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Introduction:

A common challenge for the development of clinical natural language processing (NLP)
methods is the availability of large annotated datasets for model training, fine-tuning, and
evaluation. Traditional annotation processes are time-consuming, expensive, and often require
expert medical knowledge, creating significant research and benchmark development
constraints.” Furthermore, concerns around patient privacy and data governance further
complicate the sharing of large clinical datasets and limit the development of generalizable
models.??

There has been increasing interest in synthetic-based approaches to overcome these
constraints, with generative adversarial network-based methods having already shown promise
in EHR-based tabular data.* However, traditional text-based synthetic data methods like
paraphrasing and word swapping have been constrained by their limited semantic and style
variety and challenges surrounding grammatical errors.>® The advances in large language
models (LLMs), which excel at following natural language instructions to generate fluent text,
not only offer promise in solving clinical tasks ®'?, but may also be well-suited to synthetic text
generation that is high enough quality to augment manually labeled datasets for NLP model
development. >® Such synthetic datasets could accelerate the development of high-performing
clinical NLP models by minimizing clinical data and human effort requirements.

This study proposes a novel method for generating synthetic annotated clinical text datasets
using LLMs, and evaluates their impact on downstream task performance compared to those
trained on gold-standard, expert-annotated datasets. We introduce a novel approach of label
correction, which is an active learning step that we apply to enhance synthetic dataset quality.
We demonstrate the efficacy of our synthetic data augmentation step on both NLP benchmarks
and real-world long document clinical datasets.

Methods:

Our research evaluated synthetic data’s value for existing curated clinical benchmark tasks
(Figure 1a) and for a real-world, long-document clinical task. For the curated tasks, we used the
following three clinical NLP tasks from DR.BENCH"3, which was developed using the MIMIC I
dataset': medical natural language inference (MedNLI), Assessment and Plan relation labeling
(A/P Reasoning), and problem list summarization (ProbSum). We employed two versions of the
Llama-2 LLM for synthetic data generation: one with 7 billion parameters and another with 70
billion parameters’s.

For synthetic data generation, a fixed subset of the training set served as exemplars for
LLM-generated prompts to generate new data. The gold standard MedNLI dataset consists of
11,232 annotated data points, of which 20% were used as exemplars. The A/P Reasoning
dataset consists of 4,633 annotated data points, of which 100% were used as exemplars. The
ProbSumm dataset consists of 600 data points, of which 50% were used as exemplars.

For the label correction step, these exemplars were also used to fine-tune models for the
DR.BENCH tasks, referred to as "label corrector" models, to improve the quality of synthetic
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data labels. We generated an amount of synthetic data equal to the size of the original training
set for each task. The amount of data used to generate synthetic data for each dataset was
chosen by the amount of data needed to obtain a stable label corrector. '

For the two classification tasks (MedNLI & A/P Reasoning), we fine-tuned the FLan-T5-3B"’
model with low-rank adaptors (LoRA)'. For the text generation task (ProbSumm), we fine-tuned
the Llama-2-7B model. We evaluated two approaches to using synthetic data: replacing the
gold-standard training dataset entirely with the synthetic dataset and augmenting the
gold-standard training dataset with the synthetic dataset. Performance was assessed on the
held-out test sets for each task.

For the real-world, long-document clinical task (Figure 1b), we focused on a practical clinical
task involving detecting esophagitis and its severity in cancer patient notes.’® Adopting a similar
approach, we fine-tuned PubMedBERT 2° for three classification tasks related to this clinical
condition. A subset of 200 out of 1,243 gold-labeled notes from the original training set was
utilized for synthetic data generation only. We used a HIPAA-compliant GPT-3.5 Turbo 0613
model, accessed through the MGB-Azure OpenAl service, for summarization (to overcome long
document challenges) and synthetic data generation via in-context learning, ensuring the
study's adherence to privacy regulations.

We used T5/Llama models as classifiers for the DR.BENCH series of tasks and used
PubMedBERT for our esophagitis grading tasks simply because the previous state-of-the-art for
these tasks deployed the same models for better direct comparisons. We used GPT-3.5 to
generate synthetic data for the esophagitis grading tasks because Llama-2 failed to generate
reliable summaries for this real-world task.

This study was approved by the Mass General Brigham IRB.

You can find all our detailed prompts for the synthetic data generation step at
https://github.com/AlM-Harvard/fake2real. Due to real PHI limitations, we cannot share our
generated synthetic data.

Results:

The performance of clinical models was evaluated in three scenarios: (1) fine-tuning with only
gold-standard data (i.e., expert-annotated real clinical text); (2) fine-tuning with only synthetic
data; (3) synthetic data generation with few-shot examples and no label corrections; and (4)
fine-tuning with an augmented dataset consisting of gold plus synthetic data. Performance was
benchmarked using the Diagnostic Reasoning Benchmark (DR.BENCH'™) dataset, which
includes tasks such as medical natural language inference (MedNLI), Assessment and Plan
relation labeling (A/P Reasoning), and problem list summarization (ProbSum); see Table 1.1.

Among all clinical benchmark tasks, we observed a large drop in performance when using
synthetic data alone without label correction. However, with label correction, incorporating
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Table 1.1 Clinical benchmark datasets
Label Gold data

The model used to generate raw |corrector |used for ProbSumm: |A/P Reasoning: |MedNLI:
Approach synthetic data model used |training (%)* ;Rouge-L Macro F1 Macro F1

NA - Previous SOTA NA 100 28.55 0.77 0.85

NA - 100% human-annotated data |NA 100 28.67 0.79 0.86
Gold Only NA - n% human-annotated data NA 50/100/20 24.55 0.79 0.85
Synthetic Only || Jama 2 - 7b None NA 6.72 0.57 0.51
(w/o Label
Correction) Llama 2 - 70b None NA 9.52 0.63 0.60
Synthetic Only |Llama 2 - 7b Yes NA 27.88 0.7 0.83
(w/ Label
Correction) Llama 2 - 70b Yes NA 27.73 0.73 0.84
Gold Llama 2 - 7b Yes 50/100/20 26.61 0.80 0.84

old +
Synthetic Llama 2 - 70b Yes 50/100/20 26.77 0.80 0.84
Table 1.2 Esophagitis
Label Gold data

The model used to generate raw |corrector |used for Task 1** Task 2** Task 3**
Approach synthetic data model used |training (n) Macro F1 Macro F1 Macro F1

NA - Previous SOTA NA 1243+2420** 0.92 0.82 0.74

NA - 100% human-annotated data |NA 1243 0.88 0.79 0.66
Real data
Only NA - n% human-annotated data NA 200 0.71 0.55 0.57
Summarized
Gold NA NA 1243 0.82 0.77 0.75
Synthetic Only
(w/o Label
Correction) GPT3.5-turbo NA NA 0.83 0.74 0.67
Gold +
Synthetic GPT3.5-turbo Yes 1243 0.92 0.80 0.76

NA: not applicable; SOTA: state of the art

*The same exact data was used to generate exemplars and to train the final models (order for table 1.1 as ProbSumm, A/P reasoning, and MedNLI)

** Task 1: Presence or absence of esophagitis. Task 2: Presence or absence of severe esophagitis. Task 3: Presence of no esophagitis vs. mild esophagitis vs. severe
esophagitis.

*** For the previous SOTA on this task, we used 1243 gold-labeled notes augmented with 2420 silver-labeled real clinical notes to train the final model

synthetic data via augmentation and replacement demonstrated competitive results across all
tasks. The overall trends in performance differences between the approaches were similar
across the three tasks, regardless of the model sizes and types used to generate the synthetic
data. Notably, for the A/P Reasoning task, the augmentation approach with synthetic data
exceeded the prior state-of-the-art performance achieved with gold-only data. In the case of the
ProbSumm and MedNLI tasks, synthetic-only datasets, when used with label correction,
approached the performance of the gold-only dataset.

The generalisability of these results to real-world clinical tasks was also evaluated using a
disease classification task; more specifically, grading esophagitis severity in cancer patient
notes (Table 1.2). Using over 3600 annotated real patient notes, the macro F1 scores for the
three classification tasks were 0.92, 0.82, and 0.74, respectively; observing a small performance
drop using a gold-only summary compared to the gold-only model across the three tasks. In
contrast, the model fine-tuned on only synthetic data (labeled using the label corrected created
with 200 gold-labeled notes) outperformed the model fine-tuned on the same 200 gold-labeled
notes only, and reached comparable performance to the model fine-tuned with all 1243
gold-labeled notes. Furthermore, the synthetic-only model outperformed in-context learning



approaches using GPT-3.5. The highest performance was observed using the augmentation
strategy combining gold and synthetic data, which realized scores comparable to those of using
data augmentation with real silver-labeled clinic notes.
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Figure 1. a) Our proposed workflow for synthetic data generation with label correction. b)
Note-level esophagitis classification included an additional summarization pre-processing step,
where GPT-3.5-turbo was used to first summarize relevant information followed by synthetic
summary generation. lllustration style inspired by OpenAl Weak2strong project.



Discussion:

We show that LLMs can generate synthetic clinical datasets that approach or exceed
state-of-the-art performance on benchmarks and real-world tasks, particularly when used to
augment expert-labeled examples. This approach could mitigate the challenges of generating
large annotated clinical NLP datasets, which have applications across biomedical research and
clinical care. Our novel label corrector approach yielded substantial performance improvements
compared to synthetic texts created using in-context learning alone.

One of the key implications of our work is the potential for reducing reliance on large volumes of
real clinical data, which is often difficult to obtain due to privacy concerns and the need for
expert annotation. By generating synthetic data that closely mimics real clinical text, our method
offers a scalable solution to these challenges while reducing annotation requirements;
exemplified by achieving comparable performance with less than one-sixth of the annotated
data in our real-world clinical task. Further, as Al-generated clinical text becomes more
prevalent with LLM-enabled documentation, synthetic-based approaches could play an
important role in fine-tuning models and generating clinical-based benchmarking methods to
assure their robustness and safety in real-world settings.

Conclusion:

Overall, our study underscores the significant potential of synthetic data generated by LLMs to
enhance the performance of downstream clinical NLP tasks. By incorporating synthetic data
alongside expert-annotated datasets, our methods could help address critical challenges such
as data scarcity and the intensive demand for expert annotation.

Our findings highlight the importance of continuous refinement in synthetic data generation and
label correction techniques. This research demonstrates the promise of LLM-enabled data
augmentation and model training in clinical NLP, and opens avenues for further investigation
into the refinement and integration of synthetic data. Future research directions include
exploring synthetic proxy data-sharing across institutions, multi-institutional synthetic
benchmarking, and assessing potential biases introduced by synthetic data.

Role of the funding source: The study's funders had no role in the design, data collection,
analysis, interpretation, or report writing.
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