
Jointly Training and Pruning CNNs via Learnable Agent Guidance and
Alignment

Alireza Ganjdanesh 1∗ Shangqian Gao 2∗ Heng Huang 1†

1 Department of Computer Science, University of Maryland College Park
2 Department of Electrical and Computer Engineering, University of Pittsburgh

{aliganj, heng}@umd.edu, shg84@pitt.edu

Abstract

Structural model pruning is a prominent approach used
for reducing the computational cost of Convolutional Neu-
ral Networks (CNNs) before their deployment on resource-
constrained devices. Yet, the majority of proposed ideas re-
quire a pretrained model before pruning, which is costly to
secure. In this paper, we propose a novel structural prun-
ing approach to jointly learn the weights and structurally
prune architectures of CNN models. The core element of
our method is a Reinforcement Learning (RL) agent whose
actions determine the pruning ratios of the CNN model’s
layers, and the resulting model’s accuracy serves as its re-
ward. We conduct the joint training and pruning by itera-
tively training the model’s weights and the agent’s policy,
and we regularize the model’s weights to align with the se-
lected structure by the agent. The evolving model’s weights
result in a dynamic reward function for the agent, which
prevents using prominent episodic RL methods with station-
ary environment assumption for our purpose. We address
this challenge by designing a mechanism to model the com-
plex changing dynamics of the reward function and provide
a representation of it to the RL agent. To do so, we take
a learnable embedding for each training epoch and em-
ploy a recurrent model to calculate a representation of the
changing environment. We train the recurrent model and
embeddings using a decoder model to reconstruct observed
rewards. Such a design empowers our agent to effectively
leverage episodic observations along with the environment
representations to learn a proper policy to determine per-
formant sub-networks of the CNN model. Our extensive ex-
periments on CIFAR-10 and ImageNet using ResNets and
MobileNets demonstrate the effectiveness of our method.

†This work was partially supported by NSF IIS 2347592, 2347604,
2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.

*These authors contributed equally to this work.

1. Introduction

Convolutional Neural Networks (CNNs) have enabled un-
precedented achievements in the last decade in different do-
mains [33, 69, 70, 81]. They have shown a trend for bet-
ter performance when benefiting from deeper and wider ar-
chitectures, larger dataset sizes, and longer training times
with modern hardware [11, 58, 60, 88]. Despite their ac-
complishments, the tremendous memory and computational
requirements of CNNs prohibit deploying them on edge
devices with limited battery and compute resources, mak-
ing CNN compression a crucial step before their deploy-
ment. The goal is to reduce the size and computational bur-
den of CNNs while preserving their performance. Model
pruning (removing weights [31] or structures [51] like chan-
nels and layers), weight quantization [68], knowledge dis-
tillation [40], Neural Architecture Search (NAS) [41, 98],
and lightweight architecture designs [42, 71] are common
categories of ideas for CNN compression.

Structural pruning which removes redundant channels of
a CNN is the main focus of this paper. It is more prac-
tically plausible than weight pruning as it can effectively
reduce the inference cost of a model on established hard-
ware like GPUs without requiring special libraries [32]
or post-processing steps. Further, it demands far less de-
sign efforts than NAS [30] and architecture design meth-
ods [62, 77]. The proposed structural pruning methods de-
termine the importance of each channel using metrics such
as resource loss [22], norm [51], and accuracy [59] and
prune a model with techniques like greedy search [90] as
well as evolutionary algorithms [8]. Thanks to the advances
of Reinforcement Learning (RL) methods in complex de-
cision making tasks [3, 16, 73], leveraging RL methods to
determine proper sub-networks of a CNN given a desired
budget has been explored in recent years [1, 36, 45, 89,
92, 95]. AMC [36] trains a DDPG agent [56] to prune lay-
ers of a pretrained CNN. LFP [45] trains an agent to get
weights of a CNN’s filters and determine keeping or pruning
them. N2N [1] uses two agents to perform layer removal and

1

ar
X

iv
:2

40
3.

19
49

0v
1

 [
cs

.C
V

]
 2

8
M

ar
 2

02
4

layer shrinkage respectively. Finally, GNNRL [92] utilizes
graph neural networks to identify CNN topologies and em-
ploy RL to find a proper compression policy. Despite their
promising results, these models require a pretrained CNN
model for training their RL agent for pruning as the promi-
nent RL algorithms, like DDPG [56] used in AMC [36],
cannot perform well in dynamic environments [48] if one
trains model’s weights along with the agent’s policy.

We propose a novel model pruning method to jointly
learn a CNN’s weights and structurally prune its architec-
ture using an RL agent. As training the weights and pruning
them cannot happen simultaneously, we apply a soft reg-
ularization term to the model’s weights during training to
align with the sub-structure chosen by the best agent’s pol-
icy. We iteratively train the model’s weights for one epoch
and perform several RL trajectories observations on the
most recent model to update the policy of the RL agent. We
design our RL agent so that in each of its episodic tra-
jectories, its actions determine the pruning ratio for each
layer of the model. After pruning all layers, we take the re-
sulting model’s accuracy as our agent’s reward. However,
as the model’s weights get updated in each epoch, the re-
ward function of the RL agent changes dynamically be-
tween epochs. Accordingly, the training episodes of our
agent are drawn from a non-stationary distribution. There-
fore, one cannot simply employ prominent RL methods
like DDPG [56] and Soft Actor-Critic (SAC) [29] in our
framework to prune the model because their core assump-
tion which is the environment being stationary [48] is not
fulfilled. To overcome this challenge, we design a mech-
anism to model the evolving dynamics of the agent’s envi-
ronment. We take an embedding for each epoch of the train-
ing and employ a recurrent model to determine a represen-
tation of the current state of the environment for the agent
given the embeddings of the epochs so far. We train the re-
current model along with a decoder model in an unsuper-
vised fashion to reconstruct the reward values observed in
the agent’s trajectories. Finally, we augment each episodic
trajectory of the agent with the representations of the state
of the environment (provided by the recurrent model) at the
time of the trajectory. By doing so, our RL agent has access
to all information regarding the dynamic environment, and
we employ SAC [29] to train the agent using the augmented
trajectories. In addition, our soft regularization scheme for
alignment of weights and the selected structure by the agent
enables our pruned model to readily recover its performance
in fine-tuning. We summarize our contributions as follows:

• We propose a novel channel pruning method that jointly
learns the weights and prunes the architecture of a CNN
model using an RL agent. In contrast with previous meth-
ods using RL for pruning, our method does not need a
pretrained model before pruning.

• We perform joint training and pruning by iteratively train-

ing the model’s weights and the agent’s policy. We utilize
a soft regularization technique to the model’s weights dur-
ing training, encouraging them to align with the structure
determined by the agent. By doing so, our method can
identify a high-performing base model with weights that
closely match the structure selected by the agent. Con-
sequently, the pruned model can readily recover its high
performance in fine-tuning.

• We design a mechanism to model the dynamics of our
evolving pruning environment. To do so, we use a recur-
rent model that provides a representation of the state of
the environment to the agent. We augment the trajectories
observed by the agent using the provided representations
to train the agent.

2. Related Work
Model Pruning: Model compression ideas [26, 63] can be
categorized as structural pruning [20, 23–25, 51, 65, 66, 74,
86, 91, 97], weight quantization [6, 68, 83], weight prun-
ing [18, 31, 94], Neural Architecture Search (NAS) [21,
87, 98], knowledge distillation [27], and lightweight archi-
tecture design [30, 77]. Structural pruning focusing on re-
moving redundant channels (filters) of a CNN is the direc-
tion related to this paper. The proposed methods have ap-
proached this problem from various directions like pruning
filters with smaller norms [51], applying group regulariza-
tion [34] like LASSO [79] during training, ranking filters’
importance using low-rank decomposition [57], estimating
influence of a filter on loss [64] using the Taylor decom-
position, and meta-learning [59]. Recently, several ideas
have employed Reinforcement Learning (RL) for prun-
ing [1, 36, 45, 89, 92, 95]. LSEDN [95] trains an RL agent to
perform layer-wise pruning on DenseNet [44]. N2N [1] pro-
posed a two-stage process that employs two recurrent RL
agents in which one agent removes layers of a pretrained
CNN, and then, the other agent shrinks each remaining
layer. LFP [45] introduces ‘try-and-learn’ scheme in which
RL agents learn to take layers’ weights and predict binary
masks for pruning or preserving layers’ filters. AMC [36]
takes a pretrained CNN and trains a DDPG [56] to prune its
convolution layers. Yet, these models can only prune pre-
trained models and cannot jointly train and prune the mod-
els. The main reason is that they employ off-the-shelf RL
methods [29, 56] that assume stationary training environ-
ments, but if the model’s weights change during pruning,
the environment will not be stationary. We develop a novel
channel pruning method that jointly learns a CNN’s weights
and prunes its architecture using an RL agent in an itera-
tive manner. We design a procedure to model the changing
dynamics of the reward function of our RL agent using a
recurrent model that provides a representation of the cur-
rent state of the environment. In addition, we regularize the
model’s weights to align with the structure determined by

2

𝟏 …

	𝑆!,#

Recurrent
Env
Model

Agent

	𝓏#

Epoch Embeddings

	𝑎!,#

…

Critic
…(), , ,

𝒆𝟏 𝒆𝟐 𝒆𝒌

	𝑟

ℒ!"#$#!

ℒ%&'($

Pruning

ℒ!)%**… …

Agent	𝓏#

	𝒗𝟏 	𝒗𝒍 	𝒗𝑳

ℒ!"#$%ℒ%)#&(

Weight Training and Alignment

Pruned
Channel

Regularized
Channel

Preserved
Channel

𝒍 𝑳

𝟏 𝒍 𝑳

Figure 1. Overview of our method. We jointly train and prune a CNN model using an RL agent by iteratively training the agent’s policy and
model’s weights. In each iteration, we train the model’s weights for one epoch and perform several episodic observations of the agent. Left:
Each action of our agent prunes one layer of the model, and the procedure of pruning the l-th layer is shown. The agent’s actions on the
previous layers and the remaining layers’ FLOPs determine its state, and we take the resulting model’s accuracy as its reward (Sec. 3.2). As
the model’s weights change between iterations, the reward function also changes accordingly. Thus, we map each epoch to an embedding
and employ a recurrent model to provide a state of the environment z to the agent. (Sec. 3.2.1) Right: Given a sub-network selected by the
agent, we train the model’s weights while softly regularizing them to align with the selected structure (Sec. 3.2.3).

the agent. Thanks to such designs, our method can train a
base model and select a perfromant sub-network of it that
can easily recover its performance in fine-tuning.
Reinforcement Learning: RL methods [43, 84] have
achieved outstanding results in complex tasks [3, 16, 73]
using techniques like Q-learning [85] and policy optimiza-
tion [76]. Yet, it has been shown that they cannot generalize
to new variations of their primary task [2, 48]. Continual RL
methods [48] are related to this paper as our agent’s environ-
ment is non-stationary. The proposed ideas address different
non-stationarity conditions. For example, multi-task learn-
ing [93] and meta-learning methods [14, 17, 82] assume that
sequential tasks presented to the agent have an unknown sta-
tionary distribution. Curriculum learning ideas [5, 67, 72]
aim to learn the agent’s own curriculum in single or multi-
agent dynamic environments. Finally, a group of meth-
ods [7, 12, 80] make assumptions on the variation budget
of the reward function to improve learning of the agent. We
refer to [48] for a comprehensive review on continual RL
methods. Different from the mentioned ideas, we employ a
recurrent model to model the changing dynamics of the en-
vironment of our agent and augment its observations with it
to enable using episodic RL methods to train our agent.

3. Method

We propose a new channel pruning method for CNNs to
jointly learn the weights of a CNN model and prune its fil-
ters using an RL agent. To do so, we iteratively train the
model’s weights and the agent’s policy. We design the agent
such that its actions determine the compression rate of the
model’s layers, and we take the accuracy of the pruned

model as the reward function for the agent. Nevertheless,
as we update the model’s weights iteratively, the reward
associated with a certain action changes in consecutive it-
erations, which results in a non-stationary environment for
the agent and prevents using episodic RL methods for our
purpose as they assume the environment is stationary. We
develop a mechanism in which a recurrent network models
the changing dynamics of the reward function and provides
a representation of the changing state of the environment
to the agent to alleviate this challenge. Finally, as we can-
not both train and prune the weights simultaneously during
training, we propose a regularization to align the model’s
weights with the selected sub-network by the agent. Fig. 1
shows the overall scheme of our method.

3.1. Notations

We denote the number of layers in a CNN with L and
the weights of its l-th convolution layer with Wl ∈
RCl+1×Cl×Wl×Hl . Cl+1, Cl represent the number of out-
put and input channels of the layer, and Wl as well as Hl

are the spatial dimensions of its kernel. We show the stride
of the l-th layer with stridel, and FLOPs[l] is its FLOPs
value. Finally, we show the floor function with ⌊·⌋

3.2. Iterative Weight Training and Compression

We iteratively train a CNN’s weights and optimize the pol-
icy of an RL agent to jointly train and prune it. Specifically,
in each iteration, we first train the model’s weights for one
epoch on our training dataset while the agent is fixed. Then,
we keep the model’s weights frozen and our agent observes
several episodic trajectories by performing its actions on the
CNN’s layers. To employ an RL agent to prune our model,

3

we need to define three main components for the agent:
States that it visits in the environment, the actions that it
can perform, and the reward function given states and ac-
tions. We describe our choices for each one in the follow-
ing, and we denote the desired FLOPs budget for the pruned
model with FLOPsdesire.
States of the Agent: We design our RL agent to perform
actions that determine the pruning rate for consecutive lay-
ers of the CNN model. Thus, the agent’s states depend on
the index of the layer that the agent is currently pruning; the
layer’s characteristics like its kernel size and FLOPs; and
the number of FLOPs that the agent has already pruned as
well as the amount it has to prune from the remaining lay-
ers. Formally, given that the agent is currently pruning the
l-th layer, we define the state of the environment as follows:

Sl =[l, Cl, Cl+1, stridel, kl,

FLOPs[l],FLOPs1:l−1,FLOPsl+1:L, al−1]
(1)

where kl is the layer’s kernel size. FLOPs1:l−1 denotes the
number of previous layers’ FLOPs given the actions that
the model has done so far on them. FLOPsl+1:L shows the
next layers’ FLOPs that are not pruned yet, and al−1 is the
agent’s action on the previous layer.
Actions of the Agent: Based on the state Sl for the l-th
layer, our agent determines its pruning rate al such that al ∈
[0, 1). Given the predicted pruning rate al, we remove ⌊al×
cl⌋ channels of the layer. In addition, we calculate the min-
imum and maximum actual feasible pruning rates for the
current layer based on FLOPs1:l−1, FLOPs[l], FLOPsl+1:L,
and the desired budget FLOPsdesire. Then, we bound the
predicted action al to lie in the range [al,min, al,max]. We
refer to supplementary materials for more details. In our ex-
periments, we found that ranking the importance of filters
using the norm criteria [51] and pruning the ones with the
lowest rank works well in our framework, but one may em-
ploy more sophisticated approaches [57] as well.
Reward Function: We set our reward function to be the
pruned model’s accuracy on a small held-out subset of the
training dataset as a proxy for its final performance. As our
agent prunes one layer of the model at a time, it will be
extremely time-consuming to calculate the proxy value after
each action of the agent. Thus, we take one pass of the agent
on all layers of the model as one episodic trajectory for it.
Then, we calculate the final pruned model’s accuracy on the
subset at the end of the trajectory and take it as the reward
value for all state-action pairs seen during the trajectory.

3.2.1 Modeling the Dynamic Nature of Rewards

As we iteratively train the model’s weights and the agent’s
policy, the weights of the convolution layers that the agent
performs its actions on them are not static in our frame-
work. Thus, our reward function is dynamic in the course

of training, which prohibits directly applying prominent RL
methods [29, 56] that leverage episodic trajectories to train
the agent’s policy in our framework. The reason is that the
optimization procedure of these models is biased to only
optimize the agent’s policy w.r.t the current episode’s dis-
tribution and disregards the changing dynamics of the envi-
ronment, resulting in a sub-optimal policy [48].

We design a new mechanism to overcome this chal-
lenge by providing a representation of the dynamic envi-
ronment to the agent. To do so, first, we map the index
of each epoch for training the model’s weights to an em-
bedding. Then, we employ a recurrent GRU model [9] that
takes a sequence of the embeddings corresponding to the
epochs that have been passed so far and outputs a represen-
tation of the current state of the model’s weights. Formally,
if we train the model’s weights for total T epochs, we de-
note the epoch embeddings corresponding to epoch indexes
E = [e1, e2, · · · , eT] with Ψ1:T = [ψ1, ψ2, · · · , ψT] (ψ1 =
Emb(e1), Emb is a learnable embedding layer). We calcu-
late the representation of the state of the model’s weights at
the epoch ek as follows:

zk = fEnv(Ψ1:k, h0; θEnv) (2)

fEnv denotes the recurrent model. Ψ1:k are the embeddings
of epochs until the epoch ek. h0 is the initial hidden state
of the GRU that we set it to a zero vector, and θEnv are the
parameters of the GRU. We show in section 3.2.2 that we
use the representations z provided by the GRU for training
our RL agent.

We propose to train the recurrent model using another
model that we call it ‘decoder.’ The decoder model takes 1)
the state-action pairs (S, a) and 2) the representation z of
the state of the environment when the agent observes (S, a)
and predicts the agent’s reward r. Our intuition is that the
representation z is informative of the state of the environ-
ment when the decoder can use it to accurately predict r. We
train both the recurrent model’s weights and the ones for the
decoder using the following objective:

min
θEnv,θD

Lrecons = E(s,a,r,e)∼B [(r̂ − r)2] (3)

r̂ = fD(S, a, z; θD) (4)
z = fEnv(Ψ, h0; θEnv) (5)

In practice, we approximate the expectation in Eq. 3 using
the agent’s episodic observations during training. fD is our
decoder model, and θD represents its parameters.

3.2.2 RL Agent Training

We employ our recurrent model and the Soft Actor-Critic
(SAC) [29] method to train our RL agent. We augment the
states S with the representations of the environment’s state
z and design our agent’s policy function so that it predicts a
distribution over actions conditioned on both of them:

4

a ∼ π(·|S, z ; θA) (6)

Similarly, we deploy the representations z when calculating
the predicted Q-values by the critic networks in SAC. We
train them using the mean squared Bellman error objective:

L(ϕi) = E(s,a,r,s′,d,e)∼B [(Qϕi(s, a, z)− y(r, s′, d, z))2] (7)

y(r, s′, d, z) = r + γ(1− d)[min
j=1,2

Qϕtarg,j (s
′, a′, z) −

α log(π(a′|s′, z; θA))];
a′ ∼ π(·|s′, z; θA); z = fEnv(Ψ, h0)

(8)
Qϕi represents the critic models, and Qϕtarg,i shows their
target models obtained using Polyak averaging. B is a re-
play buffer containing previous episodic trajectories ob-
served. (s, a) are state-action pairs from B. d indicates
whether the state s is a terminal state. s′ represents the state
that the model gets in after taking the action a when be-
ing in the state s. a′ is an action chosen using the most
recent policy π(·; θA) conditioned on the state s′ and envi-
ronment representation z. γ is the discount factor for future
rewards. α determines the strength of the entropy regular-
ization term, which is a hyperparameter. Finally, we train
the agent’s policy using the following objective:

max
θA

E(s,e)∼B [min
j=1,2

Qϕj
(s, a)− α log π(a|s, z; θA)]

a ∼ π(a|s, z; θA)
(9)

3.2.3 Soft Regularization of the Model’s Weights

As mentioned in the section 3.2, we iteratively train and
prune the model’s weights in our framework. One approach
to do so can be actually pruning the model’s architecture
by removing the redundant channels selected by the agent
and only training the remaining ones in the weight training
phase. However, doing so can make the training procedure
unstable because it can significantly drop the model’s ac-
curacy. Accordingly, we propose an alternative approach to
softly regularize the model’s weights to align with the se-
lected sub-network by the agent. Given binary architecture
vectors [v1, v2, · · · , vL] denoting the channels selected by
the current best agent for each layer, we use the following
regularization term to train the model’s weights:

Lalign =

L∑
l=1

||(1− vl)⊙Wl||2 (10)

Here, ⊙ means element-wise product and the proposed ob-
jective applies the Group Lasso regularization on the chan-
nels removed by the agent. Finally we combine the standard
Cross Entropy Loss (Lclass) with proposed Lalign to train
the model’s weights:

Algorithm 1: Joint Training and Pruning
Input: Training dataset D = {(xi, yi)}; replay buffer B;

CNN model fc(·; W) with L layers; Agent
π(·; θA); Two Critics Qϕi(·) and their target
models Qϕtarg,i (i ∈ {1, 2}); recurrent model
fEnv and epoch embeddings Ψ; regularization
parameters α, β; discount factor γ; number of
iterations T; number of pruning episodes per
iteration P; a subset Ds of D for calculating the
agent’s reward.

for t := 1 to T do
/* Representation of Environment */
1. Calculate zt using fEnv and embeddings Ψ in

Eq. (2).
/* RL Agent Exploration and Training

*/
for p := 1 to P do

2. Prune the L layers of the CNN fc one at a time
by calculating states Sl,p,t and actions al,p,t

using zt and Eqs. (1,6).
3. Calculate the reward rp,k using the final

pruned model and Ds.
4. Add the experiences

(Sl,p,t, al,p,t, Sl+1,p,t, et, rp,k) to the replay
buffer B.

end
5. Sample a batch of previous experiences B from B

and use them to calculate the loss value for the
recurrent model, decoder, and epoch embeddings
using Eq. (3). Then, update their parameters using
the Adam optimizer.

6. Use the samples in B to calculate the loss values of
the critics Qϕi(·) and the agent π(·; θA) using
Eqs. (7, 9).

7. Backpropagate the gradients of the calculated
losses and update the parameters of the two critic
models and the agent using the Adam optimizer.
/* Training the CNN’s Weights */
8. Use the policy π(·) with the highest reward so far

to determine the binary architecture vectors [v1, v2,
· · · , vL].

9. Calculate the loss Lw for the model’s weights
using Eqs. (10, 11). Backpropagate its gradients and
update the model’s parameters using SGD.

end
Return: Trained CNN model and agent.

Lw = Lclass + βLalign (11)

In practice, we apply Lalign using the version of the policy
with the highest reward until the current training iteration to
make the training more stable. We summarize our training
algorithm for training the model’s weights and optimizing
the agent’s policy in Alg. 1.

5

Table 1. Comparison results on CIFAR-10 for pruning ResNet-56 and MobileNet-V2.

Model Method Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

ResNet-56

DCP-Adapt [97] 93.80% 93.81% +0.01% 47.0%
SCP [47] 93.69% 93.23% −0.46% 51.5%

FPGM [37] 93.59% 92.93% −0.66% 52.6%
SFP [35] 93.59% 92.26% −1.33% 52.6%

AMC [36] 92.80% 91.90% −0.90% 50.0%
FPC [38] 93.59% 93.24% −0.25% 52.9%

HRank [57] 93.26% 92.17% −0.09% 50.0%
DTP [54] 93.36% 93.46% +0.10% 50.0%

RLAL (ours) 93.41% 93.86% + 0.45% 50.0%

MobileNet-V2

Uniform [97] 94.47% 94.17% −0.30% 26.0%
SCOP [78] 94.48% 94.24% −0.24% 26.0%
MDP [28] 95.02% 95.14% +0.12% 28.7%
DCP [97] 94.47% 94.69% +0.22% 40.3%

DDNP [23] 94.58% 94.81% + 0.23% 43.0%
RLAL (ours) 94.48% 94.85% + 0.37% 49.4%

4. Experiments
We conduct experiments on ImageNet [10] and CIFAR-
10 [50] to analyze the performance of our method. For
all experiments, we use fully connected models with two
hidden layers of size 300 for the architecture of the ac-
tor, two critics, and two target models of the critic mod-
els. We train the agent and critic models using the Adam
optimizer [49] with learning rate of 1e−4 and 1e−3 re-
spectively. We use exponential decay rates of (β1, β2) =
(0.9, 0.999) for all of them. For our recurrent model, we
use a GRU [9] model with the input size of 128. We also
take embeddings of size 128 for all epochs (Sec. 3.2.1). We
employ a fully connected model we two hidden layers of
size 300 as our decoder model. We train the GRU model,
epoch embeddings, and the decoder model using the Adam
optimizer with learning rate of 1e−3 and decay parame-
ters of (β1, β2) = (0.9, 0.999). We set the entropy reg-
ularization coefficient α to 0.1 and β for soft regulariza-
tion to 1e−4 for all models. Finally, we choose the num-
ber of episodic observations per epoch for our agent to be
P = 10 (see Alg. 1). In all experiments, as we jointly train
and prune our model by using Reinforcement Learning and
softly ALigning the weights of the model with the selected
sub-networks, we call our method RLAL. We refer to sup-
plementary materials for more details of our experiments.

4.1. CIFAR-10 Results

Tab. 1 summarizes comparison results on the CIFAR-10
dataset. As can be seen, for ResNet-56, RLAL can achieve
the best accuracy vs. computational efficiency trade-off
compared to the baseline methods. One the one hand, it
is able to prune FLOPs with a rate comparable to (< 3%
lower) FPC [38] while achieving +0.70 higher ∆-Acc. On
the other hand, only RLAL, DTP [54], and DCP-Adapt are
able to outperform their baseline methods. RLAL can both
prune 3% more FLOPs and accomplish 0.44% better ∆-

Acc than DCP-Adapt. It also has 0.44% higher ∆-Acc than
DTP with the same FLOPs reduction ratio. Finally, with the
same FLOPs pruning rate, RLAL significantly outperforms
AMC [36] with 1.35% higher ∆-Acc. For MobileNet-V2,
RLAL can attain the highest ∆-Acc while having the largest
pruning rate at the same time. It remarkably prunes 6.4%
more FLOPs than DDNP [23] while obtaining 0.14% higher
∆-Acc. In summary, these results demonstrate the effective-
ness of our method for finding efficient yet accurate models.

4.2. ImageNet Results

We present the experimental results on ImageNet in
Tab. 2. For ResNet-18, RLAL shows the best ∆-Acc Top-
1/5 while showing a competitive pruning rate. It has a
similar pruning rate (only 1% lower) to GNNRL [92] and
achieves 0.30% higher ∆-Acc Top-1. For pruning ResNet-
34, RLAL is able to find a proper balance between accu-
racy and efficiency of the model. For instance, with a sim-
ilar computation budget to GP [39] (only 1.1% FLOPs dif-
ference), RLAL’s pruned model has 1%/0.46% higher ∆-
Acc Top-1/5. Moreover, RLAL shows better final accura-
cies than ISP [19] while significantly pruning more FLOPs
with a 6% margin. Pruning MobileNet-V2 is more chal-
lenging compared to ResNets because MobileNets [42, 71]
are primarily designed for efficient inference. Accordingly,
improvements in metrics are more difficult to secure than
ResNet cases. We can observe that all methods have close
FLOPs pruning rates in a relatively small range from 28.3%
to 30.7%. RLAL can achieve 0.5% higher ∆-Acc Top-1
while pruning only 0.6% lower FLOPs compared to AMC,
and it has the best ∆-Acc Top-1 among baselines. These
results illustrate the capability of our method to effectively
prune both large and small size models. Further, we high-
light the advantages of our method compared to baseline
RL-based pruning methods, GNNRL [92] and AMC [36],
as it can obtain more accurate pruned models while not re-

6

Table 2. Comparison results on ImageNet for pruning ResNet-18/34 and MobileNet-V2.

Model Method Baseline Top-1 Acc Baseline Top-5 Acc ∆-Acc Top-1 ∆-Acc Top-5 Pruned FLOPs

ResNet-18

MIL [13] 70.28% 89.63% −3.18% −1.85% 41.8%
SFP [35] 70.28% 89.63% −3.18% −1.85% 41.8%

FPGM [37] 70.28% 89.63% −1.87% −1.15% 41.8%
PFP [55] 69.74% 89.07% −2.36% −1.16% 29.3%

SCOP [78] 69.76% 89.08% −1.14% −0.93% 45.0%
GNNRL [92] 69.76% - −1.10% - 51.0%

GP [39] 70.28% 89.63% −1.40% −0.97% 43.9%
PGMPF [4] 70.23% 89.51% −3.56% −2.15% 53.5%
FTWT [15] 69.76% - −2.27% - 51.5%
EEMC [96] 70.28% 89.63% −2.01% −1.19% 46.6%

RLAL (Ours) 69.80% 89.10% −0.80% −0.42% 50.0%

ResNet-34

SFP [35] 73.92% 91.62% −2.09% −1.29% 56.0%
FPGM [37] 73.92% 91.62% −1.29% −0.54% 41.1%
Taylor [65] 73.31% - −0.48% - 24.2%
SCOP [78] 73.31% 91.42% −0.69% −0.44% 44.8%

GP [39] 73.92% 91.62% −1.14% −0.69% 51.1%
DMC [22] 73.30% 91.42% −0.73% −0.31% 43.4%

PGMPF [4] 73.27% 91.43% −1.68% −0.98% 52.7%
FTWT [15] 73.30% - −1.59% - 52.2%
GFS [90] 73.31% - −0.40% - 43.8%
ISP [19] 73.31% 91.42% −0.45% −0.40% 44.0%

RLAL (Ours) 73.45% 91.48% − 0.14% − 0.23% 50.0%

MobileNet-V2

Uniform [71] 71.80% 91.00% −2.00% −1.40% 30.0%
AMC [36] 71.80% - −1.00% - 30.0%

Random [53] 71.88% - −0.98% - 28.9%
CC [52] 71.88% - −0.97% - 28.3%

MetaPruning [59] 72.00% - −0.80% - 30.7%
RLAL (ours) 71.82% 90.26% − 0.50% − 0.33% 29.4%

quiring a pretrained model for pruning.

4.3. Ablation Studies

We conduct ablation experiments to explore our method’s
behavior by studying 1) the effect of changing the num-
ber of episodic observations of the agent in each epoch
and 2) the advantage of using our soft regularization, epoch
embeddings, and the recurrent environment model in our
framework. We refer to supplementary materials for details
of experimental settings.
Changing the Number of Episodes: We experiment using
a ResNet-56 [33] model on CIFAR-10 with three different
pruning rates in {35%, 50%, 65%}, and we set the number
of episodic observations for our agent in each epoch from
{5, 10, 15}. For each pruning ratio, we visualize the best
reward that the agent achieves during the training vs. the
epoch numbers. The results are shown in Fig. 2 (a-c). We
can observe a common trend in all cases that increasing the
number of episodes results in a higher final reward, espe-
cially, the higher number of episodes benefits more when
the desired compression ratio is larger at the cost of longer
training time. However, if the number of episodes is large
enough, our method can attain a decent final reward value
in a reasonable time.
Benefit of the Recurrent Environment Model: In our
second experiment, we prune and finetune ResNet-56
and MobileNet-V2 [71] with three pruning rates in
{35%, 50%, 65%} while using/dropping our mechanism to

Table 3. Ablation Results of our method for pruning ResNet-56 on
the CIFAR-10 dataset. EE represents the Epoch Embeddings. SR
represents the Soft Regularization in Eq. 10.

Setting
Baseline

Acc
Pruned

Acc
∆-Acc

Pruned
FLOPs

w/o EE 93.47% 93.44% −0.03%
50%w/o EE + w/o SR 93.33% 93.12% −0.21%

Ours 93.41% 93.86% +0.45%

provide a representation of the environment to the agent
using the epoch embeddings and our recurrent model. We
visualize the best reward of the agent in the course of
training. The results for ResNet-56 and MobileNet-V2 are
shown in Fig. 2 (d-f) and Fig. 2 (g-i), respectively. The
cases using/not using our mechanism are shown with ‘w
Emb’/‘w/o Emb.’ The results clearly demonstrate the ben-
efit of our design that provides a representation of the
environment to the agent. We can find that ‘w/o Emb’
cases commonly reach to a relatively high reward but can-
not properly deal with the dynamic reward function for
their agent to further improve their policy. In contrast, our
method can consistently enhance its policy to reach higher
reward values during training.

In our third experiment, we prune ResNet-56 on CIFAR-
10 with two settings: 1) not using the recurrent model and
epoch embeddings to provide representations of the envi-
ronment to the agent 2) neither using the recurrent model
and epoch embeddings nor the soft regularization. We

7

0 10 20 30 40 50 60 70 80 90
Epochs

70

75

80

85

90

B
es

t	R
ew

ar
d

Episode	per	Epochs:	5
Episode	per	Epochs:	10
Episode	per	Epochs:	15

(a) Pruning Rate: 35%

0 10 20 30 40 50 60 70 80 90
Epochs

60

65

70

75

80

85

90

B
es

t	R
ew

ar
d

Episode	per	Epochs:	5
Episode	per	Epochs:	10
Episode	per	Epochs:	15

(b) Pruning Rate: 50%

0 10 20 30 40 50 60 70 80 90
Epochs

50

55

60

65

70

B
es

t	R
ew

ar
d

Episodes	per	Epoch:	5
Episodes	per	Epoch:	10
Episodes	per	Epoch:	15

(c) Pruning Rate: 65%

0 10 20 30 40 50 60 70 80 90
Epochs

70

75

80

85

90

B
es

t	R
ew

ar
d

w/o	Emb
w	Emb

(d) Pruning Rate: 35%

0 10 20 30 40 50 60 70 80 90
Epochs

60

65

70

75

80

85

90

B
es

t	R
ew

ar
d

w/o	Emb
w	Emb

(e) Pruning Rate: 50%

0 10 20 30 40 50 60 70 80 90
Epochs

50

55

60

65

70

B
es

t	R
ew

ar
d

w/o	Emb
w	Emb

(f) Pruning Rate: 65%

0 10 20 30 40 50 60 70 80 90
Epochs

75

80

85

90

95

B
es

t	R
ew

ar
d

w/o	Emb
w	Emb

(g) Pruning Rate: 35%

0 10 20 30 40 50 60 70 80 90
Epochs

70

75

80

85

90

95

B
es

t	R
ew

ar
d

w/o	Emb
w	Emb

(h) Pruning Rate: 50%

0 10 20 30 40 50 60 70 80 90
Epochs

70

75

80

85

90

B
es

t	R
ew

ar
d

w/o	Emb
w	Emb

(i) Pruning Rate: 65%

Figure 2. Results of ablation experiments on CIFAR-10. (a-c) Best reward of our agent when using a different number of episodes per
epoch for three pruning rates when pruning ResNet-56. (d-f) Best reward with/without using our mechanism to provide representations of
the environment to our agent during training for three pruning rates for ResNet-56. (g-i) Same results of (d-f) for MobileNet-V2.

present the results in Tab. 3. One can notice that removing
each component of our method degrades its performance,
especially not using the recurrent model and epoch em-
beddings severely degrades our method’s accuracy, which
is inline with the results presented in Fig. 2 and discussed
above. In summary, our ablation studies illustrate the ef-
fectiveness of our design choices in our method for jointly
training and pruning a CNN model.

5. Conclusion

We proposed a method for structural pruning of a CNN
model that jointly trains its weights and prunes its chan-
nels using an RL agent. Our method iteratively updates the
model’s weights and allows the agent to observe several
episodic pruning trajectories that it performs on the model
to update its policy. Our agent’s actions determine the prun-
ing ratios for the layers of the model, and we set the result-
ing model’s accuracy to be the agent’s reward. Such a design
brings about a dynamic reward function for the agent. Thus,

we developed a mechanism to model the complex dynamics
of the reward function and yield a representation of it to the
agent. To do so, we mapped the index of each epoch of the
training to an embedding. Then, we employed a recurrent
model that takes the embeddings and provides a representa-
tion of the evolving environment’s state to the agent. We
train the recurrent model and embeddings by utilizing a
decoder model that predicts the agent’s rewards given ob-
served states, actions, and environment representations pre-
dicted by the recurrent model. Finally, we regularized the
model’s weights to align with the sub-network selected by
the agent’s policy with the highest reward during train-
ing. Our designs enable the agent to effectively leverage the
environment representations along with its episodic obser-
vations to learn a proper policy for pruning the model while
interacting in our non-stationary pruning environment. Our
experiments on ImageNet and CIFAR-10 demonstrate that
our method can achieve competitive results with prior meth-
ods, especially the ones that use RL for pruning, while not
requiring a pretrained model before pruning like them.

8

References
[1] Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and

Kris M. Kitani. N2n learning: Network to network com-
pression via policy gradient reinforcement learning. In In-
ternational Conference on Learning Representations, 2018.
1, 2

[2] Emmanuel Bengio, Joelle Pineau, and Doina Precup. Inter-
ference and generalization in temporal difference learning.
In International Conference on Machine Learning, pages
767–777. PMLR, 2020. 3

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemysław Dębiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019. 1, 3

[4] Linhang Cai, Zhulin An, Chuanguang Yang, Yangchun Yan,
and Yongjun Xu. Prior gradient mask guided pruning-aware
fine-tuning. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pages 140–148, 2022. 7

[5] Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma,
Huazhong Yang, Jiaming Song, Yu Wang, and Yi Wu. Vari-
ational automatic curriculum learning for sparse-reward co-
operative multi-agent problems. Advances in Neural Infor-
mation Processing Systems, 34:9681–9693, 2021. 3

[6] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International conference on machine
learning, pages 2285–2294, 2015. 2

[7] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu.
Reinforcement learning for non-stationary markov decision
processes: The blessing of (more) optimism. In International
Conference on Machine Learning, pages 1843–1854. PMLR,
2020. 3

[8] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Mar-
culescu. Towards efficient model compression via learned
global ranking. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1518–
1528, 2020. 1

[9] Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F
Bougares, H Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014), 2014. 4, 6

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6, 13

[11] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and ac-
curate model scaling. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
924–932, 2021. 1

[12] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta,
Emilie Kaufmann, and Michal Valko. A kernel-based ap-
proach to non-stationary reinforcement learning in metric
spaces. In International Conference on Artificial Intelligence
and Statistics, pages 3538–3546. PMLR, 2021. 3

[13] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less infer-
ence complexity. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5840–5848,
2017. 7

[14] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya
Sutskever, and Pieter Abbeel. RL^2: Fast reinforcement
learning via slow reinforcement learning, 2017. 3

[15] Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilan-
jan Ray. Fire together wire together: A dynamic pruning
approach with self-supervised mask prediction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12454–12463, 2022. 7

[16] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert,
Bernardino Romera-Paredes, Mohammadamin Barekatain,
Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser,
Grzegorz Swirszcz, et al. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature, 610
(7930):47–53, 2022. 1, 3

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages
1126–1135. PMLR, 2017. 3

[18] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations, 2019.
2

[19] Alireza Ganjdanesh, Shangqian Gao, and Heng Huang. In-
terpretations steered network pruning via amortized inferred
saliency maps. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXI, pages 278–296. Springer, 2022. 6, 7

[20] Alireza Ganjdanesh, Shangqian Gao, Hirad Alipanah, and
Heng Huang. Compressing image-to-image translation gans
using local density structures on their learned manifold.
arXiv preprint arXiv:2312.14776, 2023. 2

[21] Alireza Ganjdanesh, Shangqian Gao, and Heng Huang. Eff-
conv: efficient learning of kernel sizes for convolution layers
of cnns. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 7604–7612, 2023. 2

[22] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.
Discrete model compression with resource constraint for
deep neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1899–1908, 2020. 1, 7

[23] Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng
Huang. Disentangled differentiable network pruning. In
Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XI,
pages 328–345. Springer, 2022. 2, 6

[24] Shangqian Gao, Burak Uzkent, Yilin Shen, Heng Huang, and
Hongxia Jin. Learning to jointly share and prune weights
for grounding based vision and language models. In The
Eleventh International Conference on Learning Representa-
tions, 2022.

[25] Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang,
and Heng Huang. Structural alignment for network prun-
ing through partial regularization. In Proceedings of the

9

IEEE/CVF International Conference on Computer Vision,
pages 17402–17412, 2023. 2

[26] Deepak Ghimire, Dayoung Kil, and Seong-heum Kim. A
survey on efficient convolutional neural networks and hard-
ware acceleration. Electronics, 11(6):945, 2022. 2

[27] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. Knowledge distillation: A survey. Int. J. Com-
put. Vis., 129(6):1789–1819, 2021. 2

[28] Jinyang Guo, Wanli Ouyang, and Dong Xu. Multi-
dimensional pruning: A unified framework for model com-
pression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1508–
1517, 2020. 6

[29] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Interna-
tional conference on machine learning, pages 1861–1870.
PMLR, 2018. 2, 4

[30] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing
Xu, and Tong Zhang. Model rubik’s cube: Twisting res-
olution, depth and width for tinynets. Advances in Neural
Information Processing Systems, 33:19353–19364, 2020. 1,
2

[31] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in neural information processing systems, pages
1135–1143, 2015. 1, 2

[32] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. Eie: Effi-
cient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243–
254, 2016. 1

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 7, 13

[34] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE international conference on computer vision,
pages 1389–1397, 2017. 2

[35] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1808.06866, 2018. 6,
7

[36] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 784–
800, 2018. 1, 2, 6, 7

[37] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 6, 7

[38] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In Proceedings

of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2009–2018, 2020. 6

[39] Charles Herrmann, Richard Strong Bowen, and Ramin
Zabih. Channel selection using gumbel softmax. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXVII,
pages 241–257. Springer, 2020. 6, 7

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[41] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019. 1

[42] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1, 6

[43] Feihu Huang, Shangqian Gao, and Heng Huang. Bregman
gradient policy optimization. In International Conference
on Learning Representations, 2022. 3

[44] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2

[45] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neu-
mann. Learning to prune filters in convolutional neural net-
works. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 709–718. IEEE, 2018. 1, 2

[46] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015. 13

[47] Minsoo Kang and Bohyung Han. Operation-aware soft chan-
nel pruning using differentiable masks. In International Con-
ference on Machine Learning, pages 5122–5131. PMLR,
2020. 6

[48] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina
Precup. Towards continual reinforcement learning: A review
and perspectives. Journal of Artificial Intelligence Research,
75:1401–1476, 2022. 2, 3, 4

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 6

[50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6, 13

[51] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. ICLR,
2017. 1, 2, 4

[52] Yuchao Li, Shaohui Lin, Jianzhuang Liu, Qixiang Ye,
Mengdi Wang, Fei Chao, Fan Yang, Jincheng Ma, Qi Tian,
and Rongrong Ji. Towards compact cnns via collaborative
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6438–
6447, 2021. 7

10

[53] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu
Timofte, and Luc Van Gool. Revisiting random channel
pruning for neural network compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 191–201, 2022. 7

[54] Yunqiang Li, Jan C van Gemert, Torsten Hoefler, Bert
Moons, Evangelos Eleftheriou, and Bram-Ernst Verhoef.
Differentiable transportation pruning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16957–16967, 2023. 6

[55] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman,
and Daniela Rus. Provable filter pruning for efficient neural
networks. In International Conference on Learning Repre-
sentations, 2020. 7

[56] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. In 4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016. 1, 2, 4

[57] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1529–1538, 2020. 2, 4, 6

[58] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao
Xiao, Boqian Wu, Tommi Kärkkäinen, Mykola Pechenizkiy,
Decebal Constantin Mocanu, and Zhangyang Wang. More
convnets in the 2020s: Scaling up kernels beyond 51x51 us-
ing sparsity. In International Conference on Learning Rep-
resentations, 2023. 1

[59] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3296–3305, 2019. 1, 2, 7

[60] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022. 1

[61] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In International Conference
on Learning Representations, 2017. 13

[62] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 1

[63] Giosué Cataldo Marinó, Alessandro Petrini, Dario Mal-
chiodi, and Marco Frasca. Deep neural networks compres-
sion: A comparative survey and choice recommendations.
Neurocomputing, 520:152–170, 2023. 2

[64] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on
Learning Representations, 2017. 2

[65] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network

pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 2, 7

[66] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou
Huang. Collaborative channel pruning for deep networks.
In International Conference on Machine Learning, pages
5113–5122, 2019. 2

[67] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann,
and Pierre-Yves Oudeyer. Automatic curriculum learning
for deep rl: A short survey. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI-20, pages 4819–4825. International Joint Con-
ferences on Artificial Intelligence Organization, 2020. Sur-
vey track. 3

[68] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 1, 2

[69] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[70] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1

[71] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1, 6, 7, 13

[72] Jürgen Schmidhuber. Powerplay: Training an increasingly
general problem solver by continually searching for the sim-
plest still unsolvable problem. Frontiers in psychology, 4:
313, 2013. 3

[73] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.
1, 3

[74] Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman
Aliari Zonouz, and Bo Yuan. Chip: Channel independence-
based pruning for compact neural networks. Advances in
Neural Information Processing Systems, 34:24604–24616,
2021. 2

[75] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013. 13

[76] Richard S Sutton, David McAllester, Satinder Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural
information processing systems, 12, 1999. 3

[77] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 1, 2

11

[78] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-
jing Xu, Chao Xu, and Chang Xu. Scop: Scientific control
for reliable neural network pruning. Advances in Neural In-
formation Processing Systems, 33:10936–10947, 2020. 6,
7

[79] Robert Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996. 2

[80] Ahmed Touati and Pascal Vincent. Efficient learning in non-
stationary linear markov decision processes. arXiv preprint
arXiv:2010.12870, 2020. 3

[81] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv
preprint arXiv:2207.02696, 2022. 1

[82] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert
Soyer, Joel Z Leibo, Remi Munos, Charles Blundell, Dhar-
shan Kumaran, and Matt Botvinick. Learning to reinforce-
ment learn. arXiv preprint arXiv:1611.05763, 2016. 3

[83] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Li Liu,
Wei An, and Yulan Guo. Learnable lookup table for neural
network quantization. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
12423–12433, 2022. 2

[84] Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai
Huang, Xin Xu, Bin Dai, and Qiguang Miao. Deep rein-
forcement learning: A survey. IEEE Transactions on Neural
Networks and Learning Systems, pages 1–15, 2022. 3

[85] Christopher JCH Watkins and Peter Dayan. Q-learning. Ma-
chine learning, 8:279–292, 1992. 3

[86] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Advances in neural information processing systems, pages
2074–2082, 2016. 2

[87] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru,
Thomas Elsken, Arber Zela, Debadeepta Dey, and Frank
Hutter. Neural architecture search: Insights from 1000 pa-
pers. arXiv preprint arXiv:2301.08727, 2023. 2

[88] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei
Chen, Zhuang Liu, In So Kweon, and Saining Xie. Con-
vnext v2: Co-designing and scaling convnets with masked
autoencoders. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16133–
16142, 2023. 1

[89] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8817–8826, 2018. 1, 2

[90] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam
Klivans, and Qiang Liu. Good subnetworks provably exist:
Pruning via greedy forward selection. In International Con-
ference on Machine Learning, pages 10820–10830. PMLR,
2020. 1, 7

[91] Miao Yin, Yang Sui, Wanzhao Yang, Xiao Zang, Yu Gong,
and Bo Yuan. Hodec: Towards efficient high-order decom-
posed convolutional neural networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12299–12308, 2022. 2

[92] Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-
aware network pruning using multi-stage graph embedding
and reinforcement learning. In International Conference on
Machine Learning, pages 25656–25667. PMLR, 2022. 1, 2,
6, 7

[93] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:5824–5836, 2020. 3

[94] Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian
Zhe. The combinatorial brain surgeon: Pruning weights that
cancel one another in neural networks. In International Con-
ference on Machine Learning, pages 25668–25683. PMLR,
2022. 2

[95] Xuanyang Zhang, Hao Liu, Zhanxing Zhu, and Zenglin Xu.
Learning to search efficient densenet with layer-wise prun-
ing. In 2020 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE, 2020. 1, 2

[96] Yanfu Zhang, Shangqian Gao, and Heng Huang. Explo-
ration and estimation for model compression. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 487–496, 2021. 7

[97] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 875–886, 2018. 2, 6

[98] Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations, 2017. 1, 2

12

A. Bounding our Agent’s Actions
As mentioned in Section 3.3 of our paper, we calculate the
minimum (al,min) and maximum (al,max) feasible pruning
rates for the l-th layer before pruning it to ensure that reach-
ing the desired FLOPs budget, FLOPsdesire, is still possible
after doing so. However, before formally introducing our
scheme for calculating al,min, al,max, we present how we
implement our pruning actions in practice.

A.1. Implementation of our Agent’s Actions

We describe our implementation for our agent’s actions for
each architecture. For all models, we take each block of a
CNN model as one ‘layer’ in our framework.
ResNets: for our experiments on ResNet [33] mod-
els (ResNet-56 on CIFAR-10 [50] and ResNet-18/34 on
ImageNet [10]), we take each residual block as one layer.
It contains a structure as Conv1-BN-ReLU-Conv2-BN
where Conv1 and Conv2 are the convolution layers, BN
represents Batch Normalization [46], and ReLU is the
ReLU activation function. For each block, given the pre-
dicted action al for pruning it, we remove ⌊al × c⌋ output
channels of the Conv1 layer and the same number of in-
put channels of the Conv2 layer where c is the number of
output/input channels of Conv1/Conv2.
MobileNet-V2: for experiments using MobileNet-
V2, we take each inverted residual block [71] as one
layer for pruning. Each block has the structure with
Conv1-BN-ReLU6-DW_Conv-BN-ReLU6-Conv2-BN
form where DW_Conv is a depth-wise convolution
layer. Given the predicted action al, we remove ⌊al × c⌋
output channels of Conv1 and the same amount of
channels of DW_Conv and input channels of Conv2.

In summary, our pruning scheme changes the inner num-
ber of channels in each block of a CNN and preserves its
number of input and output channels.

A.2. Calculating Action Bounds

We calculate al,min, al,max for the l-th layer based on
the total model’s FLOPs that we denote with FLOPsT
the number of FLOPs for the previous pruned layers
FLOPs1:l−1; the number of FLOPs for the next remaining
layers FLOPsl+1:L; FLOPs[l]; and FLOPsdesire. The for-
mulations are as follows:

al,min = 1− FLOPsdesire − FLOPs1:l−1

FLOPs[l]
(12)

al,max = 1− FLOPsdesire − FLOPs1:l−1 − FLOPsl+1:L

FLOPs[l]
(13)

In these equations, al,max prevents very high pruning
rates that even if all the next layers are kept intact, reach-
ing FLOPsdesire get infeasible. Similarly, al,min provides

the minimum pruning rate for the current layer given all the
next layers are pruned completely. We clip the predicted ac-
tion al to lie in [al,min, al,max] when pruning the l-th layer.

B. Experimental Settings
We provide more details of our experimental settings in the
following.
CIFAR-10: For CIFAR-10 experiments, we evaluate our
method on ResNet-56 [33] and MobileNet-V2 [71]. In our
iterative pruning phase, we train both of the CNN models
for 200 epochs with the batch size of 128 using SGD with
momentum [75] of 0.9, weight decay of 1e−4, and starting
learning rate of 0.1. We decay the learning rate by 0.1 on
epochs 100 and 150. We take 5000 samples of the training
dataset as a subset for calculating the agent’s reward. For
all cases, we start to train the RL agent after 10 warmup
epochs of the model’s weights. Specifically, we collect ini-
tial data for the replay buffer of the RL agent from epochs
10 to 20. Then, for both ResNet-56 and MobileNet-V2, we
update the agent from epoch 20 until the epoch 90, and we
train only the model’s weights from epoch 90 to 200. After
the iterative stage, we prune the model’s architecture and
finetune it with the same settings for the base model.
ImageNet: We use ResNet-18, ResNet-34, and MobileNet-
V2 for ImageNet experiments. For the iterative training
stage of ResNets, we use SGD as the optimizer with the
momentum of 0.9, weight decay of 1e−4, and the start
learning rate of 0.1. We train ResNet models for 90 epochs,
and we decay the learning rate to 0.01 and 0.001 at epochs
30 and 60. For MobileNet-V2, we do so for 155 epochs
with a batch size of 256. We train the model’s weights
using SGD with the momentum of 0.9, weight decay of
1e−4, and starting learning rate of 0.05 decayed using co-
sine scheduling [61]. For all cases, we use 50000 samples
of the training dataset to evaluate rewards of the agent. Sim-
ilar to CIFAR-10 experiments, we train the model’s weights
for 10 warmup epochs followed by 10 epochs for filling the
replay buffer of the RL agent. Then, for MobileNet-V2, we
train the agent’s policy from epochs 20 to 90, and we only
train the model’s weights from epoch 90 to 155. After the
pruning stage, we fine-tune the pruned model with the same
training parameters as the base model. For ResNet models,
we train the agent’s policy from epochs 20 to 70, and the
model’s weights are trained from epochs 70 to 90.
Ablation Experiments: We follow the same settings as
mentioned above for our ablation experiments in Tab. 3
of the paper. For the visualizations in Fig. 2, we use the
same settings except that we perform our iterative pruning
scheme for 90 epochs.

13

	. Introduction
	. Related Work
	. Method
	. Notations
	. Iterative Weight Training and Compression
	Modeling the Dynamic Nature of Rewards
	RL Agent Training
	Soft Regularization of the Model's Weights

	. Experiments
	. CIFAR-10 Results
	. ImageNet Results
	. Ablation Studies

	. Conclusion
	. Bounding our Agent's Actions
	. Implementation of our Agent's Actions
	. Calculating Action Bounds

	. Experimental Settings

