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Abstract
In recent years, incomplete multi-view clustering,
which studies the challenging multi-view cluster-
ing problem on missing views, has received grow-
ing research interests. Although a series of meth-
ods have been proposed to address this issue, the
following problems still exist: 1) Almost all of
the existing methods are based on shallow mod-
els, which is difficult to obtain discriminative com-
mon representations. 2) These methods are gen-
erally sensitive to noise or outliers since the neg-
ative samples are treated equally as the impor-
tant samples. In this paper, we propose a novel
incomplete multi-view clustering network, called
Cognitive Deep Incomplete Multi-view Clustering
Network (CDIMC-net), to address these issues.
Specifically, it captures the high-level features and
local structure of each view by incorporating the
view-specific deep encoders and graph embedding
strategy into a framework. Moreover, based on
the human cognition, i.e., learning from easy to
hard, it introduces a self-paced strategy to select the
most confident samples for model training, which
can reduce the negative influence of outliers. Ex-
perimental results on several incomplete datasets
show that CDIMC-net outperforms the state-of-the-
art incomplete multi-view clustering methods.

1 Introduction
Multi-view clustering is a well-known research topic in fields
of machine learning [Chao et al., 2017; Zhang et al., 2018].
Generally speaking, almost all of the previous researches on
multi-view clustering are based on the assumption that all
views of samples are available and strictly aligned. How-
ever, in practical applications, more and more collected multi-
view data are incomplete where some views are unavail-
able. For example, many volunteers only have one or two
kinds of examination results of magnetic resonance imaging,

∗corresponding author, ‘†’ indicates co-first authors.

positron emission tomography, and cerebrospinal fluid for
Alzheimer’s disease diagnosing [Xiang et al., 2013]. Multi-
view data with missing views are called incomplete multi-
view data and clustering on such data is the so-called in-
complete multi-view clustering (IMC) [Wen et al., 2019;
Hu and Chen, 2018]. Obviously, conventional methods fail
to handle these incomplete multi-view data. In addition, ow-
ing to the missing views, it is difficult to explore the com-
plementary and consistent information from the incomplete
multi-view data, which makes IMC a very challenging task.

For IMC, Trivedi et al. [Trivedi et al., 2010] proposed a
kernel canonical correlation analysis (KCCA) based method,
which recovers the kernel matrix of the incomplete view ac-
cording to that of the complete view. However, it can only
handle the two-view data and requires that one view is com-
plete. To address this issue, Li et al. proposed the partial
multi-view clustering (PMVC) based on matrix factorization,
where the paired views are decomposed into the same repre-
sentation [Li et al., 2014]. Then various extensions of PMVC,
such as graph regularized PMVC (GPMVC) [Rai et al., 2016]
and incomplete multi-modal grouping (IMG) [Zhao et al.,
2016] have been proposed, which mainly incorporate the
graph embedding technique to enhance the separability of the
common representation. In [Zhao et al., 2018], the graph em-
bedding and deep feature extraction techniques are simulta-
neously integrated into PMVC to preserve the local structure
and capture the high-level features. Partial multi-view clus-
tering via consistent GAN (PMVC GAN) unifies the Autoen-
coder and cycle generative adversarial network (GAN) into
a novel IMC framework, which can infer the missing views
via GAN and in turn promotes the common representation
learning [Wang et al., 2018]. However, the above methods
are not applicable to arbitrary incomplete cases where some
incomplete samples have more than one views or no sam-
ples have complete views [Wen et al., 2020]. To address
the issue, weighted matrix factorization technique is intro-
duced for IMC, where the representative works are multiple
incomplete views clustering (MIC) [Shao et al., 2015], dou-
bly aligned IMC (DAIMC) [Hu and Chen, 2018], one-pass
IMC (OPIMC) [Hu and Chen, 2019], and online multi-view
clustering (OMVC) [Shao et al., 2016]. Besides these meth-
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ods, many graph learning based methods [Wang et al., 2019;
Wen et al., 2020] and multiple kernels based methods (such as
incomplete multiple kernel k-means with mutual kernel com-
pletion (MKKM-IK-MKC) [Liu et al., 2019]) have also been
proposed to handle the arbitrary IMC cases.

Although the aforementioned methods provide some
schemes to address the IMC problem, these methods still
suffer from the following issues: 1) most of the previous
methods exploit the shallow models to obtain the common
representation, which cannot capture the high-level features
from the complex multi-view data. Although some deep net-
work based methods like PMVC GAN can capture the high-
level features, it is inflexible to handle all kinds of incom-
plete cases. 2) None of them considers the negative effect
of marginal samples since these methods treat all samples
equally. This is unreasonable because those marginal sam-
ples are generally far away from the cluster centers and can
be viewed as outliers, which are harmful to model train-
ing [Guo et al., 2019]. In this paper, we propose a novel
cognitive based deep incomplete multi-view clustering net-
work, referred to as CDIMC-net, to address the above issues.
CDIMC-net integrates several view-specific deep encoders, a
self-paced kmeans clustering layer, and multiple graph con-
straints into a unified network for arbitrary IMC. Represen-
tatively, the main contributions of our work are illustrated as
follows:

1) We propose a novel and flexible deep clustering network
for arbitrary IMC cases, which incorporates the graph embed-
ding to promote the network training.

2) This is the first work that introduces the human cognitive
based learning into IMC. Compared with the existing works,
CDIMC-net can adaptively reduce the negative influence of
the marginal samples, and thus is more robust to outliers.

2 Kmeans Clustering
Kmeans is one of the most famous clustering algorithms. For
any data X = [x1, . . . , xn] ∈ Rm×n with n samples and m
features, kmeans seeks to find k optimal cluster centers U =

[u1, . . . , uk] ∈ Rm×k and cluster indicator S ∈ {0, 1}k×n by
solving the following problem [Nie et al., 2019]:

min
U,S

∥X − US∥2F s.t. S ∈ {0, 1}k×n
, ST 1 = 1 (1)

where Sj,i = 1 denotes that the corresponding i-th sample
xi is partitioned into the j-th cluster. 1 is a vector with all
elements as 1.

3 The Proposed Method
3.1 Problem Statement
For the given incomplete multi-view data with l views, we use
X(v) =

[
x
(v)
1 , . . . , x

(v)
n

]
∈ Rmv×n to represent the instance

set of the v-th view, where mv is the feature dimension, n
denotes the number of samples, and elements of the missing
instances are denoted as ‘NaN’ (i.e., not a number). The view
available and missing information is recorded in a diagonal
matrix W (v) for the v-th view, where W (v)

i,i = 1 if the i-th

instance is available in the v-th view, otherwise W (v)
i,i = 0.

The goal of IMC is to group these n samples into k clusters.

3.2 CDIMC-net
As shown in Fig.1, CDIMC-net groups the incomplete multi-
view data via two phases: pre-training and fine-tuning, where
an Autoencoder based pre-training phase is used to initialize
the network parameters and the fine-tuning phase aims at ob-
taining the cluster-friendly representations while producing
the cluster indicators for all input samples.

Pre-training Network
In our work, based on the conventional under-complete Au-
toencoder [Guo et al., 2017; Xie et al., 2016], we develop a
graph regularized incomplete multi-view Autoencoder for in-
complete multi-view cases, where the graph embedding tech-
nique is introduced to preserve the local structure of data and
a weighted fusion layer is introduced to eliminate the neg-
ative influence of missing views. Specifically, the proposed
incomplete multi-view Autoencoder is composed of the fol-
lowing three components.

View-specific encoders and decoders: As the basic Au-
toencoder, encoder network captures the most salient features
from the high-dimensional data and the decoder network aims
at recovering the data from the encoded features [Guo et al.,
2017]. Considering that different views may have differ-
ent dimensions, information, structures, and appearances, we

design several view-specific encoders
{
f
(v)
EC

}l

v=1
and corre-

sponding decoders
{
f
(v)
DC

}l

v=1
for different views.

Fusion layer: As mentioned in many references, all views
share the common semantic information for the same sample,
such as the common representation or cluster label [Zhao et
al., 2018; Hu and Chen, 2019]. Inspired by this, CDIMC-
net seeks to obtain the common representation shared by all
views for clustering. Specifically, a simple weighted fusion
layer is introduced for such goal as follows:

h∗i =

l∑
v=1

W
(v)
i,i h

(v)
i

/
l∑

v=1

W
(v)
i,i (2)

where h(v)i is the output of instance x(v)i at the v-th encoder
f
(v)
EC . h∗i is the common representation for the i-th sample.

As shown in Fig.1, the fusion layer is placed between the
encoding network and the decoding network. Introducing the
weighted fusion layer can solve the issue of incomplete learn-
ing by reducing the negative influence of missing views.

Graph embedding: In fields of subspace learning, a
recognized manifold assumption is that if two data points
xi and xj are close to each other, then their correspond-
ing low dimensional representations should also be close in
the latent subspace [Cai et al., 2008; Kang et al., 2017;
Wen et al., 2018a]. To preserve such neighbor relationships,
the following graph embedding constraint is considered:

min
1

2nl

l∑
v=1

n∑
i=1

n∑
j=1

∥∥∥h(v)i − h
(v)
j

∥∥∥2
2
N

(v)
i,j (3)
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Figure 1: The proposed CDIMC-net for incomplete multi-view clustering.

whereN (v) ∈ Rn×n denotes the nearest neighbor graph con-
structed from instance set X(v) as follows:

N
(v)
i,j =

 1,
if (x

(v)
i ̸= NaN, x

(v)
j ̸= NaN)&

(x
(v)
i ∈ ψ(x

(v)
j ) or x

(v)
j ∈ ψ(x

(v)
i ))

0, otherwise

(4)

where ψ(x(v)i ) denotes the nearest instance set to x(v)i .
Loss function of pre-training: Combining the graph em-

bedding loss and Autoencoder loss, the overall loss function
of the pre-training network is designed as:

min
Ω1,Ω2

l∑
v=1

1

mvn

∥∥∥(X(v) − X̄(v)
)
W (v)

∥∥∥2
F

+ α
1

2nl

l∑
v=1

n∑
i=1

n∑
j=1

∥∥∥h(v)i − h
(v)
j

∥∥∥2
2
N

(v)
i,j (5)

where X̄(v) = f
(v)
DC

(
f
(v)
EC

(
X(v)

))
denotes the reconstructed

data of the v-th view, Ω1 and Ω2 denote the parameters of
encoder network and decoder network, respectively. α is a
positive hyper-parameter.

Fine-tuning and Clustering
By optimizing problem (5), we can obtain a more com-
pact common representation H∗ for the incomplete multi-
view data and the initialized network parameters. How-
ever, it cannot guarantee the obtained common representa-
tion to be cluster-friendly. In many previous deep cluster-
ing works, kmeans is widely considered [Yang et al., 2017;
Guo et al., 2018]. However, as can be seen from objective
function (1), the conventional kmeans treats all samples in-
cluding the cluster-oriented samples and marginal samples

(outliers) equally, which makes the trained clustering network
be sensitive to outliers. A good approach to address this is-
sue is to select the most cluster-oriented samples for model
fine-tuning [Guo et al., 2019]. To this end, we introduce a
self-paced kmeans as the clustering layer for fine-tuning.

Self-paced kmeans: The loss function of the self-paced
kmeans is denoted as follows [Guo et al., 2019]:

min
S,v,λ

1
nk

n∑
i=1

(
ri ∥h∗i − US:,i∥22 − λri

)
s.t. ri ∈ {0, 1} , S ∈ {0, 1}k×n

, ST 1 = 1
(6)

where U and S are the cluster center matrix and cluster in-
dicator matrix as in (1). A difference between the self-paced
kmeans and the conventional kmeans is that the cluster cen-
ters U is fixed in self-paced approach. This operation can
avoid the trivial solution: all samples are trained into a same
point in the latent space. r = [r1, . . . , rn] ∈ Rn is a weight
vector, λ is an age parameter.

Generally, parameter λ needs to increase gradually such
that more samples can be selected for network training. How-
ever, it is difficult to control its growth rate for different tasks.
In our work, we adopt a statistic based adaptive approach fol-
lowing [Guo et al., 2019] to update parameter λ:

λ = µ
(
Klosst

)
+ tσ

(
Klosst

)/
T (7)

where Klosst is a loss vector at the t-th training step and is
calculated as: Klossti =

∥∥h∗ti − U tSt
:,i

∥∥2
2

for the i-th sample.
µ (Klosst) and σ (Klosst) denote the average and standard
deviation of vector Klosst, respectively. T is the maximum
training iterations.

By introducing the weight vector r and parameter λ, the
proposed CDIMC-net can select the most confident samples
whose clustering losses are no more than λ for training. Then



with the iteration increases, more confident samples will be
selected. This process is similar to the human cognitive learn-
ing, i.e., learns from easy to hard or less to more.

Loss function of fine-tuning: Combining the losses of
kmeans and graph embedding, the overall loss function of the
fine-tuning network is:

min
S,v,Ω1,λ

1
nk

n∑
i=1

(
ri ∥h∗i − US:,i∥22 − λri

)
+α 1

2nl

l∑
v=1

n∑
i=1

n∑
j=1

∥∥∥h(v)i − h
(v)
j

∥∥∥2
2
N

(v)
i,j

s.t. ri ∈ {0, 1} , S ∈ {0, 1}k×n
, ST 1 = 1

(8)

At the end of fine-tuning, CDIMC-net will produce the
clustering result S for the incomplete multi-view data.

3.3 Optimization
Similar to conventional Autoencoer, all parameters of the pre-
training network can be directly optimized by the Stochas-
tic Gradient Descent (SGD) algorithm and back-propagation.
Thus, in this section, we focus on the optimization of the fine-
tuning network, where an alternating optimization algorithm
is adopted to optimize loss function (8).

Step 1: Update the encoder parameters Ω1: The opti-
mization problem for encoder parameters Ω1 is:

min
Ω1

1
nk

n∑
i=1

vi
∥∥∥∥∥∥

l∑
v=1

f
(v)
EC

(
x
(v)
i

)
W

(v)
i,i

l∑
v=1

W
(v)
i,i

− US:,i

∥∥∥∥∥∥
2

2


+α 1

2nl

l∑
v=1

n∑
i=1

n∑
j=1

∥∥∥f (v)
EC

(
x
(v)
i

)
− f

(v)
EC

(
x
(v)
j

)∥∥∥2

2
N

(v)
i,j

(9)

Problem (9) can be adaptively optimized via SGD and
back-propagation.

Step 2: Update cluster indicator S: S is updated by solv-
ing the following problem:

min
S∈{0,1}k×n,ST 1=1

∥H∗ − US∥2F (10)

The optimal solution to problem (10) is:

Si,j =

{
1, if j = argmin

c
∥h∗i − U:,c∥22

0, otherwise
(11)

Step 3: Update r: The optimization problem to variable r
is degraded as follows by fixing the other variables:

min
ri∈{0,1}

n∑
i=1

(
ri ∥h∗i − US:,i∥22 − λri

)
(12)

Supposing Klossi = ∥h∗i − US:,i∥22, the optimal solution
to problem (12) can be expressed as follows:

ri =

{
1, if Klossi ≤ λ
0, otherwise

(13)

Step 4: Update λ: λ is updated via (7).
By alternatively updating the above variables, the proposed

CDIMC-net can converge to the local optimal solution.

Algorithm 1: Fine-tuning and clustering of CDIMC-
net

Input: Arranged incomplete multi-view data{
Y (v)

}l

v=1
, indicator matrix

{
W̄ (v)

}l

v=1
, and

graphs
{
N (v)

}l

v=1
; parameter α; Maximum

iterations: T ; Maximum iterations for inner
loop: Maxiter; Batch size: bs; Stopping
threshold: ξ.

Output: Clustering indicator S.
1 Initialization: Feed

{
Y (v)

}l

v=1
,
{
W̄ (v)

}l

v=1
, and{

N (v)
}l

v=1
into the pre-trained network to obtain the

consensus representation H∗, and then implement
kmeans on it to obtain the initialized cluster center
matrix U and cluster indicator matrix S. Set all
elements of r as 1.

2 for t ∈ {1, 2, . . . , T} do
3 for j ∈ {1, 2, . . . ,Maxiter} do
4 Update the network parameters by optimizing

(9) batch to batch;
5 Update cluster indicator S using (11);
6 Update weight vector r using (13);
7 Update step-parameter λ using (7);
8 if 1− 1

n

∑
i,j

St
i,jS

t−1
i,j < ξ then

9 Stop training;

10 return S.

3.4 Implementation for IMC
It should be noted that deep learning commonly groups the
given data into several subsets and then feeds these subsets
batch by batch for model training. However, for our method,
it is difficult to sufficiently utilize the local geometric infor-
mation of graphs N (v) via the conventional batch-to-batch
training approach. To solve this issue, we propose a simple
approach to explore such local information as much as pos-
sible. Based on the assumption that samples from the same
cluster are more likely to have connections marked by edge

value ‘1’, we propose to reorder the given samples
{
X(v)

}l

v=1

first according to the initialized clustering result obtained by
performing kmeans on the features stacked by all views and

then construct the nearest neighbor graphs
{
N (v)

}l

v=1
from

the reordered data, followed by feeding the batch of samples
one by one for network training. In this way, every sub-block{
N

(v)
batch

}l

v=1
corresponding to the selected batch of samples{

X
(v)
batch

}l

v=1
will carry dense nearest neighbor information

as much as possible such that more local information can be
utilized. Specifically, the detail implementation steps of our
CDIMC-net for IMC are presented as follows:

Step 1: Data rearrangement and nearest neighbor
graph construction: 1) Concatenating all views into one sin-
gle view, where the missing instances denoted by ‘NaN’ are
filled in the average instance of the corresponding view; 2)



Database # Class # View # Samples # Features
Handwritten 10 5 2000 76/216/64/240/47

BDGP 5 4 2500 79/1000/500/250
MNIST 10 2 4000 784/784

Table 1: Description of the multi-view databases

Performing kmeans on the stacked view; 3) Reorder data ac-
cording to the clustering result, where samples grouped into
the same cluster are placed together; 4) Construct the nearest
neighbor graph according to (4) from the reordered data. The

rearranged data is denoted by
{
Y (v)

}l

v=1
, the corresponding

nearest neighbor graph and view indicator matrix are denoted

by
{
N (v)

}l

v=1
and

{
W̄ (v)

}l

v=1
, respectively.

Step 2: Network pre-training: Exploit the rearranged
data, graphs, and indicator matrices to train the IMC Autoen-
coder network, where all features of the missing views are
set as 0. For each batch, we exploit SGD to optimize the

loss function min
Ω1,Ω2

l∑
v=1

1
mvbs

∥∥∥(Y (v)
batch − Ȳ

(v)
batch

)
W̄

(v)
batch

∥∥∥2

F
+

α 1
bsl

l∑
v=1

Tr
(
H

(v)
batchLN

(v)
batch

H
(v)T
batch

)
, where Y (v)

batch denotes the

selected batch of data, Ȳ (v)
batch and H(v)

batch are the correspond-
ing reconstructed data and feature representation, W̄ (v)

batch and
L
N

(v)
batch

are the sub-indicator matrix and Laplacian matrix of
the v-th graph corresponding to the batch of data, bs denotes
the batch size.

Step 3: Network fine-tuning: The detailed fine-tuning
steps are summarized in Algorithm 1.

4 Experiment
4.1 Experimental Settings
Databases: Three databases listed in Table 1 are adopted.
1) Handwritten [Asuncion and Newman, 2007]: It contains
five views and 2000 samples from ten numerals (i.e., 0-9),
where the five views are obtained by Fourier coefficients,
profile correlations, Karhunen-Love coefficient, Zernike mo-
ments, and pixel average extractors. 2) Berkeley Drosophila
Genome Project gene expression pattern database (BDGP):
BDGP is composed of 5 categories and 2500 samples, where
each class has 500 samples [Cai et al., 2012]. Each sample is
represented by four views, i.e., texture feature and three kinds
of visual features extracted from the lateral, dorsal, and ven-
tral images. 3) MNIST [LeCun, 1998]. Following [Wang et
al., 2018], we evaluate CDIMC-net on the same subset of the
MNIST database, which is composed of 4000 samples and
ten digits. Pixel feature and edge feature are extracted as two
views.

Compared methods: Compared methods include:
PMVC, IMG, MIC, OMVC, DAIMC, OPIMC, IMC with
graph regularized matrix factorization (IMC GRMF) [Wen et
al., 2018b], MKKM-IK-MKC, and PMVC CGAN. Besides,
two baseline methods, i.e., best single view (BSV) [Zhao
et al., 2016] and Concat [Zhao et al., 2016] are also eval-
uated, where BSV reports the results of the best view, and
Concat implements the kmeans on the stacked features of

all views. For CDIMC-net, the encoder and decoder net-
works are stacked by four full connected layers with size
of [0.8mv, 0.8mv, 1500, k] and [k, 1500, 0.8mv, 0.8mv], re-
spectively. The activation function is ‘ReLU’ and the opti-
mizer is ‘SGD’ for the pre-training network and ‘ADAM’ for
the fine-tuning network. CDIMC-net is implemented on Py-
Torch and Ubuntu Linux 16.04.

Incomplete data construction: For the data with
more than two views, we randomly remove p% (p ∈
{10, 30, 50, 70}) instances from every view under the con-
dition that all samples at least have one view. For MNIST
database, p% (p ∈ {10, 30, 50, 70}) instances are randomly
selected as paired samples whose views are complete, and the
remaining samples are treated as single view samples, where
half of them only have the first view and the other half of the
samples only have the second view.

Evaluation metric: Clustering accuracy (ACC) and nor-
malized mutual information (NMI) [Hu and Chen, 2018].

4.2 Experimental Results and Analysis
Experimental results on the above three databases are listed
in Tables 2. We can observe the following points from the
results: 1) CDIMC-net significantly outperforms the other
methods on the three databases. For instance, on the Hand-
written database with a missing-view rate of 50%, CDIMC-
net obtains about 91% ACC and 84% NMI, which are about
10% and 16% higher than those of the second best method,
respectively. 2) BSV and Concat obtain worse IMC perfor-
mance than the other methods in most cases. Thus, we can
conclude that exploring the complementary information and
consistent information of multiple views is beneficial to im-
prove the performance. 3) CDIMC-net performs better than
the advanced deep network based method PMVC CGAN on
the MNIST database. This demonstrates that CDIMC-net is
superior to PMVC CGAN for IMC.

4.3 Parameter Analysis
Fig.2 shows the relationships of ACC, graph embedding
hyper-parameter α, and the learning rate of the CDIMC-net
on the Handwritten and BDGP databases with a missing-view
rate of 10%. We can observe that CDIMC-net obtains rela-
tively better performance when the two parameters are small.
Specifically, a large learning rate is harmful to obtain the lo-
cal optimal clustering results and a large α makes the graph
embedding term dominate the training phase. In the appli-
cations, we suggest selecting the learning rate and α from
[1e-5,1e-3].

4.4 Component Analysis
In this subsection, we conduct experiments on the Handwrit-
ten and BDGP databases to validate the importance of graph
embedding, self-paced learning, and pre-training, where the
degenerate models of CDIMC-net without a graph embed-
ding term, self-pace constraint, and pre-training phase, are
compared. From Fig.3, we can find that CDIMC-net outper-
forms the three degenerate models, which demonstrates the
effectiveness of the introduced three approaches.



ACC NMI
Database Method\p% 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

H
an

dw
ri

tte
n

BSV 68.27±5.66 51.49±2.29 38.24±2.25 27.15±1.31 62.82±3.24 47.01±1.71 32.21±1.00 19.48±0.69
Concat 75.06±3.86 55.48±1.57 42.19±0.99 28.31±0.75 73.08±2.05 51.66±0.99 38.24±1.59 23.50±0.95
MIC 77.59±2.41 73.29±3.41 61.27±3.16 41.34±2.69 70.84±2.08 65.39±2.08 52.95±1.33 34.71±2.11
OMVC 65.04±6.50 55.00±5.06 36.40±4.93 29.80±4.63 56.72±5.05 44.99±4.56 35.16±4.62 25.83±8.37
DAIMC 88.86±0.63 86.73±0.79 81.92±0.88 60.44±6.87 79.78±0.71 76.65±1.07 68.77±0.99 47.10±4.79
OPIMC 80.20±5.40 76.45±5.15 69.50±6.54 56.66±10.06 77.26±3.11 73.74±3.42 66.57±4.18 51.86±7.97
MKKM-IK-MKC 71.78±1.74 69.07±0.73 66.08±3.25 55.55±1.39 69.43±1.28 65.42±0.61 59.04±2.69 47.36±1.78
CDIMC-net 95.12±1.11 94.22±1.07 91.48±0.82 88.85±0.77 90.10±1.97 89.21±1.11 84.58±1.08 79.99±0.78

B
D

G
P

BSV 51.48±3.96 41.44±3.55 34.74±1.52 27.95±1.76 35.74±4.01 25.20±2.70 16.39±1.36 9.29±1.67
Concat 57.66±4.79 50.04±1.58 40.41±3.52 27.52±1.24 44.58±4.78 31.81±1.45 19.76±1.78 6.17±1.27
MIC 48.31±0.83 40.88±1.18 34.02±1.42 29.45±0.91 28.52±0.49 23.94±1.21 11.05±0.89 7.04±1.17
OMVC 55.23±4.55 46.22±3.15 39.46±1.12 38.32±2.95 28.78±1.59 19.44±1.20 13.51±1.21 12.74±5.46
DAIMC 77.34±2.58 69.30±6.42 52.45±8.57 35.68±4.23 55.64±2.68 47.87±4.65 28.33±1.38 9.17±3.64
OPIMC 79.38±7.69 63.73±7.29 55.17±9.24 35.82±2.68 61.77±7.41 41.47±3.88 25.94±7.29 8.35±2.23
MKKM-IK-MKC 31.80±1.68 29.12±0.29 29.44±1.39 35.16±1.69 7.21±1.10 5.86±0.56 6.65±1.19 12.19±1.41
CDIMC-net 89.02±0.71 77.99±1.00 62.14±1.67 40.98±1.05 77.24±1.98 57.09±0.77 35.64±0.59 14.77±0.99

M
N

IS
T

BSV 33.25±1.79 37.37±0.69 42.76±1.30 47.95±1.36 27.20±0.89 31.39±1.28 37.45±1.42 42.49±1.47
Concat 36.88±1.96 39.24±1.47 43.79±1.71 47.37±1.08 34.48±1.09 33.38±0.54 37.42±1.38 43.17±0.69
PMVC 41.36±2.29 43.42±2.99 44.68±1.23 45.84±1.59 35.46±0.25 38.51±1.63 39.43±1.37 39.83±1.71
IMG 46.34±3.36 47.13±2.24 46.88±1.51 48.31±1.22 39.74±2.42 40.71±2.56 39.87±1.05 44.16±1.09
IMC GRMF 49.12±2.46 50.59±2.59 52.37±1.67 52.46±1.59 47.36±0.97 48.18±1.57 50.73±0.98 51.57±1.03
MIC 43.96±2.38 44.42±2.28 44.17±1.37 45.38±2.82 38.77±1.35 40.81±1.28 40.53±0.67 41.61±1.50
OMVC 40.44±2.95 42.23±2.17 40.36±2.20 41.44±3.39 36.21±1.47 36.68±2.16 35.64±1.89 32.25±2.95
DAIMC 45.33±4.12 48.19±1.38 49.25±1.67 49.36±1.87 37.46±3.04 41.09±1.58 43.47±0.82 44.15±0.75
OPIMC 41.40±2.51 48.02±2.63 47.77±3.39 48.71±2.44 34.29±2.33 43.98±1.98 44.63±1.47 45.65±1.15
MKKM-IK-MKC 47.56±2.18 51.02±0.66 51.72±0.58 52.45±0.41 40.39±1.17 42.76±0.70 43.88±0.54 45.10±0.39
PMVC CGAN 45.17±- - 48.36±- - 52.80±- - 52.02±- - 39.33±- - 43.22±- - 49.61±- - 48.22±- -
CDIMC-net 51.65±0.14 57.64±1.44 58.28±0.68 59.15±0.21 48.25±0.47 50.54±1.26 51.70±0.67 52.87±0.48

Table 2: Clustering average results and standard deviations of different methods on the Handwritten, BDGP, and MNIST databases with
different missing-view rates or paired-view rates p%. Note: the average results of PMVC CGAN are reported in [Wang et al., 2018].
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Figure 2: ACC (%) v.s. α and learning rate (lr) of CDIMC-net on
(a) Handwritten and (b) BDGP databases with a missing-view rate
of 10%.
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Figure 3: ACC (%) of CDIMC-net and its three degenerate models
on (a) Handwritten and (b) BDGP databases.

4.5 Convergence Analysis
Fig.4 shows the loss value of fine-tuning network versus the
iterations on the Handwritten and BDGP databases with a
missing-view rate of 10%. From the figures, we can observe
that the loss value shows a downward trend overall and de-
creases quickly in the first few steps. This validates the con-
vergence property of the proposed method.
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Figure 4: Loss v.s. iterations of CDIMC-net on (a) Handwritten and
(b) BDGP databases with a missing-view rate of 10%.

5 Conclusion
In this paper, we proposed a novel and flexible CDIMC-net,
which can handle all kinds of incomplete data. Based on
human cognitive learning, CDIMC-net introduces the self-
paced kmeans to improve the robustness to outliers. Besides
this, it incorporates the graph embedding technique to pre-
serve the local structure of data. The superior performance of
CDIMC-net are validated on several incomplete cases with
the comparison of many state-of-the-art IMC methods.

Acknowledgements
This work is partially supported by Shenzhen Fundamental
Research Fund under Grant no. JCYJ20190806142416685,
Guangdong Basic and Applied Basic Research Foundation
under Grant nos. 2019A1515110582 & 2019A1515110475,
Establishment of Key Laboratory of Shenzhen Science
and Technology Innovation Committee under Grant no.
ZDSYS20190902093015527, University of Macau (File no.
MYRG2019-00006-FST), National Natural Science Founda-
tion of China under Grant nos. 61702110 & 61702163, and



National Postdoctoral Program for Innovative Talent under
Grant no. BX20190100.

References
[Asuncion and Newman, 2007] Arthur Asuncion and

David Newman. Uci machine learning repository
[http://archive.ics.uci.edu/ml], 2007.

[Cai et al., 2008] Deng Cai, Xiaofei He, Xiaoyun Wu, and
Jiawei Han. Non-negative matrix factorization on mani-
fold. In ICDM, pages 63–72, 2008.

[Cai et al., 2012] Xiao Cai, Hua Wang, Heng Huang, and
Chris Ding. Joint stage recognition and anatomical an-
notation of drosophila gene expression patterns. Bioinfor-
matics, 28(12):i16–i24, 2012.

[Chao et al., 2017] Guoqing Chao, Shiliang Sun, and Jinbo
Bi. A survey on multi-view clustering. arXiv preprint
arXiv:1712.06246, 2017.

[Guo et al., 2017] Xifeng Guo, Long Gao, Xinwang Liu, and
Jianping Yin. Improved deep embedded clustering with
local structure preservation. In IJCAI, pages 1753–1759,
2017.

[Guo et al., 2018] Xifeng Guo, En Zhu, Xinwang Liu, and
Jianping Yin. Deep embedded clustering with data aug-
mentation. In ACML, pages 550–565, 2018.

[Guo et al., 2019] Xifeng Guo, Xinwang Liu, En Zhu,
Xinzhong Zhu, Miaomiao Li, Xin Xu, and Jianping Yin.
Adaptive self-paced deep clustering with data augmenta-
tion. IEEE TKDE, 2019.

[Hu and Chen, 2018] Menglei Hu and Songcan Chen. Dou-
bly aligned incomplete multi-view clustering. In IJCAI,
pages 2262–2268, 2018.

[Hu and Chen, 2019] Menglei Hu and Songcan Chen. One-
pass incomplete multi-view clustering. In AAAI, pages
3838–3845, 2019.

[Kang et al., 2017] Zhao Kang, Chong Peng, and Qiang
Cheng. Clustering with adaptive manifold structure learn-
ing. In ICDE, pages 79–82, 2017.

[LeCun, 1998] Yann LeCun. The mnist database of hand-
written digits. http://yann. lecun. com/exdb/mnist/, 1998.

[Li et al., 2014] Shao-Yuan Li, Yuan Jiang, and Zhi-Hua
Zhou. Partial multi-view clustering. In AAAI, pages 1968–
1974, 2014.

[Liu et al., 2019] Xinwang Liu, Xinzhong Zhu, Miaomiao
Li, Lei Wang, En Zhu, Tongliang Liu, Marius Kloft, Ding-
gang Shen, Jianping Yin, and Wen Gao. Multiple kernel
k-means with incomplete kernels. IEEE TPAMI, 2019.

[Nie et al., 2019] Feiping Nie, Cheng-Long Wang, and Xue-
long Li. K-multiple-means: A multiple-means clustering
method with specified k clusters. In ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pages 959–967, 2019.

[Rai et al., 2016] Nishant Rai, Sumit Negi, Santanu Chaud-
hury, and Om Deshmukh. Partial multi-view clustering

using graph regularized nmf. In ICPR, pages 2192–2197,
2016.

[Shao et al., 2015] Weixiang Shao, Lifang He, and S Yu
Philip. Multiple incomplete views clustering via weighted
nonnegative matrix factorization with l 2, 1 regularization.
In ECML PKDD, pages 318–334, 2015.

[Shao et al., 2016] Weixiang Shao, Lifang He, Chun-ta Lu,
and S Yu Philip. Online multi-view clustering with in-
complete views. In ICBD, pages 1012–1017, 2016.

[Trivedi et al., 2010] Anusua Trivedi, Piyush Rai, Hal
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