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Abstract. Safety-critical infrastructures, such as bridges, are periodi-
cally inspected to check for existing damage, such as fatigue cracks and
corrosion, and to guarantee the safe use of the infrastructure. Visual
inspection is the most frequent type of general inspection, despite the
fact that its detection capability is rather limited, especially for fatigue
cracks. Machine learning algorithms can be used for augmenting the ca-
pability of classical visual inspection of bridge structures, however, the
implementation of such an algorithm requires a massive annotated train-
ing dataset, which is time-consuming to produce. This paper proposes a
semi-automatic crack segmentation tool that eases the manual segmenta-
tion of cracks on images needed to create a training dataset for machine
learning algorithm. Also it can be used to measure the geometry of the
crack. This tool makes use of an image processing algorithm, which was
initially developed for the analysis of vascular systems on retinal images.
The algorithm relies on a multi-orientation wavelet transform, which is
applied to the image to construct the so-called ‘orientation scores’, i.e. a
modified version of the image. Afterwards, the filtered orientation scores
are used to formulate an optimal path problem that identifies the crack.
The globally optimal path between manually selected crack endpoints is
computed, using a state-of-the-art geometric tracking method. The pixel-
wise segmentation is done afterwards using the obtained crack path. The
proposed method outperforms fully automatic methods and shows po-
tential to be an adequate alternative to the manual data annotation.

Keywords: image segmentation · crack detection · computer vision ·
image processing · fatigue crack measurement · steel bridge inspection

1 Introduction

There are more than a million bridges in Europe and the USA, according to
[1,2] and every bridge structure is subjected to gradual deterioration which may
lead to its collapse. In order to prevent tragic events and to detect critical struc-
ture deterioration in time, periodic inspections of bridges have to be conducted
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[3]. Visual inspections are the most frequent type of bridge inspection, during
which, trained personnel visually examines the surface of the structure [4]. This
procedure may be costly and time-consuming. Apart from the obvious expenses
for inspector training and work, in some cases, there are implicit financial con-
sequences to the regional economy related to the necessity to temporary restrict
or fully shut down traffic across a bridge.

In a recent paper from Campbell et al. [5], it has been highlighted that
the variability of the outcome of visual inspections is substantial, and that the
detection rate of fatigue cracks strongly depends on the inspection conditions and
the proneness of the inspector to report potential damage. The authors concluded
that, by using the current techniques and procedures, visual inspection should
not be regarded as a reliable method for bridge inspection.

The substantial cost and the low reliability of manual bridge inspections
explain recent efforts directed at the designing of automatic systems for bridge
inspections [6]. This is because automated visual inspection systems have the
potential to augment the efficiency of existing inspection practices and to reduce
its cost. In recent works, special attention was paid to automatic fatigue crack
detection, since fatigue is one of the most frequent and dangerous types of bridge
damage [7].

Many computer vision algorithms have been developed for crack detection
and measurement in different structures and materials, see for example overviews
of this topic in [8,9]. These algorithms can be divided into two major groups,
namely a) geometric image processing algorithms, and b) machine learning al-
gorithms. Crack segmentation is a common approach extensively used in earlier
works on automatic visual inspections, that besides crack detection, also allows
measurement of the detected crack geometry. Image segmentation is the process
of partitioning a digital image into multiple image segments, where each pixel
is assigned to one of the segments. In the case of crack segmentation, two types
of segments are considered: the segment of the image background type, and one
or more segments of the crack type. Images of critical locations in bridge struc-
tures normally contain several elements that complicate the crack segmentation
task. This may be surface corrosion, paint peeling, dirt on the surface, fasteners,
and other bridge parts and joints. The performance of a fully automatic image
processing algorithm dealing with such images is potentially affected by these
aspects, e.g. it may result in a high false call rate by labeling a gap between
adjoint elements of the considered structure as a crack, as mentioned in [10,11].
In contrast, computer vision machine learning algorithms not only can recog-
nize geometrical patterns of cracks but can also distinguish them from other
crack-like-looking parts of the image. However, the main drawback of machine
learning algorithms is that they require a labeled dataset for training and testing.
A large number of researchers developing machine learning algorithms for crack
segmentation uses labeled datasets created by manual labeling. In this case, the
annotation consists of a manual draw of the contour of the crack, most often
made with a hand-held mouse [12,13]. Clearly, such a procedure may take a lot
of time, especially in the case of a large number of high-resolution images.
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Taking this into consideration, a manual annotation procedure forms a bot-
tleneck in the process of development of a state-of-the-art machine learning al-
gorithm for crack segmentation. In this paper, we propose to make use of image
processing techniques to develop a semi-automatic crack segmentation tool. The
developed tool has the advantage of making the process of labeling cracks on
images simpler and faster, which is needed to train a machine learning algorithm
for crack segmentation. Moreover, the proposed tool may also be used to extract
the geometrical parameters (length, width, curvature, etc.) of a crack needed
for either research or more accurate inspection. Unlike the fully automatic im-
age processing technique for crack segmentation, the developed method requires
manual input, i.e. the crack end-points. By adding such a manual input it is
possible to significantly increase the accuracy of the crack segmentation algo-
rithm, potentially allowing it to be used as a data labelling tool for machine
learning algorithms. Implementation of the developed algorithm is available at
https://github.com/akomp22/crack-segmentation-tool

2 Methods

Datasets to train a machine learning algorithm for crack segmentation are of-
ten manually labeled, since it is the most reliable method for pixel-wise image
labeling. However, it is time consuming, because it requires a human expert to
manually indicate the contours of the crack.

Fully automatic image processing algorithms do a crack segmentation much
faster and without human involvement. A wide range of different image process-
ing techniques have been created aiming at the development of a fully automatic
crack segmentation algorithm. Commonly used techniques include thresholding
[14,15,16,17,18], filtering [19,20], and image texture analysis [21,22,23].

A major drawback of these fully automatic algorithms is that they are often
designed to mark dark elongated structures of the image as a crack. On complex
images, for example the image of a steel bridge presented in the Fig. 1, these al-
gorithms will suffer from the significant amount of false crack detections. Hence,
these algorithms can not be used as an image pixel-wise labeling tool.

The semi-automatic algorithm described in this section uses an image pro-
cessing technique, where the false call rate is minimized thanks to additional
information about the crack location provided by a human annotator.

The first major step of the proposed method is crack path tracking, described
in Section 2.1 of this paper. The algorithm aims at finding the path of a crack
between two manually selected crack endpoints. The retrieved crack path allows
to distinguish a particular elongated dark structure of the image (which is a
crack) form other elements in the image that look like a crack (e.g. shading,
paint, structure edge etc.). Few earlier works considering crack tracking having
selected points as input. For instance, in [24], a crack path was identified by a
step-by-step movement from one of the crack points in the direction that has a
locally minimal pixel intensity. A disadvantage of this tracking method is that
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Fig. 1: Example of a steel bridge structure image where common crack detection
algorithms tend to have a high false call rate.

it is not able to find a globally optimal path. It can easily be mislead by dark
image regions near the crack and follow a locally optimal wrong path.

In [25] the crack path was found using only one internal crack point as input.
A fast marching algorithm was used to find a distance map relative to the selected
internal point. The lowest gradient ascent path was chosen as a crack path.

Crack minimal path selection approaches was also used in [26,27]. In these
articles, Dijkstra’s algorithm was used to find a crack path between multiple
points inside crack contour. However, points inside crack contour were selected
automatically, using the threshold method, so the problem of the high amount of
false detections that is inherent to fully automatic image processing algorithms
is also present in these methods.

The proposed crack tracking method uses an anisotropic fast marching algo-
rithm to find a crack path as a globally optimal path (minimizing geodesic) in
an orientation score (a multi-orientation wavelet transform) and is described in
Section 2.1 of this paper.

To obtain a crack segmentation, the width of the crack along the retrieved
path needs to be measured. One way to do this is to get an intensity profile per-
pendicular to the crack path, and determine crack edges based on this profile,
as was done in [24]. However, the crack edges retrieved with this method have
irregular shapes and may deviate significantly from the actual edges. A width
expansion approach was used in [26,27,28], and is also used in the proposed algo-
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rithm and explained in Section 2.2. An alternative width measurement method
is also proposed (tracking algorithm for edges as described in Section 2.2) which
works better on images of cracks in steel bridges.

2.1 Crack path tracking

In [29] a general image processing method was proposed for line tracking in
2D images via 3D multi-orientation distributions (so-called ‘orientation scores’).
Such an orientation score [30] lifts the image-domain from a 2D position space
to a 3D space M2 of 2D-positions and orientations, as can be seen in Fig. 2.
Where a 2D image f : R2 → R assigns a greyvalue f(x1, x2) to a position
(x1, x2), an orientation score Uf : M2 → C assigns a complex value Uf (x1, x2, θ)
to a ‘local orientation’ p = (x1, x2, θ). The real part of Uf gives the measure of
alignment of the image local line structures with the specific orientation, whereas
the imaginary part can be interpreted as the measure of alignment of image local
edge structures with the specific orientation.

In [31] the tracking in the orientation scores (TOS) is done by formal optimal
curve algorithms. The curve extraction is done with a single optimal control
problem, allowing to include local contextual alignment models of oriented image
features. In other words, optimality of the curve is determined not only by the
intensity of pixels it lies on, but also by the alignment of this curve with the
image’s local anisotropic structures.

These contextual geometric models in M2 improve tracking when cracks are
partly visible, which is often the case. Furthermore, cracks often have sudden
changes in local orientation, and do not have cusps like in [31]. Therefore, the
used algorithm relies on the improved forward motion model also applied in
[32] for blood vessel tracking. For efficient sufficiently accurate computation
anisotropic fast marching algorithm [33] is used to compute distance maps in M2.
A subsequent steepest descent provides the optimal paths, i.e. optimal geodesics
being paths with minimal data-driven length.

Such geometric TOS [32] gives a few advantages in the application of tracking
cracks in steel bridges:

– When a crack is only partly visible in the image as in Fig. 3 the aforemen-
tioned contextual image processing models are needed to still recognize the
crack

– Crossing structures (e.g. a crack and a sub-surface due to shading/paint) are
disentangled in the orientation score (e.g. Fig. 4a and Fig. 5b). The crack and
the edge/line crossing are separated because they align with different orien-
tations, thus being on different “θ levels" in the orientation score. Thereby
a tracking algorithm will stay on a true crack trail.

– Cracks can suddenly change orientation and the model based on [34] auto-
matically accounts for that.
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(a) (b)

Fig. 2: Examples of the orientation scores: a) Orientation score of an image with
lines; b) Orientation score of an image with a circle.

Fig. 3: Close up view of a crack with their calculated crack path retrieved by two
methods: The red line shows the track obtained by tracking in R2 while the white
line shows the spatially projected track obtained by tracking in M2 = R2 × S1.



Segmentation tool for images of cracks 7

Construction of the orientation score In the orientation score, the image
domain of positions x := (x1, x2) ∈ R2 is extended to the domain of positions
and orientations (x, θ), where θ ∈ [0, 2π] denotes the orientation. The orientation
score can be built from the initial image using the anisotropic cake wavelets
shown in Fig. 4b (which thank their name to their shape in the Fourier domain
[29,30]). The convolution of an image with a cake wavelet that has a specific
orientation θ will filter the local line elements, giving high response in positions
where the line structures are aligned with the applied wavelet orientation. For
example, the responses in Fig.5a are obtained by applying the wavelet filters
shown in Fig.4b to the image shown in Fig.4a.

A grayscale image can be considered as a (square integrable) function f :
R2 → R that maps a position x ∈ R2 to a grayscale value f(x). Similarly,
the orientation score Uf is represented by the function Uf : M2 → C, where
M2 = R2 × S1 and S1 := {n(θ) = (cos θ, sin θ) | θ ∈ [0, 2π)}. The used cake wavelets
ψ are complex-valued (their real part detects lines whereas their imaginary part
detects edges). The orientation score Uf of an image f is given by:

Uf (x, θ) =

∫
R2

ψ
(
R−1

θ (y − x)
)
f(y) dy, for all x ∈ R2, θ ∈ [0, 2π),

where ψ is the complex-valued wavelet aligned with an a priori axis (say the
vertical axis θ = 0), and the rotation matrix Rθ rotates this wavelet counter-

clockwise with the required angle θ and is defined by: Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. A

careful mathematical design of the cake wavelets [29,30] allows to preserve all im-
age information after “lifting” the image to the orientation score. With a proper
choice of parameters that are used to construct the cake-wavelet, the approxi-
mate reconstruction of the image f from the orientation score can be achieved
by a simple integration:

f(x) =

∫ 2π

0

Uf (x, θ)dθ.

Shortest paths (geodesics) in the orientation score After the input image
is lifted to the orientation scores, a tracking algorithm is applied that finds the
shortest path, or geodesic, between the endpoints of the crack in the orientation
score, see Fig. 6. The geodesic can be represented by a parameterised curve
γ(t) = (x(t),n(t)) in the orientation scores, the length of which is defined as
the Riemannian distance between the chosen endpoints p = (x0,n0) and q =
(x1,n1). Here, p and q are points in the lifted space of positions and orientations

M2 := R2 × S1 and nt :=

(
cos θt
sin θt

)
. The asymmetric version of the Riemannian

distance, that were used in the experiments, is defined by:
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(a) (b)

Fig. 4: a) Input image with chosen endpoints; b) Real part of the cake wavelets
with angle θ equal to 0 and π

2 respectively.

(a) (b)

Fig. 5: a) Results of applying filters from figure Fig. 4b to the image shown in
Fig. 4a; b) Orientation score of image shown in Fig. 4a. θ-levels represented by
blue and red rectangles correspond to a).
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dG(p,q) = inf
γ(·)=(x(·),n(·))∈Γ
γ(0)=p,γ(1)=q

ẋ(·)·n(·)≥0

∫ 1

0

√
Gγ(t)(γ̇(t), γ̇(t))dt (1)

where the space of curves Γ (are all piecewise continuously differentiable curves
γ : [0, 1] → M2) over which we optimize, and with the Riemannian metric given
by

Gp(ṗ, ṗ)=C2(p)

ξ2|ẋ · n|2+ ξ2

ζ2
(
∥ẋ∥2−|ẋ · n|2

)
+∥ṅ∥2+λ

max
∥q̇∥=1

|HU |p(ṗ, q̇)|2

max
∥q̇∥=1,
∥ṗ∥=1

|HU |p(ṗ, q̇)|2

 (2)

with p = (x,n) ∈ M2 being a position and orientation, and ṗ = (ẋ, ṅ) a velocity
attached to the point p, and where C2(p) is the output of the application of
the multi-scale crossing/edge preserving line filter to the orientation score, for
details see [32, App.D], [35], and acts as a cost function. The Hessian of the
orientation score is denoted by HU . Parameter ξ > 0 influences the stiffness or
curvature of the geodesics. Parameter 0 < ζ ≪ 1 puts high cost on ξ2/ζ2 on
sideward motion relative to the cost ξ2 for forward motion. Parameter λ > 0
regulates the influence of the data-driven term relying on the Hessian of the
orientation scores. In order to find the optimal curve that minimizes the distance,
the anisotropic fast marching algorithm [33] is applied to solve the eikonal PDE
[34]. The algorithm computes the distance map dG(p, ·) given by Eq. (1) from
one of the crack endpoints, p, that serves as an initial condition (i.e. ‘seed point’)
using an efficient propagating front approach. Afterwards, it finds the geodesics
by backtracking using the steepest descent method [34] from the other endpoint
q, also called the ‘tip point’, using the computed distance map. The HFM library
[36] was used to employ the described tracking algorithm efficiently.

Next, extra motivation for the curve optimization model given by Eq. (1) is
provided. When considering crack propagation as a random Brownian process
[37,38] on M2 then Brownian bridges concentrate on geodesics [39]. Furthermore,
the model given by Eq. (1) corresponds to a curvature-adaptive extension of
the model in [34] whose optimal geodesics include ‘in-place rotations’ that the
model automatically places at optimal locations during the geodesic distance
front-propagation. Such ‘in-place rotations’ (due to the constraint ẋ · n ≥ 0 in
Eq. (1)) are natural for 2D pictures of cracks in bridges, as there are often sudden
changes in direction of a crack.

2.2 Crack width detection

Two distinct approaches are considered that allow to obtain a crack segmentation
while having the crack path. The first approach is called ’width expansion’ (WE)
and the second approach ’edge tracking’ (ET). The WE approach is expected
to work better with cracks that have a conspicuous grain structure along their
edges, e.g. cracks in pavement. In contrast, the ET approach gives better results
for cracks that have relatively smooth edges such as cracks in steel.
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(a)

(b)

Fig. 6: a) Orientation score; b) An example of a geodesic (the shortest path γ
from Eq. 1) in the orientation score and its projection onto R2.



Segmentation tool for images of cracks 11

Crack width expansion This approach has been used in automatic crack
segmentation algorithms [26,27], and is applied to the image in the R2 domain
without any preliminary transformations. In the first iteration of the WE algo-
rithm, the pixels that lie exactly on the obtained crack path are assigned to a
crack segment. In the subsequent iterations, pixels neighboring to the existing
crack segment are assigned to a crack segment if their intensity value is below a
threshold value Tw = µw−Kw ·σw, where µw and σw are mean and standard de-
viation respectively of the existing crack segment pixels gray value distribution,
and where Kw is a manually chosen parameter. The iterations continue until
no new pixels are added to the crack segment. This approach is useful when
the crack has an irregular shape as is the case for e.g. cracks in pavement, due
to the noticeable grains of the material. However, the output of this approach
depends significantly on the threshold value Kw. The necessity to accurately
chose Kw restricts the autonomy of the method, since, its optimal value may
vary significantly depending on the image.

Crack edge tracking Similarly as for crack path tracking, for the ET a ge-
ometric tracking algorithm is applied to find an optimal path between crack
endpoints, but with a few major differences.

First of all, a cost function C(p) for the tracking algorithm is built that
forces it to follow the crack edges instead of the crack centerline. To build this
cost function, the crack path is divided into small segments for which crack path
orientation is determined. Afterwards, around each path segment, a square part
of image is chosen with a predetermined dimensions in parallel and perpendicular
to the segment orientation. To these pieces of the image, an edge filter (Gaussian
first order derivative) oriented in accordance with the crack path orientation is
applied. Results of this operations are summed to construct a cost function for
the whole image. In this way, the edge filter highlights mainly the edges of the
crack and gives lower responses to edges not parallel to the crack. An example
of a resulting image is presented in Fig. 7a.

Additionally, in the proposed ET method we use a version of the tracking
algorithm described in Section 2.1 that in fact is the Dijkstra’s algorithm in
the image R2 domain. As a filter was applied that was specifically designed to
highlight crack edges and ignore other edges on the image, it is expected to avoid
the problems listed in Section 2.1 (namely crossing structures and poor visibility
of the filtered crack edges). Hence, instead of doing tracking in the M2 domain
as was done for crack path tracking, here the fast marching algorithm [33] for
geodesic curve optimisation is directly applied in the image R2 domain that is
computationally less expensive.

3 Results

3.1 Tracking performance

First, the performance of the crack path tracking algorithm is evaluated against
the steel structures dataset. The used dataset consists of images of actual steel
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(a) (b)

Fig. 7: a) Oriented edge filter applied to the image shown in the Fig. 4a; b) Crack
edges detected with the ET method.

bridge structures with fatigue cracks that was collected by Dutch infrastructure
authorities. Ground truth crack tracks (actual track of a crack as it is visi-
ble on the image) were drawn manually for 19 randomly selected images from
the dataset. In order to numerically estimate the performance of the tracking
method, the metric m = A

L2 is introduced, where A is the area between the
ground truth track and retrieved track, measured in squared pixel, and L is the
length of the ground truth track determined as the number of pixels it passes.
The area A between to tracks represents a measure of how one track deviates
from another. Division by L2 makes the metric resolution-invariant. Lower val-
ues of the metric m mark lesser deviation of the retrieved crack from the ground
truth track. Table 1 shows the mean value of the introduced metric.

The described tracking method was compared with the alternative methods.
Table 1 shows the results of this comparison, where the considered algorithms
are identified as:

– FF — the "FlyFisher" algorithm described in [24]. In this method a track
propagates a track from the starting point and led by the local gray-scale
pixel values patterns;

– DT — Tracking 2D paths using Dijkstra’s algorithm in the R2 domain of the
input image to minimize the cost function defined by the Frangi filter [40];

– TOS — Tracking in the Orientation Score: Tracking optimal paths defined
by Eq. (1) in the orientation score via anisotropic fast marching algorithm
(described in Subsection 2.1).

Table 1: Average deviation of three different crack tracking algorithms from the
ground truth crack on 19 images of cracks in steel structures.

FF DT TOS
m · 105 4.46 0.980948 0.784308
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The results demonstrate that the proposed TOS method outperforms DT and
FF algorithms. The path retrieved by the FF method follows a locally optimal
direction (defined by a darker image region) but easily misses a globally optimal
path. This problem results in the worst performance (see Table 1). In contrast,
the TOS and the DT algorithm use a two step approach. First, they calculate
the distance map on a Riemannian manifold (M,G) from the starting point and
then perform a backtracking using the steepest descent algorithm. In case of
TOS, the manifold M = M2 and metric tensor field G given by Eq. (2) while in
the DT algorithm, the base manifold M = R2 and the metric tensor field G is
now given by Gx(ẋ, ẋ) = V (x)∥ẋ∥2 with V the Frangi filter [40].

This two step approach allows us to find the optimal path resulting in signifi-
cantly lower values of the metric m in Table 1. Here the DT algorithm follows the
path with the lowest cumulative Frangi filter values V -intensity of pixels. The
TOS algorithm improves upon this by using a crossing-preserving V - intensity
[35], and moreover it includes alignment of locally oriented image features as
explained in Section 2.1, resulting in better tracking performance (see Table 1).

3.2 Segmentation on the AigleRN dataset

The AigleRN dataset contains images of cracks in pavement and provides ground
truth crack segmentations [41]. In order to segment cracks on images from this
dataset, the TOS method is used with the WE as described in Section 2.2. Seven-
teen images were randomly selected from the AigleRN dataset for the evaluation.
To evaluate the performance of the tracking algorithm, criterions were used as
in [28], namely precision, recall and F1-value. Recall shows what fraction of the
crack pixels were retrieved by an algorithm. Recall equal to 1 means that all
pixels that belong to a crack according to ground truth were identified by an al-
gorithm as crack pixels. The precision value indicates what fraction of the pixels
that were identified as crack by an algorithm, actually belong to a crack segment.
Finally, the F1-value is the harmonic mean of precision and recall. Results are
provided in Table 2.

In [41] crack segmentation results retrieved by minimal path selection (MPS)
[27] and free-form anisotropy (FFA) [42] algorithms are also provided. Using
these provided segmentation results we also evaluated the performance of the
MPS and the FFA methods which are also shown in Table 2 for the same sev-
enteen images.

Table 2: Crack segmentation results on the AigleRN dataset.

FFA MPS TOS+WE
Precision 0.61 0.82 0.91
Recall 0.32 0.6 0.75
F1 0.36 0.63 0.82
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The FFA algorithm measures a local texture anisotropy for every pixel of
the image. The pixels where an anisotropy is higher than a threshold value are
assigned to a crack segment. This approach has the lowest performance.

The MPS algorithm finds potential crack pixels using a threshold of local
minima in grayscale. Afterwards, the paths between these points are computed
using Dijkstra’s algorithm. These paths constitutes the so-called ‘skeleton’ of
the crack. To find crack segments, this skeleton is used as a basis for the WE
algorithm as explained in Section 2.2. The MPS algorithm does not allow to
detect cracks with poor visibility, and this explains the low recall value. This
can also be observed in Fig. 8, where the middle part of the crack with partial
visibility was not detected by the MPS method. Also, in Fig. 8 we can observe
false detections by the MPS algorithm, whereas the TOS+WE algorithm avoids
false detections and maintains the connectivity of the crack. Because of this
effects the proposed TOS+WE algorithm outperforms its two counterparts by
all three metrics as can be seen on Table 2.

Input image Ground truth

MPS TOS+WE

Fig. 8: Typical example in the AiglRN dataset with segmentations. The output of
the TOS+WE algorithm is more connected and closer to ground truth than the
MPS-output. This qualitatively supports the performance differences in Table 2.

3.3 Segmentation on steel structures images

Finally, results are provided of the application of the segmentation algorithm
to the images of steel bridge structures with cracks from the dataset introduces
in Section 3.1. Ten images with visible crack edges from the dataset were used
for the evaluation. Unlike in pavement, crack edges in steel structures have a
smooth shape, and previously it was stated that the ET algorithm should work
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better than the WE algorithm in this case. Here this is shown by comparing the
TOS+ET and TOS+WE algorithms in Table 3.

In Table 3, also the results for the MPS algorithm are added for comparison.
As was explained in the introduction of this paper, the fully automatic MPS
method tends to have lots of false crack pixels identifications on images with
non-crack dark elongated elements as can be seen on Fig. 9. This leads to only
49% precision for the MPS algorithm and low F1-value.

In contrast, with the proposed algorithms (TOS+WE and TOS+ET) the
image structure of interest is identified at first using the crack path tracking.
Thus, the precision of the proposed algorithms is higher than that of the MPS
algorithm.

Furthermore, TOS+WE method has a slightly higher precision value than the
TOS+ET method, but significantly lower recall value meaning that TOS+WE
algorithm skips more crack pixel, marking them as background pixels. Thereby,
by the F1-value the TOS+ET method shows the best performance on the images
of steel structures from our dataset.

Input image Ground truth

MPS TOS+ET

Fig. 9: Example of a steel bridge image and the corresponding results of its seg-
mentation. The TOS+ET method suffers less from neighboring/crossing struc-
tures (paint, rust) because of the multi-orientation decomposition.

4 Conclusion

An algorithm for the crack segmentation was proposed, consisting of two major
parts. The first part of the algorithm measures a crack track between manually
selected crack endpoints. The second part of the algorithm performs the crack
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Table 3: Crack segmentation results on the dataset of images of steel structures.

MPS TOS+WE TOS+ET
Precision 0.49 0.9 0.86
Recall 0.66 0.69 0.85
F1 0.52 0.78 0.83

segmentation using a crack track obtained in the first part as a basis. The crack
tracking part of the algorithm adapts the approach initially developed for the
analysis of vascular systems on retinal images where an efficient fast marching
algorithm performs line tracking on the image lifted into space of positions and
orientations. For the width measurement part of the algorithm the novel ap-
proach was proposed for the crack edge tracking and it was compared with the
width expansion approach that was used in earlier works.

The proposed semi-automatic algorithm allows for a crack segmentation of
images with improved accuracy compared to the fully automatic algorithms,
such as minimal path selection and free form anisotropy algorithms and resolves
the problem of high false detections which is inherent to fully automatic crack
detection image processing algorithms. While sacrificing autonomy of the seg-
mentation algorithm, the accuracy significantly increases.

Potentially the developed algorithm may be used as a data labeling tool, to
label images with cracks to train a machine learning algorithm. However, results
show that the proposed algorithm does not fully reproduce the manual pixel-wise
labeling. It should be studied how much this deviation affects the performance
of the machine learning algorithm trained on the data labeled with the semi-
automatic segmentation tool. Also, the algorithm can find its use in cases when
it is necessary to measure a crack’s geometry (length, width, curvature etc.)
when the location of this crack is known, e.g. for research or for the purpose of
more accurate inspection.
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