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Figure 1. RELI11D is a high-quality dataset that provides four different modalities and records movement actions(first two rows). Our
dataset’s annotation pipeline can provide accurate global SMPL joints, poses as well as global human motion trajectories(last row).

Abstract
Comprehensive capturing of human motions requires

both accurate captures of complex poses and precise lo-
calization of the human within scenes. Most of the HPE
datasets and methods primarily rely on RGB, LiDAR, or
IMU data. However, solely using these modalities or a com-
bination of them may not be adequate for HPE, particularly
for complex and fast movements. For holistic human motion
understanding, we present RELI11D, a high-quality mul-
timodal human motion dataset involves LiDAR, IMU sys-
tem, RGB camera, and Event camera. It records the mo-
tions of 10 actors performing 5 sports in 7 scenes, includ-
ing 3.32 hours of synchronized LiDAR point clouds, IMU
measurement data, RGB videos and Event steams. Through
extensive experiments, we demonstrate that the RELI11D
presents considerable challenges and opportunities as it
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contains many rapid and complex motions that require pre-
cise location. To address the challenge of integrating dif-
ferent modalities, we propose LEIR, a multimodal baseline
that effectively utilizes LiDAR Point Cloud, Event stream,
and RGB through our cross-attention fusion strategy. We
show that LEIR exhibits promising results for rapid mo-
tions and daily motions and that utilizing the characteris-
tics of multiple modalities can indeed improve HPE perfor-
mance. Both the dataset and source code release publicly
in http://www.lidarhumanmotion.net/reli11d/, fostering col-
laboration and enabling further exploration in this field.

1. Introduction
Human Pose Estimation (HPE) [1, 8, 10, 11, 42, 52, 54,
71, 97] is a challenging and long-standing research problem
with significant potential for various applications, including
AR/VR, autonomous driving, and sport analysis. Capturing
complex and rapid human motions [16] is particularly chal-
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lenging, which requires the accurate estimation of poses and
precise localization of individuals within various scenes.

Researchers adopt RGB cameras [9, 25, 36, 63, 75,
76, 83] for HPE as they can capture appearance informa-
tion, but they are light-sensitive and a monocular camera
cannot provide depth information. Besides RGB imagery
[28, 29, 31, 44, 50, 85], there are multiple types of sen-
sors that excel in capturing various aspects of human mo-
tions [76]. RGBD sensors compensate for the absence of
depth information, but their sensing range is limited. Li-
DAR [48] is light-insensitive and can provide 3D geometry.
However, it suffers from sparsity and low frame rate issues.
Inertial Measurement Units (IMUs) [33, 92] is occlusion-
free. Nevertheless, they should be body-worn and are sub-
ject to the drifting issue. Event cameras [49] can capture
motions with high temporal resolution and dynamic range
by measuring intensity change asynchronously. However,
they do not provide appearance information. In conclusion,
these sensors have distinct characteristics. Therefore, to
obtain the holistic understanding of human motions, using
multiple types of sensors is important.

HPE methods are partially driven by the development
of human motion datasets [53]. Most of them use several
types of sensors. As far as we know, there does not ex-
ist a human motion dataset that contains the RGB, LiDAR,
Event, and IMU modalities. Such a multimodal dataset is
beneficial for the community to better understand human
motions. To this end, we introduce a multimodal human
motion dataset, RELI11D, which involves four types of
sensors: RGB cameras, LiDAR, Event cameras, and IMU
measurements. It comprises data from 10 actors (2 females,
8 males), encompassing motions of 5 different sports (table
tennis, taekwondo, boxing, fencing, and badminton) in 7
scenes. RELI11D includes a diverse range of synchronized
data, consisting of 199.26 minutes of RGB videos, event
streams, IMU motion capture data, and point cloud frames.

The rich modalities and annotations provided in our
dataset enable benchmarking on a series of 3D HPE tasks.
We quantitatively and qualitatively evaluate multiple state-
of-the-art methods for these tasks. Most of these methods
cannot deal with rapid, coherent, and complex movements
that require precise location. The experimental results show
that our dataset brings new challenges to current computer
vision algorithms.

To address these challenges, we propose LEIR, a base-
line that estimates global human poses using LiDAR point
clouds, Event streams, and RGB images. It effectively uti-
lizes the geometry information from LiDAR, the motion dy-
namics encoded in events, and the appearance features in
RGB images through our multimodal cross-attention bases
method. The advantages of LEIR have been thoroughly val-
idated through experiments. We show that leveraging multi-
ple modalities is necessary for a comprehensive understand-

ing of human motions. In summary, our contributions are
listed below:

• We present RELI11D, the first HPE dataset consisting of
the RGB, IMU, LiDAR, and Event modalities.

• We provide a benchmark that enables the comparison of
multiple methods using different modalities.

• We propose LEIR, a multi-modality baseline integrating
the LiDAR point clouds, event streams, and RGB images
for global human poses and trajectories estimation.

2. Related Work

2.1. Single modality Datasets and Methods

Many RGB motion datasets [8, 17, 30, 70] are collected us-
ing marker-based (e.g., Human3.6M [34], HumanEva[72])
or marker-less methods (e.g., MPI-INF-3DHP[55]). RGB-
Based methods have flourished in recent years with a variety
of approaches [7, 16, 18, 23, 43, 58, 60, 63, 67, 68, 73, 81–
83, 89, 99], but most still focus solely on single RGB
modality construction, with only a few considering the esti-
mation of global trajectories [45, 47, 74, 94].

LiDAR can directly acquire three-dimensional spatial in-
formation. P4T [24] and STCrowd [20] use LiDAR point
clouds to segment the human body. LiDARCap [48] per-
forms 3D HPE through LiDAR point clouds.

An event camera generates a stream of events. Each
pixel of the event camera responds asynchronously and in-
dependently to illumination change and generates an event
if the change exceeds a threshold, which makes event cam-
eras excel at capturing the local motions of objects [3, 51].
DHP19 [10] and [69] perform 2D HPE by treating event
streams as image frames. EventCap [84] estimates 3D poses
through a monocular event camera. EventHPE [101] per-
forms HPE through a flow-based approach. EventPoint-
Pose [14] regresses poses through event point clouds.

IMU-based methods [33, 61, 80, 93] are environment-
independent and occlusion-free. [57] fuses visual and iner-
tial information for HPE; EgoLocate [91] estimates human
poses based on sparse IMUs; [64] estimates poses based on
physical contact. However, their necessity to be worn poses
practical challenges and difficulties.

2.2. Multi-modality Datasets and Methods

TotalCapture[77] collects human poses in a studio through
multi-view cameras and IMUs. 3DPW [79] collects sub-
jects walking in a city through IMU and a hand-held cam-
era. PedX[40] records pedestrian poses through stereo
images and LiDAR point clouds. ImmFusion [12], Fu-
sionPose [19], and [96] use RGB and LiDAR body point
clouds to reconstruct human poses. LIP [66] reconstructs
poses using sparse IMUs with LiDAR. Besides using a
monocular camera and IMUs, LiDARHuman26M [48],



Dataset Sensor Modalities Global Frames 3D Scene Motion Real/ Number of Number ofRGB MoCap LiDAR Event Trajectory Synthetic Sequences Subjects

LiDARHuman26M[48] " IMU " - - 184k - Daliy Real 20 13
HSC4D [22] - IMU " - " 10k " Daliy Real 8 1
SLOPER4D [21] " IMU " - " 100k " Daliy Real 15 12
CIMI4D [87] " IMU " - " 180k " Climbing Real 42 12
LIPD [66] " IMU " - " - - Obvious Real 10 6
LiCamPose[19] " IMU " - - 9k - Daliy Real - -
EMDB[38] " EM - - " 105k - Daliy Real 81 10
SMART[16] " - - - - 110k - Sports Real 640 -
X-Avatar[71] " - - - - 35k " Daliy Real 233 20
BEHAVE [5] " - - - " 15k - Interactions Real - 8
RICH [32] " - - - " 577k " Interactions Real 142 22
AGORA [59] " - - - " 106.7K " Daliy Synthetic - -
3D-FRONT HUMAN [90] - - - - " - " Daliy Synthetic - -
BEDLAM [6] " - - - - 1M " Daliy Synthetic - -
DHP19 [10] - - - " - 87k - Daliy Real - 17
MMHPSD [100] " - - " - 240k - Daliy Real 84 15

RELI11D(Ours) " " " " " 239k "(7) Sports Real 48 10

Table 1. Comparisons with related datasets. The ”-” symbol indicates that it is not included in the dataset.

HSC4D [22], SLOPER4D [21], CIMI4D [87] collect hu-
man poses through a static monocular LiDAR, a body-
mounted LiDAR, a head-mounted LiDAR, and a Li-
DAR respectively. Researchers have also explored some
other sensors for human motions, such as WIFI [35, 65,
98],mmWave [2, 12, 13], and electromagnetic sensor [38].

3. RELI11D: a multimodal motion dataset
RELI11D is a multimodal high-quality human movement
dataset that contains five different categories of sports: ta-
ble tennis, taekwondo (examination movements and free
exercises), boxing (traditional boxing, free fighting, Muay
Thai), fencing (saber, epee, foil), and badminton. It col-
lects 4 modalities for a total of 48 sequences of 199.2
minutes (3.32 hours) of synchronized RGB camera video,
Event camera streams, IMU Measurements Data, and Li-
DAR point clouds. In total, there are 239k frames of hu-
man body point clouds. In RELI11D, we invite 10 vol-
unteers to collect sports in 7 scenes. All the participants
agree that their recorded data may be used for scientific
purposes. Fig. 2 describes the rich modalities and anno-
tations the community can get from RELI11D. Tab. 1 pro-
vides statistics comparing with other publicly available hu-
man pose datasets. As far as we know, RELI11D is the
first dataset that consists of RGB, LiDAR, IMU, and Event
modalities. Moreover, it contains high-precision 3D scans
of 7 scenes , global poses and trajectories of each actor, con-
tributing to comprehensive human scene perception.

3.1. Hardware and Configuration
The motion collection device is composed of multiple sen-
sors that can collect motions indoor and outdoor. As shown
in Fig. 3, we use LiDAR (Ouster-OS1, 128-beam) to capture
3D dynamic point clouds at 20 frames-per-second (FPS),
a monocular RGB camera (DJI Action 2, 4096×3072) to

(a) (b) (c) (d) (e) (f)

(i)(h)(g)

Figure 2. RELI11D provides rich data and annotations: (a) RGB
Videos, (b) 2D Annotation, (c) 2D SMPL Poses, (d) Events, (e)
3D Point Clouds, (f) 2D Point Clouds, (g) High Precision Scene
Meshes, (h) 3D SMPL Shape, Poses, and Trajectories, (i) IMUs
Measurements.

Ouster-OS1-128

120° × 45°
@20Hz

Action2 

1080P @60Hz
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Figure 3. Portable Human Motion Capturing system.

record RGB video at 60 FPS, and an event camera (CeleX-
V [15], 1280x800) to record event streams. For each sports
scene, we use the Trimble X7 3D laser scanning system to
reconstruct a high-precision RGB 3D point cloud for it, to-
taling 80 million points for each scene.

Each volunteer wears an Xsens MVN inertial motion
capture system. It contains 17 IMUs, which record poses
at a speed of 60 FPS. To obtain their body shape (SMPL β),
we scan their body using a handheld point cloud modeling
equipment and obtain β through IPNet [4].

Human Pose Model and Label. A human motion is de-
noted by M = (T, θ, β), where T represents the N × 3
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Figure 4. Overview of main annotation pipeline. The dotted boxes of different colors represent different data processing stages, and the
arrows represent the data flow direction. Dotted box: The input of each scene sequence consists of RGB videos, point cloud sequences,
IMU measurements, events flow(times axis), and 3D laser scanning data. The data pre-processing stage calibrates and synchronizes
different modalities. The consolidated optimization includes the global pose and translation based on multiple constraint losses.

translation parameters, N × θ is the 24 × 3 pose parame-
ter, and β is the 10 dimensions shape parameter following
SMPL [52], N is the frame count. As IMUs suffer severe
drifting for long-period capturing, we seek to find the pre-
cise T and θ for RELI11D as annotation labels.

3.2. Data Annotation Pipeline

The data annotation pipeline consists of 3 stages: pre-
processing, consolidated optimization, and manual annota-
tion. Fig. 4 depicts the main annotation pipeline.

3.2.1 Multimodal Data Pre-processing Stage

Scene reconstruction. For each RGB high-precision static
3D point cloud scene, we convert it into a mesh scene com-
posed of triangular patches through implicit surface Poisson
reconstruction [39]. Data in this format can more accurately
calculate the interaction between the human body and the
environment is convenient.

Time synchronization. Synchronization between the
IMU, LiDAR, RGB video, and event streams is achieved
by detecting spikes in jump events. In each motion se-
quence, the subject jumps in place, and we design a peak
detection algorithm to automatically find the height peaks
in the IMU and LiDAR trajectories. RGB videos and IMU
data are downsampled to 20/fps, consistent with LiDAR’s
frame rate. The event stream is divided into multiple event
frames E = {Eti}Ni=1. Eti is the set of events whose time
stamp t satisfies ti−1 < t ≤ ti−1.

Calibration. Initially, we register the LiDAR sparse point
scene and the high-precision scene of each sequence to the
same coordinate system. Next, for each frame, we isolate
the human body point clouds, and derive the human poses
based on it. The movement sequence of a person in world
coordinates {W} is represented by MW = (TW , θW , β).
T I and θI in M I = (T I , θI , β) are provided by IMUs.
θW = RWIθ

I is used as the initial poses, where RWI is
a rough calibration matrix from the IMU coordinate system
to the world coordinate system. As the translation measured
by IMUs is not accurate [87], we use the position of the
center of the human hip in the point clouds as TW . Lastly,
we execute frame-level temporal synchronization and spa-
tial calibration for the scenes and all the modalities.

3.2.2 Consolidated Optimization
We utilize contact aware loss Lcontact, smoothness loss
Lsmoo and geometry loss Lgeo to perform consolidated op-
timization of global poses and trajectories to obtain accurate
and scene-natural human motion. Please refer to the sup-
plementary for a detailed formulation of these losses. We
minimize the overall loss which is defined as follows.

L = λcLcontact + λsLsmoo + λgLgeo (1)

where λc, λs, λg are loss coefficients.
Contact Aware Loss. The Lcontact term combines scene
constraints LsceneC and self-penetration constraints LselfC

to improve the quality of local human poses. First, we use
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λsceneC to penalize the vertices in the human SMPL mesh
that penetrate the scene mesh. To avoid the self-penetration
problem, we use the self-penetration constraint LselfC .

Smoothness Loss. We introduce Lsmoo to ensure the
motion smoothness. It includes (1) the global trajectory
smoothing term Ltrans, which smooths the human body
motion by minimizing pelvis acceleration. (2) The body
posture smoothing term Lposes maintains the stability of
the entire human body motion by minimizing the angular
velocity of each pelvis-related joint. (3) The human joints
smoothing term Ljoints smooths SMPL joint acceleration.

Geometry Loss. Point clouds contain the geometry of hu-
man motion, we use Lgeo to make visible SMPL vertices
approximate the geometric relationship. Following [22], for
each SMPL mesh, we use [37] to remove invisible mesh
vertices from the LiDAR perspective. Lgeo is the 3D Cham-
fer distance between body point and visible SMPL vertices.

3.2.3 Manual Annotation and Verification Stage

We manually correct the pose and translation parameters of
a subject’s motions for some artifacts. Further, an external
person has examined our dataset. We have adjusted the im-
precise annotations pointed out by this person.

4. LEIR: A multimodal HPE baseline

We propose LEIR, a multi-modality baseline for human
motion estimation. Given the synchronized LiDAR point
clouds, RGB images, and event streams that are captured
by multiple sensors, the task of the baseline is to predict the
3D pose of the human in the world coordinate system.

Many existing two-modal-based methods [26, 41, 46]
adopt a two-tower architecture, where each tower processes
only one modality. LEIR aims to fully model three (rather
than two) modalities, which is non-trivial because each
modality contains different information.

As is depicted in Fig. 5, LEIR consists of three ma-
jor modules: feature extractors, the temporal unified multi-
modal model (TUMM), and SMPL-based inverse kinemat-
ics solver. For each modality, feature extractors are used
to extract its features, which are fused through the TUMM
modules to fully utilize the 3D geometric information of
point clouds, the appearance information of RGB images,
and the temporal dynamics of event streams. In the end,
the fused features are fed into SMPL solver to obtain the
estimated poses. Please see the appendix for more details.

4.1. Feature Extraction

RGB Feature Extraction. For each RGB frame, we
specifically target the human body by applying a bounding
box and extracting its corresponding feature Rfi−N

using
an RGB encoder (DINOv2 [56]).

LiDAR Feature Extraction. For the human body point
clouds PW

i−N , we extract its features Pf3di−N
by feeding

the point clouds into a PointNet++[62] and a GRU network.

Event Feature Extraction. For each event frame Eti , we
employ an average time sampling filter with adjacent point
denoising [86] to effectively process the noise in the frame.
This filtering technique enhances the visibility of changes
in human body movement between frames. Subsequently,
we aggregate all the events in a frame based on their pixel
location and polarity, thus generating an image-like event
frame. The features Efi−N

of this frame are then extracted
using an RGB encoder (DINOv2).

4.2. Temporal unified multimodal model (TUMM)

Previous methods, such as [96], fuse the LiDAR and RGB
modalities through projection rely on accurate calibration,
which may not always available. Moreover, it is unclear
how to effectively fuse LiDAR and Event modalities.

To automatically learn correspondence among three



modalities and eliminate calibration sensitivity, TUMM
uses the cross-attention strategy. The TUMM module con-
sists of two steps. In the first step, the LiDAR point clouds
and the RGB images are fused using the multimodal cross-
attention unit (MMCA), LiDAR point clouds and the event
frames are fused using MMCA as well. This step aims to
effectively integrate the geometry information with appear-
ance information, and integrate the geometry information
with motion dynamics. In the second step, the features ob-
tained from the first step are further fused using MMCA,
which allows a comprehensive integration of the features
from different modalities.

The design of the MMCA unit is depicted in the right
part of Fig. 5. The LiDAR features F3Di−N

and the
RGB/event features F2Di−N

are processed through a se-
ries of transformer encoders [78] and self-attention mecha-
nisms. MMCA employs a 2-layer cross-attention structure,
using the fused keys as intermediaries to match and align
two sources of information. In the first layer, the features
from the LiDAR act as queries, while the features from the
RGB/events serve as keys and values. In the second layer,
the output from the last layer serves as the keys; the LiDAR
feature and RGB feature serve as query and value, respec-
tively. The output features are obtained by element-wise
addition of the input features and the results of the cross-
attention structures. For the second step of TUMM, the 2D
(right) branch of MMCA is replaced by a 3D branch. The
output results of the previous step are fed into MMCA for
finding correspondence among three modalities.

4.3. SMPL-Based inverse motion solver

The fused features Fmmfusion are utilized in three branches
within the network. In the first branch, these features are
fed into a 3D regressor to estimate 3D joints and camera in-
trinsic parameters. This branch involves three different loss
functions. Lps2d serves as a projection loss, ensuring that
the 2D appearance of the SMPL model aligns with the hu-
man body in pixel coordinates. Lkp2d and Lkp3d are used
to respectively constrain the 2D and 3D joints of the hu-
man body. In the second branch, the features are fed into
an RNN network that predicts 3D human joints in the world
coordinate system. LW

joint is employed to encourage align-
ment with the labels. The third branch employs an ST-GCN
[88], where the fused features are used to predict 3D hu-
man joints. In addition, we apply Lsmpl

joint to ensure accurate
joint orientation. Finally, the outputs of the third branch
are passed through an SMPL optimizer to obtain the hu-
man pose in axis-angle form, and Lsmpl

pose is employed to en-
force alignment with the ground truth poses. The overall
loss function used in LEIR combines all these individual
losses, which is defined as follows.

Lps2d + Lkp2d + Lkp3d + LW
joint + Lsmpl

pose + Lsmpl
joint (2)

Sport sequences ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑
Pingpong 0.72/3.70 22.31/58.42 21.90/58.62 31.89/85.55 0.98

Badminton 0.84/1.97 27.91/67.57 26.19/64.11 28.45/63.20 0.95
Taekwondo 1.25/2.89 29.28/68.23 25.02/63.13 36.83/66.23 0.95

Boxing 1.79/5.22 31.42/67.56 26.43/50.83 38.45/75.45 0.96
Fencing 0.40/5.00 25.66/62.73 20.54/52.09 27.73/53.68 0.98

Table 2. Quality of the optimization process. Each cell reports the
mean and maximal error metrics which are separated by “/”.

Constraint term PingPong1 Boxing1
Lcontact Lsmoo Lgeo ACCEL↓ MPJPE↓ PA-MPJPE↓ ACCEL↓ MPJPE↓ PA-MPJPE↓

% % % 5.29 29.14 20.7 6.79 31.20 25.65
! ! % 1.96 13.75 10.11 1.52 11.89 14.96
! % ! 4.03 15.19 12.91 5.50 18.82 12.13
% ! ! 1.29 18.14 13.80 1.10 12.23 9.66

! ! ! 0.92 12.25 9.31 0.85 10.26 8.35

Table 3. Evaluation of Consolidated Optimization for different
constraints. Unit: mm

RGB Point Cloud Our AnnotationAfter Pre-processingIMU Mocap Result w/o

√Right Pose and Trans

Penetration

Drifting

Wrong Pose

ℒ𝑔𝑒𝑜 term

Figure 6. Qualitative evaluation. From left to right: RGB image,
LiDAR point clouds, initial IMU motion capture result, after pre-
processing stage, after optimization without the Lgeo loss, after
optimization stage.

To evaluate the performance of different input modali-
ties using the same network, we employ the same training
strategy as [95], which freezes unnecessary model parame-
ters based on different input modalities, thus enabling mul-
timodal or single-modal training and inference.

5. Experimental Results

Evaluation metrics. We report Mean Per Joint Posi-
tion Error (MPJPE), Procrustes Aligned Mean Per Joint
Position Error (PA-MPJPE), Percentage of Correct Key-
points (PCK0.3), Per Vertex Error (PVE), Acceleration
Error(mm/s2) (ACCEL). Regarding the evaluation of tra-
jectory errors, we use Global MPJPE (GMPJPE) to calcu-
late the mean per joint position error of the SMPL model in
global coordinates, global human body root node Transla-
tion Error(T-Error). The PCK0.3 is calculated as a percent-
age, while other indicators are in mm.

5.1. Dataset Evaluations

We study the quality of the RELI11D dataset through qual-
itative and quantitative evaluations.
Qualitative evaluation. Fig. 6 depicts a frame of the
RELI11D dataset. The global translation of IMUs may be
in-precise as it is floating in the air (column 3 of Fig. 6).
Through the pre-processing stage, the quality of the dataset
is improved, the position of the SMPL model is on the
ground (column 4 of Fig. 6). However, it may cause pen-
etration. In the consolidated optimization stage, RELI11D
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Figure 7. Benchmark experiment and RELI11D demonstration. Image-based methods (left col 5 to 9) can produce erroneous results
due to occlusions and rapid movements (red circles). Our multimodal method (first right col) performs best qualitatively by comparison.

uses the contact aware loss to avoid penetration so that the
quality is further improved. (column 5 of Fig. 6). Never-
theless, limb poses may be wrong. Through using the Lgeo

loss, we obtain the accurate poses and translations (the last
column of Fig. 6).

Quantitative evaluation. To quantitatively evaluate the
annotation quality of RELI11D, we select annotated mo-
tion sequences, and evaluate the performance of the consol-
idated optimization stage (in Sec. 3.2.2) by comparing the
generated annotations against optimized annotations. Tab. 2
depicts the error metrics for the annotations generated with-
out/with the optimization stage in mean/max. The error
metrics are small, which demonstrates the effectiveness of
the annotation pipeline and the high quality of RELI11D.

In order to understand the impact of different constraints
used in the consolidated optimization stage, we conduct a
ablation study on 3 different losses: Lcontact, Lsmoo and
Lgeo. Tab. 3 shows the error metrics of using different
combinations of losses for two scenes. Without using any
losses (row 1), the error metrics are the largest. If we re-
move any loss from the optimization stage (row 2 to 4), the
error metrics increase, indicating all the losses are useful to
improve the quality of our dataset.

5.2. Benchmark

The rich modalities provided in RELI11D allow us to con-
duct a systematic benchmark on HPE methods. We consider
5 HPE tasks: LiDAR-based, RGB-based, RGB+LiDAR-
based, Event-based, and HPE with global trajectory.

Input Modality Method ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑

LiDAR
P4Tranformer [24] 66.33 172.04 150.65 206.75 0.51

PCT [27] 59.19 144.40 116.99 174.33 0.67
LiDARCap [48] 54.42 144.51 106.20 176.98 0.67

RGB
HybrIK [47] 58.39 249.34 163.91 255.98 0.53
NIKI [45] 55.62 196.68 142.48 198.10 0.61

SMPLer-X [9] 50.15 171.97 128.02 185.83 0.66

Event EventHPE [101] - 193.7 115.72 224.59 0.52
EventPointPose [14] - 16.24(2D) 10.91(2D) - 0.69(2D)

RGB+
LiDAR

ImmFusion [12] 49.19 175.00 159.62 187.31 0.67
FusionPose [19] 44.89 136.15 110.19 166.94 0.75

Table 4. Comparison of SOTA HPE methods on different modals
in RELI11D. Unit: mm

Input Modality Method ACCEL↓ MPJPE↓ PA-MPJPE↓ GMPJPE↓ T-Error↓ PCK0.3↑

RGB GLAMR [94] 47.83 202.66 179.59 495.40 590.46 0.65
TRACE [74] 50.09 197.41 165.18 488.91 581.67 0.68

Table 5. Comparison of SOTA 3D HPE methods with global
translation in RELI11D. Unit: mm

5.2.1 Human Pose Estimation (HPE)

We evaluate the performance of multiple state-of-the-art 3D
HPE methods in RELI11D. Based on their input modal-
ity, we categorize these methods into four categories. For
LiDAR-based input, LiDARCap [48], P4Transformer [24],
and PCT [27] are used. For RGB-based input, NIKI [45]
and SMPLer-X [9] are used. For event-based input, Even-
tHPE [101] and EventPointPose [14] are compared. For
the RGB and LiDAR inputs, FusionPose [19] and ImmFu-
sion [12] are tested.

Tab. 4 shows the HPE experimental results. We find that
all the methods perform poorly on the RELI11D dataset,
even for methods trained on multiple datasets. Fig. 7 shows
that some methods do not work well for certain poses in
the RELI11D dataset. The motions in taekwondo sports are
rapid, their range is rarely seen in daily activities. As is
depicted in the first row of Fig. 7, all the RGB-based meth-



Input Modality ACCEL↓ MPJPE↓ PA-MPJPE↓ G-MPJPE↓ T-Error↓ PCK0.3↑
LiDAR 31.26 59.93 48.23 125.77 195.72 0.89
RGB 28.43 62.71 54.11 557.81 710.84 0.88
Event 34.45 107.78 83.64 605.45 743.71 0.59

LiDAR+
RGB 27.07 55.36 45.72 122.32 168.61 0.90

LiDAR+
Event 25.41 57.79 46.70 123.75 178.97 0.89

LiDAR+
RGB+Event 23.90 49.19 40.87 115.36 146.13 0.92

Table 6. The performance of LEIR input with different modalities
based on RELI11D. Unit: mm

Input Modality Method ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑

LiDAR LiDARCap [48] 45.89 80.08 67.50 102.24 0.85
LEIR(Ours) 45.60 79.00 67.45 100.87 0.85

LiDAR+
RGB

ImmFusion [12] 46.45 96.93 81.16 107.29 0.75
FusionPose [19] 44.51 78.18 66.70 99.66 0.85

LEIR(Ours) 44.52 75.09 62.94 95.96 0.87

Table 7. Performance evaluation of LEIR in the LiDARHu-
man26M dataset [48]. Unit: mm

ods do not model the limbs well. For Table Tennies, be-
sides modeling the rapid movement of hands and feet, their
global position should be captured to avoid penetration. As
shown in the second row of Fig. 7, all the RGB methods
have prediction artifacts. This indicates that RELI11D is a
challenging dataset for existing methods.

As it is shown in Tab. 4, using two modalities
(RGB+LiDAR) leads to better performance than using these
two modalities separately. The rich modalities provided by
RELI11D enable the comparison of different combinations
of modality-based methods.

5.2.2 Global HPE
Capturing certain actions, such as playing table tennis,
requires the precise locations of humans. We evalu-
ate two RGB-based global 3D pose estimation methods
(GLAMR [94] and TRACE [74]) on the RELI11D dataset.
Their results are depicted in Tab. 5, which shows that their
performance is unsatisfactory. This suggests that despite the
monocular camera methods can match local motions in 2D
RGB well, they do not excel at 3D global motions.

5.3. Baseline Evaluation

We evaluate the proposed baseline, LEIR, based on the
RELI11D and the LiDARHuman26M [48] datasets, with
different combinations of modalities.
LEIR on RELI11D. Tab. 6 presents the results of LEIR
with different combinations of modalities as input. For sin-
gle modality (rows 2 to 4), LiDAR-based input achieves the
best performance due to its ability to provide detailed geo-
metric information. RGB-based input achieves the second-
best performance, benefiting from its appearance informa-
tion. Event-based input yields the worst results. As the
number of modalities increases, the performance of LEIR
improves. This emphasizes that correctly fusing the infor-
mation of each modality feature makes the method robust.
When combining LiDAR with RGB/Event inputs (rows 5

and 6), LEIR outperforms the use of LiDAR alone. For
HPE, the best performance is achieved when utilizing all
the modalities (LiDAR+RGB+Event), and it is significantly
better than all the studied state-of-the-art methods.

Regarding global HPE, compared with the two RGB-
based methods (shown in Tab. 5), the results shown in Tab. 6
demonstrate that using the LiDAR modality is necessary for
global pose estimation. Combining all three modalities can
achieve the best global HPE results.

These results highlight the effective utilization of in-
formation from different modalities in LEIR, and they
are visualized in Fig. 7, intuitively showing that LEIR
(RGB+PC+Events) works well on the RELI11D dataset.

We conduct a study on another dataset LiDARHu-
man26M [48], which contains both RGB and LiDAR
modalities. In this experiment, we train all the methods
from scratch based on the methodology described in [48]
and follow the same evaluation as [48]. As is shown in
Tab. 7, when considering LiDAR input alone, LEIR demon-
strates a slight improvement over LiDARCap. When com-
bining LiDAR and RGB inputs, LEIR out-performs Imm-
Fusion [12] and FusionPose [19]. This indicates that our
proposed method, LEIR, performs well on other dataset.

Global trajectory prediction. The T-Error measures the
translation error is depicted in Tab. 6. And the predicted
trajectory is plotted in Supp Fig.3. It shows that incorpo-
rating the LiDAR point clouds with global trajectory infor-
mation improves the global motion indicators (low T-Error,
similarity between the curve and ground truth). This obser-
vation indicates a promising trend of multimodal methods
that fuse global information.

6. Conclusion

Different motion sensors have distinct characteristics (e.g.,
geometry) that excel at capturing challenging motions (e.g.,
complex and fast motion). We introduce RELI11D, the
first human motion dataset with the LiDAR, RGB, IMU,
and Event modalities for a holistic understanding of hu-
man motions. It records the motions of 10 actors perform-
ing 5 sports in 7 different scenes. The rich annotations in
RELI11D enable benchmarking a series of HPE tasks. We
demonstrate that RELI11D is challenging due to its fast and
complex motions. To address this challenge, we propose
LEIR, a multimodal HPE baseline that utilizes the LiDAR
points cloud, event streams, and RGB videos through cross-
attention strategy. We show through extensive experiments
that LEIR can obtain the most competitive results.
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ard Pons-Moll, and Christian Theobalt. Livecap: Real-time
human performance capture from monocular video. ACM
Transactions on Graphics (TOG), 38(2):14:1–14:17, 2019.
2

[29] Marc Habermann, Weipeng Xu, Michael Zollhofer, Gerard
Pons-Moll, and Christian Theobalt. Deepcap: Monocular
human performance capture using weak supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020. 2

[30] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas,
and Michael J. Black. Resolving 3d human pose ambi-
guities with 3d scene constraints. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019,
pages 2282–2292. IEEE, 2019. 2

[31] Yannan He, Anqi Pang, Xin Chen, Han Liang, Minye Wu,
Yuexin Ma, and Lan Xu. Challencap: Monocular 3d cap-
ture of challenging human performances using multi-modal
references. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11400–
11411, 2021. 2

[32] Chun-Hao P Huang, Hongwei Yi, Markus Höschle, Matvey
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