ (partly) observable ☐ not observable

✓

✓

✓

✓

☐ constrained
☐ one

☐ unconstrained
☐ many
✓

✓

Reasoning
tools

 Cross the bridge
 ☐ reversible ☐ not reversible✓

 Number of Zoombinis
 who have crossed the bridge

✓
✓✓

☐ manifest
☐ written

☐ latent
☐ not written
✓

Interactions
tools

 Click and drag platform
 ☐ embodied✓

 Visual feedback
 ☐ embodied✓

 System hints
 ☐ embodied✓

Fig. B.16 Graphical template for analysing the Zoombinis Allergic Cliffs Puzzle.

Table B.16 Relationship between the Zoombinis Allergic Cliffs Puzzle characteristics and CT competencies.

Tool functionalities System Task

V
ar

ia
bl

es

O
pe

ra
to

rs

S
eq

u
en

ce
s

R
ep

et
it
io

n
s

C
on

di
ti
on

al
s

F
u
n
ct

io
n
s

P
ar

al
le

li
sm

E
ve

n
ts

S
ys

te
m

re
se

tt
ab

le

S
ys

te
m

n
ot

re
se

tt
ab

le

S
ys

te
m

ob
se

rv
ab

le

S
ys

te
m

n
ot

ob
se

rv
ab

le

S
ta

te
to

be
fo

u
n
d

A
lg

or
it
hm

to
be

fo
u
n
d

O
n
e-

to
-o

n
e

ca
rd

in
al

it
y

M
an

y-
to

-o
n
e

ca
rd

in
al

it
y

E
xp

li
ci

t
el

em
en

ts

Im
pl

ic
it

el
em

en
ts

U
n
co

n
st

ra
in

ed
el

em
en

ts

C
on

st
ra

in
ed

el
em

en
ts

A
lg

or
it
hm

m
an

if
es

t

A
lg

or
it
hm

la
te

n
t

A
lg

or
it
hm

w
ri

tt
en

A
lg

or
it
hm

n
ot

w
ri

tt
en

V V V V V V O V V O V O O V V O V O V O O V O O

Data collection ✓ ✓ + + + + + + + + + + + + +

Pattern recognition ✓ + + ✓* + ✓* + + + + + + + + + + + + + +

Decomposition ✓ + + ✓* + + ✓* + + + + + + + + + + + + + +

Abstraction ✓ ✓ + + + ✓ + + + + + + + + + + +

Data representation ✓ ✓ + + + + + + + + + + + + +

Variables ✓ ✓ + + + + + + + + + ✓F + + + + + + + + +

Operators ✓ + ✓ + + + + + + + + ✓F + + + + + + + +

Sequences ✓ + + ✓ + + + + ✓F + + + + + + +

Repetitions ✓ + + + ✓ + + ✓F + + + + + + + +

Conditionals ✓ + + ✓ + + + ✓F + + + + + + + + +

Functions ✓ + + + + ✓ + ✓F + + + + + + + +

Parallelism ✗ + + ✓ + ✓F + + + + + +

Events ✓ + + + ✓ + ✓F + + + + +

Algorithm debugging ✗ + + + + + + + + ✓ ✗ + ✓ + ✓ ✗ ✓F ✗F

System state verification ✗ ✓ ✗ + ✓ + ✓SF ✗SF ✓F ✗F

Constraints validation ✗ + + + + + + + + ✓ ✗ + ✗ ✓

Optimisation ✓ + + + + + + + + ✓ ✗ +

Generalisation ✓ ✓ + + + ✓ + ✓ ✗ + + + +

	Introduction
	Methods
	Results
	Discussion
	Conclusion
	The relationship between CTP and CT skills
	Analysis of the 16 prototypical CTPs

