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4 On the supersingular locus of the Siegel modular

variety of genus 3 or 4

Ryosuke Shimada and Teppei Takamatsu

Abstract

We study the supersingular locus of the Siegel modular variety of genus 3

or 4. More concretely, we decompose the supersingular locus into a disjoint

union of the product of a Deligne-Lusztig variety of Coxeter type and a finite-

dimensional affine space after taking perfection.

1 Introduction

Shimura varieties have been used, with great success, towards applications in number
theory. Many of these applications are based on the study of integral models and
their reductions. It is known that in some cases, the supersingular (or basic) locus
of the reduction of a Shimura variety admits a simple description. For example,
Vollaard-Wedhorn [36] described the supersingular locus of the Shimura variety of
GU(1, n−1) at an inert prime as a union of classical Deligne-Lusztig varieties. Simple
descriptions such as [36] have been applied towards the Kudla-Rapoport program
[22], [21], Zhang’s Arithmetic Fundamental Lemma [38] and the Tate conjecture for
certain Shimura varieties [35], [16].

Motivated by [36], Görtz-He [7] classified the cases where the supersingular locus
is naturally a union of classical Deligne-Lusztig varieties of Coxeter type. These are
called the cases of Coxeter type. The index set of the corresponding stratification
and the closure relations between strata can be described in terms of the Bruhat-Tits
building of a certain inner form of the underlying group. Thus this stratification is
called the Bruhat-Tits stratification. While for the Siegel case for GSp2n, which we
are interested in, such a description is possible only when n ≤ 2. The case n = 2
was studied intensively by Katsura-Oort [18] and Kaiser [17]. The results were later
applied to [22] by Kudla-Rapoport. Richartz [27] studied the case n = 3 in analogy
to the case n = 2. In this paper, we study the case n = 3 or 4 using more advanced
techniques.
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The study of the perfection of the supersingular locus is essentially reduced to
a study of an affine Deligne-Lusztig variety via the Rapoport-Zink uniformization
(see [37, §4.1] for example). Thus the objective of this paper is to find an explicit
description of the affine Deligne-Lusztig variety related to the Siegel modular variety
of genus 3 with hyperspecial level structure.

Let F be a non-archimedean local field with finite residue field Fq of prime
characteristic p, and let L be the completion of the maximal unramified extension
of F . Let σ denote the Frobenius automorphism of L/F . Further, we write O (resp.
OF ) for the valuation ring of L (resp. F ). Finally, we denote by ̟ a uniformizer of
F (and L) and by vL the valuation of L such that vL(̟) = 1.

Let µ be the cocharacter of GSp2n corresponding to z 7→ diag(z, . . . , z, 1, . . . , 1)

in which z and 1 are repeated n times. Set τ =

(

0 ̟(1,...,1)

1n 0

)

∈ GSp2n(L). Then

its σ-conjugacy class in GSp2n(L) is the basic class (cf. [37, §1.2]). Let Xµ(τ) denote
the affine Deligne-Lusztig variety for µ and τ . Let us denote by J the σ-centralizer
of τ in GSp2n. Then J is an inner form of GSp2n.

Theorem A (Theorem 3.4). Let n = 3. The variety Xµ(τ) is universally homeo-
morphic to a union of the product of a Deligne-Lusztig variety of Coxeter type and
a finite-dimensional affine space. The index set of this stratification and the clo-
sure relations between strata can be described in terms of the rational Bruhat-Tits
building of J. Moreover, this stratification coincides with the J-stratification.

The J-stratification, introduced by Chen-Viehmann [3], is a stratification which
coincides with the Bruhat-Tits stratification in the case of Coxeter type (see §2.3).
Thus Theorem A tells us that there exists a natural generalization of the Bruhat-Tits
stratification in the case of genus 3. We call these cases “positive Coxeter type”.
The cases of positive Coxeter type for GLn were studied by the first author in [32].

In the case n = 4, there also exists an analogous stratification. However, this
case is not of positive Coxeter type (cf. Remark 4.4) and we cannot expect a nice
property such as the closure relation in Theorem A.

Theorem B (Theorem 4.3). Let n = 4. The varietyXµ(τ) is universally homeomor-
phic to a union of the product of a Deligne-Lusztig variety and a finite-dimensional
affine space. The index set of this stratification can be described in terms of the
rational Bruhat-Tits building of J.

The strategy of the proof is as follows: We first recall the Ekedahl-Oort stratifi-
cation of Xµ(τ) (see §2.2). In fact, the stratifications in the main results are refine-
ment of this stratification. By the non-emptiness criterion of the Iwahori-level affine
Deligne-Lusztig variety (see §2.5), we may and do eliminate empty Ekedahl-Oort
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strata. Then we decompose the remaining non-empty Ekedahl-Oort strata com-
bining the case with spherical σ-support (Proposition 2.1) and the Deligne-Lusztig
method (see §2.4). In the case n = 3, we prove that the resulting stratification
coincides with the J-stratification in a similar way to the case of Coxeter type. The
key to the proof of the closure relation is the equidimensionality of Xµ(τ), which
was established in [13] and [34].

Acknowledgments: The authors wish to express their gratitude to Naoki Imai
for valuable discussion. The first author was supported by the WINGS-FMSP pro-
gram at the Graduate School of Mathematical Sciences, the University of Tokyo.
The first author was also supported by JSPS KAKENHI Grant number JP21J22427.
The second author was supported by JSPS KAKENHI Grant number JP22KJ1780.

2 Preliminaries

Keep the notation in §1. From now on, we sometimes drop the adjective “perfect”
for notational convenience, although we need to work with perfect schemes in most
statements in the mixed characteristic setting. Also, ∼= always means a universal
homeomorphism.

2.1 Notation

Let G be a split connected reductive group over F and let T be a split maximal
torus of it. Let B be a Borel subgroup of G containing T . Let Φ = Φ(G, T ) denote
the set of roots of T in G. We denote by Φ+ (resp. Φ−) the set of positive (resp.
negative) roots distinguished by B. Let ∆ be the set of simple roots. Let X∗(T ) be
the set of cocharacters, and let X∗(T )+ be the set of dominant cocharacters. For
µ, µ′ ∈ X∗(T ) (resp. X∗(T )Q), we write µ′ � µ if µ − µ′ is a non-negative integral
(resp. rational) linear combination of positive coroots. For a cocharacter µ ∈ X∗(T ),
let ̟µ be the image of ̟ ∈ Gm(F ) under the homomorphism µ : Gm → T .

Let B(G) denote the set of σ-conjugacy classes of G(L). Thanks to Kottwitz
[20], a σ-conjugacy class [b] ∈ B(G) is uniquely determined by two invariants: the
Kottwitz point κ(b) ∈ π1(G) and the Newton point νb ∈ X∗(T )Q,+. Set B(G, µ) =
{[b] ∈ B(G) | κ(b) = κ(̟µ), νb � µ}.

The Iwahori-Weyl group W̃ is defined as the quotient NG(L)T (L)/T (O). This
can be identified with the semi-direct product W0 ⋉ X∗(T ), where W0 is the finite
Weyl group of G. We denote the projection W̃ → W0 by p. Let S ⊂ W0 denote
the subset of simple reflections, and let S̃ ⊂ W̃ denote the subset of simple affine
reflections. We often identify ∆ and S. The affine Weyl group Wa is the subgroup
of W̃ generated by S̃. Then we can write the Iwahori-Weyl group as a semi-direct
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product W̃ = Wa⋊Ω, where Ω ⊂ W̃ is the subgroup of length 0 elements. Moreover,
(Wa, S̃) is a Coxeter system. We denote by ≤ the Bruhat order on W̃ (see [19,
Subsection 1.8] for example). For any J ⊆ S̃, let JW̃ be the set of minimal length
representatives for the cosets in WJ\W̃ , where WJ denotes the subgroup of W̃
generated by J . We also have a length function ℓ : W̃ → Z≥0 given as

ℓ(w0̟
λ) =

∑

α∈Φ+,w0α∈Φ−

|〈α, λ〉+ 1|+
∑

α∈Φ+,w0α∈Φ+

|〈α, λ〉|,

where w0 ∈ W0 and λ ∈ X∗(T ). For w,w′ ∈ W̃ and s ∈ S̃, we write w
s
−→ w′ if

w′ = sws and ℓ(w′) ≤ ℓ(w).
For w ∈ Wa, we denote by supp(w) ⊆ S̃ the set of simple affine reflections

occurring in every (equivalently, some) reduced expression of w. Note that τ ∈ Ω
acts on S̃ by conjugation. We define the σ-support suppσ(wτ) of wτ as the smallest
τ -stable subset of S̃ containing supp(w) (we should consider τσ-action in general,
but the action of σ is trivial in our case because G is split over F ). We call an
element wτ ∈ Waτ a σ-Coxeter element if exactly one simple reflection from each
τ -orbit on suppσ(wτ) occurs in every (equivalently, any) reduced expression of w.

For τ ∈ Ω, let Σ be an orbit of τ on S̃ and suppose that WΣ is finite. We denote
by sΣ the unique longest element of WΣ. Then sΣ is fixed by τ . The fixed point
group W τ

a := {w ∈ Wa | τwτ−1 = w} is the Weyl group whose simple reflections
are the elements sΣ such that Σ is a τ -orbit on S̃ with WΣ finite. For any reduced
decomposition w = sΣ1 · · · sΣr

as an element of W τ
a , we have

ℓ(w) = ℓ(sΣ1) + · · ·+ ℓ(sΣr
).

See [33] or [19, §2] for these facts.
Set K = G(O). For α ∈ Φ, let Uα ⊆ G denote the corresponding root subgroup.

We also set
I = T (O)

∏

α∈Φ+

Uα(̟O)
∏

β∈Φ−

Uβ(O) ⊆ K,

which is called the standard Iwahori subgroup associated with the triple T ⊂ B ⊂ G.
In the case G = GLn, we will use the following description. Let T be the torus of

diagonal matrices, and we choose the subgroup of upper triangular matrices B as a
Borel subgroup. Let χij be the character T → Gm defined by diag(t1, t2, . . . , tn) 7→
titj

−1. Then we have Φ = {χij | i 6= j}, Φ+ = {χij | i < j}, Φ− = {χij | i > j} and
∆ = {χi,i+1 | 1 ≤ i < n}. Through the natural isomorphism X∗(T ) ∼= Zn, X∗(T )+
can be identified with the set {(m1, · · · , mn) ∈ Zn | m1 ≥ · · · ≥ mn}. The finite
Weyl group is the symmetric group of degree n. Then S = {(1 2), (2 3), . . . , (n−1 n)}
and S̃ = S ∪ {̟χ∨

1,n(1 n)}. The Iwahori subgroup I ⊂ K is the inverse image of the
lower triangular matrices under the projection K → G(Fq) induced by ̟ 7→ 0.
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Let us denote by GSp2n ⊂ GL2n the group of symplectic similitudes of dimension
2n as in [11, §2.3]. In the case G = GSp2n, we will use the following description.
Let T (resp. B) be the intersection of the torus (resp. Borel subgroup) of GL2n

as above with GSp2n. See [12, §8] for the description of the corresponding roots.
The cocharacter group X∗(T ) can be identified with the set {(m1, · · · , m2n) ∈ Z2n |
m1 + m2n = m2 + m2n−1 = · · · = mn + mn+1}. Set s1 = (1 2)(2n − 1 2n), s2 =
(2 3)(2n − 2 2n − 1), . . . , sn−1 = (n − 1 n)(n + 1 n + 2), sn = (n n + 1). Then
S = {s1, s2, . . . , sn} and the finite Weyl group is the subgroup of the symmetric
group of degree 2n generated by S. Set s0 = ̟χ∨

1,2n(1 2n). Then S̃ = S ∪ {s0}. The
standard Iwahori subgroup is the intersection of the standard Iwahori subgroup of
GL2n as above with GSp2n.

2.2 Affine Deligne-Lusztig Varieties

For w ∈ W̃ and b ∈ G(L), the affine Deligne-Lusztig variety Xw(b) in the affine flag
variety G(L)/I is defined as

Xw(b) = {xI ∈ G(L)/I | x−1bσ(x) ∈ IwI}.

For µ ∈ X∗(T )+ and b ∈ G(L), the affine Deligne-Lusztig variety Xµ(b) in the affine
Grassmannian G(L)/K is defined as

Xµ(b) = {xK ∈ G(L)/K | x−1bσ(x) ∈ K̟µK}.

Depending on whether chF > 0 or 0, both the affine flag variety and the affine
Grassmannian are ind-schemes or ind-perfect schemes (see [26] or [39],[2] respec-
tively). Then the affine Deligne-Lusztig varieties are locally closed subvarieties of
them equipped with the reduced scheme structure. Also, the affine Deligne-Lusztig
varieties carry a natural action (by left multiplication) by the σ-centralizer of b

J = Jb = {g ∈ G(L) | g−1bσ(g) = b}.

(Since b is usually fixed in the discussion, we mostly omit it from the notation.)
The admissible subset of W̃ associated with µ is defined as

Adm(µ) = {w ∈ W̃ | w ≤ ̟w0µ for some w0 ∈ W0}.

Set SAdm(µ) = Adm(µ)∩ SW̃ . Assume that µ is minuscule. Then, by [7, Theorem
3.2.1] (see also [10, §2.5]), we have

Xµ(b) =
⊔

w∈SAdm(µ)

π(Xw(b)),
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where π : G(L)/I → G(L)/K is the projection. This is the so-called Ekedahl-Oort
stratification. In the sequel, we set SAdm(µ)0 := {w ∈ SAdm(µ) | Xw(τµ) 6= ∅},
where τµ ∈ Ω such that [τµ] ∈ B(G, µ) is the unique basic element.

Set Sw = max{S ′ ⊆ S | Ad(w)(S ′) = S ′}. The following proposition is the key
to the explicit description of the affine Deligne-Lusztig varieties.

Proposition 2.1. Let τ ∈ Ω. Let w ∈ Waτ such that Wsuppσ(w) is finite. Then

Xw(τ) =
⊔

j∈Jτ/Jτ∩Psuppσ(w)

jY (w),

where Psuppσ(w) is the standard parahoric subgroup corresponding to suppσ(w) and
Y (w) = {gI ∈ Psuppσ(w)/I | g−1τσ(g) ∈ IwI} is a classical Deligne-Lusztig variety
in the finite-dimensional flag variety Psuppσ(w)/I.

Let w ∈ SW̃ ∩Waτ be a σ-Coxeter element in the finite Weyl group Wsuppσ(w).
Then

π(Xw(τ)) =
⊔

j∈Jτ/Jτ∩Psuppσ(w)∪Sw

jπ(Y (w)),

where Psuppσ(w)∪Sw
is the standard parahoric subgroup corresponding to suppσ(w)∪

Sw. Moreover π induces Y (w) ∼= π(Y (w)).

Proof. See [7, Proposition 2.2.1 and Corollary 4.6.2].

2.3 The J-stratification

For any g, h ∈ G(L), let inv(g, h) (resp. invK(g, h)) denote the relative position,
i.e., the unique element in W̃ (resp. X∗(T )+) such that g−1h ∈ Iinv(g, h)I (resp.
K̟invK(g,h)K). By definition, two elements gI, hI ∈ G(L)/I (resp. gK, hK ∈
G(L)/K) lie in the same J-stratum if and only if for all j ∈ J, inv(j, g) = inv(j, h)
(resp. invK(j, g) = invK(j, h)). Clearly, this does not depend on the choice of g, h.
By [5, Theorem 2.10], the J-strata are locally closed in G(L)/I (resp. G(L)/K).
By intersecting each J-stratum with affine Deligne-Lusztig varieties, we obtain the
J-stratification of them.

As explained in [3, Remark 2.1], the J-stratification heavily depends on the choice
of b in its σ-conjugacy class. Thus we need to fix a specific representative to compare
the J-stratification on Xµ(b) to another stratification. It is pointed out in loc. cit
that if [b] is a basic class in B(G, µ), then a reasonable choice of b is the unique
length 0 element τµ. Also, for any w ∈ W̃ , the Jẇ-stratification is independent of
the choice of lift ẇ in G(L) (cf. [5, Lemma 2.5]). In the rest of this subsection, we fix
b = τµ and hence J = Jτµ. In the case of G = GSp2n, we set J0 = {j ∈ J | κ(j) = 0}
(note that π1(GSp2n)

∼= Z).
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Assume that µ is minuscule. We say that (G, µ) is of Coxeter type if

SAdm(µ)0 = {w ∈ SAdm(µ) | Wsuppσ(w) is finite, and w is σ-Coxeter in Wsuppσ(w)}.

If (G, µ) is of Coxeter type, then for each w ∈ SAdm(µ)0, we have

π(Xw(τµ)) =
⊔

j∈J/J∩Psuppσ(w)∪Sw

jπ(Y (w)) and Y (w) ∼= π(Y (w))

by Proposition 2.1. Thus if (G, µ) is of Coxeter type, we obtain the decomposition
Xµ(τµ) as a union of classical Deligne-Lusztig varieties of Coxeter type in a nat-
ural way. We call this stratification the Bruhat-Tits stratification. Also, this is a
stratification in the strong sense, i.e., the closure of a stratum is a union of strata.
The closure of a stratum jπ(Y (w)) contains a stratum j′π(Y (w′)) if and only if the
following two conditions are both satisfied:

(1) w ≥S w′, which means by definition that there exists u ∈ W0 such that w ≥
u−1w′u.

(2) j(J ∩ Pw) ∩ j′(J ∩ Pw′) 6= ∅.

By [14, §4.7], ≥S gives a partial order on SW̃ . Let B(J, F ) denote the rational
Bruhat-Tits building of J. Then (2) above is equivalent to requiring that κ(j) = κ(j′)
and that the simplices in B(J, F ) corresponding to j(J ∩ Pw)j

−1 and j′(J ∩ Pw′)j′−1

are neighbors (i.e., there exists an alcove which contains both of them). In [3, §4],
Chen-Viehmann conjectured that the Bruhat-Tits stratification coincides with the
J-stratification and verified this conjecture in the Siegel case of genus 2 and the
Vollaard-Wedhorn case. In [5], Görtz proved this conjecture in general.

We back to the general situation with minuscule µ. We consider the following
conditions (the case of genus 3 in §3 satisfies all of them).

• For w ∈ SAdm(µ)0, J acts transitively on the set of irreducible components of
Xw(τµ).

• For w ∈ SAdm(µ)0, there exist a parahoric subgroup Pw ⊂ G(L) and an irre-
ducible component Y (w) ofXw(τµ) such that π(Xw(τµ)) =

⊔

j∈J/J∩Pw
jπ(Y (w)).

• Y (w) ∼= π(Y (w)) and each jπ(Y (w)) is a J-stratum of Xµ(b).

In this case, we say that the closure relation can be described in terms of B(J, F ) if
the J-stratification of Xµ(b) is a stratification in the strong sense and jπ(Y (w)) ⊇
j′π(Y (w′)) is equivalent to the following condition:

(∗) There exist sequences w = w0 ≥S w1 ≥S · · · ≥S wk = w′ in SAdm(µ)0 and
j = j0, j1 . . . , jk = j′ in J such that ji−1(J∩Pwi−1

)∩ji(J∩Pwi
) 6= ∅ for 1 ≤ i ≤ k.

We write (j, w) ≥ (j′, w′) if (∗) holds.
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2.4 Deligne-Lusztig Reduction Method

The following Deligne-Lusztig reduction method was established in [6, Corollary
2.5.3].

Proposition 2.2. Let w ∈ W̃ and let s ∈ S̃ be a simple affine reflection. If
ch(F ) > 0, then the following two statements hold for any b ∈ G(L).

(i) If ℓ(sws) = ℓ(w), then there exists a Jb-equivariant universal homeomorphism
Xw(b) → Xsws(b).

(ii) If ℓ(sws) = ℓ(w)− 2, then there exists a decomposition Xw(b) = X1 ⊔X2 such
that

• X1 is open and there exists a Jb-equivariant morphism X1 → Xsw(b),
which is the composition of a Zariski-locally trivial Gm-bundle and a
universal homeomorphism.

• X2 is closed and there exists a Jb-equivariant morphism X2 → Xsws(b),
which is the composition of a Zariski-locally trivial A1-bundle and a uni-
versal homeomorphism.

If ch(F ) = 0, then the above statements still hold by replacing A1 and Gm by
A1,pfn and Gpfn

m respectively.

We sketch the construction of maps in the proposition. Let gI ∈ Xw(b). If
ℓ(sw) < ℓ(w) (we can reduce to this case by exchanging w and sws), then let g1I
denote the unique element in G(L)/I such that inv(g, g1) = s and inv(g1, bσ(g)) =
sw. In the case of (ii), the set X1 (resp. X2) above consists of the elements gI ∈
Xw(b) satisfying inv(g1, bσ(g1)) = sw (resp. sws). All of the maps in the proposition
are given as the map sending gI to g1I.

Remark 2.3. Assume that G is split over F . Let prI : G(L)/I×G(L)/I → G(L)/I
be the projection to the first factor. We denote by O(s) ⊂ G(L)/I × G(L)/I
the locally closed subvariety of pairs (gI, hI) such that inv(g, h) = s. Then the
restriction prI : O(s) → G(L)/I is a Zariski-locally trivial A1-bundle. More precisely,
this is trivial over (any translation of) the “big open cell” (cf. [4, pp. 45–48]). In
particular, this is trivial over any Schubert cell IvI/I, v ∈ W̃ . This implies that the
morphism X1 → Xsw(b) (resp. X2 → Xswσ(s)(b)) in (ii) is trivial over Xsw(b)∩IvI/I
(resp. Xswσ(s)(b) ∩ IvI/I).

The following lemma will be used in §3 and §4.

Lemma 2.4. Let µ be a minuscule cocharacter and let w ∈ SAdm(µ)0. Then
Xw(τµ) is closed in π−1(π(Xw(τµ))).
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Proof. It suffices to prove that

π−1(π(Xw(τµ))) ∩ (
⋃

w′≤w

Xw′(τµ)) = Xw(τµ).

We note that SAdm(µ) contains a length 0 element. We may assume that w has
a length greater than 0. Let w′′ ∈ SAdm(µ) with ℓ(w′′) < ℓ(w). Then we have
π(Xw′′(τµ))∩π(Xw(τµ)) = ∅. By [7, §3.2 (3)], we also have π(Xw′(τµ)) = π(Xw′′(τµ))
and hence π(Xw′(τµ)) ∩ π(Xw(τµ)) = ∅ for any w′ ∈ WSw′′w

′′. Note that SW̃ ∩
W0̟

µW0 = SAdm(µ) (cf. [25, (2.3.3)]). Then the above equality follows from [7,
Proposition 3.1.1] and Proposition 2.2.

2.5 Length Positive Elements

We denote by δ+ the indicator function of the set of positive roots, i.e.,

δ+ : Φ → {0, 1}, α 7→

{

1 (α ∈ Φ+)

0 (α ∈ Φ−).

Note that any element w ∈ W̃ can be written in a unique way as w = x̟µy
with µ dominant, x, y ∈ W0 such that ̟µy ∈ SW̃ . We have p(w) = xy and
ℓ(w) = ℓ(x) + 〈µ, 2ρ〉 − ℓ(y). We define the set of length positive elements by

LP(w) = {v ∈ W0 | 〈vα, y
−1µ〉+ δ+(vα)− δ+(xyvα) ≥ 0 for all α ∈ Φ+}.

Then we always have y−1 ∈ LP(w). Indeed y satisfies the condition that 〈α, µ〉 ≥
δ+(−y−1α) for all α ∈ Φ+. Since δ+(α) + δ+(−α) = 1, we have

〈y−1α, y−1µ〉+ δ+(y−1α)− δ+(xα) = 〈α, µ〉 − δ+(−y−1α) + δ+(−xα) ≥ 0.

The notion of length positive elements was defined by Schremmer in [28].
The following theorem is a refinement of the non-emptiness criterion in [8], which

is conjectured by Lim in [23] and proved by Schremmer in [29, Proposition 5].

Theorem 2.5. Assume that the Dynkin diagram of G is connected. Let b ∈ G(L)
be a basic element with κ(b) = κ(w). Then Xw(b) = ∅ if and only if the following
two conditions are both satisfied:

(i) |Wsuppσ(w)| is not finite.

(ii) There exists v ∈ LP(w) such that supp(v−1p(w)v) ( S.

Remark 2.6. If κ(b) 6= κ(w), then Xw(b) = ∅.

9



For w ∈ W̃ , we say that w has positive Coxeter part if there exists v ∈ LP(w)
such that v−1p(w)v is a partial Coxeter element. By [30, Theorem A] (see also [15,
Theorem 1.1]), this condition induces a simple geometric structure.

Theorem 2.7. Assume that w ∈ W̃ has positive Coxeter part and Xw(b) 6= ∅.
Then Xw(b) has only one Jb-orbit of irreducible components, and each irreducible
component is an iterated fibration over a Deligne-Lusztig variety of Coxeter type
whose iterated fibers are either A1 or Gm. If b is basic, then all fibers are A1.

In this paper, we use Theorem 2.7 only in Remark 4.4.
For minuscule µ ∈ X∗(T ), we say that (G, µ) is of positive Coxeter type if every

w ∈ SAdm(µ)0 satisfies one of the following conditions:

(i) w is a σ-Coxter element with |Wsuppσ(w)| finite.

(ii) w has positive Coxeter part.

By [30, Theorem 4.12], this definition coincides with the one in [32] if G = GLn.

3 The Case of Genus 3

In this section, we set G = GSp6 and µ = (1(3), 0(3)) ∈ X∗(T ). Recall that W0 is the
subgroup of the symmetric group of degree 6 generated by

s1 = (1 2)(5 6), s2 = (2 3)(4 5), s3 = (3 4).

Moreover, the affine Weyl group Wa is generated by s1, s2, s3 and the simple affine
reflection

s0 = ̟(1,0,0,0,0,−1)(1 6) ∈ Wa.

Set τ = τµ = ̟µs3s2s1s3s2s3 = ̟µ(1 4)(2 5)(3 6) ∈ Ω and J = Jτ . Then

τs1τ
−1 = s2, τs0τ

−1 = s3.

Thus there are two τ -orbit in S̃, namely, {s0, s3} and {s1, s2}. Then W τ
a is the

Weyl group with two simple reflections s0s3 and s1s2s1. For j, j′ ∈ J0, we have
inv(j, j′) ∈ W τ

a .

Proposition 3.1. We have

SAdm(µ)0 = {s0s1s0τ, s0τ, τ}.

Moreover, the pair (G, µ) is of positive Coxeter type.
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Proof. It is straightforward to check that SAdm(µ) is equal to

{̟µ, ̟µs3, ̟
µs3s2, ̟

µs3s2s1, ̟
µs3s2s3, ̟

µs3s2s1s3, ̟
µs3s2s1s3s2, ̟

µs3s2s1s3s2s3}.

If w = ̟µ, ̟µs3, ̟
µs3s2 or ̟µs3s2s3, then suppσ(w) = S̃ and suppσ(p(w)) ( S.

Thus Xw(τ) = ∅ by Theorem 2.5. It is easy to check that s3s1s2 ∈ LP(̟µs3s2s1s3).
Since suppσ(̟

µs3s2s1s3) = S̃ and suppσ((s3s1s2)
−1s3s2s1s3(s3s1s2)) ( S, we have

X̟µs3s2s1s3(τ) = ∅ by Theorem 2.5. Thus

SAdm(µ)0 ⊆ {̟µs3s2s1, ̟
µs3s2s1s3s2, ̟

µs3s2s1s3s2s3}.

For w = ̟µs3s2s1s3s2, ̟
µs3s2s1s3s2s3, we have suppσ(w) 6= S̃. Note also that

p(̟µs3s2s1) = s3s2s1 is a Coxeter element and hence supp(v−1p(w)v) = S for
any v ∈ W0. Therefore SAdm(µ)0 = {̟µs3s2s1, ̟

µs3s2s1s3s2, ̟
µs3s2s1s3s2s3} =

{s0s1s0τ, s0τ, τ}. Since τ and s0τ are σ-Coxter elements, (G, µ) is of positive Coxeter
type. This finishes the proof.

Remark 3.2. The element s0τ does not have positive Coxeter part. Indeed, the
cycle type of p(s0τ) = (1 4 6 3)(2 5) is different from that of any Coxeter element
in W0.

By Proposition 2.1, we have

Xs0τ (τ) =
⊔

j∈J/J∩P{s0,s3}

jY (s0τ) and Xτ (τ) =
⊔

j∈J/J∩I

j{pt},

where Y (s0τ) and Y (τ) = {pt} are classical Deligne-Lusztig varieties as in Proposi-
tion 2.1. By [24, Corollary 2.5] (see also [5, Proposition 1.1]), Y (s0τ) ⊂ Is0s3I/I.

Lemma 3.3. There exists an irreducible component Y (s0s1s0τ) of Xs0s1s0τ (τ) such
that

Xs0s1s0τ (τ) =
⊔

j∈J/J∩P{s1,s2}

jY (s0s1s0τ) and Y (s0s1s0τ) ∼= Y (s1τ)× A1,

where Y (s1τ) is a classical Deligne-Lusztig variety as in Proposition 2.1. Moreover
each jY (s0s1s0τ) is contained in a J-stratum in G(L)/I.

Proof. We have
s0s1s0τ

s0−→ s1s0s3τ
s3−→ s1τ.

Note that (s2s1)s1s0τ(s2s1)
−1 = s0s1τ = ̟µs3s2s1s3. Thus Xs1s0τ (τ) = ∅ by Propo-

sition 2.2 (i) and the proof of Proposition 3.1. Let f : Xs0s1s0τ (τ) → Xs1τ (τ) be the
morphism induced by Proposition 2.2. By Proposition 2.1, we have

Xs1τ (τ) =
⊔

j∈J/J∩P{s1,s2}

jY (s1τ).
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We set Y (s0s1s0τ) = f−1(Y (s1τ)). By [24, Corollary 2.5] (see also [5, Proposition
1.1]), Y (s1τ) ⊂ Is1s2s1I/I. Clearly s1s2s1s3s0 is a reduced expression. By Remark
2.3, we have

Xs0s1s0τ (τ) =
⊔

j∈J/J∩P{s1,s2}

jY (s0s1s0τ) and Y (s0s1s0τ) ∼= Y (s1τ)× A1.

Since Y (s1τ) is an irreducible component ofXs1τ (τ), Y (s0s1s0τ) is also an irreducible
component of Xs0s1s0τ (τ).

It remains to show that for all j ∈ J and w ∈ SAdm(µ)0, the value inv(j,−) is
constant on each j′Y (w). For this, we argue similarly as [5, §3.3]. Clearly we may
assume j′ = 1. For any j ∈ J, there exists j̃ ∈ J0 such that inv(j, j̃) ∈ Ω. Thus
we may also assume j ∈ J0. Then by [24, Corollary 2.5] and [1, Proposition 5.34]
(see also [5, Proposition 1.7]), there exists gI with g ∈ J ∩ P{s1,s2} such that for any
y0I ∈ Y (s1τ), we have

inv(j, y0) = inv(j, g)s1s2s1(∈ Wa) with ℓ(inv(j, y0)) = ℓ(inv(j, g)) + 3.

In particular, inv(j, g) has a reduced expression as an element ofW τ
a whose rightmost

simple reflection is s0s3. Let y ∈ Y (s0s1s0τ) and set y0 = f(y) ∈ Y (s1τ). Note that
inv(y0, y) = s0s3 (cf. the comment right after Proposition 2.2) and

ℓ(inv(j, y0)s0s3) = ℓ(inv(j, g)) + 3 + 2.

Thus inv(j, y) = inv(j, y0)inv(y0, y) = inv(j, g)s1s2s1s0s3 is independent of y ∈
Y (wk).

Similarly as the proof of Lemma 3.3, we can show that jY (s0τ) is contained in a
J-stratum in G(L)/I. The following theorem is our main result in the case of genus
3:

Theorem 3.4. We have π(Y (s0s1s0τ)) ∼= Y (s1τ)× A1, π(Y (s0τ)) ∼= Y (s0τ) and

Xµ(τ) =
⊔

j∈J/J∩P{s1,s2}

jπ(Y (s0s1s0τ)) ⊔
⊔

j∈J/J∩P{s0,s3}

jπ(Y (s0τ)) ⊔
⊔

j∈J/J∩P{s1,s2}

j{pt}.

Moreover, each stratum is a J-stratum in G(L)/K, and the closure relation can be
described in terms of B(J, F ).

Proof. By Lemma 3.1, we have

Xµ(τ) =
⊔

w∈SAdm(µ)0

π(Xw(τ)) = π(Xs0s1s0τ (τ)) ⊔ π(Xs0τ (τ)) ⊔ π(Xτ (τ)).
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Note that Ss0τ = ∅ and Sτ = {s1, s2}. By Proposition 2.1, we also have π(Y (s0τ)) ∼=
Y (s0τ),

π(Xs0τ (τ)) =
⊔

j∈J/J∩P{s0,s3}

jπ(Y (s0τ)) and π(Xτ(τ)) =
⊔

j∈J/J∩P{s1,s2}

j{pt}.

By Lemma 2.4, Xs0s1s0τ (τ) is closed in π−1(π(Xs0s1s0τ (τ))). By [15, Lemma 5.4], the
map Xs0s1s0τ (τ) → π(Xs0s1s0τ (τ)) induced by π is injective. Since π is proper and
Xs0s1s0τ (τ) is closed in π−1(π(Xs0s1s0τ (τ))), the map Xs0s1s0τ (τ) → π(Xs0s1s0τ (τ)) is
also proper. Thus this map is a universal homeomorphism. Therefore π(Y (s0s1s0τ)) ∼=
Y (s1τ)× A1 and

π(Xs0s1s0τ (τ)) =
⊔

j∈J/J∩P{s1,s2}

jπ(Y (s0s1s0τ))

by Lemma 3.3.
We next prove the closure relation, i.e. we show that for any j ∈ J, jπ(Y (w)) ⊇

j′π(Y (w′)) if and only if the condition (∗) in Subsection 2.3 holds true. We may
assume that j = 1 and we replace j′ with j in the following. We will prove the
following two assertions:

(1) If (1, s0s1s0τ) ≥ (j, s0τ) (i.e., (J∩P{s1,s2})∩j(J∩P{s0,s3}) 6= ∅), then jπ(Y (s0τ)) ⊂

π(Y (s0s1s0τ)).

(2) Otherwise, jπ(Y (s0τ)) ∩ π(Y (s0s1s0τ)) = ∅.

Clearly (1, s0s1s0τ) � (j, s0τ) and jπ(Y (s0τ))∩π(Y (s0s1s0τ)) = ∅ if j ∈ J\J0. Thus
we may and do assume that j ∈ J0. By replacing j by another representative in
j(J∩P{s0,s3}) if necessary, we may also assume that inv(1, j) has a reduced expression
as an element of W τ

a whose rightmost simple reflection is s1s2s1 unless inv(1, j) = 1.
Recall that Y (s0τ) is contained in Is0s3I/I. Thus there exists µj ∈ X∗(T )+ such
that jπ(Y (s0τ)) ⊂ K̟µjK/K. Note that (J ∩ P{s1,s2}) ∩ j(J ∩ P{s0,s3}) 6= ∅ is
equivalent to inv(1, j) = 1 or s1s2s1. Moreover, if (J ∩ P{s1,s2}) ∩ j(J ∩ P{s0,s3}) = ∅,
then s0 (and hence s3) belongs to supp(inv(1, j)). Combining this with [25, (2.7.11)],
we deduce that if (J ∩ P{s1,s2}) ∩ j(J ∩ P{s0,s3}) = ∅, then (1, 1, 0, 0,−1,−1) � µj.
This and π(Y (s0s1s0τ)) ⊂ π(Is1s2s1s0s3I/I) ⊂ K̟(1,0,0,0,0,−1)K/K imply (2). The
irreducibility of π(Y (s0s1s0τ)) and π(Y (s0τ)) combined with the equidimensionality
of Xµ(τ) (cf. [13] and [34]) implies that there exists j0 ∈ J0 such that j0π(Y (s0τ)) ⊂

π(Y (s0s1s0τ)). This j0 must satisfy (J ∩ P{s1,s2}) ∩ j0(J ∩ P{s0,s3}) 6= ∅. Thus by
multiplying j0π(Y (s0τ)) by elements in J∩P{s1,s2}, we deduce that if (J∩P{s1,s2})∩

j(J ∩ P{s0,s3}) 6= ∅, then jπ(Y (s0τ)) ⊂ π(Y (s0s1s0τ)). This proves (1).
Similarly, we will prove the following two assertions:
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(1)’ If (1, s0s1s0τ) ≥ (j, τ), then jπ(Y (τ)) ⊂ π(Y (s0s1s0τ)).

(2)’ Otherwise, jπ(Y (τ)) ∩ π(Y (s0s1s0τ)) = ∅.

The statement of (1)’ follows from the above discussion and the proof of [7, The-
orem 7.2.1]. Note that (1, s0s1s0τ) ≥ (j, τ) is equivalent to inv(1, j) = 1, s1s2s1 or
s0s3s1s2s1. Then (2)’ follows similarly as above. The closure relation follows from
these assertions and the proof of [7, Theorem 7.2.1].

It remains to show that each stratum is a J-stratum. This is clearly true for
j{pt}. Here we only show that π(Y (s0s1s0τ)) is a J-stratum. Proofs for remaining
strata are similar. Recall that π(Y (s0s1s0τ)) ⊂ K̟(1,0,0,0,0,−1)K/K. Thus to show
that π(Y (s0s1s0τ)) is a J-stratum, we need to show that for j ∈ J0 such that
jπ(Y (s0τ)) ⊂ K̟(1,0,0,0,0,−1)K/K, jπ(Y (s0τ)) is contained in a different J-stratum
from π(Y (s0s1s0τ)). Similarly as above, we may assume that j ∈ J ∩ P{s1,s2}. Let
j′ ∈ J0\(J∩P{s1,s2}) such that j(J∩P{s0,s3})∩j

′(J∩P{s1,s2}) 6= ∅. Let y ∈ Y (s0s1s0τ)
and set y0 = f(y) ∈ Y (s1τ) as in the proof of Lemma 3.3. Then there exists gI with
g ∈ J ∩ P{s1,s2} such that

inv(j′, y0) = inv(j′, g)s1s2s1(∈ Wa) with ℓ(inv(j′, y0)) = ℓ(inv(j′, g)) + 3.

Thus inv(j′, Y (s0s1s0τ)) = inv(j′, y) = inv(j′, g)s1s2s1s0s3. Moreover, by the as-
sumption on j′, we have inv(j′, g) 6= 1 (i.e., s0 belongs to supp(inv(j′, g))). This
implies that (1, 1, 0, 0,−1,−1) � invK(j

′, π(Y (s0s1s0τ))). On the other hand, by
j′−1j(J∩P{s0,s3})∩(J∩P{s1,s2}) 6= ∅, we have invK(j

′, jπ(Y (s0τ))) � (1, 0, 0, 0, 0,−1).
Therefore jπ(Y (s0τ)) is contained in a different J-stratum from π(Y (s0s1s0τ)). This
finishes the proof.

4 The Case of Genus 4

In this section, we set G = GSp8 and µ = (1(4), 0(4)) ∈ X∗(T ). Recall that W0 is the
subgroup of the symmetric group of degree 6 generated by

s1 = (1 2)(7 8), s2 = (2 3)(6 7), s3 = (3 4)(5 6) s4 = (4 5).

Moreover, the affine Weyl groupWa is generated by s1, s2, s3, s4 and the simple affine
reflection

s0 = ̟(1(1),0(6),(−1)(1))(1 8) ∈ Wa.

Set τ = τµ = ̟µs4s3s2s1s4s3s2s4s3s4 = ̟µ(1 5)(2 6)(3 7)(4 8) ∈ Ω and J = Jτ .
Then

τs1τ
−1 = s3, τs2τ

−1 = s2, τs4τ
−1 = s0.
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Thus there are two τ -orbit in S̃, namely, {s0, s4}, {s1, s3} and {s2}. Then W τ
a is

the Weyl group with two simple reflections s0s4, s1s3 and s2. For j, j
′ ∈ J0, we have

inv(j, j′) ∈ W τ
a .

Lemma 4.1. We have

SAdm(µ)0 = {s0s1s2s0s1s0τ, s0s1s2s0τ, s0s1s0τ, s0s1τ, s0τ, τ}.

Proof. It is straightforward to check that SAdm(µ) is equal to

{̟µ, ̟µs4, ̟
µs4s3, ̟

µs4s3s2, ̟
µs4s3s4, ̟

µs4s3s4s2, ̟
µs4s3s4s2s3, ̟

µs4s3s4s2s3s4,

̟µs4s3s2s1, ̟
µs4s3s2s1s4, ̟

µs4s3s2s1s4s3, ̟
µs4s3s2s1s4s3s4, ̟

µs4s3s2s1s4s3s2

̟µs4s3s2s1s4s3s2s4, ̟
µs4s3s2s1s4s3s2s4s3, ̟

µs4s3s2s1s4s3s2s4s3s4}.

If w = ̟µ, ̟µs4, ̟
µs4s3, ̟

µs4s3s2, ̟
µs4s3s4, ̟

µs4s3s4s2, ̟
µs4s3s4s2s3 or̟

µs4s3s4s2s3s4,
then suppσ(w) = S̃ and supp(p(w)) ( S. Thus Xw(τ) = ∅ by Theorem 2.5. It is easy
to check that s4s1s2s3 ∈ LP(̟µs4s3s2s1s4) and s4s3s4s1s2 ∈ LP(̟µs4s3s2s1s4s3s4).
Since suppσ(̟

µs4s3s2s1s4) = suppσ(̟
µs4s3s2s1s4s3s4) = S̃,

(s4s1s2s3)
−1s4s3s2s1s4(s4s1s2s3) = s3s2s1 and

(s4s3s4s1s2)
−1s4s3s2s1s4s3s4(s4s3s4s1s2) = s2s1s4,

both X̟µs4s3s2s1s4(τ) and X̟µs4s3s2s1s4s3s4(τ) are empty. Thus

SAdm(µ)0 ⊆ {̟µs4s3s2s1, ̟
µs4s3s2s1s4s3, ̟

µs4s3s2s1s4s3s2,

̟µs4s3s2s1s4s3s2s4, ̟
µs4s3s2s1s4s3s2s4s3, ̟

µs4s3s2s1s4s3s2s4s3s4}

= {s0s1s2s0s1s0τ, s0s1s2s0τ, s0s1s0τ, s0s1τ, s0τ, τ}.

For w = s0s1s0τ, s0s1τ, s0τ and τ , we have suppσ(w) ( S̃. We also have suppσ(s1s2τ) (
S̃ and

s0s1s2s0τ
s0−→ s1s2s0s4τ

s4−→ s1s2τ.

Since s4s3s2s1 is a Coxeter element, we have supp(v−1p(s0s1s2s0s1s0τ)v) = S for
any v ∈ W0. Thus, by Proposition 2.2 and Theorem 2.5, the above inclusion is an
equality. This finishes the proof.

For w = s0s1s0τ, s0s1τ, s0τ and τ , the description of Xw(τ) follows from Propo-
sition 2.1. In particular, they can be written as disjoint unions of Deligne-Lusztig
varieties.
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Lemma 4.2. Let w be s0s1s2s0s1s0τ or s0s1s2s0τ . Set ew = s0s1τ (resp. s1s2τ) in
the former (resp. latter) case. Then there exists an irreducible component Y (w) of
Xw(τ) such that

Xw(τ) =
⊔

j∈J/J∩Psuppσ(ew)

jY (w) and Y (w) ∼= Y (ew)× A
ℓ(w)
2

−1,

where Y (ew) is a classical Deligne-Lusztig variety as in Proposition 2.1.

Proof. Let w = s0s1s2s0τ . We have

s0s1s2s0τ
s0−→ s1s2s0s4τ

s4−→ s1s2τ = ew.

Note that (s0s4)s1s2s0τ(s0s4)
−1 = s0s1s2τ = ̟µs4s3s2s1s4s3s4. Thus Xs1s2s0τ (τ) =

∅ by Proposition 2.2 (i) and the proof of Lemma 4.1. Let f : Xw(τ) → Xew(τ) be
the morphism induced by Proposition 2.2. By Proposition 2.1, we have

Xew(τ) =
⊔

j∈J/J∩Psuppσ(ew)

jY (ew).

We set Y (w) = f−1(Y (ew)). By [24, Corollary 2.5], Y (ew) ⊂ Is1s2s3s2s1s2I/I. It
is easy to check that s1s2s3s2s1s2s4s0 is a reduced expression. By Remark 2.3, we
have

Xw(τ) =
⊔

j∈J/J∩Psuppσ(ew)

jY (w) and Y (w) ∼= Y (ew)× A1.

Let w = s0s1s2s0s1s0τ . We have

s0s1s2s0s1s0τ
s0−→ s1s2s0s1s0s4τ

s4−→ s1s2s0s1τ
s1−→ s2s0s1s3τ

s2−→ s0s1s3s2τ
s3−→ s0s1s2s1τ

s2−→ s0s1τ = ew.

Note that (s0s4)s1s2s0s1s0τ(s0s4)
−1 = s0s1s2s0s1τ = ̟µs4s3s2s1s4. Thus by Propo-

sition 2.2 (i) and the proof of Lemma 4.1, both Xs1s2s0s1s0τ (τ) and Xs0s1s2τ (τ) are
empty. Let f : Xw(τ) → Xew(τ) be the morphism induced by Proposition 2.2. By
Proposition 2.1, we have

Xew(τ) =
⊔

j∈J/J∩Psuppσ(ew)

jY (ew).

We set Y (w) = f−1(Y (ew)). By [24, Corollary 2.5], Y (ew) ⊂ Is0s1s0s1s3s4s3s4I/I.
It is easy to check that s0s1s0s1s3s4s3s4s2s3s2s1s4s0 is a reduced expression. By
Remark 2.3, we have

Xw(τ) =
⊔

j∈J/J∩Psuppσ(ew)

jY (w) and Y (w) ∼= Y (ew)× A2.
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In both cases, Y (ew) is an irreducible component of Xew(τ). Thus Y (w) is also
an irreducible component of Xw(τ). This finishes the proof.

The following theorem is our main result in the case of genus 4:

Theorem 4.3. We have

π(Y (s0s1s2s0s1s0τ)) ∼= Y (s0s1τ)× A2, π(Y (s0s1s2s0τ)) ∼= Y (s1s2τ)× A1,

π(Y (s0s1s0τ)) ∼= Y (s0s1s0τ), π(Y (s0s1τ)) ∼= Y (s0s1τ), π(Y (s0τ)) ∼= Y (s0τ),

and

Xµ(τ) =
⊔

j∈J/J∩P{s0,s1,s3,s4}

jπ(Y (s0s1s2s0s1s0τ)) ⊔
⊔

j∈J/J∩P{s1,s2,s3}

jπ(Y (s0s1s2s0τ))

⊔
⊔

j∈J/J∩P{s0,s1,s3,s4}

jπ(Y (s0s1s0τ)) ⊔
⊔

j∈J/J∩P{s0,s1,s3,s4}

jπ(Y (s0s1τ))

⊔
⊔

j∈J/J∩P{s0,s2,s4}

jπ(Y (s0τ)) ⊔
⊔

j∈J/J∩P{s1,s2,s3,s4}

j{pt}.

Proof. By Lemma 4.1, we have

Xµ(τ) =
⊔

w∈SAdm(µ)0

π(Xw(τ))

= π(Xs0s1s2s0s1s0τ (τ)) ⊔ π(Xs0s1s2s0τ (τ)) ⊔ π(Xs0s1s0τ (τ))

⊔ π(Xs0s1τ (τ)) ⊔ π(Xs0τ (τ)) ⊔ π(Xτ (τ)).

Note that Ss0s1τ = ∅, Ss0τ = {s2} and Sτ = {s1, s2, s3}. By Proposition 2.1, we also
have

π(Y (s0s1τ)) ∼= Y (s0s1τ), π(Y (s0τ)) ∼= Y (s0τ),

and

π(Xs0s1τ (τ)) =
⊔

j∈J/J∩P{s0,s1,s3,s4}

jπ(Y (s0s1τ)),

π(Xs0τ (τ)) =
⊔

j∈J/J∩P{s0,s2,s4}

jπ(Y (s0τ)), π(Xτ (τ)) =
⊔

j∈J/J∩P{s1,s2,s3}

j{pt}.

By Lemma 2.4, Xw(τ) is closed in π−1(π(Xw(τ))) for w ∈ SAdm(µ)0. By
[15, Lemma 5.4], the map Xw(τ) → π(Xw(τ)) induced by π is injective if w =
s0s1s2s0s1s0τ . If w = s0s1s2s0τ (resp. s0s1s0τ), let x ∈ W0 such that xw = wx.
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Then xµ = µ and xp(w)x−1 = p(w), i.e., x ∈ W{s1,s2,s3} and x(1 5 4 2)(3 8 7 6)x−1 =
(1 5 4 2)(3 8 7 6) (resp. x(1 5 4 2 8 7 3)x−1 = (1 5 4 2 8 7 3)). It easily follows from
these conditions that x = 1. Thus, by [31, Lemma 2.1], Xw(τ) → π(Xw(τ)) induced
by π is injective. Since π is proper, it induces a universal homeomorphism between
Xw(τ) and π(Xw(τ)) for w = s0s1s2s0s1s0τ , s0s1s2s0τ or s0s1s0τ . Therefore the
theorem follows from Lemma 4.2.

Remark 4.4. In the case of genus 4, (G, µ) is not of positive Coxeter type. Indeed,
s0s1s0τ

s0−→ s1s0s4τ
s4−→ s1τ . By Theorem 2.5, both Xs1τ (τ) and Xs1s0τ (τ) are non-

empty. Thus s0s1s0τ does not have positive Coxeter part by Theorem 2.7 (or [30,
Theorem A], which is a theorem on reduction trees).
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Lusztig varieties, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 3, 647–665.

[9] , Basic loci of Coxeter type with arbitrary parahoric level, Canadian
Journal of Mathematics (2022), First View, 1–47.
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dimensionalen polarisierten supersingulären Isokristall, Bonner Mathematische
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