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Abstract. Magnetic resonance imaging (MRI) is the standard modal-
ity to understand human brain structure and function in vivo (ante-
mortem). Decades of research in human neuroimaging has led to the
widespread development of methods and tools to provide automated
volume-based segmentations and surface-based parcellations which help
localize brain functions to specialized anatomical regions. Recently ex
vivo (postmortem) imaging of the brain has opened-up avenues to study
brain structure at sub-millimeter ultra high-resolution revealing details
not possible to observe with in vivo MRI. Unfortunately, there has been
limited methodological development in ex vivo MRI primarily due to lack
of datasets and limited centers with such imaging resources. Therefore, in
this work, we present one-of-its-kind dataset of 82 ex vivo T2w whole-
brain hemispheres MRI at 0.3 mm3 resolution spanning Alzheimer’s
disease and related dementias. We adapted and developed a fast and
easy-to-use automated surface-based pipeline to parcellate, for the first
time, ultra high-resolution ex vivo brain tissue at the native subject-
space resolution using the Desikan-Killiany-Tourville (DKT) brain atlas.
This allows us to perform vertex-wise analysis in the template space and
thereby link morphometry measures with pathology measurements de-
rived from histology. We will open-source our dataset, docker container,
Jupyter notebooks for ready-to-use out-of-the-box set of tools and com-
mand line options to advance ex vivo MRI clinical brain imaging research
on the project webpage.
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1 Introduction

Alzheimer’s disease and related dementias (ADRD) are heterogeneous, with
multiple neuropathological processes jointly contributing to neurodegeneration
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[34]. Currently, co-pathologies are not reliably detected with in vivo imaging,
which makes it difficult for clinicians to accurately diagnose the cause of cogni-
tive impairment in individual patients and to identify those most likely to benefit
from treatment with emergent drugs that target AD pathology. The efficacy of
in vivo biomarkers can be enhanced by combined analysis of regional measures
of neurodegeneration, such as cortical thickness, derived from brain MRI (ex
vivo or in vivo) and pathological measures obtained at autopsy. Such analy-
sis can help identify distinct spatial patterns of disease progression linked to
AD-specific pathologies (i.e. β-amyloid plaques and phosphorylated tau protein
tangles) and common co-pathologies. While such studies are performed using ei-
ther in vivo or ex vivo MRI, the latter offers advantages in temporal proximity to
pathological markers and in spatial resolution. The ability to scan ex vivo brain
tissue for many hours without motion artifacts makes it possible to achieve ultra-
high spatial resolution at which intricate neuroanatomical details of the brain
can be revealed [[6], [20], [2], [1], [37] , [32], [36], and [10]]. However, lack of
automated tools for processing ultra high-resolution ex vivo MRI is a
significant barrier to study structure-pathology association in ADRD.

Decades of neuroimaging research has yielded advanced computational frame-
works for automated analysis of in vivo brain MRI, and tools such as FreeSurfer
[13] and Statistical Parametric Mapping (SPM) [5], FSL [29] have been applied
in a plethora of ADRD neuroimaging studies. However, these tools cannot be
directly used on ultra-high resolution ex vivo MRI and there is very limited work
on developing ex vivo MRI analysis methods for widespread use, which remains
a challenge primarily due to the greater heterogeneity in scanning protocols of
ex vivo MRI and increased complexity and imaging artifacts than in vivo MRI.
Recent developments for ex vivo MRI include deep learning methods for high
resolution cytoarchitectonic mapping in 2D histology [3], atlas-based segmenta-
tion of MTL and the thalamus [20], [21], and whole-brain hemispheres analysis
[28], [27]. Recently, deep learning-based methods were developed to segment the
granular cortical layers [25], and gray matter (GM), subcortical structures, white
matter (WM) and its hyperintensities (WMH) in 7T ex vivo MRI. NextBrain
[8] provides semi-automatic brain segmentations using histology brain atlas.

These previous methods have several limitations as they are specialized for
specific parts of the brain or specific ex vivo datasets mainly limited to a healthy
(unremarkable) brain tissue specimens. The methods were evaluated on very
small datasets of only 1 [12], 5 [8], and 17 [25] ex vivo brain tissue for unre-
markable specimens or at low-resolution [28]. Crucially, to our knowledge, the
feasibility of using existing ex vivo MRI analysis pipelines to per-
form large-scale structure-pathology association studies in ultra-high
resolution ex vivo MRI has not been demonstrated.

Contributions. In this study, we perform structure-pathology association
analysis in a large dataset of ultra high-resolution 0.3 mm3 T2w 7T MRI scans
of whole brain hemispheres from 82 brain donors with ADRD diagnoses, a first
study of such scale conducted at this resolution. We present a new computa-
tional pipeline that performs automated segmentation and whole-hemisphere
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FreeSurfer DKT atlas [11] parcellation of the cortex in native subject
space at sub-millimeter 0.3 mm 3 resolution, a first large-scale surface-based
scheme for ex vivo whole-hemispheres analysis in diseased population.
We achieve this by adapting the surface-based pipeline in FreeSurfer with an
initial subject-space topology-corrected WM segmentation derived from a deep
learning-based segmentation model as developed in [24]. We evaluate the frame-
work by correlating cortical thickness with neuropathological markers implicated
in AD (regional measures of p-tau, neuronal loss; global amyloid-β, Braak stag-
ing, and CERAD ratings) and perform vertex-wise generalized linear modeling.

2 Materials and Methods

Dataset. We acquire and analyze a dataset of 82 ex vivo whole hemi-
sphere 0.3 mm3 7T MRI (See Fig. 1) at our XYZ center with left: 42 and right:
40 hemispheres, postmortem interval (PMI) of 18.48 ± 13.60 hours and fixation
time of 256.70 ± 280.48 days. The cohort included patients with Alzheimer’s Dis-
ease or related dementias (ADRD) [26] spectrum, such as Lewy body disease,
limbic-predominant age-related TDP-43 encephalopathy, corticobasal degenera-
tion, primary age-related tauopathy comprising of 41 female (age: 76.97 ± 9.70
years) and 41 male (age: 76.48 ± 11.67 years). Human brain specimens were
obtained in accordance with local laws and regulations, and includes informed
consent from next of kin at time of death. After autopsy, one hemisphere (Supp
Fig. A.1) was fixed in formalin for atleast 4 weeks and then imaged at T2-w
7T using a 3D-encoded T2 SPACE sequence with 0.3 mm3 isotropic resolution,
3s repetition time (TR), echo time (TE) 383 ms, turbo factor 188, echo train
duration 951 ms, bandwidth 348 Hz/px with 2-3 hours per scan.

The non-imaged hemisphere, i.e., contralateral tissue, underwent histologi-
cal processing for neuropathological examination (Supp Fig. A.2). Tissue blocks
were embedded in paraffin, sectioned at 6 µm thickness, and underwent im-
munohistochemistry. In each region, semi-quantitative severity ratings of p-tau
pathology, amyloid-β, and neuronal loss, were assigned by expert neuropatholo-
gists on a scale of 0–3 i.e. ‘0: None/Rare’, ‘1: Mild’, ‘2: Moderate’ or ‘3: Severe’.
Standardized global ratings of AD progression were also derived, including Thal
stage (global amyloid-β), Braak stage (global p-tau), and CERAD stage (neuritic
plaques) [4].

Methodological pipeline. We present a fast and reliable whole-hemisphere
anatomical parcellation and cortical thickness quantification framework that
combines deep learning-based methods developed in [24] with classical meth-
ods for topology correction [33] and surface-based cortical modeling, inflation,
registration, and parcellation in FreeSurfer [[13], [14]]. Our framework processes
one hemisphere in around 60 minutes. Rather than reinventing the wheel, our
approach focuses on combining the strengths of these existing tools and making
modifications that enable them to scale to ultra-high resolution ex vivo MRI.

Volume-based segmentation: First, we train a deep learning segmenta-
tion model nnU-Net [23] as explained in [24] to obtain whole-hemisphere volume-
based segmentations of 8 regions namely: cortical gray matter (GM), white mat-
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ter (WM), white matter hyperintensities (WMH), ventricles and four subcorti-
cal structures: caudate, putamen, globus pallidus and thalamus. The model was
trained on Nvidia Quadro RTX 5000 GPU using manual-labeled images and
extensively validated, as detailed in the work by Khandelwal et al. [24]. The in-
ference time for each hemisphere is around 15 minutes on a CPU. We merge the
WM, WMH, ventricles and subcortical labels in a single label and employ the
post-hoc topology correction method [[16] and [7]] based on fast-marching algo-
rithm implemented in ‘Nighres/CRUISE’ [18] to solve the buried sulcus problem,
i.e., clearly separating the adjoining gyri in the opposite banks of a buried sulcus.
This correction step takes around 5 minutes on a conventional Intel CPU.

Surface-based parcellation: Next, we modify the surface-based scheme in
FreeSurfer to obtain DKT atlas-based surface parcellations in ex vivo native sub-
ject space. Of note is that this step does not require the raw MRI intensity image
and is purely based on the voxel-level segmentation of cortical GM from above.
First, a ‘filled’ segmentation (Supp Fig. A.3) with WM, WMH, ventricles and the
four subcortical structures as the foreground; and the cortical GM along with the
CSF as the background, is created from the initial volume-based segmentation.
This ‘filled’ segmentation is then tessellated and corrected for any topological
errors such as holes and handles based on [33], termed as the ‘WM surface’. The
‘WM surface’ is smoothed and inflated to a sphere which is then registered to
the spherical representation of the Buckner40 spherical atlas [22] provided in
FreeSurfer using the curvature map of the WM surface. The labels of the DKT-
atlas is then warped from the spherical-atlas to the spherical-representation of
the ex vivo subject.

Next, the ‘WM surface’ is deformed and re-positioned to find the GM-CSF
pial surface using the method described in [13] [14] which employs three energy
functionals: spring-like term, decomposed into tangential and normal compo-
nents, to smooth and for regularization of the surface. The third term in the
energy functional is dependent on the gradient of the intensity image. This term
is the classic stopping criteria (inverse of the image gradient) used in deformable
models based on level sets and fast marching methods. FreeSurfer uses raw in
vivo T1w (or where applicable T2w) MRI intensity values for this energy term.
For the current study, the T2w ex vivo MRI has a varying intensity profile
within the GM which causes the deformable surface to prematurely stop in the
GM cortical ribbon and does not reach the pial surface. Therefore, we use the
segmentation derived from the above volume-based step (Supp Fig. A.3) in place
of the T2w ex vivo MRI intensity image. This has a clear advantage as the in-
tensity is constant in the GM cortical ribbon with a zero gradient everywhere.
The evolving surface then stops at the pial surface as expected. Finally, the
DKT-atlas labels are projected onto the pial surface and the parcellations are
mapped to the voxel-space to get the region-wise segmentation in the volume.
This surface-based scheme takes around 40 minutes on a CPU with 64 threads.

3 Experiments and Results
Segmentation and parcellation. We deployed the deep-learning model to

produce the initial segmentation of GM, WM, WMH, ventricles and the sub-
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Fig. 1. Ex vivo MRI and parcellations. Sagittal, axial and coronal viewing planes
of ex vivo MRI at 0.3mm3 resolution for two subjects (A and B) with corresponding
DKT volumetric segmentations and surface-based parcellations on pial and inflated
surfaces for the medial and lateral views in subject space resolution. Our method is
able to correctly delineate the brain even in regions where the MR signal contrast is
low in the anterior and the posterior brain MRI due to artifacts in acquisition protocol.
Bottom row: the segmentations and parcellations on the corresponding 3T in vivo MRI
of subject B which shows that the developed pipeline correctly map the labels to similar
brain locations in ex vivo MRI. Legend: See Fig. 2 for the brain region labels.

cortical structures. Note that validation of this deep learning-based pipeline was
done extensively in a previous work [24] as explained in Sec. 2 and is out of scope
of the current paper. The surface-based scheme was then used to jointly obtain
the cortical parcellations and volumetric segmentations as shown in Fig. 1 in
the native subject space. Due to the immense manual labelling efforts involved
in ex vivo MRI, in the order of 3-4 weeks per subject, the reliability of these
parcellations are evaluated using the following two correlation studies.

Region-based cortical thickness vs neuropathology correlations. Fig.
2 shows the Spearman’s ρ-value between the mean cortical thickness (mm) in
each brain region (computed in subject space at native resolution) and five
pathology measures: global ratings of amyloid-β, Braak staging, CERAD, and
regional ratings of p-tau pathology and neuronal loss in the MTL, the region first
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Fig. 2. Spearman’s correlation plots between mean ROI thickness (mm)
and neuropathological ratings in native subject-space. We observe significant
negative correlation with global ratings of amyloid-β, Braak staging, CERAD, and
the semi-quantitative ratings of the medial temporal lobe (MTL) tau pathology and
neuronal loss. All the analysis were covaried for age, sex and postmortem interval (PMI)
for the entire cohort of 82 subjects. See legend for the regional brain labels.

implicated in AD. The analysis were covaried for age, sex and postmortem inter-
val (PMI) and corrected for multiple comparisons using Bonferroni method. Sig-
nificant negative correlation were found in entorhinal, parahippocampal, medial-
orbitofrontal, temporal pole, inferior temporal and parietal lobes which are con-
sistent with literature on progressive loss of cortical gray matter in AD [35].

Surface-based vertex-wise cortical thickness vs neuropathology
correlations. The thickness maps for each individual subject were warped to
the Buckner40 template-space for vertex-wise correlation analysis between cor-
tical thickness (mm) and the five neuropathological ratings. The parcellations
and thickness maps of two subjects in the Buckner40 fsaverage space are shown
in Fig. 3. Vertex-wise correlation between thickness and the neuropathology rat-
ings was performed by fitting a GLM at each vertex across the entire cohort of
82 subjects with age, sex and PMI as the covariates and corrected for multi-
ple comparisons using family-wise error rate (FWER) correction. Fig. 4 shows
the t-statistics map on the pial and the inflated surfaces with the clusters out-
lined in white indicating regions where the significant strongest associations were
observed (p<0.05) surviving FDR correction. We observe that the strongest cor-
relations were observed in MTL, the region associated with AD.

4 Discussion

Using both recent advances in deep learning based segmentation models and
classic deformable and spherical registration methods, we developed a pipeline
that enables surface-based modeling and group-wise registration of the corti-
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Fig. 3. Desikan-Killiany-Tourville (DKT) surface-based parcellations and
thickness maps shown for two subjects (A and B) in Fig. 1 in FreeSurfer Buck-
ner40 [22] template space on pial and inflated surfaces for the medial and the lateral
views. Note there is no segmentation in the regions with missing MRI signal (Fig. 1 and
that is correctly reflected in the missing parcellation in the anterior surface for subject
B. The thickness maps (smoothed with a 5mm FWHM Gaussian kernel) is used for
the vertex-wise GLM analysis.

cal gray matter in ultra high-resolution ex vivo MRI. In addition to its higher
resolution, ex vivo MRI poses multiple challenges for computational analysis,
including deformation during brain removal and fixation (particularly collapse
of the ventricles), and distinct artifacts, such as intensity inhomogeneity both
across the whole image domain and across cortical layers. Hence our ability
to successfully combine nnU-Net, Nighres/CRUISE and FreeSurfer pipelines to
achieve the same type of parcellation as is ubiquitous in in vivo MRI studies
is a non-trivial accomplishment. Crucially, the Nighres/CRUISE and FreeSurfer
components used in our pipeline operate only on segmentation maps, rather than
MRI intensity. Thus, to generalize our approach to other scanners and ultra-high
resolution MRI protocols, one only needs to focus on the segmentation aspect.
There are imperfections in our existing segmentation that propagate to the hemi-
sphere parcellations. We observe that there is missing cortical GM segmentation
in the anterior and posterior regions due to lack of MRI intensity contrast, an
imaging artifact introduced due to a limitation of our magnetic coil. On the in-
flated white matter surface (Fig. 3), we can observe the missing portion of the
frontal-brain areas for subject B.

A key contribution of this work is that it performs, for the first time, a
surface-based structure-pathology correlation analysis using ultra-high resolu-
tion ex vivo MRI in a large cohort of brain donors with ADRD diagnoses. By
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Fig. 4. Template-space vertex-wise morphometry-pathology correlations.
Vertex-wise group analysis was performed to fit a generalized linear model (GLM).
Shown are the statistical map (t-statistics) of the correlation between cortical thick-
ness (mm) and with global ratings of amyloid-β, Braak staging, CERAD, and semi-
quantitative ratings of the medial temporal lobe (MTL) tau pathology and neuronal
loss, the with age, sex and postmortem interval (PMI) as covariates across all 82 sub-
jects. The clusters outlined in white indicate regions significant correlations (p<0.05)
were observed after FWER correction for multiple comparisons.

doing so, it demonstrates the analysis approach that is ubiquitous in in vivo
brain MRI research, and has been previously adopted to 1mm3 resolution ex
vivo MRI by some groups [28] and [27], can also be applied to ex vivo stud-
ies at ultra-high resolution. To demonstrate analysis modes common in in vivo
research, we performed both region of interest (ROI)-level correlation analysis
and vertex-wise template-space analysis to study patterns of neurodegeneration
within the AD continuum. Prior works [[31], [15]] shows how amyloid-β and p-tau
etc have differential influences on cortical atrophy. Tau pathology is concurrent
with neuronal loss in AD leading to cortical atrophy [17]. Negative correlations
between MTL p-tau and neuronal loss with cortical thickness were found to be
significant in the entorhinal cortex and the MTL, regions first implicated in AD
[[9], [30]] both in in vivo and ex vivo studies. Crucially, the ability to map data
from subject space to the DKT-template space based on surface correspondence
is not limited to cortical thickness measures, and in future, our pipeline can
be used to analyze features that take advantage of ultra-high resolution ex vivo
MRI, such as mapping iron and myelin in cortex [36].

Conclusion. We developed a fast and easy-to-use pipeline to parcellate the
whole-brain hemispheres into the FreeSurfer DKT-atlas defined regions at the
native subject space sub-millimeter 0.3 mm3 isotropic resolution, and applied
it to a large-scale dataset of ultra high-resolution ex vivo 7T structural MRI.
We demonstrated the feasibility and utility of this approach by performing a
structure-pathology association study that is the first of its kind at this level
of ex vivo MRI resolution and one of the largest ever conducted at any ex vivo
MRI resolution. In future, we will perform an exhaustive study by delineating
the brain regions with different anatomical atlases based on a surface-based
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population template derived from the ex vivo hemispheres. This will enable us
to understand the region-wise local intensity profiles to study the structural
relationships with the underlying histology-derived markers. We believe that
the present study will enable scientific advancements in ex vivo imaging and
thereby inform better in vivo computational biomarkers.
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A Supplementary Figures

Fig.A.1. Postmortem tissue blockface photograph of a donor.
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Fig.A.2. Pathological assessment for each regional pathology derived from histol-
ogy. The columns are severity ratings (left to right): 0-3. The shown pathologies are:
amyloid-β plaques (NAB228 antibody), p-tau pathology (PHF-1 antibody), and neu-
ron loss (Hematoxylin and Eosin staining).
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Fig.A.3. Some key components in the computational pipeline. Shown is the MRI (A)
and the corresponding filled segmentation (B) which includes everything except the
cortical gray matter (GM). This filled segmentation is then tessellated (D) which is
the starting point for the parcellation scheme. An important remark is that instead of
the MRI intensity values typically used the intensity-term in the surface-evolution step
in FreeSurfer. Instead, we use the segmentation (C) as the ‘intensity image’.
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Fig.A.3. Continued. Some key components in the computational pipeline. The main
advantage is that the surface does not stop incorrectly in the GM due to varying gran-
ularity and sudden intensity changes in GM layers. But instead the surface correctly
evolves from the WM-GM surface to the GM-CSF boundary as there is the gradient is
zero everywhere in the GM segmentation and the surface-evolution term is satisfied at
the boundary where there is sudden change in the gradient. The segmentation image
consists of the four subcortical structures (caudate, putamen, globus pallidus, and tha-
lamus), white matter hyperintensities (WMH), and the normal appearing white matter
(WM), ventricles and the cerebrospinal fluid (CSF).
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Fig.A.4. Template-space vertex-wise morphometry-pathology correlations.
Vertex-wise group analysis was performed to fit a generalized linear model (GLM).
Shown are the statistical map (t-statistics) of the correlation between cortical thickness
(mm) and with global ratings of amyloid-β, Braak staging, Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD), and the semi-quantitative ratings of the
medial temporal lobe (MTL) tau pathology and neuronal loss, the with age, sex and
postmortem interval (PMI) as covariates for all the 82 subjects. The clusters outlined
in white indicate regions significant correlations (p<0.05) were observed after family-
wise error rate (FWER) correction for multiple comparisons.
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