
Evolving Assembly Code in an Adversarial Environment
Irina Maliukov
Gera Weiss

Oded Margalit
irinamal@post.bgu.ac.il

geraw@bgu.ac.il
odedm@post.bgu.ac.il

Department of Computer Science
Ben-Gurion University of the Negev

Be’er Sheva, Israel

Achiya Elyasaf
achiya@bgu.ac.il

Department of Software and Information System
Engineering

Ben-Gurion University of the Negev
Be’er Sheva, Israel

ABSTRACT
In this work, we evolve assembly code for the CodeGuru competi-
tion. The competition’s goal is to create a survivor—an assembly
program that runs the longest in shared memory, by resisting at-
tacks from adversary survivors and finding their weaknesses. For
evolving top-notch solvers, we specify a Backus Normal Form (BNF)
for the assembly language and synthesize the code from scratch
using Genetic Programming (GP). We evaluate the survivors by run-
ning CodeGuru games against human-written winning survivors.
Our evolved programs found weaknesses in the programs they were
trained against and utilized them. In addition, we compare our ap-
proach with a Large-Language Model, demonstrating that the latter
cannot generate a survivor that can win at any competition. This
work has important applications for cyber-security, as we utilize
evolution to detect weaknesses in survivors. The assembly BNF is
domain-independent; thus, by modifying the fitness function, it can
detect code weaknesses and help fix them. Finally, the CodeGuru
competition offers a novel platform for analyzing GP and code evo-
lution in adversarial environments. To support further research in
this direction, we provide a thorough qualitative analysis of the
evolved survivors and the weaknesses found.

CCS CONCEPTS
• Software and its engineering → Assembly languages; Ge-
netic programming; Source code generation; Search-based soft-
ware engineering; • Security and privacy→ Vulnerability manage-
ment; • Computing methodologies → Genetic programming.

KEYWORDS
genetic programming, assembly, code generation, cyber-security,
CodeGuru Xtreme
ACM Reference Format:
Irina Maliukov, Gera Weiss, Oded Margalit, and Achiya Elyasaf. 2024. Evolv-
ing Assembly Code in an Adversarial Environment. In Proceedings of The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’24, July 14–18, 2024, Melbourne, Australia
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The CodeGuru Xtreme game. On the left are the
survivors; on the center is the code of the selected survivor;
and on the right is the arena, i.e., the memory status. Each
survivor gets a different color in the arena, representing the
bytes it wrote to the shared memory.

Genetic and Evolutionary Computation Conference 2024 (GECCO ’24). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
CodeGuru Xtreme [9] is a coding competition where short 8086
assembly programs, called survivors, are loaded into a random ad-
dress in a virtual computer memory arena. Their goal is to defeat
all other survivors by staying the last program to run. An opponent
is defeated when it runs an illegal command caused, e.g., by over-
writing its memory. The screen-shot of the game screen is depicted
in Figure 1. Each survivor gets a different color in the arena, repre-
senting the bytes it wrote to the shared memory. We elaborate on
the game in Section 3.

In this work, we evolve winning survivors from scratch, i.e.,
from randomly generated assembly code, and without access to the
source code of known survivors. For this task, we utilize Grammar-
Guided Genetic Programming (G3P)—an evolutionary computation
technique that incorporates GP principles, employs context-free
grammar and operates directly with tree-based representations.
G3P allows us to evolve assembly programs following grammar-
type constraints. The goal of the individuals, embodied by the
fitness function, is to overtake adversaries and win the game. The
evolved code is represented using an Abstract Syntax Tree (AST)
based on matching assembly BNF we defined, where the nodes and
leaves are the BNF’s functions and terminals, respectively. Since our

ar
X

iv
:2

40
3.

19
48

9v
1

 [
cs

.N
E

]
 2

8
M

ar
 2

02
4

https://orcid.org/0009-0006-9300-5397
https://orcid.org/0000-0002-5832-8768
https://orcid.org/0000-0002-2026-2601
https://orcid.org/0000-0002-4009-5353
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GECCO ’24, July 14–18, 2024, Melbourne, Australia Maliukov et al.

BNF and the operators we used are general and domain-agnostic,
the approach applies to generating assembly programs for other
domains and processors.

No previous work has been done on the CodeGuru Xtreme game,
except for an undergraduate project [18] and some early work on
the “Core War” game [1, 3], which served as the basis for CodeGuru
Xtreme (see Section 3). As elaborated in Section 2, some work has
been done on the evolution of low-level languages (i.e., assembly
and Java bytecode), and some work has utilized large-language
models (LLM) to improve existing assembly code. Note that improv-
ing existing code is a simpler task than generating new code from
scratch, as the former’s state space is much smaller [2, 14]. To sup-
port that, we compared our approach to using LLM in Section 5.2,
demonstrating that the latter fails to create a survivor that wins
any competition, even when playing against simple survivors.

The CodeGuru Xtreme competition has been running since 2005,
with all past survivors publicly available. Thus, winning the com-
petition is considerably tricky and requires, among other qualities,
a good understanding of the 8086 assembly language.

This work has implications for cyber-security. As demonstrated
below, we utilize evolution to detect weaknesses in other survivors.
In addition, understanding the assembly language is a necessity in
some viruses. By modifying the fitness function, our approach can
be used for detecting weaknesses in code and help in fixing them,
detecting suspicious adversarial code, or, on the contrary, can be
intended to avoid security mechanisms. Finally, our approach can
evolve high-quality individuals with a small number of examples
and without detailed information.

The CodeGuru Xtreme competition provides a unique opportu-
nity to analyze Genetic Programming (GP) and code evolution in
adversarial environments. In order to encourage further research
in this area, we conducted a comprehensive qualitative analysis
of the evolved survivors and identified their strengths and weak-
nesses. This analysis sheds light on the effectiveness of the evolved
code and provides valuable insights for future improvements and
advancements in the field.

2 RELATEDWORK
Low-level code evolution. Several works have been done on low-

level code evolution, some similar to assembly, like Verilog (a hard-
ware description language) and Java bytecode. Karpuzcu [7] used
Grammatical Evolution (GE) for evolving a simple program of a
one-bit full adder. In spite of the strong bias they employed, the
success achieved was only about 5.7%.

Orlov and Sipper [11] proposed a method for genetic improve-
ment and repair of existing Java programs or any software that can
be compiled into Java bytecode. Although Java bytecode resem-
bles assembly, it has a simplified representation and does not have
direct memory access. This contrasts assembly, which has very
strong correspondence between its instructions, the architecture’s
machine code instructions, and memory. Orlov and Sipper seeded
the initial population with copies of a single hand-crafted individual
and improved it over generations, while we evolve assembly code
from scratch.

Rosin [15] synthesized simple programs with loops from in-
put/output examples. They targeted simplified low-level language

similar to assembly, where each instruction consists of an opcode
and a single operand.

Limited assembly code evolution. Some works focused on con-
strained assembly evolution—specific routines, predefined input
and output tables, and manually written code parts. In [16], multi-
objective linear genetic programming is applied for the automatic
generation of some specific assembly driver routines. The architec-
ture used was an 8051 microcontroller assembly, which is similar
to the 8086 we use. The evolved programs did not contain jump
instructions because they could form infinite loops, in contrast to
our wish to include them in the generated code. The results showed
that the automatically generated microcontroller code for specific
tasks can compete with a human programmer with a smaller code
size or faster execution. We aim to recreate this result within an
adversarial environment.

Similarly, [6] presented amethodology forwritingArduino board
programs using an automatic generator of assembly language rou-
tines based on a cooperative co-evolutionary multi-objective linear
genetic programming algorithm. They decomposed the problem
into sub-components, generating about 73% of the program, and the
remaining 27%, which are the main program and initial configura-
tion routines, are manually written.In our case, we cannot break the
goal of winning an opponent to sub-tasks without reading its code
first, which we avoid. In addition, there is no clear way to represent
a winning result in our case using an input-output table. We need
to evolve from scratch, a winning program, including jumps and
loops, completely automatically. The presented method [6] requires
more general implementation and adaptations to match our use
case, yet prove the ability to achieve it.

Overview of Program Synthesis Methods. Several articles compare
recent program synthesis and evolution techniques. [12] compares
Flash Fill (Microsoft Excel feature which uses version-space alge-
bras to perform program synthesis from examples on string ma-
nipulation tasks), MagicHaskeller (synthesizes functional Haskell
programs through an exhaustive search of programs with the cor-
rect type signatures. Uses Monte-Carlo algorithm to remove se-
mantically equivalent programs from the search space), TerpreT (a
probabilistic programming language that is designed for inductive
program synthesis), and two forms of GP—PushGP (evolves pro-
grams in a Turing complete, stack-based language called Push) and
Grammar Guided Genetic Programming (a GP that uses context-
free grammar as a guideline for syntactically correct programs
throughout the evolution). The comparison focused on the possi-
bility of producing a program that passes all tests for all training
and unseen testing inputs. It was done on problems of two types:
the first is usually approached using machine code or assembly
language (basic execution models problems), while the second is
usually approached using high-level languages (general program
synthesis benchmark suite). In the low-level field, the system that
performed the best was TerpreT, while sadly, there were no gath-
ered results for G3P. In the high-level field, both GP approaches
outperformed the others.

A survey of recent developments in program synthesis with evo-
lutionary algorithms [5], found that the most influential approaches
in the field are stack-based GP (usually PushGP), G3P, and Linear

Evolving Assembly Code in an Adversarial Environment GECCO ’24, July 14–18, 2024, Melbourne, Australia

GP (uses registers for calculations and direct memory access). En-
couraged by this review and by the fact that G3P has not been
widely tested on low-level languages, we want to use G3P for the
evolution of assembly programs.

Google DeepMind createdAlphaDev, a deep-reinforcement learn-
ing agent trained to improve a sorting algorithm [10]. They trained
AlphaDev with up to 16 Tensor Processing Units (TPU) v.3, with a
total batch size of 1,024 per TPU core and for 1 million iterations.
In practice, across all tasks, training took them, in the worst case,
two days to converge. Aside from the high resource demands for
representing and training the neural network, their approach as-
sumes a given working program to improve. It is not designed to
create programs from scratch.

A day after AlphaDev publication, a user on X (formerly Twitter)
tried to use ChatGPT to optimize the same sorting algorithm [13].
As noted before, improving an existing code is simpler than gener-
ating one from scratch. Nevertheless, we evaluate this approach in
Section 5.2 and test whether it is applicable to our domain.

All the related works present useful ideas for various research
directions to achieve our goal of assembly code evolution. Yet, none
achieved total success in evolving independent assembly programs
from scratch. They all applied constraints and limitations on the
programs, removed language features, or started from an initial
given code. We aim to expand the above achievements.

3 CODEGURU
CodeGuruXtreme [9] is a coding competition based on “CoreWar”—
a 1984 programming game created by D. G. Jones and A. K. Dewd-
ney [4]. In CodeGuru Xtreme, short 8086 assembly programs (at
most 512 bytes long) of 16-bit commands, called survivors, are
loaded into random space on a virtual computer memory arena
of size 64KB. Each survivor is loaded to a random address with a
stack of 2,048 bytes and a full set of registers. The distance between
two survivors and the arena’s edges is at least 1,024 bytes. The last
survivor alive is the winner and gets one point. If several survivors
stay alive, the point is divided equally between all. A survivor is
disqualified if it runs an illegal command or attempts to access a
memory address outside the arena or its stack. Each battle of the
game runs for 200,000 rounds or until only one survivor is left,
whichever comes first. In every round, the next command of each
survivor is executed in a round-robin fashion. The order of the sur-
vivor’s execution is changed randomly for each game. The memory
arena image and scoreboard that monitors the game’s progress are
depicted in Figure 1. In most cases, each participant has two pro-
grams that collaborate together. The game includes the following
special commands: WAITx4 increases the survivor’s speed, allowing
it to run several opcodes in a single round, INT 0x86 implements
“heavy bombing” by writing 256 bytes into memory, and INT 0x87
implements “smart bombing” by re-writing a pattern of 4 bytes.

CodeGuru competition has taken place every year since 2005
among outstanding high-school students. Each year, the level rises,
with more sophisticated survivors written. This work aims to evolve
survivors that will win the top survivors of previous years by finding
their weaknesses. Our goal is not to win the competition but rather
to show that GP can be utilized for evolving code in an adversarial

environment. Thus, we evolve a different survivor for each past
survivor rather than evolving one survivor that takes them all.

4 METHOD
To evolve our survivors, we use Grammar-Guided Genetic Program-
ming (G3P)—a technique that incorporates Genetic Programming
principles, employs context-free grammar, often in a BNF form,
and operates directly with tree-based representations. G3P allows
evolving assembly programs following grammar type constraints
and a defined aim, overtaking adversary in this case. During the
evolutionary process with G3P, the evolved code is represented
using an AST based on matching assembly BNF representation.

We now elaborate on the different parts of the evolutionary
process.

4.1 Representation
Each individual consists of two programs, called parts (see Section 3),
represented by an AST. The AST follows a grammar defined by a
BNF—a meta-syntax notation for context-free grammar consisting
of derivation rules. Since assembly is a symbolic programming lan-
guage, it can be represented using it. The terminals are opcodes
and operands, and the functions are structures in the language
(see listings 4 and 5 in the appendix). We defined our types and
derivation rules based on assembly language constraints. For ex-
ample, we defined an unary command as a command consisting of
an opcode that takes only one operand. Notably, except for a few
CodeGuru special operators, our BNF is general and can match any
8086 assembly code. There are assembly commands that are not
supported by the game’s engine and were left out of the grammar
to preserve legal programs.

4.2 Evaluation
We evaluated survivors by running a CodeGuru game of 200 battles
against the selected human-written survivor. The game’s engine
is an open-source Java program that outputs the final scores for
each game. As previously explained, the score is one point given
to the last survivor alive. If several survivors stay alive, the point
is divided equally between all. We modified the engine to produce
more information about each game, as elaborated by the fitness
function that has four parts:

Engine score: the survivor’s average engine score in all played
games.

𝑓score =
∑games

𝑖=1 score𝑖
games

Lifetime: the normalized average number of rounds the survivor
stayed alive.

𝑓lifetime = 0.1 log10𝑚𝑎𝑥

(
1,

∑games
𝑖=1 reached_round𝑖

games

)
Written bytes: the normalized average number of new bytes the

survivor wrote. That is, the writing was performed on a memory
fragment, which was not written before, or that the last one to
write in was not the survivor itself.

𝑓written_bytes = 0.1 log10𝑚𝑎𝑥

(
1,

∑games
𝑖=1 written_bytes𝑖

games

)
Writing rate: the average writing rate of the survivor.

GECCO ’24, July 14–18, 2024, Melbourne, Australia Maliukov et al.

𝑓writing_rate = 0.1
∑games

𝑖=1 written_bytes𝑖
𝑚𝑎𝑥 (1,∑games

𝑖=1 reached_round𝑖) ×
1

games

The first two parts encourage evolution to win the competitions
and survive for longer periods (respectively). The last two parts
encourage the evolution of programs that write in different memory
places, which enhances the chance of damaging opponents. We
refer to the score parameter as the most significant since it reflects
the performance compared to the adversary. Nevertheless, the other
parts are important for guiding the evolution towards the different
sub-goals and discriminating the individuals. We also defined a
bloat weight parameter, which equals 10−5. It slightly lowers the
fitness of large evolved trees in order to prevent trees from bloating
and yet allows large but powerful trees to evolve.

The fitness formula which performed the best was:
𝑓 = 2𝑓score + 0.2𝑓lifetime + 0.3𝑓written_bytes + 0.1𝑓writing_rate

−10−5𝑚𝑎𝑥 (#𝑝𝑎𝑟𝑡1_𝑛𝑜𝑑𝑒𝑠, #𝑝𝑎𝑟𝑡2_𝑛𝑜𝑑𝑒𝑠)
It produces fitness values in the range of [0, 2.5], which does not

produce sharp deviations.

4.3 Genetic Operators
We used Koza’s standard mutation and crossover operators [8] that
operate on the survivors’ parts, which are represented as trees.
Specifically, we used the grow sub-tree (i.e., sub-part) mutation
and the exchange sub-tree (sub-part) crossover. We added two
more operators. The duplicate-tree (part) mutation takes the best
tree (part) of a survivor and replaces the second part with it. The
exchange-trees (parts) crossover replaces one of the trees (parts) of
the first individual with one of the trees (parts) of the second.

5 EXPERIMENTS AND RESULTS
We carried out a comprehensive set of experiments aimed at win-
ning the top human-written survivors. Our code is written in
Python, using the EC-KitY toolkit [17]. Our code and data are
at github.com/anonymous-submission. The code for the human-
written survivors we compete with can be found at [9].

Experiments were conducted on a cluster of 96 nodes and 5,408
CPUs (the most powerful processors are AMD EPYC 7702P 64-core,
although most have lesser specs). 64 CPUs and 150 GB RAM were
allocated for each run to parallelize the evaluation. In practice, each
run took approximately two days.

The specific hyperparameters utilized in the experiments and
their chosen values are detailed in Table 1.

The operators were sequentially applied to individuals with
different probabilities (Table 1). The evolution was set to termi-
nate when 2,000 generations are reached, or before, depending on
whether convergence between best and average fitness values is
achieved in addition to a monotonic non-increasing winning strike
of 200 generations.

We repeated each experiment ten times to prove consistency. Our
individuals’ average fitness and standard deviation against each
of the past years’ winners are in Table 2. We consider an average
engine score higher than 0.5 a winning result for our individual.
Notably, evolution managed to evolve assembly programs, which
won almost 78% of past years’ human-written winners.

In the following sections, we inspect the code of the evolved
solvers. The inspection revealed that the evolved survivorsmanaged

Table 1: Evolutionary hyper-parameters.

Representation Grammar-based GP
Mutation Grow sub-tree and duplicate tree †

Recombination Exchange of sub-trees and trees †

Grow mutation
probability 0.7

Duplication mutation
probability 0.2

Exchange sub-tree
recombination probability 0.3

Replacement
recombination probability 0.2

Parent selection Tournament with 𝑘 = 4
Survivor selection Generational replacement

Population size 192
Termination 2,000 generations or convergence

with a winning strike
† The operators are described in Section 4.3.

to win complex and long survivors using a relatively small code
fragment. Although GP frequently evolves long code, sometimes
only a small part of it is used in the program run flow and yet
manages to win. As we will demonstrate, this shows how evolution
found the Achilles’ heel in the opponents’ code and utilized it for
its benefit.

5.1 Qualitative Analysis of Evolved Survivors
5.1.1 Utilizing Achilles’ heel. One of the clearest examples is Zorg—
the 2012 winner. Zorg writes an important code fragment for its
future run onmemory address zero. The evolution process noticed it
in about 100 generations and overridden this memory by addressing
di, which holds the value zero, depriving Zorg from winning (see
line 14 in both parts of Listing 1, which includes the dw translation
to assembly commands and the effect on the following commands).
Zorg’s code is significantly longer and more complicated than the
evolved fragment that overtook it. The evolved survivor manages
to win Zorg in about 70% of the cases despite the weakness finding
due to the randomness in the game’s execution order.

5.1.2 Concentrated vs. Scattered Memory Writes. During evolution,
we noticed several spikes in the best fitness. For example, when
training against BlocksOfGuru, there were spikes in the fitness of
the best individuals in generations 206 and 256 (see Figure 2). To
analyze these spikes, we ran a game with BlocksOfGuru against
these individuals and the overall best individual (from generation
1,769). The results and memory image are depicted in Figure 3.
We can see that most memory writes were made by the second
part of the 1,769 and 256 individuals that cover the arena with
scattered green and pink dots. 206’s second part performed less, yet
a significant number of writes in yellow are concentrated in several
areas. All of the first part performed little to no new memory writes.
Inspecting their cleared runnable code (Listings 2 and 3) reveals that

github.com/anonymous-submission

Evolving Assembly Code in an Adversarial Environment GECCO ’24, July 14–18, 2024, Melbourne, Australia

1 @star t :
2 and cl , [bx + 0 x68 + 0 x104 + 0 x246]
3 div WORD [bx]
4 l 8 2 9 3 8 4 9 :
5 r c l dl , c l
6 r c l ax , 1
7 ro l s i , c l
8 push WORD [s i]
9 shl dh , c l
10 l 8 2 9 3 8 5 0 :
11 and WORD [di + 0 x222] , 0 x92
12 wait
13 wait
14 mov WORD [di], 0x196
15 jns l 8 2 9 3 8 5 0
16 @end :

(a) Part 1

1 @star t :
2 sub bh , [bx + 0 x30 + @star t]
3 div WORD [bx]
4 l 8 2 9 3 8 5 8 :
5 ro l dl , c l
6 shr di , 1
7 dw 0x144 inc sp
8 push ds add [0 xDA80] , bx
9 sbb dl, 0x34 xor al , 0xD3
10 sar ax, cl c l c
11 l 8 2 9 3 8 5 9 :
12 and WORD [s i + 0 x246 + 0 x230] , 0 x264
13 push bx
14 pop WORD [di]
15 and WORD [s i + 0 x206 + 0 x202 + 0 x220 + 0x−14 +

0x−20 + 0 x32] , 0 x144
16 jmp l 8 2 9 3 8 5 9
17 @end :

(b) Part 2

Listing 1: Evolved survivor against Zorg (2012 winner). The two parts of the evolved survivor utilized Zorg’s Achilles’ heel by
writing data to a part of its program. Strike-through text denotes run-time changed code.

Table 2: Test average fitness and standard deviation over
ten experiments of our best individuals against past years’
winners.

Year Human survivor #Wins
Avg.

Engine’s
Score

SD

2006 Zeus 8/10 0.675 0.162
2007 HutsHuts 10/10 0.960 0.048
2008 APOCALYPSE 9/10 0.741 0.170
2009 XLII 9/10 0.891 0.174
2010 FSM 3/10 0.481 0.147
2011 Mamaliga 9/10 0.738 0.132
2012 Zorg 9/10 0.692 0.171
2013 Snake 10/10 0.736 0.136
2014 IamAA 6/10 0.478 0.220
2014 Paranoia 9/10 0.890 0.190
2015 SilentError 9/10 0.684 0.127
2016 LoudBugFix 2/10 0.402 0.078
2017 Memz 10/10 0.997 0.006
2018 Barvaz’sAngles 10/10 0.991 0.008
2019 Nuki’sDemons 5/10 0.666 0.286
2020 GreeniEs 10/10 0.984 0.020
2021 BlocksOfGuru 10/10 0.753 0.118
2022 TheHeapMen 4/10 0.494 0.102

the first parts of 256 and 1,769 run in the loopwritten in their bottom,
which keeps the individual alive but does not perform attacking
actions—as seen in the lack of their color in the arena. In 206, both
parts run in a loop due to jmp ax at the end, which jumps into the
beginning of the code. Most memory writes of all individuals are
performed using addressing si , yet with adding different constants

Figure 2: BlocksOfGuru 2021

to si. 256 and 1,769 use special constants like 65,535 and @start,
while 206 does not. The first two exceed the bounds of word data,
and the computation is thus written to an address defined as the
special constant modulo 216, which results in scattered writes. The
evolutionary process discovered that scattered writing has more
chances to encounter adversary code, as reflected in their higher
scores and it is reflected in runs against other survivors as well.

5.1.3 Vertical vs. Horizontal Memory Writes. Another interesting
pattern we detected in evolved survivors was writing vertical bytes
into memory. That is, sequentially writing a byte every 256 bytes,
creating a vertical line in the memory state. This contrasts with
human-written survivors, who usually write memory in horizontal
lines (consecutive bytes). As a result, the evolved survivors were
able to “cut” the adversary by writing on its code before the adver-
sary reached its code. This is depicted, for example, in the memory
state of our evolved individuals against Zeus (2006) and GreeniEs
(2020) (see Figure 4). The evolved survivors, in purple and yellow,
write their code in vertical lines, thus cutting their adversaries’
horizontal writing (in red and green). Writing vertically assures
reaching the opponent’s code faster because most submitted sur-
vivors take advantage of the maximum allowed code size, thus
filling at least one memory row entirely. Therefore, filling one or

GECCO ’24, July 14–18, 2024, Melbourne, Australia Maliukov et al.

Figure 3: The memory image of BlocksOfGuru vs. best in-
dividuals from generations 206, 256, and 1,769. The scat-
tered green and pink dots are memory bytes written by the
1,769 and 256 individuals, respectively. Non-reachable code
is stroke through.

a few columns will be faster than filling complete rows. A simi-
lar pattern was found in a significant part of runs against other
survivors.

The presented patterns of utilizing weak points, scattered and
vertical writings are expressed in a significant part of the performed
evolutionary runs against all the survivors, although not all the
runs of each survivor have used the same pattern.

5.1.4 Random Generator Pattern. The original program had diffi-
culties overtaking a few previous years’ winners, specifically FSM
2010, IamAA 2014, LoudBugFix 2016, and TheHeapMen 2022, re-
sulting in an average score lower than 0.5. We assumed that human-
written survivors may use randomness to be unpredictable, while
our BNF has no element of randomness. Thus, we decided to add
Pseudo-Random Number Generator (PRNG) patterns to our BNF.
We added Linear Congruentional Generator (LCG) and XOR-Shift
Generators implementation to our grammar as shown in Listing 6
and ran the evolution against the above adversaries again for ten
runs each.

As shown in Table 3, using randomness improved the number
of games evolution won and the average score in 3/4 of the cases.
The majority of the best evolved individuals contained at least one
of the random patterns. However, in some, the pattern appears in
an unreachable code segment or outside the loop, meaning it only
executes once. We believe it helped the evolution process, even
though the winning survivor does not actively use it. The use of
randomness enhanced the use of scattered writing patterns (see
Section 5.1.2) for some of the survivors and evolved a combined
horizontal-vertical writing pattern for others, in contrast to the de-
scribed in Section 5.1.3. The innovation the random pattern caused
is the combination of the described patterns together, resulting in
scattered writing in horizontal lines that expand vertically, as seen
in Figure 5. We can see the yellow and purple memory cells that
are being filled horizontally at the beginning. Afterwards, the cre-
ated lines expand vertically, and everything is done using scattered
writing.

Year Human Survivor w/o Random w/ Random
Avg.
Score

#Vic-
tories

Avg.
Score

#Vic-
tories

2010 FSM 0.481 3/10 0.483 5/10
2014 IamAA 0.478 6/10 0.377 3/10
2016 LoudBugFix 0.402 2/10 0.483 6/10
2022 TheHeapMen 0.494 4/10 0.496 5/10
Table 3: Test game result with and without randomness.

5.2 Comparison to LLMs
We compared our results to ChatGPT, one of today’s leading LLMs.
We explained the CodeGuru game, the special opcodes, and the rules
using prompt engineering. We asked the chat for a survivor with
the best chance to overtake others. The suggested code was tested
against simple competition survivors that are given as examples
in the game’s web engine. At first, the provided survivors did not
compile. After supplying corrections, they compiled; however, they
achieved poor scores. Even when we supplied the opponents’ code
to ChatGPT, its produced survivor did not win. The prompts we
used can be found at https://chat.openai.com/share/5ebda97c-06f8-
4430-bd04-78a5abfc74ea.

6 CONCLUSION
This work presented the evolution of assembly code from scratch
in an adversarial environment, specifically the CodeGuru Xtreme
competition. Through the use of GP, we synthesized assembly code
that outperformed human-written winning survivors from past
years. Our evolved programs were able to identify and exploit
weaknesses in the programs they were trained against. Additionally,
we compared our approach with the use of a Large-Language Model
(LLM) and demonstrated that the LLM was unable to generate a
survivor capable of winning any competition.

The CodeGuru Xtreme competition serves as a valuable platform
for studying GP and code evolution in adversarial environments.
To facilitate further research in this direction, we have provided a
comprehensive qualitative analysis of the evolved survivors and the
weaknesses they have identified. While we were able to overtake
most of the top human-written survivors, the domain is far from
being solved. There are still some survivors that evolution failed to
win, and the evolved survivors were only able to win against one
survivor at a time.

The implications of this work extend beyond the CodeGuru
Xtreme competition. Utilizing evolution to detect weaknesses in
other survivors has important applications in cyber-security. Fur-
thermore, the assembly language used in this research is also rele-
vant in the context of computer viruses. We believe that by modify-
ing the fitness function, our approach can be employed to identify
weaknesses in code and aid in their resolution.

https://chat.openai.com/share/5ebda97c-06f8-4430-bd04-78a5abfc74ea
https://chat.openai.com/share/5ebda97c-06f8-4430-bd04-78a5abfc74ea

Evolving Assembly Code in an Adversarial Environment GECCO ’24, July 14–18, 2024, Melbourne, Australia

(a) Evolution vs. GreeniEs (2020) (b) Evolution vs. Zeus (2006)

Figure 4: Vertical vs. horizontal memory write. Horizontal writings of evolved survivors (in purple and yellow) “cut” the
human-written adversaries that write in horizontal lines (green and red) by writing on their code before they reach their code.

1 @star t :
2 not WORD [bx+65535]
3 cmc
4 and [s i +0 x252] , di
5 xchg bx , [s i +0 x051E]
6 jnc l 2 6 8 0 8 9
7 l 2 6 8 0 8 9 :
8 add [s i +0 x0802 +65535] , bx
9 sbb cl , 0 x−14
10 loop l 2 6 8 0 9 0
11 l 2 6 8 0 9 0 :
12 mov [s i +@star t +0 x03B4] ,

cx
13 rcr si , 1
14 and [s i] , ax
15 jmp ax
16 @end :

(a) 206 part 1

1 @star t :
2 inc WORD [bx+65535]
3 cmc
4 and [s i +0 x252] , cx
5 xchg bx , [s i +0 x051E]
6 jnc l 2 6 8 0 9 4
7 l 2 6 8 0 9 4 :
8 add [s i +0 x0814 +65535] ,

bx
9 sbb cl , 0 x124
10 loop l 2 6 8 0 9 5
11 l 2 6 8 0 9 5 :
12 mov [s i +0 x152] , cx
13 rcr si , 1
14 and [s i] , ax
15 jmp ax
16 @end :

(b) 206 part 2

1 @star t :
2 dec WORD [bx+65535]
3 cmc
4 and [s i +0 x252] , dx
5 xchg bx , [di +0x05FC]
6 l 3 7 6 1 4 5 :
7 sub [s i] , c l
8 jmp l 3 7 6 1 4 5
9 @end :

(c) 256 part 1

1 @star t :
2 inc WORD [bx+0 x260 +65535]
3 cmc
4 and [s i +0 x252] , di
5 xchg bx , [s i +0 x0802 +65535]
6 jnc l 3 7 6 1 5 0
7 l 3 7 6 1 5 0 :
8 add [s i +0 x0802 +65535] , bx
9 sbb cl , 0 x−14
10 loop l 3 7 6 1 5 1
11 l 3 7 6 1 5 1 :
12 mov [s i +@star t +0 x03B4] , cx
13 rcr s i , 1
14 and [s i] , ax
15 jmp ax
16 @end :

(d) 256 part 2

Listing 2: Comparing the code of best individuals against the BlocksOfGuru survivor.

1 @star t :
2 xchg bp , [bp+0 x0130]
3 and [di +0x072C] , dx
4 xchg di , [di +0x05FC]
5 l 7 3 8 8 8 3 4 :
6 or [s i] , bl
7 jmp l 7 3 8 8 8 3 4
8 @end :

(a) 1,769 part 1

1 @star t :
2 inc WORD [bx+0 x260 +65535]
3 c l i
4 and [s i +0 x252] , di
5 xchg bx , [s i +0 x0802 +65535]
6 jnc l 7 3 8 8 8 4 9
7 l 7 3 8 8 8 4 9 :
8 add [s i +0 x0802 +65535] , bx
9 sbb cl , 0 x−14
10 loop l 7 3 8 8 8 5 0
11 l 7 3 8 8 8 5 0 :
12 mov [s i +@star t +0 x03B4] , cx
13 rcr s i , 1
14 and [s i] , ax
15 jmp ax
16 @end :

(b) 1,769 part 2

Listing 3: Comparing the code of best individuals against the
BlocksOfGuru survivor.

Figure 5: Scattered, horizontal and vertical writing in the
survivor which evolved using randomness patterns against
FSM (2010).

REFERENCES
[1] David G. Andersen. 2001. The Garden: Evolving Warriors in Core Wars. https:

//api.semanticscholar.org/CorpusID:17099745.
[2] Wolfgang Banzhaf. 2018. Some Remarks on Code Evolution with Genetic Pro-

gramming. In Inspired by Nature. Springer, 145–156.

https://api.semanticscholar.org/CorpusID:17099745
https://api.semanticscholar.org/CorpusID:17099745

GECCO ’24, July 14–18, 2024, Melbourne, Australia Maliukov et al.

[3] Fulvio Corno, Ernesto Sánchez, and Giovanni Squillero. 2003. Exploiting co-
evolution and a modified island model to climb the core war hill. In The 2003
Congress on Evolutionary Computation, 2003. CEC’03., Vol. 3. IEEE, Torino, Italy,
2217–2221.

[4] Alexander Keewatin Dewdney. 1984. Recreational Mathematics–Core Wars.
Scientific American 2 (1984), 43–98.

[5] Franz Rothlauf Dominik Sobania, Dirk Schweim. 2021. Recent Developments
in Program Synthesis with Evolutionary Algorithms. https://arxiv.org/pdf/2108.
12227.pdf.

[6] Wildor Ferrel and Luis Alfaro. 2020. Genetic Programming-Based Code Gen-
eration for Arduino. https://thesai.org/Downloads/Volume11No11/Paper_68-
Genetic_Programming_Based_Code_Generation.pdf. International Journal of
Advanced Computer Science and Applications 11 (01 2020). https://doi.org/10.
14569/IJACSA.2020.0111168

[7] Ulya R. Karpuzcu. 2005. Automatic Verilog Code Generation through
Grammatical Evolution. https://dl.acm.org/doi/pdf/10.1145/1102256.1102346.
In Proceedings of the 7th Annual Workshop on Genetic and Evolutionary
Computation (Washington, D.C.) (GECCO ’05). Association for Computing Ma-
chinery, New York, NY, USA, 394––397. https://doi.org/10.1145/1102256.1102346

[8] John R Koza et al. 1994. Genetic programming II. Vol. 17. MIT press Cambridge.
[9] Danny Leshem and Tomer Eyzenberg. 2012. CodeGuru repository. https://github.

com/codeguru-il.
[10] Daniel Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi,

Cosmin Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex
Ahern, Thomas Köppe, Kevin Millikin, Stephen Gaffney, Sophie Elster, Jackson
Broshear, Chris Gamble, Kieran Milan, Robert Tung, Minjae Hwang, and David
Silver. 2023. Faster sorting algorithms discovered using deep reinforcement
learning. Nature 618 (06 2023), 257–263. https://doi.org/10.1038/s41586-023-
06004-9

[11] Michael Orlov and Moshe Sipper. 2011. Flight of the FINCH through the Java
wilderness. IEEE Transactions on Evolutionary Computation 15, 2 (2011), 166–
182.

[12] Edward Pantridge, Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spec-
tor. 2017. On the Difficulty of Benchmarking Inductive Program Synthe-
sis Methods. https://doi.org/10.1145/3067695.3082533. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion (Berlin, Ger-
many) (GECCO ’17). Association for Computing Machinery, New York, NY, USA,
1589—-1596. https://doi.org/10.1145/3067695.3082533

[13] Dimitris Papailiopoulos. 2023. GPT-4 “discovered” the same sorting algorithm as
AlphaDev. https://twitter.com/DimitrisPapail/status/1666843952824168465, last
accessed on 2024-01-31.

[14] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22,
3 (June 2018), 415–432. https://doi.org/10.1109/tevc.2017.2693219

[15] Christopher D. Rosin. 2019. Stepping Stones to Inductive Synthesis of
Low-Level Looping Programs. https://doi.org/10.1609/aaai.v33i01.33012362. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
and Thirty-First Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
(AAAI’19/IAAI’19/EAAI’19). AAAI Press, Honolulu, Hawaii, USA, Article 292,
9 pages. https://doi.org/10.1609/aaai.v33i01.33012362

[16] Wildor Ferrel Serruto and Luis Alfaro Casas. 2017. Automatic Code Generation
for Microcontroller-Based System Using Multi-objective Linear Genetic Pro-
gramming. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8560802.
In 2017 International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, Las Vegas, NV, USA, 279–285. https://doi.org/10.1109/
CSCI.2017.47

[17] Moshe Sipper, Tomer Halperin, Itai Tzruia, and Achiya Elyasaf. 2023. EC-KitY:
Evolutionary computation tool kit in Python with seamless machine learning
integration. SoftwareX 22 (2023), 101381. https://doi.org/10.1016/j.softx.2023.
101381

[18] Dean Sysman and Amir Leibu. 2009. Darwin8086. https://code.google.com/
archive/p/darwin8086/.

https://arxiv.org/pdf/2108.12227.pdf
https://arxiv.org/pdf/2108.12227.pdf
https://thesai.org/Downloads/Volume11No11/Paper_68-Genetic_Programming_Based_Code_Generation.pdf
https://thesai.org/Downloads/Volume11No11/Paper_68-Genetic_Programming_Based_Code_Generation.pdf
https://doi.org/10.14569/IJACSA.2020.0111168
https://doi.org/10.14569/IJACSA.2020.0111168
https://dl.acm.org/doi/pdf/10.1145/1102256.1102346
https://doi.org/10.1145/1102256.1102346
https://github.com/codeguru-il
https://github.com/codeguru-il
https://doi.org/10.1038/s41586-023-06004-9
https://doi.org/10.1038/s41586-023-06004-9
https://doi.org/10.1145/3067695.3082533
https://doi.org/10.1145/3067695.3082533
https://twitter.com/DimitrisPapail/status/1666843952824168465
https://doi.org/10.1109/tevc.2017.2693219
https://doi.org/10.1609/aaai.v33i01.33012362
https://doi.org/10.1609/aaai.v33i01.33012362
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8560802
https://doi.org/10.1109/CSCI.2017.47
https://doi.org/10.1109/CSCI.2017.47
https://doi.org/10.1016/j.softx.2023.101381
https://doi.org/10.1016/j.softx.2023.101381
https://code.google.com/archive/p/darwin8086/
https://code.google.com/archive/p/darwin8086/

Evolving Assembly Code in an Adversarial Environment GECCO ’24, July 14–18, 2024, Melbourne, Australia

A OUR GRAMMAR

⟨reg⟩ ::= ‘ax’, ‘bx’, ‘cx’, ‘dx’, ‘si’, ‘di’, ‘bp’, ‘sp’
⟨half_reg⟩ ::= ‘ah’, ‘al’, ‘bh’, ‘bl’, ‘ch’, ‘cl’, ‘dh’, ‘dl’
⟨addres⟩ ::= ‘[bx]’, ‘[si]’, ‘[di]’, ‘[bp]’
⟨pop_reg⟩ ::= ‘ax’, ‘bx’, ‘cx’, ‘dx’, ‘si’, ‘di’, ‘bp’, ‘WORD [bx]’,

‘WORD [si]’, ‘WORD [di]’, ‘WORD [bp]’, ‘ds’, ‘es’
⟨push_reg⟩ ::= ‘ax’, ‘bx’, ‘cx’, ‘dx’, ‘si’, ‘di’, ‘bp’, ‘WORD [bx]’,

‘WORD [si]’, ‘ WORD [di]’, ‘ WORD [bp]’, ‘ds’, ‘es’, ‘cs’,
‘ss’

⟨const⟩ ::= [(2*i) for i in range(-10, 133)]’, ‘@start’, ‘@end’,
‘65535’, ‘0xcccc’

⟨op⟩ ::= ‘nop’, ‘stosw’, ‘lodsw’, ‘movsw’, ‘cmpsw’, ‘scasw’,
‘pushf’, ‘popf’, ‘lahf’, ‘stosb’, ‘lodsb’, ‘movsb’, ‘cmpsb’,
‘scasb’, ‘xlat’, ‘xlatb’, ‘cwd’, ‘cbw’, ‘cmc’, ‘clc’, ‘stc’,
‘cli’, ‘sti’, ‘cld’, ‘std’

⟨op_single⟩ ::= ‘div’, ‘mul’, ‘inc’, ‘dec’, ‘not’, ‘neg’
⟨op_double⟩ ::= ‘cmp’, ‘mov’, ‘add’, ‘sub’, ‘and’, ‘or’, ‘xor’,

‘adc’, ‘sbb’, ‘test’
⟨op_jmp⟩ ::= ‘jmp’, ‘jcxz’, ‘je’, ‘jne’, ‘jp’, ‘jnp’, ‘jo’, ‘jno’,

‘jc’, ‘jnc’, ‘ja’, ‘jna’, ‘js’, ‘jns’, ‘jl’, ‘jnl’, ‘jle’, ‘jnle’,
‘loopnz’, ‘loopne’, ‘loopz’, ‘loope’, ‘loop’

⟨op_rep⟩ ::= ‘rep’, ‘repe’, ‘repz’, ‘repne’, ‘repnz’
⟨op_function⟩ ::= ‘call’, ‘call near’, ‘call far’
⟨op_special⟩ ::= ‘wait wait wait wait’, ‘wait wait’,

‘int 0x86’, ‘int 0x87’
⟨op_pointer⟩ ::= ‘lea’, ‘les’, ‘lds’
⟨op_ret⟩ ::= ‘ret’, ‘retn’, ‘retf’, ‘iret’
⟨op_push⟩ ::= ‘push’
⟨op_pop⟩ ::= ‘pop’
⟨op_double_no_const⟩ ::= ‘xchg’
⟨op_shift⟩ ::= ‘sal’, ‘sar’, ‘shl’, ‘shr’, ‘rol’, ‘ror’, ‘rcl’,

‘rcr’
⟨section⟩ ::= ‘ ’

Listing 4: Terminals definitions

⟨section⟩ ::= ⟨label⟩ ⟨section⟩ ⟨backwards_jump⟩ ⟨section⟩
| ⟨label⟩ ⟨section⟩ ⟨backwards_jump⟩
| ⟨section⟩ ⟨forward_jmp⟩⟨section⟩ ⟨label⟩ ⟨section⟩
| ⟨label⟩ ⟨section⟩ ⟨call_func⟩ ⟨backwards_jump⟩ ⟨label⟩

⟨section⟩ ⟨return⟩
| ⟨op_double⟩ ⟨reg⟩ ⟨reg | const | address⟩ ⟨section⟩
| ⟨op_double⟩ ⟨address⟩ ⟨reg | half_reg⟩ ⟨section⟩
| ⟨op_double⟩ ⟨half_reg⟩ ⟨half_reg | const | address⟩

⟨section⟩
| ⟨op_double⟩ ⟨WORD | BYTE⟩ ⟨address⟩ ⟨const⟩ ⟨section⟩
| ⟨op_pointer⟩ ⟨reg⟩ ⟨address⟩ ⟨section⟩
| ⟨op_double_no_const⟩ ⟨reg⟩ ⟨reg | address⟩ ⟨section⟩
| ⟨op_double_no_const⟩ ⟨half_reg⟩ ⟨half_reg | address⟩

⟨section⟩
| ⟨op_single⟩ ⟨reg | half_reg⟩ ⟨section⟩
| ⟨op_single⟩ ⟨WORD | BYTE⟩ ⟨address⟩ ⟨section⟩
| ⟨op_function⟩ ⟨address⟩ ⟨section⟩
| ⟨op | op_special⟩ ⟨section⟩
| ⟨op_rep⟩ ⟨op⟩ ⟨section⟩
| ⟨op_push⟩ ⟨push_reg⟩ ⟨section⟩
| ⟨op_pop⟩ ⟨pop_reg⟩ ⟨section⟩
| ‘jmp’ ⟨reg | address⟩ ⟨section⟩
| ‘dw 0x’⟨const⟩ ⟨section⟩
| ⟨op_shift⟩ ⟨reg | half_reg⟩ ⟨cl | 1⟩ ⟨section⟩

⟨call_func⟩ ::= ‘call l’⟨const⟩ ⟨section⟩
⟨return⟩ ::= ⟨op_ret⟩ ⟨section⟩
⟨label⟩ ::= ‘l’⟨const⟩ ⟨section⟩
⟨forward_jump⟩ ::= ⟨op_jmp⟩ ‘l’⟨const⟩ ⟨section⟩
⟨backwards_jump⟩ ::= ⟨op_jmp⟩ ‘l’⟨const⟩‘-1’ ⟨section⟩
⟨address⟩ ::= [⟨address⟩ + ⟨const⟩]

Listing 5: Functions definitions

⟨section⟩ ::= mov ax, timestamp
mov ⟨reg⟩, 1664525
mul ⟨reg⟩
add ax, 1013904223 ⟨section⟩

⟨section⟩ ::= mov ⟨reg⟩, randint(0, 65,535)
mov ⟨reg⟩, randint(0, 65,535)
xor ⟨reg⟩, ⟨reg⟩
shl ⟨reg⟩, 7
shr ⟨reg⟩, 5
xor ⟨reg⟩, ⟨reg⟩ ⟨section⟩

Listing 6: Functions definitions for the random patterns.

	Abstract
	1 Introduction
	2 Related Work
	3 CodeGuru
	4 Method
	4.1 Representation
	4.2 Evaluation
	4.3 Genetic Operators

	5 Experiments and Results
	5.1 Qualitative Analysis of Evolved Survivors
	5.2 Comparison to LLMs

	6 Conclusion
	References
	A Our Grammar

