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Abstract

We present a detailed study of H-consistency bounds for regression. We first present new theorems

that generalize the tools previously given to establish H-consistency bounds. This generalization

proves essential for analyzing H-consistency bounds specific to regression. Next, we prove a series

of novel H-consistency bounds for surrogate loss functions of the squared loss, under the assump-

tion of a symmetric distribution and a bounded hypothesis set. This includes positive results for

the Huber loss, all ℓp losses, p ≥ 1, the squared ǫ-insensitive loss, as well as a negative result for

the ǫ-insensitive loss used in squared Support Vector Regression (SVR). We further leverage our

analysis of H-consistency for regression and derive principled surrogate losses for adversarial re-

gression (Section 5). This readily establishes novel algorithms for adversarial regression, for which

we report favorable experimental results in Section 6.

1. Introduction

Learning algorithms often optimize loss functions that differ from the originally specified task. In

classification, this divergence typically arises due to the computational intractability of optimizing

the original loss or because it lacks certain desirable properties like differentiability or smoothness.

In regression, the shift may occur because the surrogate loss used exhibits more favorable charac-

teristics, such as handling outliers or ensuring sparser solutions. For instance, the Huber loss and ℓ1
loss are used to mitigate the impact of outliers since the squared loss is known to be sensitive to the

presence of outliers, while ǫ-insensitive losses promote sparsity. But, what guarantees do we have

when training with a loss function distinct from the target squared loss?

Addressing this question can have significant implications in the design of regression algorithms.

It can also strongly benefit the design of useful surrogate losses for other related problems, such as

adversarial regression, as we shall see.

The statistical properties of surrogate losses have been extensively studied in the past. In par-

ticular, the Bayes-consistency of various convex loss functions, including margin-based surrogate

losses in binary classification (Zhang, 2004a; Bartlett, Jordan, and McAuliffe, 2006), and other

loss function families for multi-classification Zhang (2004b); Tewari and Bartlett (2007); Steinwart

(2007), has been examined in detail.

However, prior work by Long and Servedio (2013) has highlighted the limitations of Bayes-

consistency, since it does not account for the hypothesis set adopted. They established that for

some hypothesis sets and distributions, algorithms minimizing Bayes-consistent losses may retain a

constant expected error, while others minimizing inconsistent losses tend to have an expected error

approaching zero. This indicates the significant role of the chosen hypothesis set in consistency.
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Recent seminal work by Awasthi, Mao, Mohri, and Zhong (2022a,b) and Mao, Mohri, and

Zhong (2023f,c,e,b) has analyzed H-consistency bounds for broad families of surrogate losses in bi-

nary classication, multi-class classification, structured prediction, and abstention (Mao et al., 2023a).

These bounds are more informative than Bayes-consistency since they are hypothesis set-specific

and do not require the entire family of measurable functions. Moreover, they offer finite sample,

non-asymptotic guarantees. In light of these recent guarantees, the following questions naturally

arise: Can we derive a non-asymptotic analysis of regression taking into account the hypothesis set?

How can we benefit from that analysis?

While there is some previous work exploring Bayes-consistency in regression (Caponnetto,

2005; Christmann and Steinwart, 2007; Steinwart, 2007), we are not aware of any prior H-consistency

bounds or similar finite sample guarantees for surrogate losses in regression, such as, for example,

the Huber loss or the squared ǫ-insensitive loss.

This paper presents the first in-depth study of H-consistency bounds in the context of regres-

sion. We first present new theorems that generalize the tools previously given by Awasthi et al.

(2022a,b) and Mao et al. (2023f,c,e,b) to establish H-consistency bounds (Section 3). This general-

ization proves essential in regression for analyzing H-consistency bounds for surrogate losses such

as Huber loss and the squared ǫ-insensitive loss. It also provides finer bounds for the ℓ1 loss.

Next, we prove a series of H-consistency bounds for surrogate loss functions of the squared loss,

under the assumption of a symmetric distribution and a bounded hypothesis set (Section 4). We

prove the first H-consistency bound for the Huber loss, which is a commonly used surrogate loss

used to handle outliers, contingent upon a specific condition concerning the Huber loss parameter δ

and the distribution mass around the mean. We further prove that this condition is necessary when

H is realizable.

We then extend our analysis to cover H-consistency bounds for ℓp losses, for all values of p ≥ 1.

In particular, remarkably, we give guarantees for the ℓ1 loss and ℓp losses with p ∈ (1,2). We further

analyze the ǫ-insensitive and the squared ǫ-insensitive losses integral to the definition of the SVR

(Support Vector Regression) and quadratic SVR algorithms (Vapnik, 2000). These loss functions

and SVR algorithms admit the benefit of yielding sparser solutions. We give the first H-consistency

bound for the quadratic ǫ-insensitive loss. We also prove a negative result for the ǫ-insensitive loss:

this loss function used in the definition of SVR does not admit H-consistency bounds with respect

to the squared loss, even under some additional assumptions on the parameter ǫ and the distribution.

Subsequently, leveraging our analysis of H-consistency for regression, we derive principled

surrogate losses for adversarial regression (Section 5). This readily establishes a novel algorithm

for adversarial regression, for which we report favorable experimental results in Section 6.

Previous work. Bayes-consistency has been extensively studied in various learning problems.

These include binary classification (Zhang, 2004a; Bartlett et al., 2006), multi-class classification

(Zhang, 2004b; Tewari and Bartlett, 2007; Narasimhan et al., 2015; Finocchiaro et al., 2019; Wang

and Scott, 2020; Frongillo and Waggoner, 2021; Wang and Scott, 2023), ranking (Menon and

Williamson, 2014; Gao and Zhou, 2015; Uematsu and Lee, 2017), multi-label classification (Gao

and Zhou, 2011; Koyejo et al., 2015; Zhang et al., 2020), structured prediction (Ciliberto et al.,

2016; Osokin et al., 2017; Blondel, 2019), and ordinal regression (Pedregosa et al., 2017). The

concept of H-consistency has been studied under the realizable assumption in (Long and Servedio,

2013; Zhang and Agarwal, 2020). The notion of H-consistency bounds in classification is due to

Awasthi et al. (2022a,b). H-consistency bounds have been further analyzed in scenarios such as

multi-class classification (Mao et al., 2023f; Zheng et al., 2023; Mao et al., 2023b), ranking (Mao
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et al., 2023c,d), structured prediction (Mao et al., 2023e), and abstention (Mao et al., 2024a,c,b;

Mohri et al., 2024).

However, in the context of regression, there is limited work on the consistency properties of

surrogate losses. The main related work we are aware are (Caponnetto, 2005; Christmann and

Steinwart, 2007; Steinwart, 2007). In particular, Steinwart (2007) studied Bayes-consistency for

a family of regression surrogate losses including ℓp, but without presenting any non-asymptotic

bound. Nevertheless, we partly benefit from this previous work. In particular, we adopt the same

symmetric and bounded distribution assumption.

2. Preliminaries

Bounded regression. We first introduce the learning scenario of bounded regression. We denote

by X the input space, Y a measurable subset of R, and D a distribution over X × Y. As for other

supervised learning problems, the learner receives a labeled sample S = ((x1, y1), . . . , (xm, ym))
drawn i.i.d. according to D.

The measure of error is based on the magnitude of the difference between the predicted real-

valued label and the true label. The function used to measure the error is denoted as L∶Y × Y → R+.

Let L∶ (h,x, y) ↦ L(h(x), y) be the associated loss function. Some common examples of loss

functions used in regression are the squared loss ℓ2, defined by L(y′, y) = ∣y′ − y∣2 for all y, y′ ∈ Y;

or more generally the ℓp loss defined by L(y′, y) = ∣y′ − y∣p, for p ≥ 1. The squared loss is known to

be quite sensitive to outliers. An alternative more robust surrogate loss is the Huber loss ℓδ (Huber,

1964), which is defined for a parameter δ > 0 as the following combination of the ℓ2 and ℓ1 loss

functions: L(y′, y) = 1
2
(y′ − y)2 if ∣y′ − y∣ ≤ δ, (δ∣y′ − y∣ − 1

2
δ2) otherwise. The ǫ-insensitive loss ℓǫ

and the squared ǫ-insensitive loss ℓsq−ǫ (Vapnik, 2000) are defined by L(y′, y) =max{∣y′ − y∣ − ǫ,0}
and L(y′, y) =max{∣y′ − y∣2 − ǫ2,0}, for some ǫ > 0.

Bayes-Consistency. Given a loss function L, we denote by EL(h) the generalization error of a

hypothesis h ∈H, and by E∗L(H) the best-in-class error for a hypothesis set H:

EL(h) = E
(x,y)∼D

[L(h,x, y)] E
∗
L(H) = inf

h∈H
EL(h).

A desirable property of surrogate losses in regression is Bayes-consistency (Zhang, 2004a; Bartlett

et al., 2006; Steinwart, 2007), that is, minimizing the surrogate losses L over the family of all

measurable functions Hall leads to the minimization of the squared loss ℓ2 over Hall. We say that

L is Bayes-consistent with respect to ℓ2, if, for all distributions and sequences of {hn}n∈N ⊂ Hall,

limn→+∞ EL(hn) − E∗L(Hall) = 0 implies limn→+∞ Eℓ2(hn) − E∗ℓ2(Hall) = 0. Bayes-consistency

stands as an essential prerequisite for a surrogate loss. Nonetheless, it has some shortcomings: it is

only an asymptotic property and it fails to account for the hypothesis set H (Awasthi et al., 2022a,b).

H-Consistency bounds. In contrast with Bayes-consistency, H-Consistency bounds take into ac-

count the specific hypothesis set H and are non-asymptotic. Given a hypothesis set H, we say

that a regression loss function L admits an H-consistency bound with respect to ℓ2 (Awasthi et al.,

2022a,b), if for some non-decreasing function f ∶R+ → R+, for all distributions and all h ∈ H, the

following inequality holds:

Eℓ2(h) − E∗ℓ2(H) ≤ f(EL(h) − E∗L(H)).
3
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Thus, when the L-estimation error can be reduced to some η > 0, the squared loss estimation error

is upper bounded by f(η). An H-Consistency bound is a stronger and more informative property

than Bayes-consistency, which is implied by taking the limit.

In the next section, we will prove H-consistency bounds for several common surrogate regres-

sion losses with respect to the squared loss ℓ2. A by-product of these guarantees is the Bayes-

consistency of these losses.

For a regression loss function L and a hypothesis h, the generalization error can be expressed

as follows:

EL(h) = E
x
[E
y
[L(h(x), y) ∣ x]] = E

x
[CL(h,x)],

where CL(h,x) is the conditional error Ey[L(h(x), y) ∣ x]. We also write C∗L(H, x) to denote the

best-in-class conditional error defined by C∗L(H, x) = infh∈H CL(h,x). The conditional regret or

calibration gap, ∆CL,H(h,x), measures the difference between the conditional error of h and the

best-in-class conditional error: ∆CL,H(h,x) = CL(h,x) − C∗L(H, x). A generalization of condi-

tional regret is the conditional ǫ-regret, defined as: [∆CL,H(h,x)]ǫ =∆CL,H(h,x)1∆CL,H(h,x)>ǫ.

A key term appearing in our bounds is the minimizability gap, defined for a loss function L and

a hypothesis set H as ML(H) = E∗L(H) − Ex[C∗L(H, x)]. It quantifies the discrepancy between

the best-in-class generalization error and the expected best-in-class conditional error. An alternative

expression for the minimizability gap is: ML(H) = infh∈HEx[CL(H, x)] − Ex[infh∈H CL(H, x)].
Due to the super-additivity of the infimum, the minimizability gap is always non-negative. As

shown by Steinwart (2007, Lemma 2.5, Theorem 3.2), for the family of all measurable functions,

the equality E∗L(Hall) = Ex[C∗L(Hall, x)] holds. Thus, the minimizability gap can be bounded

above by the approximation error E∗L(H) − E∗L(Hall). The minimizability gap becomes zero when

when H =Hall or, more broadly, when E∗L(H) = E∗L(Hall).
3. General H-consistency theorems

To derive H-consistency bounds for regression, we first give two key theorems establishing that if

a convex or concave function provides an inequality between the conditional regrets of regression

loss functions L1 and L2, then this inequality translates into an H-consistency bound involving the

minimizability gaps of L1 and L2.

Theorem 1 (General H-consistency bound – convex function) Let D denote a distribution over

X × Y. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0, a positive function

α∶H×X → R
∗
+ with supx∈Xα(h,x) < +∞ for all h ∈H, and ǫ ≥ 0 such that the following holds for

all h ∈ H, x ∈ X: Ψ([∆CL2,H(h,x)]ǫ) ≤ α(h,x)∆CL1 ,H(h,x). Then, for any hypothesis h ∈ H,

the following inequality holds:

Ψ(EL2
(h) − E∗L2

(H) +ML2
(H)) ≤ [sup

x∈X
α(h,x)](EL1

(h) − E∗L1
(H) +ML1

(H)) +max{Ψ(0),Ψ(ǫ)}.

Theorem 2 (General H-consistency bound – concave function) Let D denote a distribution over

X × Y. Assume that there exists a concave function Γ∶R+ → R, a positive function α∶H ×X → R
∗
+

with supx∈Xα(h,x) < +∞ for all h ∈ H, and ǫ ≥ 0 such that the following holds for all h ∈ H,

4
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x ∈ X: [∆CL2,H(h,x)]ǫ ≤ Γ(α(h,x)∆CL1,H(h,x)). Then, for any hypothesis h ∈ H, the follow-

ing inequality holds

EL2
(h) − E∗L2

(H) +ML2
(H) ≤ Γ([sup

x∈X
α(h,x)](EL1

(h) − E∗L1
(H) +ML1

(H))) + ǫ.
In the special case where Γ(x) = x 1

q for some q ≥ 1 with conjugate p ≥ 1, that is 1
p
+ 1

q
= 1, for any

h ∈H, the following inequality holds, assuming EX[α p

q (h,x)] 1p < +∞ for all h ∈H:

EL2
(h) − E∗L2

(H) +ML2
(H) ≤ E

X
[α p

q (h,x)] 1p E
X
[EL1
(h) − E∗L1

(H) +ML1
(H)] 1q + ǫ.

Theorems 1 and 2 provide significantly more general tools for establishing H-consistency bounds

than previous results from (Awasthi et al., 2022a, Theorems 1 and 2) and (Awasthi et al., 2022b, The-

orems 1 and 2) for binary and multi-class classification. They offer a more general framework for

establishing consistency bounds by allowing for non-constant functions α. This generalization is

crucial for analyzing consistency bounds in regression, where α may not be constant for certain

surrogate losses (e.g., Huber loss, squared ǫ-insensitive loss). Our generalized theorems also enable

finer consistency bounds, as demonstrated later in the case of the ℓ1 loss. The proofs of Theorems 1

and 2 are included in Appendix A.

To leverage these general theorems, we will characterize the best-in-class conditional error and

the conditional regret of the squared loss. We first introduce some definitions we will need. We say

that the conditional distribution is bounded by B > 0 if, for all x ∈ X,P(∣Y ∣ ≤ B ∣ X = x) = 1. We

say that a hypothesis set H is bounded by B > 0 if, ∣h(x)∣ ≤ B for all h ∈ H and x ∈ X, and all

values in [−B,+B] are attainable by h(x), h ∈ H. The conditional mean of the distribution at x is

denoted as: µ(x) = E[y ∣ x].
Theorem 3 Assume that the conditional distribution and the hypothesis set H are bounded by

B > 0. Then, the best-in-class conditional error and the conditional regret of the squared loss can

be characterized as: for all h ∈H, x ∈ X,

C
∗
ℓ2
(H, x) = Cℓ2(µ(x), x) = E[y2 ∣ x] − (µ(x))2

∆Cℓ2,H(h,x) = (h(x) − µ(x))2.
Refer to Appendix A for the proof. As in (Steinwart, 2007), for our analysis, we will focus

specifically on symmetric distributions, where the conditional mean and the conditional median

coincide. This is because, otherwise, as shown by Steinwart (2007, Proposition 4.14) the squared

loss is essentially the only distance-based and locally Lipschitz continuous loss function that is

Bayes-consistent with respect to itself for all bounded conditional distributions.

A distribution D over X×Y is said to be symmetric if and only if for all x ∈ X, there exits y0 ∈ R
such that Dy∣x(y0−A) =Dy∣x(y0+A) for all measurable A ⊂ [0,+∞). The next result characterizes

the best-in-class predictor for any symmetric regression loss functions for such distributions.

Theorem 4 Let ψ∶R → R be a symmetric function such that ψ(x) = ψ(−x) for all x ∈ R. Fur-

thermore, ψ(x) ≥ 0 for all x in its domain and it holds that ψ(0) = 0. Assume that the condi-

tional distribution and the hypothesis set H is bounded by B > 0. Assume that the distribution

is symmetric and the regression loss function is given by L(y′, y) = ψ(y′ − y). Then, we have

C∗L(H, x) = CL(µ(x), x).
5
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The proof is included in Appendix A. It is straightforward to see that all the previously men-

tioned regression loss functions satisfy the assumptions in Theorem 4. Therefore, for these loss

functions, the best-in-class conditional error is directly characterized by Theorem 4. Furthermore,

if we have x ↦ µ(x) ∈ H, then under the same assumption, we have E∗L(H) = Ex[C∗L(H, x)] =
Ex[CL(µ(x), x)] and thus the minimizability gap vanishes: ML(H) = 0.

Definition 5 A hypothesis set H is said to be realizable if the function that maps x to the conditional

mean µ(x) is included in H: x↦ µ(x) ∈H.

Corollary 6 Under the same assumption as in Theorem 4, for realizable hypothesis sets, we have

ML(H) = 0.

4. H-Consistency bounds for regression

In this section, we will analyze the H-consistency of several regression loss functions with respect

to the squared loss.

4.1. Huber Loss

The Huber loss ℓδ ∶ (h,x, y) ↦ 1
2
(h(x) − y)21∣h(x)−y∣≤δ + (δ∣h(x) − y∣ − 1

2
δ2)1∣h(x)−y∣>δ is a fre-

quently used loss function in regression for dealing with outliers. It imposes quadratic penalties on

small errors and linear penalties on larger ones. The next result provides H-consistency bounds for

the Huber loss with respect to the squared loss.

Theorem 7 Assume that the distribution is symmetric, the conditional distribution and the hypoth-

esis set H are bounded by B > 0. Assume that pmin(δ) = infx∈X P(0 ≤ µ(x) − y ≤ δ ∣ x) is positive.

Then, for all h ∈H, the following H-consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) +Mℓ2(H) ≤ max{2B
δ
,2}

pmin(δ) (Eℓδ(h) − E∗ℓδ(H) +Mℓδ(H)).
The proof is presented in Appendix B.1. It leverages the general Theorem 1 with α(h,x) =

P(0 ≤ µ(x) − y ≤ δ ∣ x). Note that the previous established general tools for H-consistency bounds

(Awasthi et al., 2022a,b) require α to be constant, which is not applicable in this context. This

underscores the necessity of generalizing previous tools to accommodate any positive function α.

As shown by Corollary 6, when H is realizable, the minimizability gap vanishes. Thus, by

Theorem 7, we obtain the following corollary.

Corollary 8 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Assume that pmin(δ) =
infx∈XP(0 ≤ µ(x) − y ≤ δ ∣ x) is positive. Then, for all h ∈ H, the following H-consistency bound

holds:

Eℓ2(h) − E∗ℓ2(H) ≤ max{2B
δ
,2}

pmin(δ) (Eℓδ(h) − E∗ℓδ(H)).
6
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Corollary 8 implies the Bayes-consistency of the Huber loss when pmin(δ) > 0, by taking the

limit on both sides of the bound. Note that, as the value of δ increases, 2B
δ

decreases and pmin(δ)
increases, which improves the linear dependency on the Huber loss estimation error in this bound.

However, this comes at the price of an Huber loss more similar to the squared loss and thus a

higher sensitivity to outliers. Thus, selecting an appropriate value for δ involves considering these

trade-offs.

The bound is uninformative when the probability mass pmin(δ) is zero. However, the following

theorem shows that the condition pmin(δ) > 0 is necessary and that otherwise, in general, the Huber

loss is not H-consistent with respect to the squared loss.

Theorem 9 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Then, the Huber loss ℓδ is not

H-consistent with respect to the squared loss.

Refer to Appendix B.1 for the proof, which consists of considering a distribution that concen-

trates on an input x with P(Y = y ∣ x) = 1
2
= P(Y = 2µ(x) − y ∣ x), where −B ≤ y < µ(x) ≤ B and

µ(x) − y > δ. Then, we show that both h∶x ↦ y + δ and h∗∶x ↦ µ(x) are best-in-class predictors

of the Huber loss, while the best-in-class-predictor of the squared loss is uniquely h∗∶x ↦ µ(x).
4.2. ℓp Loss

Here, we analyze ℓp loss functions for any p ≥ 1: ℓp∶ (h,x, y) ↦ ∣h(x) − y∣p. We show that this fam-

ily of loss functions benefits from H-consistency bounds with respect to the squared loss assuming,

when adopting the same symmetry and boundedness assumptions as in the previous section.

Theorem 10 Assume that the distribution is symmetric, and that the conditional distribution and

the hypothesis set H are bounded by B > 0. Then, for all h ∈ H and p ≥ 1, the following H-

consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) +Mℓ2(H) ≤ Γ(Eℓp(h) − E∗ℓp(H) +Mℓp(H)),
where Γ(t) = supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t for p = 1, Γ(t) = 2

(8B)p−2p(p−1) t for p ∈ (1,2],
and Γ(t) = t 2p for p ≥ 2.

The proof is included in Appendix B.2. Note that for p = 1, Γ can be further upper bounded as

follows: Γ(t) = supx∈X supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t ≤ 4B t since the conditional distribution

and the hypothesis set H are bounded by B > 0. This upper bound can also be obtained by using

general theorems in Section 3 with α ≡ 1. However, our generalized theorems, which apply to any

positive function α, yield a finer bound for the ℓ1 loss. This further shows that our generalized

theorems are not only useful but can also yield finer bounds.

The key term appearing in the bounds is the minimizability gap Mℓp(H) = E∗ℓp(H)−Ex[C∗ℓp(H, x)],
which is helpful for comparing the bounds between ℓp losses for different p ≥ 1. For example,

for the ℓ1 and ℓ2 loss, by Theorem 4, we have Mℓ1(H) = E∗ℓ1(H) − Ex[Ey[∣µ(x) − y∣]] and

Mℓ2(H) = E∗ℓ2(H) − Ex[Ey[∣µ(x) − y∣2]]. Thus, in the deterministic case, both Ey[∣µ(x) − y∣]
and Ey[∣µ(x) − y∣2] vanish, and Mℓ2 = E

∗
ℓ2
(H) ≥ (E∗ℓ1(H))2 = (Mℓ1)2.

In particular, when H is realizable, we have Mℓp(H) =Mℓ2(H) = 0. This yields the following

result.

7
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Corollary 11 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Then, for all h ∈H and p ≥ 1,

the following H-consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) ≤ Γ(Eℓp(h) − E∗ℓp(H)),
where Γ(t) = supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t for p = 1, Γ(t) = 2

(8B)p−2p(p−1) t for p ∈ (1,2],
and Γ(t) = t 2p for p ≥ 2.

Corollary 11 shows that when the estimation error of ℓp is reduced to ǫ, the estimation error of the

squared loss (Eℓ2(h) − E∗ℓ2(H)) is upper bounded by ǫ
2
p for p > 2, and by ǫ for 1 ≤ p ≤ 2, which is

more favorable, modulo a multiplicative constant.

4.3. Squared ǫ-insensitive Loss

The ǫ-insensitive loss and the squared ǫ-insensitive loss functions are used in the support vector

regression (SVR) algorithms (Vapnik, 2000). The use of these loss functions results in sparser so-

lutions, characterized by fewer support vectors for the SVR algorithms. Moreover, the selection

of the parameter ǫ determines a trade-off between accuracy and sparsity: larger ǫ values yield in-

creasingly sparser solutions. We first provide a positive result for the squared ǫ-insensitive loss

ℓsq−ǫ∶ (h,x, y) ↦max{∣h(x) − y∣2 − ǫ2,0}, by showing that it admits an H-consistency bound with

respect to ℓ2.

Theorem 12 Assume that the distribution is symmetric, and that the conditional distribution and

the hypothesis set H are bounded by B > 0. Assume that pmin(ǫ) = infx∈XP(µ(x) − y ≥ ǫ ∣ x) is

positive. Then, for all h ∈H, the following H-consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) +Mℓ2(H) ≤ Eℓsq−ǫ(h) − E∗ℓsq−ǫ(H) +Mℓsq−ǫ(H)
2pmin(ǫ) .

The proof is presented in Appendix B.3. It requires the use of Theorem 1 with α(h,x) =
P(µ(x) − y ≥ ǫ ∣ x). As in the case of the Huber loss, the previous established general tools for H-

consistency bounds (Awasthi et al., 2022a,b) do not apply here. Our generalization of previous tools

proves essential for analyzing H-consistency bounds in regression. By Corollary 6, for realizable

hypothesis sets, the minimizability gap vanishes. Thus, by Theorem 12, we obtain the following

corollary.

Corollary 13 Assume that the distribution is symmetric, the conditional distribution is bounded

by B > 0, and the hypothesis set H is realizable and bounded by B > 0. Assume that pmin(ǫ) =
infx∈XP(µ(x) − y ≥ ǫ ∣ x) is positive. Then, for all h ∈ H, the following H-consistency bound

holds:

Eℓ2(h) − E∗ℓ2(H) ≤ Eℓsq−ǫ(h) − E∗ℓsq−ǫ(H)
2pmin(ǫ) .

By taking the limit on both sides of the bound of Corollary 13, we can infer the H-consistency of

the squared ǫ-insensitive loss under the assumption pmin(ǫ) > 0. Note that increasing ǫ diminishes

8
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pmin(ǫ), making the bound less favorable. Conversely, smaller ǫ values enhance the linear depen-

dency bound but may hinder solution sparsity. Therefore, selecting the optimal ǫ involves balancing

the trade-off between linear dependency and sparsity. When pmin(ǫ) approaches zero, the bound

derived from Corollary 13 becomes less informative. However, as demonstrated in the subsequent

theorem, the squared ǫ-insensitive loss fails to exhibit H-consistency with the squared loss if the

condition pmin(ǫ) > 0 is not satisfied.

Theorem 14 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded byB > 0. Then, the squared ǫ-insensitive

loss ℓsq−ǫ is not H-consistent.

The proof is given in Appendix B.3. It consists of considering a distribution that concentrates

on an input x with P(Y = y ∣ x) = 1
2
= P(Y = 2µ(x) − y ∣ x), where −B ≤ y < µ(x) ≤ B and

µ(x) − y < ǫ. Then, we show that both h∶x ↦ y + ǫ and h∗∶x ↦ µ(x) are best-in-class predictors

of the squared ǫ-insensitive loss, while the best-in-class-predictor of the squared loss is uniquely

h∗∶x ↦ µ(x).
4.4. ǫ-Insensitive Loss

In Appendix B.4, we present negative results, Theorem 22 and Theorem 23, for the ǫ-insensitive

loss ℓǫ∶ (h,x, y) ↦ max{∣h(x) − y∣ − ǫ,0} used in the SVR algorithm, by showing that even under

the assumption infx∈XP(µ(x) − y ≥ ǫ) > 0 or infx∈X P(0 ≤ µ(x) − y ≤ ǫ) > 0, it is not H-consistent

with respect to the squared loss.

4.5. Generalization bounds

We can use our H-consistency bounds to derive bounds on the squared loss estimation error of a

surrogate loss minimizer. For a labeled sample S = ((x1, y1), . . . , (xm, ym)) drawn i.i.d. according

to D, let ĥS ∈H be the empirical minimizer of a regression loss function L over S and R
L
m(H) the

Rademacher complexity of the hypothesis set {(x, y)↦ L(h(x), y)∶h ∈H}. We denote by BL an

upper bound of the regression loss function L. Then, the following generalization bound holds.

Theorem 15 Assume that the distribution is symmetric, the conditional distribution and the hy-

pothesis set H are bounded by B > 0. Then, for any δ > 0, with probability at least 1 − δ over the

draw of an i.i.d. sample S of size m, the following squared loss estimation bound holds for ĥS:

Eℓ2(ĥS) − E∗ℓ2(H) ≤ Γ⎛⎝ML(H) + 4RL
m(H) + 2BL

√
log 2

δ

2m

⎞⎠ −Mℓ2(H).
where Γ(t) = supx∈X supy{∣̂hS(x) − y∣ + ∣µ(x) − y∣} t for L = ℓ1, Γ(t) = 2

(8B)p−2p(p−1) t for L = ℓp,

p ∈ (1,2], Γ(t) = t 2p for L = ℓp, p ≥ 2, Γ(t) = max{ 2B
δ
,2}

pmin(δ)
t for L = ℓδ, and Γ(t) = 1

2pmin(ǫ)
t for

L = ℓsq−ǫ.

The proof is included in Appendix C. Theorem 15 provides the first finite-sample guarantees for

the squared loss estimation error of the empirical minimizer of the Huber loss, squared ǫ-insensitive

loss, ℓ1 loss, and more generally ℓp loss. The proof leverages the H-consistency bounds of Theo-

rems 7, 10, 12, along with standard Rademacher complexity bounds (Mohri et al., 2018). Under the

9
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boundedness assumption, we have ∣h(x) − y∣ ≤ ∣h(x)∣ + ∣y∣ ≤ 2B. Thus, an upper bound BL for the

regression loss function can be derived. For example, for the ℓp loss, we have ∣h(x) − y∣p ≤ (2B)p
and thus BL = (2B)p.

5. Application to adversarial regression

In this section, we show how the H-consistency guarantees we presented in the previous section

can be applied to the design of new algorithms for adversarial regression. Deep neural networks

are known to be vulnerable to small adversarial perturbations around input data (Krizhevsky et al.,

2012; Szegedy et al., 2013; Sutskever et al., 2014; Awasthi et al., 2023, 2024).

Despite extensive previous work aimed at improving the robustness of neural networks, this

often comes with a reduction in standard (non-adversarial) accuracy, leading to a trade-off be-

tween adversarial and standard generalization errors in both the classification (Madry et al., 2017;

Tsipras et al., 2018; Zhang et al., 2019; Raghunathan et al., 2019; Min et al., 2021; Javanmard and

Soltanolkotabi, 2022; Ma et al., 2022; Taheri et al., 2022; Dobriban et al., 2023) and regression

scenarios (Javanmard et al., 2020; Dan et al., 2020; Xing et al., 2021; Hassani and Javanmard, 2022;

Liu et al., 2023; Ribeiro and Schön, 2023; Ribeiro et al., 2023).

In the context of adversarial classification, Zhang et al. (2019) proposed algorithms seeking a

trade-off between these two types of errors, by using the theory of Bayes-consistent binary classifica-

tion surrogate losses functions. More recently, Mao et al. (2023f) introduced enhanced algorithms

by minimizing smooth adversarial comp-sum losses, leveraging the H-consistency guarantee of

comp-sum losses in multi-class classification.

Building on the insights from these previous studies, we aim to leverage our novel H-consistency

theory tailored for standard regression to introduce a family of new loss functions for adversarial

regression, termed as smooth adversarial regression losses. Minimizing these loss functions readily

leads to new algorithms for adversarial regression.

5.1. Adversarial Squared Loss

In adversarial regression, the target adversarial generalization error is measured by the worst squared

loss under the bounded γ perturbation of x. This is defined for any (h,x, y) ∈H×X×Y as follows:

ℓ̃2(h,x, y) = sup
x′∶∥x′−x∥≤γ

(h(x′) − y)2
where ∥ ⋅ ∥ denotes a norm on X, typically an ℓp norm for p ≥ 1. We refer to ℓ̃2 as the adversarial

squared loss. By adding and subtracting the standard squared loss ℓ2, for any (h,x, y) ∈H ×X×Y,

we can write ℓ̃2 as follows: ℓ̃2(h,x, y) = (h(x) − y)2 + supx′∶∥x′−x∥≤γ(h(x′) − y)2 − (h(x) − y)2.

Then, assuming that the conditional distribution and the hypothesis set H are bounded by B > 0,

we can write

sup
x′∶∥x′−x∥≤γ

(h(x′) − y)2 − (h(x) − y)2
= sup

x′∶∥x′−x∥≤γ
(h(x′) − h(x))(h(x′) + h(x) + y)

≤ sup
x′∶∥x′−x∥≤γ

3B ∣h(x′) − h(x)∣. (∣h(x)∣ ≤ B, ∣y∣ ≤ B)

10



H-CONSISTENCY GUARANTEES FOR REGRESSION

Thus, the ℓ̃2 loss can be upper bounded as follows for all (x, y):
ℓ̃2(h,x, y) ≤ (h(x) − y)2 + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣, (1)

where ν ≥ 3B is a positive constant.

5.2. Smooth Adversarial Regression Losses

Let L be a standard regression loss function that admits an H-consistency bound with respect to the

squared loss:

Eℓ2(h) − E∗ℓ2(H) ≤ Γ(EL(h) − E∗L(H)).
To trade-off the adversarial and standard generalization errors in regression, by using (1), we can

upper bound the difference between the adversarial generalization and the best-in-class standard

generalization error as follows:

Eℓ̃2
(h) − E∗ℓ2(H)

≤ Eℓ2(h) − E∗ℓ2(H) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣
≤ Γ(EL(h) − E∗L(H)) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣.

Thus, by Corollaries 8, 11 and 13, we obtain the following guarantees with respect to the adversarial

squared loss. The proofs are presented in Appendix D.

Theorem 16 Assume that the distribution is symmetric, the conditional distribution is bounded

by B > 0, and the hypothesis set H is realizable and bounded by B > 0. Assume that pmin(δ) =
infx∈XP(0 ≤ µ(x) − y ≤ δ ∣ x) is positive. Then, for any ν ≥ 3B and all h ∈H, the following bound

holds:

E
ℓ̃2
(h) − E∗ℓ2(H) ≤ max{2B

δ
,2}

pmin(δ) (Eℓδ(h) − E∗ℓδ(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣
Theorem 17 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Then, for any ν ≥ 3B and all

h ∈H, the following bound holds:

Eℓ̃2
(h) − E∗ℓ2(H) ≤ Γ(Eℓp(h) − E∗ℓp(H)) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣,

where Γ(t) = t 2p if p ≥ 2, 2
(8B)p−2p(p−1) t for p ∈ (1,2) and 4B t, if p = 1.

Theorem 18 Assume that the distribution is symmetric, the conditional distribution is bounded

by B > 0, and the hypothesis set H is realizable and bounded by B > 0. Assume that pmin(ǫ) =
infx∈XP(µ(x) − y ≥ ǫ ∣ x) is positive. Then, for any ν ≥ 3B and all h ∈ H, the following bound

holds:

Eℓ̃2
(h) − E∗ℓ2(H) ≤ Eℓsq−ǫ(h) − E∗ℓsq−ǫ(H)

2pmin(ǫ) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣.
11
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Table 1: Comparison of the performance of the ADV-SQ algorithm and our smooth adversarial

regression algorithms for L = ℓ2 and L = ℓδ for ℓ∞ adversarial training with perturbation size

γ ∈ {0.001,0.005,0.01} on the Diverse MAGIC wheat dataset.

METHOD SIZE CLEAN ROBUST

ADV-SQ

0.001

1.28 ± 0.10 1.32 ± 0.11

OURS (L = ℓ2) 1.28 ± 0.09 1.32 ± 0.09

OURS (L = ℓδ) 1.30 ± 0.08 1.34 ± 0.09
ADV-SQ

0.005

1.30 ± 0.09 1.53 ± 0.10
OURS (L = ℓ2) 1.26 ± 0.09 1.46 ± 0.10
OURS (L = ℓδ) 1.03 ± 0.09 1.12 ± 0.10

ADV-SQ

0.01

1.30 ± 0.08 1.78 ± 0.11
OURS (L = ℓ2) 1.22 ± 0.11 1.62 ± 0.14
OURS (L = ℓδ) 0.97 ± 0.02 1.01 ± 0.02

Theorems 16, 17 and 18 suggest minimizing

L(h,x, y) + τ sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣ (2)

where L can be chosen as ℓδ, ℓp and ℓsq−ǫ and τ > 0 is a parameter. For simplicity, we use the

parameter τ to approximate the effect of the functional form Γ in these bounds, as with the approach

adopted in (Zhang et al., 2019). Given that L is a convex function of h, the minimization of (2) can

be achieved equivalently and more efficiently by applying the standard Lagrange method. This

allows for the replacement of the ℓ1 norm with its square, since the regularization term can be

moved to a constraint, where it can then be squared.

We refer to (2) as smooth adversarial regression loss functions. They can be obtained by aug-

menting the standard regression loss function such as the Huber loss, the ℓp loss and the ǫ-insensitive

loss with a natural smoothness term. Minimizing the regularized empirical smooth adversarial re-

gression loss functions leads to a new family of algorithms for adversarial regression, smooth ad-

versarial regression algorithms. In the next section, we report experimental results illustrating the

effectiveness of these new algorithms, in particular in terms of the trade-off between the adversarial

accuracy and standard accuracy, as guaranteed by Theorems 16, 17 and 18. We will show that these

algorithms outperform the direct minimization of the adversarial squared loss.

It is important to note that the regularizer supx′∶∥x′−x∥≤γ ∣h(x′) − h(x)∣ in the smooth adversarial

regression loss closely relates to the local Lipschitz constant and the gradient norm, which are

established methods in adversarially robust training (Hein and Andriushchenko, 2017; Finlay and

Oberman, 2019; Yang et al., 2020; Gouk et al., 2021). Furthermore, by building upon the derivation

in Section 5.1, we can develop new surrogate losses for adversarial regression scenarios beyond

the adversarial squared loss, such as the adversarial ℓ1 loss. In this context, the formulation of the

smooth adversarial regression loss would replace the absolute value with the local Lipschitz constant

of the target loss. To establish guarantees for these new surrogate losses, the H-consistency bounds

shown in Section 4 can be extended to other target losses in regression, such as the ℓ1 loss. An

intriguing direction for future exploration is investigating how our surrogate losses relate to Moreau

envelope theory (see, for example, (Zhou et al., 2022)).

12
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Table 2: Comparison of the performance of the ADV-SQ algorithm and our smooth adversarial

regression algorithms for L = ℓ2 and L = ℓδ for ℓ∞ adversarial training with perturbation size

γ ∈ {0.001,0.005,0.01} on the Diabetes dataset.

METHOD SIZE CLEAN ROBUST

ADV-SQ

0.001

2.53 ± 0.48 2.57 ± 0.49
OURS (L = ℓ2) 1.24 ± 0.21 1.26 ± 0.21

OURS (L = ℓδ) 1.31 ± 0.15 1.32 ± 0.15
ADV-SQ

0.005

1.12 ± 0.12 1.18 ± 0.13
OURS (L = ℓ2) 0.80 ± 0.04 0.82 ± 0.04
OURS (L = ℓδ) 0.78 ± 0.06 0.79 ± 0.06

ADV-SQ

0.01

0.83 ± 0.05 0.87 ± 0.05
OURS (L = ℓ2) 0.74 ± 0.05 0.76 ± 0.05

OURS (L = ℓδ) 0.81 ± 0.05 0.82 ± 0.05
6. Experiments

In this section, we demonstrate empirically the effectiveness of the smooth adversarial regression

algorithms introduced in the previous section.

Experimental settings. We studied two real-world datasets: the Diabetes dataset (Efron et al.,

2004) and the Diverse MAGIC wheat dataset (Scott et al., 2021), and adopted the same exact settings

for feature engineering as (Ribeiro et al., 2023, Example 3 and Example 5 in Appendix D). For the

sake of a fair comparison, we used a linear hypothesis set. We considered an ℓ∞ perturbation

with perturbation size γ ∈ {0.001,0.005,0.01} for adversarial training. For our smooth adversarial

regression losses (2), we chose L = ℓ2, the squared loss, and L = ℓδ with δ = 0.2, the Huber loss,

setting τ = 1 as the default. Other choices for the regression loss functions and the value of τ

may yield better performance, which can typically be selected by cross-validation in practice. Both

our smooth adversarial regression losses and the adversarial squared loss were optimized using the

CVXPY library (Diamond and Boyd, 2016).

Evaluation. We report the standard error, measured by the squared loss (or MSE) on the test

data, and the robust error, measured by the adversarial squared loss with ℓ∞ perturbation and the

corresponding perturbation size used for training. We averaged both errors over five runs and report

the standard deviation for both our smooth adversarial regression losses and the adversarial squared

loss.

Results. Tables 1 and 2 present the experimental results of our adversarial regression algorithms

with both the squared (L = ℓ2) and Huber (L = ℓδ) losses. The results suggest that these algorithms

consistently surpass the adversarial squared loss in clean and robust error metrics across various

settings. In particular, on the Diabetes dataset with a perturbation size of γ = 0.01, our method

(L = ℓ2) outperforms the adversarial squared loss by more than 0.5% in both robust error and clean

error. Similarly, on the Diverse MAGIC wheat dataset with a perturbation size of γ = 0.01, our

method (L = ℓδ) surpasses the adversarial squared loss by more than 0.3% in terms of robust and

clean errors.

Remarkably, the surrogate loss using the Huber loss occasionally outperforms the squared loss

variant. This highlights the importance of using surrogate losses, even within the adversarial training

framework, to enhance performance.
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7. Conclusion

We presented the first study of H-consistency bounds for regression.This involved generalizing

existing tools that were previously used to prove H-consistency bounds. Leveraging our generalized

tools, we proved a series of novel H-consistency bounds for surrogate losses of the squared loss. Our

H-consistency guarantees can be beneficial in designing new algorithms for adversarial regression.

This study can be useful for the later studies of other surrogate losses for other target losses in

regression.
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Appendix A. Proofs of general H-consistency theorems

A.1. Proof of Theorem 1

Theorem 1 (General H-consistency bound – convex function) Let D denote a distribution over

X × Y. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0, a positive function

α∶H×X → R
∗
+ with supx∈Xα(h,x) < +∞ for all h ∈H, and ǫ ≥ 0 such that the following holds for

all h ∈ H, x ∈ X: Ψ([∆CL2,H(h,x)]ǫ) ≤ α(h,x)∆CL1 ,H(h,x). Then, for any hypothesis h ∈ H,

the following inequality holds:

Ψ(EL2
(h) − E∗L2

(H) +ML2
(H)) ≤ [sup

x∈X
α(h,x)](EL1

(h) − E∗L1
(H) +ML1

(H)) +max{Ψ(0),Ψ(ǫ)}.
Proof For any h ∈H, we can write

Ψ(EL2
(h) − E∗L2,H

+ML2,H)
= Ψ(E

X
[∆CL2,H(h,x)])

≤ E
X
[Ψ(∆CL2,H(h,x))] (Jensen’s ineq.)

= E
X
[Ψ(∆CL2,H(h,x)1∆CL2 ,H

(h,x)>ǫ +∆CL2,H(h,x)1∆CL2 ,H
(h,x)≤ǫ)]

≤ E
X
[Ψ(∆CL2,H(h,x)1∆CL2 ,H

(h,x)>ǫ) +Ψ(∆CL2,H(h,x)1∆CL2 ,H
(h,x)≤ǫ)] (Ψ(0) ≥ 0)

≤ E
X
[α(h,x)∆CL1 ,H(h,x)] + sup

t∈[0,ǫ]
Ψ(t) (assumption)

≤ [sup
x∈X

α(h,x)]E
x
[∆CL1,H(h,x)] + sup

t∈[0,ǫ]
Ψ(t) (Hölder’s ineq.)

= [sup
x∈X

α(h,x)](EL1
(h) − E∗L1,H

+ML1,H) +max{Ψ(0),Ψ(ǫ)}, (convexity of Ψ)

which completes the proof.

A.2. Proof of Theorem 2

Theorem 2 (General H-consistency bound – concave function) Let D denote a distribution over

X × Y. Assume that there exists a concave function Γ∶R+ → R, a positive function α∶H ×X → R
∗
+

with supx∈Xα(h,x) < +∞ for all h ∈ H, and ǫ ≥ 0 such that the following holds for all h ∈ H,

x ∈ X: [∆CL2,H(h,x)]ǫ ≤ Γ(α(h,x)∆CL1,H(h,x)). Then, for any hypothesis h ∈H, the following

inequality holds

EL2
(h) − E∗L2

(H) +ML2
(H) ≤ Γ([sup

x∈X
α(h,x)](EL1

(h) − E∗L1
(H) +ML1

(H))) + ǫ.
In the special case where Γ(x) = x 1

q for some q ≥ 1 with conjugate p ≥ 1, that is 1
p
+

1
q
= 1, for any

h ∈H, the following inequality holds, assuming EX[α p

q (h,x)] 1p < +∞ for all h ∈H:

EL2
(h) − E∗L2

(H) +ML2
(H) ≤ E

X
[α p

q (h,x)] 1p E
X
[EL1
(h) − E∗L1

(H) +ML1
(H)] 1q + ǫ.
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Proof For any h ∈H, we can write

EL2
(h) − E∗L2,H

+ML2,H

= E
X
[CL2
(h,x) − C∗L2,H

(x)]
= E

X
[∆CL2,H(h,x)]

= E
X
[∆CL2,H(h,x)1∆CL2 ,H

(h,x)>ǫ +∆CL2,H(h,x)1∆CL2,H
(h,x)≤ǫ]

≤ E
X
[Γ(α(h,x)∆CL1 ,H(h,x))] + ǫ (assumption)

≤ Γ(E
X
[α(h,x)∆CL1 ,H(h,x)]) + ǫ (Jensen’s ineq.)

≤ Γ([sup
x∈X

α(h,x)]E
X
[∆CL1,H(h,x)]) + ǫ (Hölder’s ineq.)

= Γ([sup
x∈X

α(h,x)](EL1
(h) − E∗L1,H

+ML1,H)) + ǫ.

When Γ(x) = x 1

q for some q ≥ 1 with conjugate number p, starting from the fourth inequality above,

we can write

EL2
(h) − E∗L2,H

+ML2,H ≤ E
X
[α 1

q (h,x)∆C
1

q

L2,H
(h,x)] + ǫ

≤ E
X
[α p

q (h,x)] 1p E
X
[∆CL1,H(h,x)] 1q + ǫ (Hölder’s ineq)

= E
X
[α p

q (h,x)] 1p E
X
[EL1
(h) − E∗L1,H

+ML1,H] 1q + ǫ.
This completes the proof.

A.3. Proof of Theorem 3

Theorem 3 Assume that the conditional distribution and the hypothesis set H are bounded by B >
0. Then, the best-in-class conditional error and the conditional regret of the squared loss can be

characterized as: for all h ∈H, x ∈ X,

C
∗
ℓ2
(H, x) = Cℓ2(µ(x), x) = E[y2 ∣ x] − (µ(x))2

∆Cℓ2,H(h,x) = (h(x) − µ(x))2.
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Proof By definition,

C
∗
ℓ2
(H, x) = inf

h∈H
E[(h(x) − y)2 ∣ x]

= inf
h∈H
[(h(x) −E[y ∣ x])2 + E[y2 ∣ x] − (E[y ∣ x])2]

= E[y2 ∣ x] − (E[y ∣ x])2
∆Cℓ2,H(h,x) = E[(h(x) − y)2 ∣ x] − inf

h∈H
E[(h(x) − y)2 ∣ x]

= (h(x) − E[y ∣ x])2 +E[y2 ∣ x] − (E[y ∣ x])2 − (E[y2 ∣ x] − (E[y ∣ x])2)
= (h(x) − E[y ∣ x])2.

This completes the proof.

A.4. Proof of Theorem 4

Theorem 4 Let ψ∶R → R be a symmetric function such that ψ(x) = ψ(−x) for all x ∈ R. Fur-

thermore, ψ(x) ≥ 0 for all x in its domain and it holds that ψ(0) = 0. Assume that the condi-

tional distribution and the hypothesis set H is bounded by B > 0. Assume that the distribution

is symmetric and the regression loss function is given by L(y′, y) = ψ(y′ − y). Then, we have

C∗L(H, x) = CL(µ(x), x).
Proof By the symmetry of the distribution, we can write

E
y
[ψ(h(x) − y) ∣ x] = Ey[ψ(h(x) − y) ∣ x] + Ey[ψ(h(x) − 2µ(x) + y) ∣ x]

2

=
Ey[ψ(h(x) − y) ∣ x] + Ey[ψ(−h(x) + 2µ(x) − y) ∣ x]

2
(ψ is symmetric)

=
Ey[ψ(h(x) − y) + ψ(−h(x) + 2µ(x) − y) ∣ x]

2

≥ E
y
[ψ(µ(x) − y)] (Jensen’s inequality)

where the equality is achieved when h(x) = µ(x) ∈H. This completes the proof.

Appendix B. Proofs of H-consistency bounds for common surrogate losses

B.1. H-consistency of ℓδ with respect to ℓ2

Define the function g as g∶ t ↦ 1
2
t21∣t∣≤δ + (δ∣t∣ − 1

2
δ2)1∣t∣>δ. Consider the function F defined over

[−B,B]2 by F (x, y) = g(x+y)+g(x−y)
2

− g(y). We prove a useful lemma as follows.

Lemma 19 For any x, y ∈ [−B,B] and ∣y∣ ≤ δ, the following inequality holds:

F (x, y) ≥min{ δ

2B
,
1

4
}x2.
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Proof Given the definition of g and the symmetry of F with respect to y = 0, we can assume, without

loss of generality, that y ≥ 0. Next, we will analyze case by case.

Case I: ∣x + y∣ ≤ δ, ∣x − y∣ ≤ δ, 0 ≤ y ≤ δ. In this case, we have

F (x, y) = 1
2
(x + y)2 + 1

2
(x − y)2

2
−
1

2
y2 =

1

2
x2 ≥min{ δ

2B
,
1

4
}x2.

Case II: ∣x + y∣ ≤ δ, ∣x − y∣ > δ, 0 ≤ y ≤ δ. In this case, we must have −y − δ ≤ x < y − δ and

δ ≥ y ≥max{−x − δ, x + δ} ≥ x + δ. Thus,

F (x, y) = 1
2
(x + y)2 + δ∣x − y∣ − 1

2
δ2

2
−
1

2
y2

=
1
2
(x + y)2 + δ(y − x) − 1

2
δ2

2
−
1

2
y2 (x − y < 0)

=
−
1
2
y2 + (x + δ)y + 1

2
x2 − δx − 1

2
δ2

2

≥
−
1
2
δ2 + (x + δ)δ + 1

2
x2 − δx − 1

2
δ2

2
(the minimum of the quadratic function is attained when y = δ)

=
x2

4

≥min{ δ

2B
,
1

4
}x2.

Case III: ∣x + y∣ > δ, ∣x − y∣ ≤ δ, 0 ≤ y ≤ δ. In this case, we must have −y + δ ≤ x ≤ y + δ and

δ ≥ y ≥max{−x + δ, x − δ} ≥ −x + δ. Thus,

F (x, y) = δ∣x + y∣ − 1
2
δ2 + 1

2
(x − y)2

2
−
1

2
y2

=
δ(x + y) − 1

2
δ2 + 1

2
(x − y)2

2
−
1

2
y2 (x + y > 0)

=
−
1
2
y2 + (−x + δ)y + 1

2
x2 + δx − 1

2
δ2

2

≥
−
1
2
δ2 + (−x + δ)δ + 1

2
x2 + δx − 1

2
δ2

2
(the minimum of the quadratic function is attained when y = δ)

=
x2

4

≥min{ δ

2B
,
1

4
}x2.
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Case IV: x + y > δ, ∣x − y∣ > δ, 0 ≤ y ≤ δ. In this case, we must have x > y + δ ≥ δ and

0 ≤ y <min{x − δ, δ}. Thus, we have

F (x, y) = δ∣x + y∣ − 1
2
δ2 + δ∣x − y∣ − 1

2
δ2

2
−
1

2
y2

=
δ(x + y) − 1

2
δ2 + δ(x − y) − 1

2
δ2

2
−
1

2
y2 (x + y > 0 and x − y > 0)

=
−y2 + 2δx − δ2

2
.

Then, if δ < x ≤ 2δ and min{x − δ, δ} = x − δ,
F (x, y) = −y2 + 2δx − δ2

2

≥
−(x − δ)2 + 2δx − δ2

2
(the minimum of the quadratic function is attained when y = x − δ)

=
−x2 + 4δx − 2δ2

2

≥
x2

4
(δ < x ≤ 2δ)

≥min{ δ

2B
,
1

4
}x2.

If 2δ < x ≤ B and min{x − δ, δ} = δ,
F (x, y) = −y2 + 2δx − δ2

2

≥
−δ2 + 2δx − δ2

2
(the minimum of the quadratic function is attained when y = δ)

= δx − δ2

≥
δ

2B
x2 (2δ < x ≤ B)

≥min{ δ

2B
,
1

4
}x2.

Case V: x + y < −δ, ∣x − y∣ > δ, 0 ≤ y ≤ δ. In this case, we must have x < −y − δ ≤ −δ, and

0 ≤ y <min{−x − δ, δ}. Thus, we have

F (x, y) = δ∣x + y∣ − 1
2
δ2 + δ∣x − y∣ − 1

2
δ2

2
−
1

2
y2

=
−δ(x + y) − 1

2
δ2 − δ(x − y) − 1

2
δ2

2
−
1

2
y2 (x + y < 0 and x − y < 0)

=
−y2 − 2δx − δ2

2
.

24



H-CONSISTENCY GUARANTEES FOR REGRESSION

Then, if −2δ ≤ x < −δ and min{−x − δ, δ} = −x − δ,

F (x, y) = −y2 − 2δx − δ2
2

≥
−(−x − δ)2 − 2δx − δ2

2
(the minimum of the quadratic function is attained when y = −x − δ)

=
−x2 − 4δx − 2δ2

2

≥
x2

4
(−2δ ≤ x < −δ)

≥min{ δ

2B
,
1

4
}x2.

If −B ≤ x < −2δ and min{−x − δ, δ} = δ,

F (x, y) = −y2 − 2δx − δ2
2

≥
−δ2 − 2δx − δ2

2
(the minimum of the quadratic function is attained when y = δ)

= −δx − δ2

≥
δ

2B
x2 (−B ≤ x < −2δ)

≥min{ δ

2B
,
1

4
}x2.

In summary, we complete the proof.

Theorem 7 Assume that the distribution is symmetric, the conditional distribution and the hypoth-

esis set H are bounded by B > 0. Assume that pmin(δ) = infx∈X P(0 ≤ µ(x) − y ≤ δ ∣ x) is positive.

Then, for all h ∈H, the following H-consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) +Mℓ2(H) ≤ max{2B
δ
,2}

pmin(δ) (Eℓδ(h) − E∗ℓδ(H) +Mℓδ(H)).
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Proof By Theorem 4, we can write ∀h ∈H, x ∈ X,

∆Cℓδ(h,x)
= E

y
[1
2
(h(x) − y)21∣h(x)−y∣≤δ + (δ∣h(x) − y∣ − 1

2
δ2)1∣h(x)−y∣>δ ∣ x]

−E
y
[1
2
(µ(x) − y)21∣µ(x)−y∣≤δ + (δ∣µ(x) − y∣ − 1

2
δ2)1∣µ(x)−y∣>δ ∣ x]

= E
y
[g(h(x) − µ(x) + µ(x) − y) + g(h(x) − µ(x) − (µ(x) − y))

2
− g(µ(x) − y) ∣ x]

(distribution is symmetric with respect to µ(x))
= E

y
[F (h(x) − µ(x), µ(x) − y) ∣ x]

≥ 2P(0 ≤ µ(x) − y ≤ δ ∣ x)E
y
[F (h(x) − µ(x), µ(x) − y) ∣ 0 ≤ µ(x) − y ≤ δ]

≥ P(0 ≤ µ(x) − y ≤ δ ∣ x)min{ δ

2B
,
1

2
}(h(x) − µ(x))2 (∣h(x) − µ(x)∣ ≤ 2B, ∣µ(x) − y∣ ≤ 2B)

= P(0 ≤ µ(x) − y ≤ δ ∣ x)min{ δ

2B
,
1

2
}∆Cℓ2(h,x).

By Theorems 1 or 2 with α(h,x) = 1
P(0≤µ(x)−y≤δ∣x) , we have

Eℓ2(r) − E∗ℓ2(R) +Mℓ2(R) ≤ max{2B
δ
,2}

pmin(δ) (Eℓδ(r) − E∗ℓδ(R) +Mℓδ(R)).

Theorem 9 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Then, the Huber loss ℓδ is not

H-consistent with respect to the squared loss.

Proof Consider a distribution that concentrates on an input x. Choose y,µ(x), δ ∈ R such that

−B ≤ y < µ(x) ≤ B and µ(x) − y > δ. Consider the conditional distribution as P(Y = y ∣ x) =
1
2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is symmetric with respect to y = µ(x). For such

a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x). However, for the

Huber loss, we have

Cℓδ(h,x)
= E

y
[1
2
(h(x) − y)21∣h(x)−y∣≤δ + (δ∣h(x) − y∣ − 1

2
δ2)1∣h(x)−y∣>δ ∣ x]

=
1

2
(1
2
(h(x) − y)21∣h(x)−y∣≤δ + (δ∣h(x) − y∣ − 1

2
δ2)1∣h(x)−y∣>δ)

+
1

2
(1
2
(h(x) − 2µ(x) + y)21∣h(x)−2µ(x)+y∣≤δ + (δ∣h(x) − 2µ(x) + y∣ − 1

2
δ2)1∣h(x)−2µ(x)+y∣>δ).
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Thus, plugging h∶x ↦ y + δ and h∗∶x ↦ µ(x), we obtain that

Cℓδ(h,x) = 1

2
(1
2
δ2) + 1

2
(δ∣2y + δ − 2µ(x)∣ − 1

2
δ2) (h(x) − y = δ and h(x) − 2µ(x) + y < −δ)

= δ(µ(x) − 1

2
δ − y)

Cℓδ(h∗, x) = 1

2
(δ∣µ(x) − y∣ − 1

2
δ2 + δ∣−µ(x) + y∣ − 1

2
δ2)

(h∗(x) − y > δ and h∗(x) − 2µ(x) + y < −δ)
= δ(µ(x) − 1

2
δ − y).

Therefore, Cℓδ(h,x) = Cℓδ(h∗, x), and both h and h∗ are the best-in-class predictors for the Huber

loss. This implies that the Huber loss is not H-consistent with respect to the squared loss.

B.2. H-consistency of ℓp with respect to ℓ2

Theorem 10 Assume that the distribution is symmetric, and that the conditional distribution and

the hypothesis set H are bounded by B > 0. Then, for all h ∈ H and p ≥ 1, the following H-

consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) +Mℓ2(H) ≤ Γ(Eℓp(h) − E∗ℓp(H) +Mℓp(H)),
where Γ(t) = supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t for p = 1, Γ(t) = 2

(8B)p−2p(p−1) t for p ∈ (1,2],
and Γ(t) = t 2p for p ≥ 2.

Proof We will analyze case by case.

Case I: p ≥ 2. By Theorem 4, we can write

∀h ∈H, x ∈ X, ∆Cℓp(h,x)
= E

y
[∣h(x) − y∣p − ∣µ(x) − y∣p ∣ x]

= E
y
[ ∣h(x) − y∣p + ∣h(x) − 2µ(x) + y∣p

2
− ∣µ(x) − y∣p ∣ x]

(distribution is symmetric with respect to µ(x))
= E

y
[ ∣h(x) − µ(x) + µ(x) − y∣p + ∣h(x) − µ(x) − (µ(x) − y)∣p

2
− ∣µ(x) − y∣p ∣ x]

≥ ∣h(x) − µ(x)∣p (by Clarkson’s inequality (Clarkson, 1936))

= ((h(x) − µ(x))2) p2
= (∆Cℓ2(h,x)) p2 .

By Theorem 1, we have

Eℓ2(r) − E∗ℓ2(R) +Mℓ2(R) ≤ (Eℓp(r) − E∗ℓp(R) +Mℓp(R)) 2
p .

Case II: 1 < p ≤ 2. In this case, the Clarkson’s inequality cannot be used directly. We first prove

a useful lemma as follows.
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Lemma 20 For any x, y ∈ [−B,B] and 1 < p ≤ 2, the following inequality holds:

∣x + y∣p + ∣x − y∣p
2

− ∣y∣p ≥ (2B)p−2p(p − 1)
2

x2.

Proof For any y ∈ [−B,B], consider the function fy ∶x ↦
∣x+y∣p+∣x−y∣p

2
− ∣y∣p − (2B)p−2p(p−1)

2
x2. We

compute the first derivative and second derivative of fy as follows:

f ′y(x) =
p∣x+y∣p

x+y +
p∣x−y∣p

x−y

2
− (2B)p−2p(p − 1)x

f ′′y (x) =
p(p−1)
∣x+y∣2−p +

p(p−1)
∣x−y∣2−p

2
− (2B)p−2p(p − 1).

Thus, using the fact that 1 < p ≤ 2 and ∣x + y∣ ≤ 2B, ∣x − y∣ ≤ 2B, we have

∀x ∈ [−B,B], f ′′y (x) ≥
p(p−1)
(2B)2−p +

p(p−1)
(2B)2−p

2
− (2B)p−2p(p − 1) = 0.

Therefore, fy(x) is convex. Since f ′y(0) = 0, x = 0 achieves the minimum:

∀x, y ∈ [−B,B], fy(x) ≥ fy(0) = 0.
This completes the proof.

By Theorem 4, we can write

∀h ∈H, x ∈ X, ∆Cℓp(h,x)
= E

y
[∣h(x) − y∣p − ∣µ(x) − y∣p ∣ x]

= E
y
[ ∣h(x) − y∣p + ∣h(x) − 2µ(x) + y∣p

2
− ∣µ(x) − y∣p ∣ x]

(distribution is symmetric with respect to µ(x))
= E

y
[ ∣h(x) − µ(x) + µ(x) − y∣p + ∣h(x) − µ(x) − (µ(x) − y)∣p

2
− ∣µ(x) − y∣p ∣ x]

≥
(8B)p−2p(p − 1)

2
(h(x) − µ(x))2

(by Lemma 20 and ∣h(x) − µ(x)∣ ≤ 4B, ∣µ(x) − y∣ ≤ 4B)

=
(8B)p−2p(p − 1)

2
∆Cℓ2(h,x).

By Theorem 1, we have

Eℓ2(r) − E∗ℓ2(R) +Mℓ2(R) ≤ 2(8B)p−2p(p − 1)(Eℓp(r) − E∗ℓp(R) +Mℓp(R)).
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Case III: p = 1. By Theorem 4, we can write

∀h ∈H, x ∈ X, ∆Cℓ2(h,x) = E
y
[(h(x) − y)2 − (µ(x) − y)2 ∣ x]

= E
y
[(∣h(x) − y∣ + ∣µ(x) − y∣)(∣h(x) − y∣ − ∣µ(x) − y∣) ∣ x]

≤ sup
y∈Y
{∣h(x) − y∣ + ∣µ(x) − y∣}E

y
[∣h(x) − y∣ − ∣µ(x) − y∣ ∣ x]

= sup
y∈Y
{∣h(x) − y∣ + ∣µ(x) − y∣}∆Cℓ1(h,x).

By Theorems 1 or 2 with α(h,x) = supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣}, we have

Eℓ2(r) − E∗ℓ2(R) +Mℓ2(R) ≤ sup
x∈X

sup
y∈Y
{∣h(x) − y∣ + ∣µ(x) − y∣}(Eℓ1(r) − E∗ℓ1(R) +Mℓ1(R)).

B.3. H-consistency of ℓsq−ǫ with respect to ℓ2

Define the function g as g∶ t ↦ max{t2 − ǫ2,0}. Consider the function F defined over R
2 by

F (x, y) = g(x+y)+g(x−y)
2

− g(y). We first prove a useful lemma as follows.

Lemma 21 For any x ∈ R and ∣y∣ ≥ ǫ, the following inequality holds:

F (x, y) ≥ x2.
Proof Given the definition of g and the symmetry of F with respect to y = 0, we can assume, without

loss of generality, that y ≥ 0. Next, we will analyze case by case.

Case I: ∣x + y∣ > ǫ, ∣x − y∣ > ǫ, y ≥ ǫ. In this case, we have

F (x, y) = (x + y)2 − ǫ2 + (x − y)2 − ǫ2
2

− y2 + ǫ2 = x2.

Case II: ∣x + y∣ > ǫ, ∣x − y∣ ≤ ǫ, y ≥ ǫ. In this case, we must have y − ǫ ≤ x ≤ y + ǫ and x + ǫ ≥ y ≥
max{x − ǫ, ǫ} ≥ x − ǫ. Thus,

F (x, y) = (x + y)2 − ǫ2 + 0
2

− y2 + ǫ2

=
−y2 + 2xy + x2 + ǫ2

2

≥
−(x + ǫ)2 + 2x(x + ǫ) + x2 + ǫ2

2
(the minimum of the quadratic function is attained when y = x + ǫ)

= x2.
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Case III: ∣x + y∣ ≤ ǫ, ∣x − y∣ > ǫ, y ≥ ǫ. In this case, we must have −y − ǫ ≤ x ≤ −y + ǫ and

−x + ǫ ≥ y ≥max{−x − ǫ, ǫ} ≥ −x − ǫ. Thus,

F (x, y) = 0 + (x − y)2 − ǫ2
2

− y2 + ǫ2

=
−y2 − 2xy + x2 + ǫ2

2

≥
−(−x + ǫ)2 − 2x(−x + ǫ) + x2 + ǫ2

2
(the minimum of the quadratic function is attained when y = −x + ǫ)

= x2.

Case IV: ∣x + y∣ ≤ ǫ, ∣x − y∣ ≤ ǫ, y ≥ ǫ. In this case, we must have x = 0 and y = ǫ. Thus,

F (x, y) = 0 + 0

2
− 0 = 0 = x2.

In summary, we complete the proof.

Theorem 12 Assume that the distribution is symmetric, and that the conditional distribution and

the hypothesis set H are bounded by B > 0. Assume that pmin(ǫ) = infx∈XP(µ(x) − y ≥ ǫ ∣ x) is

positive. Then, for all h ∈H, the following H-consistency bound holds:

Eℓ2(h) − E∗ℓ2(H) +Mℓ2(H) ≤ Eℓsq−ǫ(h) − E∗ℓsq−ǫ(H) +Mℓsq−ǫ(H)
2pmin(ǫ) .

Proof By Theorem 4, we can write ∀h ∈H, x ∈ X,

∆Cℓsq−ǫ(h,x)
= E

y
[max{(h(x) − y)2, ǫ2} ∣ x] −E

y
[max{(µ(x) − y)2, ǫ2} ∣ x]

= E
y
[g(h(x) − µ(x) + µ(x) − y) + g(h(x) − µ(x) − (µ(x) − y))

2
− g(µ(x) − y) ∣ x]

(distribution is symmetric with respect to µ(x))
= E

y
[F (h(x) − µ(x), µ(x) − y) ∣ x]

≥ 2P(µ(x) − y ≥ ǫ ∣ x)E
y
[F (h(x) − µ(x), µ(x) − y) ∣ µ(x) − y ≥ ǫ]

≥ 2P(µ(x) − y ≥ ǫ ∣ x)(h(x) − µ(x))2 (by Lemma 21)

= 2P(µ(x) − y ≥ ǫ ∣ x)∆Cℓ2(h,x).
By Theorems 1 or 2 with α(h,x) = 1

2P(µ(x)−y≥ǫ∣x) , we have

Eℓ2(r) − E∗ℓ2(R) +Mℓ2(R) ≤ Eℓsq−ǫ(r) − E∗ℓsq−ǫ(R) +Mℓsq−ǫ(R)
2pmin(ǫ) .
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Theorem 14 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded byB > 0. Then, the squared ǫ-insensitive

loss ℓsq−ǫ is not H-consistent.

Proof Consider a distribution that concentrates on an input x. Choose y,µ(x), ǫ ∈ R such that

−B ≤ y < µ(x) ≤ B and µ(x) − y < ǫ. Consider the conditional distribution as P(Y = y ∣ x) =
1
2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is symmetric with respect to y = µ(x). For such

a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x). However, for the

ǫ-insensitive loss, we have

Cℓsq−ǫ(h,x)
= E

y
[max{(h(x) − y)2 − ǫ2,0} ∣ x]

=
1

2
max{(h(x) − y)2 − ǫ2,0} + 1

2
max{(h(x) − 2µ(x) + y)2 − ǫ2,0}.

Thus, plugging h∶x ↦ y + ǫ and h∗∶x ↦ µ(x), we obtain that

Cℓsq−ǫ(h,x) = 1

2
(0) + 1

2
(0) (h(x) − y = ǫ and ǫ > h(x) − 2µ(x) + y > −ǫ)

= 0

Cℓsq−ǫ(h∗, x) = 1

2
(0) + 1

2
(0) (0 < h∗(x) − y < ǫ and 0 > h∗(x) − 2µ(x) + y > −ǫ)

= 0.

Therefore, Cℓsq−ǫ(h,x) = Cℓsq−ǫ(h∗, x), and both h and h∗ are the best-in-class predictors for the

ǫ-insensitive loss. This implies that the ǫ-insensitive loss is not H-consistent with respect to the

squared loss.

B.4. H-consistency of ℓǫ with respect to ℓ2

Here, we present negative results for the ǫ-insensitive loss ℓǫ∶ (h,x, y) ↦ max{∣h(x) − y∣ − ǫ,0}
used in the SVR algorithm, by showing that even under the assumption infx∈X P(µ(x) − y ≥ ǫ) > 0
or infx∈X P(0 ≤ µ(x) − y ≤ ǫ) > 0, it is not H-consistent with respect to the squared loss. In the

proof, we consider distributions that concentrate on an input x, leading to both h∶x ↦ y + ǫ and

h∗∶x ↦ µ(x) being the best-in-class predictors for the ǫ-insensitive loss.

Theorem 22 Assume that the distribution is symmetric and satisfies infx∈XP(µ(x)−y ≥ ǫ ∣ x) > 0.

Assume that the conditional distribution is bounded by B > 0, and the hypothesis set H is realizable

and bounded byB > 0. Then, the ǫ-insensitive loss ℓǫ is not H-consistent with respect to the squared

loss.

Proof Consider a distribution that concentrates on an input x. Choose y,µ(x), ǫ ∈ R such that

−B ≤ y < µ(x) ≤ B and µ(x) − y > ǫ. Consider the conditional distribution as P(Y = y ∣ x) =
1
2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is symmetric with respect to y = µ(x). For such

31



MAO MOHRI ZHONG

a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x). However, for the

ǫ-insensitive loss, we have

Cℓsq−ǫ(h,x)
= E

y
[max{∣h(x) − y∣ − ǫ,0} ∣ x]

=
1

2
max{∣h(x) − y∣ − ǫ,0} + 1

2
max{∣h(x) − 2µ(x) + y∣ − ǫ,0}.

Thus, plugging h∶x ↦ y + ǫ and h∗∶x ↦ µ(x), we obtain that

Cℓsq−ǫ(h,x) = 1

2
(0) + 1

2
(2µ(x) − 2y − 2ǫ) (h(x) − y = ǫ and h(x) − 2µ(x) + y < −ǫ)

= µ(x) − y − ǫ.
Cℓsq−ǫ(h∗, x) = 1

2
(µ(x) − y − ǫ) + 1

2
(µ(x) − y − ǫ) (h∗(x) − y > ǫ and h∗(x) − 2µ(x) + y < −ǫ)

= µ(x) − y − ǫ.
Therefore, Cℓsq−ǫ(h,x) = Cℓsq−ǫ(h∗, x), and both h and h∗ are the best-in-class predictors for the

ǫ-insensitive loss. This implies that the ǫ-insensitive loss is not H-consistent with respect to the

squared loss.

Theorem 23 Assume that the distribution is symmetric and satisfies pmin(ǫ) = infx∈XP(0 ≤ µ(x)−
y ≤ ǫ ∣ x) > 0. Assume further that the conditional distribution is bounded by B > 0, and the

hypothesis set H is realizable and bounded by B > 0. Then, the ǫ-insensitive loss ℓǫ is not H-

consistent with respect to the squared loss.

Proof Consider a distribution that concentrates on an input x. Choose y,µ(x), ǫ ∈ R such that

−B ≤ y < µ(x) ≤ B and µ(x) − y < ǫ. Consider the conditional distribution as P(Y = y ∣ x) =
1
2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is symmetric with respect to y = µ(x). For such

a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x). However, for the

ǫ-insensitive loss, we have

Cℓsq−ǫ(h,x)
= E

y
[max{∣h(x) − y∣ − ǫ,0} ∣ x]

=
1

2
max{∣h(x) − y∣ − ǫ,0} + 1

2
max{∣h(x) − 2µ(x) + y∣ − ǫ,0}.

Thus, plugging h∶x ↦ y + ǫ and h∗∶x ↦ µ(x), we obtain that

Cℓsq−ǫ(h,x) = 1

2
(0) + 1

2
(0) (h(x) − y = ǫ and ǫ > h(x) − 2µ(x) + y > −ǫ)

= 0.

Cℓsq−ǫ(h∗, x) = 1

2
(0) + 1

2
(0) (0 < h∗(x) − y < ǫ and 0 > h∗(x) − 2µ(x) + y > −ǫ)

= 0.
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Therefore, Cℓsq−ǫ(h,x) = Cℓsq−ǫ(h∗, x), and both h and h∗ are the best-in-class predictors for the

ǫ-insensitive loss. This implies that the ǫ-insensitive loss is not H-consistent with respect to the

squared loss.

Appendix C. Proofs of generalization bound

Theorem 15 Assume that the distribution is symmetric, the conditional distribution and the hypoth-

esis set H are bounded by B > 0. Then, for any δ > 0, with probability at least 1 − δ over the draw

of an i.i.d. sample S of size m, the following squared loss estimation bound holds for ĥS:

Eℓ2(ĥS) − E∗ℓ2(H) ≤ Γ⎛⎝ML(H) + 4RL
m(H) + 2BL

√
log 2

δ

2m

⎞⎠ −Mℓ2(H).
where Γ(t) = supx∈X supy{∣̂hS(x) − y∣ + ∣µ(x) − y∣} t for L = ℓ1, Γ(t) = 2

(8B)p−2p(p−1) t for L = ℓp,

p ∈ (1,2], Γ(t) = t 2p for L = ℓp, p ≥ 2, Γ(t) = max{ 2B
δ
,2}

pmin(δ)
t for L = ℓδ, and Γ(t) = 1

2pmin(ǫ)
t for

L = ℓsq−ǫ.

Proof By using the standard Rademacher complexity bounds (Mohri et al., 2018), for any δ > 0,

with probability at least 1 − δ, the following holds for all h ∈H:

∣EL(h) − ÊL,S(h)∣ ≤ 2RL
m(H) +BL

√
log(2/δ)

2m
.

Fix ǫ > 0. By the definition of the infimum, there exists h∗ ∈H such that EL(h∗) ≤ E∗L(H) + ǫ. By

definition of ĥS , we have

EL(ĥS) − E∗L(H)
= EL(ĥS) − ÊL,S(ĥS) + ÊL,S(ĥS) − E∗L(H)
≤ EL(ĥS) − ÊL,S(ĥS) + ÊL,S(h∗) − E∗L(H)
≤ EL(ĥS) − ÊL,S(ĥS) + ÊL,S(h∗) − E∗L(h∗) + ǫ
≤ 2[2RL

m(H) +BL

√
log(2/δ)

2m
] + ǫ.

Since the inequality holds for all ǫ > 0, it implies:

EL(ĥS) − E∗L(H) ≤ 4RL
m(H) + 2BL

√
log(2/δ)

2m
.

Plugging in this inequality in the bound of Theorems 7, 10, 12 completes the proof.

Appendix D. Proofs of adversarial regression

D.1. Proof of Theorem 16

Theorem 16 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Assume that pmin(δ) =
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infx∈XP(0 ≤ µ(x) − y ≤ δ ∣ x) is positive. Then, for any ν ≥ 3B and all h ∈H, the following bound

holds:

E
ℓ̃2
(h) − E∗ℓ2(H) ≤ max{2B

δ
,2}

pmin(δ) (Eℓδ(h) − E∗ℓδ(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣
Proof By (1), we have

E
ℓ̃2
(h) − E∗ℓ2(H) ≤ Eℓ2(h) − E∗ℓ2(H) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

≤
max{2B

δ
,2}

pmin(δ) (Eℓδ(h) − E∗ℓδ(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣. (Corollary 8)

This completes the proof.

D.2. Proof of Theorem 17

Theorem 17 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Then, for any ν ≥ 3B and all

h ∈H, the following bound holds:

E
ℓ̃2
(h) − E∗ℓ2(H) ≤ Γ(Eℓp(h) − E∗ℓp(H)) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣,

where Γ(t) = t 2p if p ≥ 2, 2
(8B)p−2p(p−1) t for p ∈ (1,2) and 4B t, if p = 1.

Proof By (1), we have

E
ℓ̃2
(h) − E∗ℓ2(H) ≤ Eℓ2(h) − E∗ℓ2(H) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

≤ Γ(Eℓp(h) − E∗ℓp(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣. (Corollary 11)

where Γ(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t
2
p p > 2

2
(8B)p−2p(p−1) t p ∈ (1,2]
4B t p = 1.

. This completes the proof.

D.3. Proof of Theorem 18

Theorem 18 Assume that the distribution is symmetric, the conditional distribution is bounded by

B > 0, and the hypothesis set H is realizable and bounded by B > 0. Assume that pmin(ǫ) =
infx∈XP(µ(x) − y ≥ ǫ ∣ x) is positive. Then, for any ν ≥ 3B and all h ∈ H, the following bound

holds:

Eℓ̃2
(h) − E∗ℓ2(H) ≤ Eℓsq−ǫ(h) − E∗ℓsq−ǫ(H)

2pmin(ǫ) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣.
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Proof By (1), we have

E
ℓ̃2
(h) − E∗ℓ2(H) ≤ Eℓ2(h) − E∗ℓ2(H) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

≤
Eℓsq−ǫ(h) − E∗ℓsq−ǫ(H)

2pmin(ǫ) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣. (Corollary 13)

This completes the proof.
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