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Recent advances enable the creation of nanoscale building blocks with complex geometries and
interaction specificities for self-assembly. This nearly boundless design space necessitates design
principles for defining the mutual interactions between multiple particle species to target a user-
specified complex structure or pattern. In this article, we develop a symmetry-based method to
generate the interaction matrices that specify the assembly of two-dimensional tilings which we
illustrate using equilateral triangles. By exploiting the allowed 2D symmetries, we develop an
algorithmic approach by which any periodic 2D tiling can be generated from an arbitrarily large
number of subunit species, notably addressing an unmet challenge of engineering 2D crystals with
periodicities that can be arbitrarily larger than subunit size. To demonstrate the utility of our design
approach, we encode specific interactions between triangular subunits synthesized by DNA origami
and show that we can guide their self-assembly into tilings with a wide variety of symmetries, using
up to 12 unique species of triangles. By conjugating specific triangles with gold nanoparticles, we
fabricate gold-nanoparticle supercrystals whose lattice parameter spans up to 300 nm. Finally, to
generate economical design rules, we compare the design economy of various tilings. In particular,
we show that (1) higher symmetries allow assembly of larger unit cells with fewer subunits and
(2) linear supercrystals can be designed more economically using linear primitive unit cells. This
work provides a simple algorithmic approach to designing periodic assemblies, which may open new
doors to the multiscale assembly of superlattices of nanostructured “metatoms” with engineered
plasmonic functions.

Self-assembly is a powerful method for building or-
dered structures using components ranging in size from
nanometers to micrometers [1]. Unlike conventional ‘top-
down’ manufacturing, in self-assembly, the instructions
for building a final material structure are encoded in the
geometry and the interaction specificity of the individual
building blocks. In the past few decades, various tech-
niques for synthesizing nanoscale building blocks have
been developed, such as DNA-grafted colloids [2–5], DNA
origami [6–9], DNA tiles and bricks [10–13], and de-novo
protein design [14–16]. This ever-expanding suite of user-
prescribed building blocks has enabled the self-assembly
of increasingly complex architectures and devices, includ-
ing crystals [3–5, 9, 17, 18], fully-addressable structures
[8, 10, 11, 13, 19], shells [14, 20, 21], tubules [15, 22–24],
and sheets [25–28].

One compelling target for self-assembly that has
emerged in the past few years is programmable crystalline
materials with user-specified unit-cell sizes and symme-
tries that can be controlled independently of the subunit
geometry. In contrast to conventional crystalline mate-
rials, in which the lattice parameter is set by the sub-
unit size, such ‘supercrystals’ in principle allow for the
precise ordering of molecules or nanoparticles at length
scales that can be arbitrarily large in comparison to the
building-block dimensions and with symmetries that are
decoupled from the subunit shape [19, 29]. This class
of materials is particularly useful for a range of applica-
tions, including photonic-plasmonic devices that require
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the periodic positioning of metallic nanostructures, i.e.
‘mesoatoms’ of complex and precisely defined shapes, at
the micrometer length scale to carefully tune plasmonic
lattice couplings [30–33]. However, there is no general
method for the optimal design of multi-component as-
sembly to produce a given unit-cell dimension and sym-
metry. Furthermore, there is no general strategy for how
to do so in an economical way, that reaches a given com-
plex 2D crystalline target via the minimal number of
unique components and interactions, thereby making the
designs easier to implement in practice.

Here, we develop a symmetry-based inverse-design
method to generate the interaction matrices that spec-
ify the assembly of supercrystals of arbitrarily large
complexity. We consider equilateral triangular build-
ing blocks with programmable interactions on their
edges that assemble into two-dimensional (2D) tilings
(Fig. 1A). In a mixture that contains only one unique
component, which we refer to as a species, our subunits
crystallize into a simple triangular lattice with a lat-
tice parameter, a, that is given by the subunit size, λ
(Fig. 1B). By increasing the number of subunit species,
we can assemble more complex tilings with arbitrarily
large lattice spacings, a ≫ λ (Fig. 1C). We develop an
inverse design method for selecting the most econom-
ical designs by exploiting translational and rotational
symmetries. To show that our design scheme works in
practice, we synthesize DNA origami subunits with pro-
grammable interactions (Fig. 1A). We assemble tilings
with up to 12 species, containing as many as 72 trian-
gles in a unit cell, significantly larger than other recent
examples reported in the literature [34]. Finally, by con-
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FIG. 1. Self-assembly of DNA origami triangles into two-dimensional supercrystals. (A) Cryo-EM reconstruction
of the triangular building block made using DNA origami viewed from the top. DNA-grafted gold nanoparticles (black circle)
can be conjugated to the center of the DNA origami using DNA hybridization. (B) A single triangular species assembles into a
triangular lattice. Each triangle is illustrated with a dark circle representing a moiety that can be conjugated onto the building
block, for example, a gold nanoparticle or an enzyme. The lattice spacing of this system, a, roughly matches the size of the
building block, λ. (C) Twelve species of triangles assemble into a tiling with a larger repeating unit. By labeling a subset of
the triangles, it is possible to create a supercrystal with a larger lattice parameter and a crystal symmetry that can be different
than that of the underlying triangular lattice. (D and E) Experimental demonstrations of supercrystal assembly using (D) one
and (E) 12 species of triangles. The designed lattice is that from (B) and (C). In (E), the false colors denote the triangle species
that are complementary to gold nanoparticles (black dots). Fourier transforms of the gold nanoparticles show distinct peaks
corresponding to the periodicity and the pattern of the gold nanoparticles (see SI Section VII for image processing details).
The dotted circle on the Fourier transform image represents the radius that corresponds to the first zero value of the Bessel
function originating from the radius of gold nanoparticles.

jugating DNA-grafted gold nanoparticles onto a small
number of species, we fabricate various gold nanoparti-
cle supercrystals with periodicities reaching hundreds of
nanometers (Fig. 1D and E). Fourier transforms of the
gold nanoparticles exhibit distinct low-spatial-frequency
features, demonstrating order on length scales larger than
the gold nanoparticles themselves.

RESULTS

We consider a system of equilateral triangles that bind
to one another through their edges. The triangles have
three sides whose interactions are programmed indepen-
dently (Fig. 2A). Note that we limit ourselves to triangles
that do not flip in-plane. Under these simple rules, the
set of interactions can be represented by a symmetric
matrix, in which each element is either filled for favor-
able interactions or unfilled for unfavorable interactions
(Fig. 2B).

Perhaps the most naive and straightforward strategy

for generating complex 2D patterns for self-assembly is
through direct enumeration of all possible interaction ma-
trices. However, this strategy does not work in practice
because only a tiny fraction of the interaction matrices
encode for unique periodic tilings. For example, there
exist only three tilings using a single species, as com-
pared to the 26, or 64, possible interaction matrices (see
SI Section II A). This problem gets even worse as the
number of species, N , increases because the number of
distinct interaction matrices diverges as 2

3
2 (3N+1)N , ren-

dering the enumeration untenable for all but the absolute
smallest system sizes. For a more detailed discussion, see
SI Section II.

A. Generating tilings using symmetry

To circumvent the challenges associated with direct
enumeration, we develop a symmetry-based design strat-
egy to generate complex interaction matrices. Each pla-
nar tiling can be classified by the symmetry operation
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FIG. 2. Symmetry-based method to generate 2D planar tilings and supercrystals. (A) A representative illustration
of a triangle. The orientation of the triangle is indicated by a line that points at the vertex between side 1 and 2. Side 1,
2, and 3 always appear counter-clockwise in our schematics. (B) A representative illustration of an interaction matrix for a
single species of triangles. Filled squares of the interaction matrices indicate existing interaction between the row and the
column of the element. (C) Example of 2D tilings with single species corresponding to the interaction from (B). (D) The four
Wallpaper groups that we encounter in our tilings are shown. The parallelogram highlighted in red shows the PU cell, while
white symbols indicate the rotational symmetry points. A diamond, triangle, and hexagon symbols represent 2, 3, and 6-fold
rotational symmetry points, respectively. The ‘MRSEC’ parallelogram with a black outline indicates the fundamental domain
of each tiling. (E) A PU cell, P (h1, k1, h2, k2), is selected by combining two vectors (h1, k1) and (h2, k2). The (F) colors and (G)
orientations of the individual triangles are chosen such that they obey the imposed symmetry. (H) From the tilings, interaction
matrices are inferred.

that leaves it unchanged. Given their translational sym-
metry, all 2D planar tilings must fall under one of the
17 Wallpaper groups [35, 36]. Here, we use orbifold
notation to describe the symmetries of the Wallpaper
groups [37]. In our system, the allowed symmetry op-
erations are constrained by the interaction rules and the

geometry of the particles. Since we prohibit triangles
from flipping in-plane, reflections, and glide reflections
are not allowed. Additionally, 90-degree rotational sym-
metries are prohibited in a system with triangular sub-
units. Therefore, we find only four of the available Wall-
paper groups: o tilings with only translational symmetry,
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2222 tilings with four distinct 2-fold rotational symme-
tries, 333 tilings with three distinct 3-fold rotational sym-
metries, and 632 tilings with 6, 3, and 2-fold rotational
symmetries (Fig. 2D).

Taking advantage of the Wallpaper symmetries, we de-
velop a tractable approach to designing 2D tilings with
arbitrarily large complexity. The core idea is to invert
the process of generating tilings: Rather than enumer-
ating every possible interaction matrix and then sifting
through them to find those that encode 2D tilings, we
directly generate tilings using symmetry and then we in-
fer the interaction matrices that encode the assembly of
those tilings. We break down our approach into three
steps.

First, we generate a parallelogram that tiles the plane
and corresponds to the periodicity of the resulting tiling
(Fig. 2E). Specifically, we create a coordinate system
(h, k) along two lattice directions with the subunit size
being unit length and define a parallelogram using two
linearly independent vectors with integer components,
(h1, k1) and (h2, k2). We call these two vectors the prim-
itive unit vectors, and the corresponding parallelogram,
the primitive unit cell (PU cell).

Next, we ‘color’ individual triangles and specify
their orientations in each parallelogram while enforcing
the symmetry operations prescribed by the Wallpaper
groups. The procedure consists of: (1) choosing a blank
triangle, (2) coloring it with a new color, (3) coloring all
symmetrically invariant triangles with the same color,
and (4) repeating this process until every triangle has
been colored in (Fig. 2F). We note that because 2-fold
symmetries can be placed on either an edge or a vertex,
and 3-fold symmetries can be placed on either a vertex or
a face, more than one tiling can exist for a given PU cell
for 2222 and 333 symmetries (see SI Section III). Then we
repeat this procedure to specify the orientations of each
of the triangles similarly to how we specified the colors
(Fig. 2G). Here, again, an exception exists for tiles with
3-fold symmetry. When the 3-fold symmetry point lies
on the face of a triangle, the three edges of the triangle
become homologous, and therefore the triangle does not
have a deterministic orientation within the tiling.

Finally, we derive the interaction matrix that en-
codes the tiling deterministically by assigning interac-
tions between unique bond pairs (Fig. 2H). This proce-
dure amounts to setting the interaction matrix equal to
the adjacency matrix. Each unique bond pair is recorded
as a filled box in the interaction matrix.

This design method allows us to generate 2D tilings
with a large number of species using a personal com-
puter. To show the feasibility of our approach, we gener-
ate an exhaustive list up to PU cells containing 200 trian-
gles, which consist of 1628 o tilings, 2826 2222 tilings, 52
333 tilings, and 38 632 tilings, totaling 4544 2D tilings.
Figures 3 and S15 show some examples of o, 2222, 333,
and 632 tilings. Using a typical PC, computing all the
associated interaction matrices takes only a few days,
whereas direct enumeration would be impossible (see SI

Section II B for details) and other modern inverse-design
methods, such as SAT-assembly [38, 39], start to become
intractable above roughly 100 species [40].

B. Self-assembly of 2D supercrystals using DNA
origami

Inspired by the engineering challenge of assembling
programmable 2D arrays of plasmonically functional
nanostructures [31, 33], we demonstrate the use of our
symmetry-guided design to template the assembly of su-
percrystals of 10-nm-diameter gold nanoparticles. To
demonstrate the principle, we label the centers of spe-
cific subsets of triangles, though more sophisticated mul-
tispecies labelings can be achieved by exploiting the ad-
dressability of DNA origami [8, 19, 41]. Given the sym-
metry rules of the tiling templates, the supercrystals that
one can assemble in this way are required to satisfy a
small number of constraints. First, the largest possible
lattice parameter of the supercrystal is bounded by the
PU cell size, S. Second, the symmetry of the super-
crystal need not be the same as the symmetry of the
underlying tiling. And third, the order of symmetry of
the supercrystal, Osuper, cannot be smaller than the or-
der of symmetry of the underlying tiling, Otiling, where
the order of symmetry, O, is the size of the PU cell di-
vided by the size of the fundamental domain. For exam-
ple, a 2222 tiling (Otiling = 2) can template the assem-
bly of a 632 supercrystal (Osuper = 6), but a 632 tiling
(Otiling = 6) cannot template the assembly of a 2222 su-
percrystal (Osuper = 2).
To demonstrate the power of our design approach, we

develop a system based on DNA origami to construct 2D
tilings from a large number of distinct species, on which
supercrystals of gold nanoparticles can be assembled.
Specifically, we make triangular subunits that are roughly
50 nm in edge length and encode specific interparticle in-
teractions using DNA hybridization of sticky ends that
protrude from the edges of the subunits (Fig. 1A). In this
way, we can program the complex interaction matrices
that we generate above by exploiting Watson-Crick base
pairing. We then assemble DNA origami tilings isother-
mally at the temperature at which monomers and assem-
blies coexist, typically around 34 ◦C for the 6-nucleotide
sticky ends that we use. Subsequently, we add DNA-
grafted gold nanoparticles at a small stoichiometric ex-
cess at room temperature to assemble the supercrystals,
which we then image using negative-stain transmission
electron microscopy (TEM) (Fig. 3A–B). We find that
the labeling efficiency of gold nanoparticles is roughly
75% at this stoichiometric ratio.
First, we show that micrometer-sized tilings assemble

for the simplest interaction matrix possible. We encode
all three sides of a single species of triangle to be ho-
mologous and self-complementary. We predict that the
triangles in the resulting tiling will have no orientational
order, and will correspond to the simplest 632 tiling. Un-
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FIG. 3. DNA origami triangles self-assemble into 2D supercrystals. (A) Schematics for assembling supercrystals. To
synthesize a supercrystal, triangles are first assembled into tiling, and then labeled using gold nanoparticles. (B) An assembly
of flat sheets using a single species of triangles with all homologous, self-complementary edges. TEM micrographs before and
after gold nanoparticle labeling are shown. (C and D) 2222, 333, and 632 tilings assembled using (C) 2 and (D) 12 species of
triangles. Designed tilings and TEM micrographs are shown side-by-side. The symmetry groups labeled on the left and right
indicate the symmetries of the underlying tiling and resulting supercrystal, respectively. Gold-nanoparticle-labeled triangles
are highlighted with the species color in the TEM micrograph. The PU cell is indicated by the shaded region.

der TEM, we observe 2D sheets spanning micrometers in
size—containing over 1,000 subunits—that have the an-
ticipated symmetry (Fig. 3B).

We further demonstrate the utility of our approach by
making supercrystals from binary tilings of three differ-
ent symmetries. By using multiple species with specific
interactions, we encode more sophisticated patterns with

larger PU cells. First, we assemble representative 2222,
333, and 632 tilings from two species of triangles at the
stoichiometric ratios of the tilings (1:1 for 2222 and 333;
and 1:3 for 632), as shown as red and blue in Fig. 3C, left.
The resulting supercrystals, overlayed with false color,
are shown in Fig. 3C, right. Interestingly, whereas the
2222 and 632 tilings lead to supercrystals with the same
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symmetry as the parent tiling, the 333 tiling produces a
supercrystal with 632 symmetry. This observation high-
lights the importance of choosing the position of the gold
nanoparticle in determining the symmetry of the super-
crystal: labeling the center of a triangle yields 632 crys-
tals whereas labeling the edge of a triangle yields 333
crystals, matching the symmetry of the parent.

Encouraged by the success of our two-species exper-
iments, we assemble more complex supercrystals with
larger PU cells, including supercrystals with periodicities
comparable to the wavelength of visible light. Figure 3D
shows examples of 2222, 333, and 632 tilings assembled
from 12 species of triangles (see Fig. S16 for examples
of 6-species tilings and SI Section VI for programmed
interactions). We label two triangles for all of the 12-
species tilings to maintain an appreciable density of gold
nanoparticles. In all cases, we find that the supercrys-
tals are consistent with the underlying tilings, have the
same symmetries as their parent tilings, and have low
defect densities, indicating that the programmed inter-
actions are truly orthogonal. As anticipated, the size
of the PU cell increases as the number of species of tri-
angles increases, leading to larger distances between the
gold nanoparticles. This is further seen by the increas-
ing complexity and low-spatial-frequency signal from the
Fourier transforms of the gold-particle positions (see SI
Section VII and Fig. S14 for details). Additionally, we
observe that the PU cell size increases with the order of
the symmetry of the tiling for a fixed number of species
from 175 nm to 200 nm to 300 nm for the 2222, 333, and
632 symmetry tilings, respectively. This final observation
hints at the possibility that some tiling patterns might
be more useful than others in templating nanoparticle
supercrystals.

C. Economy of design

From the perspective of inverse design, we ask the fol-
lowing questions: What is the ‘cost’ of assembling a given
tiling, and are some tilings more ‘economical’ than oth-
ers [42]? In the experiment, it is natural to define the
cost as the number of species of triangles N that need
to be synthesized because each species requires unique
DNA staple sequences and must be folded and purified
separately. We must also define the ‘value’ of a tiling.
Here, we choose the size of the PU cell, S, as the value
of the tiling, since this parameter controls the spacing of
the periodic patterns. Combining these two definitions,
the ‘species economy’, ES, of a tiling can be calculated
by taking the ratio of the value to the cost, or ES = S/N .

We find that the species economy has a maximum
value that is determined by the order of symmetry of
the tilings, Otiling (Fig. 4A). We observe that there is an
upper limit to the species economy that can be achieved
depending on the symmetry of tilings, which is 1, 2, 3,
and 6 for o, 2222, 333, and 632 tilings, respectively. For o
and 2222, the species economy for all tilings is constant,

FIG. 4. Economy of 2D tilings. (A) The species economy
of tiling, ES, for PU cell sizes equal to or smaller than S = 100
triangles. The upper limit of ES is Otiling, as illustrated by
solid lines, but deviation from this is seen for 333 and 632
tilings. (B) PU cells for two examples of 632 tilings. (B, left)
An example 632 tiling that does not satisfy S/N = Otiling.
The three sides of the yellow triangles have a homologous
interaction since the 3-fold rotational symmetry is located
on the triangle face. (B, right) An example 632 tiling that
satisfies S/N = Otiling. The 3-fold rotational symmetry is
located on the vertex. (C and D) An example of two tilings
that can yield the same linear supercrystals with maximum
periodic distance LM = 2

√
3. (C) Linear PU cell with N = 4

species of triangles, one of which is labeled. (D) Rhombic PU
cell withN = 16 species of triangles, four of which are labeled.
(E) Linear size economy, EL, is plotted against the maximum
periodic distance, LM, for o and 2222 tilings that have linear
and rhombic PU cells. Solid lines indicate predicted economy
for the linear PU cells whose functional form is given by EL =√
3Otiling/4 while dotted lines indicate rhombic PU cells given

by EL = 3Otiling/8LM.

while for 333 and 632 tilings, some tilings do not reach
the maximum species economy.

These observations can be rationalized by considering
the fundamental domain of the tilings. The size of the
fundamental domain is given by S/Otiling, where Otiling =
1, 2, 3, 6 for o, 2222, 333, and 632, respectively. As a
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consequence, the fundamental domain contains all unique
triangle species and edges that appear in a tiling. If we
simply assume that every unique triangle has to appear in
the fundamental domain once, we obtain S/Otiling = N .
Combining this expression with our definition of species
economy, we obtain ES = Otiling, which places an upper
limit on the economy of any given tiling.

The loss of species economy in some 333 and 632 tilings
can be attributed to triangles having homologous interac-
tions and, therefore, not maximally exploiting all of the
information that can be encoded in every subunit. In
Fig. 4B, we show two examples of 632 tilings, one whose
species economy is smaller than the order of symmetry
and another whose species economy matches the order of
symmetry. The major difference between the two tilings
is the location of the 3-fold rotational symmetry point;
while the tiling with the higher species economy has a
3-fold symmetry point located at the vertex of the tiling,
the one with the smaller species economy has a 3-fold
symmetry point located in the middle of a triangle. In
the lower species economy case, since the 3-fold rota-
tional symmetry is located in the middle of the triangle,
the three sides of that triangle must have the same inter-
actions. Therefore, the interactions encoded in that tri-
angle are redundant, decreasing the overall species econ-
omy. In general, whenever there is a 3-fold rotational
symmetry placed in the middle of the face of a triangle,
the triangle has homologous interactions on three sides
and results in a loss of species economy. This feature
explains why only 333 and 632 tilings encounter this de-
crease in the species economy since they are the only
tilings in which the symmetry points can have the same
symmetry as the 3-fold-symmetric triangular subunits.

Instead of focusing on the number of species of trian-
gles, the ‘cost’ could instead be defined as the number
of unique interactions, Ni. Indeed, in some systems, the
number of unique, orthogonal interactions might be the
limiting factor in realizing more and more complex as-
semblies, such as systems in which the interactions are
specified by DNA sequences, magnetic dipoles, or geo-
metric shapes [7, 43–45]. Surprisingly, within this defi-
nition of economy, which we refer to as the interaction
economy, Ei = S/Ni, every planar tiling discussed in this
paper follows a simple equation:

Ei = Otiling/3, (1)

irrespective of the specific locations of the symmetry
points. This relationship can be understood as a con-
sequence of the fact that the number of unique edges
contained in the fundamental domain is always Ni =
3S/Otiling. We note that the number of unique species
and interactions are just two potential metrics of the
‘cost’, and other strategies for quantifying the informa-
tion content of complex assemblies might lead to other
definitions of economy [46].

D. Economical design of linear supercrystals

We conclude by considering a specific class of super-
crystals, in which the periodic distance between rows of
nanoparticles is the only relevant design constraint. Fig-
ures 4C and D show two example tilings that yield the
same supercrystal, with nanoparticles labeled in lines
that are periodic in one of the other two lattice direc-
tions. In one case, the tiling requires four unique trian-
gles, one of which is labeled to construct the supercrystal
(Fig. 4C). In the other case, it takes 16 unique triangles,
of which four are labeled (Fig. 4D). Because we are only
concerned with the maximum periodic distance, LM, de-
fined as the length of the PU cell perpendicular to the
short axis, we define another economy, linear size econ-
omy, as the number of unique particles it takes to pro-
gram the maximum periodic distance, or EL = LM/N .
We find that the linear size economy of supercrystals

depends on a combination of the symmetry group and
the aspect ratio of the PU cell, with highly anisotropic
PU cells of high order being the most economical. Fig-
ure 4E shows the maximum periodic distance of o and
2222 tilings that have linear and rhombic PU cell shapes.
Here, we define a linear PU cell to have length L1 = 1
and a rhombic PU cell to have L1 = L2, where L1 and
L2 are the lengths of short and long edges of the PU cell,
respectively. For o and 2222 tilings, the values of LM

can be predicted using a simple geometrical argument.
Specifically, for 2222 tilings, the periodicity is given by
LM =

√
3N/2 for linear PU cells and LM

2 = 3N/4 for
rhombic PU cells. As before, o tilings are less economi-
cal, as the PU cell is half the size of the 2222 PU cell for
the same number of subunit species. These results show
the importance of the shape of the PU cell for the lin-
ear size economy: Tilings with linear PU cells are more
economical than rhombic ones.

DISCUSSION AND CONCLUSIONS

In summary, we developed an inverse design method
to create self-assembling tilings and supercrystals of arbi-
trary size and complexity by exploiting their underlying
symmetries. By identifying the right symmetry tilings
and the right aspect ratio of the primitive unit cell, our
strategy is guaranteed to yield economical, determinis-
tic designs. Here, the two central take-home messages
are: (1) Tilings of the highest order symmetry, 632 in
our case, yield the largest PU cell for the smallest num-
ber of components; and (2) Highly anisotropic PU cells
with 2222 symmetry yield the most economical linear su-
percrystals. Using DNA origami, we demonstrated how
our strategy could be used to assemble supercrystalline
arrangements of 10-nm-diameter gold nanoparticles with
periodicities up to 300 nm, comparable to the wavelength
of visible light. We are optimistic that this work will help
to pave the way toward making user-defined tilings and
crystals of arbitrary complexity, ushering in the possibil-
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ity of making mesoscopic materials with complex plas-
monic and photonic functionality via self-assembly.

Whereas in the main text, our initial definition of
economy focused on the economic cost of synthesizing
many subunit species, we highlight another cost associ-
ated with increasing the assembly complexity: the time
to assembly. Specifically, we found that increasing the
number of species in a tiling requires increasing the time
to assembly. Whereas single-species systems assembled
micrometer-sized tilings in less than a day, similarly sized
tilings made from 12 species took roughly two weeks
to assemble at the same temperature (see Fig. S17).
This observation indicates that the growth rate decreases
roughly linearly with the number of species, which is con-
sistent with detailed measurements of the growth rate of
multi-species tubules using a similar experimental sys-
tem [23]. Although not explored in this paper, we an-
ticipate that hierarchical or nonequilibrium approaches
[8, 19, 47, 48] may help to overcome these kinetic ‘costs’
of multi-species assembly.

Though the general principle of economy introduced in
this paper can easily be extended to other conventional
tilings and crystal systems, naturally, one may wonder
how the system compares to nonconventional ones, such
as the crisscross structure [19, 49]. Unlike a typical tiling,
where a polygon interacts with other polygons through
their edges, the component of crisscross structures are
slats which can interact with other slats at designated
points along the slat length. A unique feature of the
crisscross system is that the number of interaction sites
per component is much larger than that achievable in
typical tiling systems, allowing for a robust design of the
nucleation barrier. To compare the economy of the slate
system with that of tilings, we introduce a new metric of
economy. Whereas the ‘cost’ of assembly can be defined
as the number of particle species as before, we define
the new ‘value’ as the area of the PU cell normalized
by the representative subunit length. Defining economy
as the value over the cost, we observe that the economy
of the triangular tiling is much larger than that of the
crisscross structures (for details, see SI Section V). This
result agrees with the intuition that crisscross systems
have increased connectivity between components span-

ning smaller areas, which leads to a limited economy.
Therefore, though the crisscross system is advantageous
regarding the suppression of spurious nucleation, it may
require more unique components as compared to conven-
tional tiling designs.

Finally, we conclude by highlighting that our
symmetry-based inverse design method can be extended
to other tilings and is not constrained by the shape of the
building block, including both 2D tilings and 3D crystals.
In this work, we specifically focused on orientable triangle
tilings, in which the corresponding symmetry groups in-
clude o, 2222, 333, and 632. However, depending on the
specific target structure or application, one may prefer
to fabricate 2D supercrystals with different symmetries
or even 3D supercrystals. We emphasize that the pro-
cedures developed herein can be universally applied to
other systems that have translational symmetry. In SI
Section IV, we summarize general inverse design strate-
gies that can be applied to translationally symmetric
structures and show examples, including square, hexag-
onal, parallelogram, rhombille, and snub-square tilings.
Therefore, the inverse design method we developed can
be applied to self-assemble other 2D and 3D supercrys-
tals of arbitrary complexity. In addition, we speculate
that the design rules we identified have connections to
2D manifolds, which opens up new design spaces that
can be accessed by controlling the dihedral angles be-
tween neighboring subunits to create curved structures
[21, 23, 42, 50, 51].
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Supplemental Information for “Symmetry-guided inverse design of self-assembling
multiscale DNA origami tilings”

Daichi Hayakawa, Thomas E. Videbæk, Gregory M. Grason, W. Benjamin Rogers

I. EXPERIMENTAL METHODS

A. Folding DNA origami

Each DNA origami particle is folded by mixing 50 nM of p8064 scaffold DNA (Tilibit) and 200 nM each of staple
strands with folding buffer and annealed through a temperature ramp starting at 65 ◦C for 15 minutes, then 58 to
50 ◦C, −1 ◦C per hour. Our folding buffer, contains 5 mM Tris Base, 1 mM EDTA, 5 mM NaCl, and 15 mM MgCl2.
We use a Tetrad (Bio-Rad) thermocycler for annealing the solutions.

B. Agarose gel electrophoresis

To assess the outcome of folding, we separate the folding mixture using agarose gel electrophoresis. Gel electrophore-
sis requires the preparation of the gel and the buffer. The gel is prepared by heating a solution of 1.5% w/w agarose,
0.5x TBE to boiling in a microwave. The solution is cooled to 60 ◦C. At this point, we add MgCl2 solution and
SYBR-safe (Invitrogen) to adjust the concentration of the gel to 5.5 mM MgCl2 and 0.5x SYBR-safe. The solution
is then quickly cast into an Owl B2 gel cast, and further cooled to room temperature. The buffer solution contains
0.5x TBE and 5.5 mM MgCl2, and is chilled to 4 ◦C before use. Agarose gel electrophoresis is performed at 110 V
for 1.5 to 2 hours in a cold room kept at 4 ◦C. The gel is then scanned with a Typhoon FLA 9500 laser scanner (GE
Healthcare).

C. Gel purification and resuspension

After folding, DNA origami particles are purified to remove all excess staples and misfolded aggregates using
gel purification. The folded particles are run through an agarose gel (now at a 1xSYBR-safe concentration for
visualization) using a custom gel comb, which can hold around 4 mL of solution per gel. We use a blue fluorescent
table to identify the gel band containing the monomers. The monomer band is then extracted using a razor blade,
which is further crushed into smaller pieces by passing through a syringe. We place the gel pieces into a Freeze ‘N’
Squeeze spin column (Bio-Rad), freeze it in a -80 ◦C freezer for 30 minutes, thaw at room temperature, and then spin
the solution down for 5 minutes at 13 krcf.

Since the concentration of particles obtained after gel purification is typically not high enough for assembly, we
concentrate the solution through ultrafiltration [1]. First, a 0.5 mL Amicon 100kDA ultrafiltration spin column is
equilibrated by centrifuging down 0.5 mL of the folding buffer at 5 krcf for 7 minutes. Then, the DNA origami solution
is added up to 0.5 mL and centrifuged at 14 krcf for 15 minutes. Finally, we flip the filter upside down into a new
Amicon tube and spin down the solution at 1 krcf for 2 minutes. The concentration of the DNA origami particles
is measured using a Nanodrop (Thermofisher), assuming that the solution consists only of monomers, where each
monomer has 8064 base pairs.

D. Tile assembly

All assembly experiments are conducted at a DNA origami particle concentration of 10 nM. For multispecies tilings,
the total DNA origami concentration is 10 nM and each triangular species are mixed in a stoichiometric ratio of the
target tilings. By mixing the concentrated DNA origami solution after purification with buffer solution, we make
50 µL of 10 nM DNA origami at 20 mM MgCl2. The solution is carefully pipetted into 0.2 mL strip tubes (Thermo
Scientific) and annealed through different temperature protocols using a Tetrad (Bio-Rad) thermocycler.
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E. Negative stain TEM

We first prepare a solution of uranyl formate (UFo). ddH2O is boiled to deoxygenate it and then mixed with uranyl
formate powder to create a 2% w/w UFo solution. The solution is covered with aluminum foil to avoid light exposure,
then vortexed vigorously for 20 minutes. The solution is filtered using a 0.2 µm filter. The solution is divided into
0.2 mL aliquots, which are stored in a –80 ◦C freezer until further use.

Prior to each negative-stain TEM experiment, a 0.2 mL aliquot is taken out from the freezer to thaw at room
temperature. We add 4 µL of 1 M NaOH and vortex the solution vigorously for 15 seconds. The solution is
centrifuged at 4 ◦C and 16 krcf for 8 minutes. We extract 170 µL of the supernatant for staining and discard the rest.

The EM samples are prepared using FCF400-Cu grids (Electron Microscopy Sciences). We glow discharge the grid
prior to use at –20 mA for 30 seconds at 0.1 mbar, using a Quorum Emitech K100X glow discharger. We place 4 µL
of the sample on the grid for 1 minute to allow adsorption of the sample to the grid. During this time 5 µL and
18 µL droplets of UFo solution are placed on a piece of parafilm. After the adsorption period, the remaining sample
solution is blotted on a Whatman filter paper. We then touch the carbon side of the grid to the 5 µL drop and blot it
away immediately to wash away any buffer solution from the grid. This step is followed by picking up the 18 µL UFo
drop onto the carbon side of the grid and letting it rest for 30 seconds to deposit the stain. The UFo solution is then
blotted to remove excess fluid. Grids are allowed to dry for a minimum of 15 minutes before insertion into the TEM.

We image the grids using an FEI Morgagni TEM operated at 80 kV with a Nanosprint5 CMOS camera (AMT).
Images are acquired between x8,000 to x28,000 magnification. The images are high-pass filtered and the contrast is
adjusted using Fiji [2].

F. Gold nanoparticle conjugation to DNA origami

We first attach thiol-modified ssDNA (5’-HS-C6H12-TTTTTAACCATTCTCTTCCT-3’, IDT) to 10 nm diameter
gold nanoparticles (Ted Pella) using a protocol similar to that in ref. [3]. Thiolated strands are first reduced using
tris(2-carboxyethyl) phosphine (TCEP) solution (Sigma-Aldrich). 20 mM TCEP (pH 8) and 100 µM thiol-DNA are
held at room temperature for one hour on a vortex shaker. Excess TCEP is removed with a 10kDa Amicon filter in
three washes of a 50 mM HEPES buffer (pH 7.4); filter centrifugation is done at 4 krcf for 50 minutes at 4 ◦C. After
purification, thiolated DNA strands are stored at -20 ◦C until needed. To attach thiolated DNA to gold nanoparticles
they are mixed at a ratio of 300:1 in a 1x borate buffer (Thermo Scientific) and are rotated at room temperature for
2 hours. After incubation, the salt concentration is increased in a stepwise manner to 0.25 M NaCl using a 2.5 M
NaCl solution in five steps. After each salt addition, the gold nanoparticle solution is rotated at room temperature for
30 minutes. After the last addition, the gold nanoparticle solution is left to age in the rotator overnight. To remove
excess thiol-DNA strands, DNA-gold nanoparticle conjugates were washed four times by centrifugation using a 1x
borate buffer with 0.1 M NaCl. DNA-gold nanoparticle solutions were centrifuged at 6.6 krcf for 1 hour for each wash
step. After the last wash, the DNA-gold nanoparticle concentration was measured using a Nanodrop and the solution
was stored at 4 ◦C

To attach gold nanoparticles to the tilings we incorporate handles with a complementary sequence to the label on
the gold nanoparticle (5’-AGGAAGAGAATGGTT-3’, IDT) on the interior edges of the DNA origami subunit. For
2- and 6-species assembly, only one subunit type has handles that bind to the gold nanoparticles and for 12-species
assembly, two subunit types have handles that bind to the gold nanoparticles. After the tilings have been assembled,
the assembly solution is diluted into a mixture with gold nanoparticles and incubated at 30 ◦C overnight in a buffer
containing 5 mM Tris Base, 1 mM EDTA, 5 mM NaCl, and 20 mM MgCl2. The concentrations of samples used for
TEM micrographs in this paper are shown in Table S1. After incubation, the samples are prepared for imaging.

G. Cryo-electron microscopy

Higher concentrations of DNA origami are used for cryo-EM grids than for assembly experiments. To avoid assembly
and aggregation of the subunits, we removed ssDNA strands protruding from the faces of the DNA origami. To prepare
samples we fold 2 mL of the folding mixture, gel purify it, and concentrate the sample by ultrafiltration, as described
above, targeting a concentration of 300 nM of DNA origami. EM samples are prepared on glow-discharged C-flat
1.2/1.3 400 mesh grids (Protochip). Plunge-freezing of grids in liquid ethane is performed with an FEI Vitrobot with
sample volumes of 3 µL, blot times of 16 s, a blot force of -1, and a drain time of 0 seconds at 20 ◦C and 100%
humidity.

Cryo-EM images for the DNA origami monomer were acquired with the Tecnai F30 TEM with a field emission gun
electron source operated at 300 kV and equipped with an FEI Falcon II direct electron detector at a magnification
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Sample Total monomer conc. Labelable monomer conc. AuNP conc. AuNP to labelable monomer ratio
632 N=1 1 1 5 5
2222 N=2 3 1.5 8 5.33
333 N=2 1 0.5 2.5 5
632 N=2 1 0.75 3.75 5
2222 N=6 3 0.5 6 12
333 N=6 3 0.5 6 12
632 N=6 3 0.56 6 10.67

2222 N=12 3 0.5 5 10
333 N=12 3 0.56 3 5.33
632 N=12 3 0.5 3 6

TABLE S1. Concentrations of DNA origami monomers and gold nanoparticles used for conjugation. All concen-
trations are in the units of nanomolar.

of x39000. Single particle acquisition is performed with SerialEM. The defocus is kept at –2 µm with a pixel size of
2.87 Angstrom.

H. Single-particle reconstruction

Image processing is performed using RELION-3 [4]. Contrast-transfer-function (CTF) estimation is performed
using CTFFIND4.1 [5]. After picking single particles we performed a reference-free 2D classification from which the
best 2D class averages are selected for processing, estimated by visual inspection. The particles in these 2D class
averages are used to calculate an initial 3D model. A single round of 3D classification is used to remove heterogeneous
monomers and the remaining particles are used for 3D auto-refinement and post-processing. Our reconstruction for
the monomer uses 2650 particles and has a resolution of 21.3 Å, Fig. S18. The post-processed map is deposited in the
Electron Microscopy Data Bank.

II. PATTERNS GENERATED BY ENUMERATING INTERACTION MATRICES

A. Interaction matrix generation for single species of triangles

For a single species of triangles, we illustrate the 24 unique interaction matrices in Fig. S1. The reduction from the
original 26 or 64 interaction matrices comes from the degeneracy in labeling the sides with numbers. For example,
interaction matrices that match by shifting the side numbers circularly are rotationally degenerate, thus reducing
the number of unique interaction matrices. Specifically, the degeneracy of an interaction matrix is determined by
how many different interaction matrices it can represent through cyclic rotations of side 1, 2, and 3, swapping of two
sides corresponding to reflection, or a combination of both. The degree of degeneracy of each matrix varies between
one, three, and six, depending on the configurations. For example, the second interaction matrix in Fig. S1 has a
degeneracy of three, since cyclic rotation or swapping can take this interaction matrix from having side 1-1 binding to
2-2 or 3-3 binding. The sum of all degeneracies adds up to 64, which is the number of all possible interaction matrices.

However, many of these interaction matrices do not have a unique assembly structure corresponding to them.
Seven interaction matrices highlighted in red in Fig. S1 correspond to fully deterministic patterns, each having a
single ground-state assembly structure where all programmed bonds are satisfied (for detailed definition, see Supple-
mentary Section IIC). All others correspond to nondeterministic patterns, or systems without a unique ground-state
assembly structure. For such systems, the orientation of triangles being added onto an existing assembly is sometimes
ambiguous, leading to various assembly outcomes.

We classify the deterministic tilings into self-limiting clusters, linear tilings, and 2D planar tilings. Self-limiting
clusters are finite-sized structures, linear tilings are infinite structures extending in 1D, and 2D planar tilings span
2D with infinite building blocks. It is straightforward to show that deterministic linear and planar tilings are trans-
lationally symmetric in 1D and 2D, respectively. In an infinite tiling with a single species of triangle, one can always
find a pair of triangles with the same orientation. Since the tiling is deterministic, the assembly procedure between
these two pairs of triangles is repeated, yielding an infinite number of triangles with the same orientation. Similarly,
deterministic linear and planar tilings with a finite number of species of triangles have translational symmetry. For a
single species system, we find three clusters, one linear tiling, and three planar tilings (Fig. S4).
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FIG. S1. Enumerating interaction matrices for single species of triangle. D denotes the degeneracy of the interaction
matrix through rotation or reflection. Interaction matrices highlighted in red are fully deterministic patterns and are accom-
panied by corresponding illustrations of the pattern.

B. Interaction matrix generation for multiple species of triangles

Next, we extend our pattern generation by direct enumeration to a system with multiple species of triangles. For two
species of triangles, the size of the interaction matrix increases to six-by-six, with 221 or 2,097,152 unique combinations.
In contrast to a large pool of possible interaction matrices, we only find 19 deterministic patterns, consisting of five
self-limiting clusters, five linear tilings, and nine 2D planar tilings (Fig. S2). Within the 2D planar tilings, we find
that three tilings have vacancies placed periodically. Similarly, for three species, we find ten self-limiting clusters, nine
linear tilings, four filled planar tilings, and ten holey planar tilings among 245 possible interaction matrices (Fig. S2).

In the counting of patterns and tilings, we ignore chiral counterparts. Some patterns we generate are enantiomorphic;
though the two patterns cannot be matched only through rotations, a combination of rotations and reflections allows
the transformation of one into the other (Fig. S3). In this paper, we consider the chiral pattern and its enantiomorph
to be the same pattern and are counted as a single pattern. This is because an enantiomorph can be generated simply
by reflecting every single component in the system. For example, Fig. S3 shows two chiral tilings whose enantiomorphs
are generated by flipping the interactions of sides 1 and 2 for both triangles.

All fully deterministic patterns – including clusters and linear tilings – can be classified using symmetry. Whereas
we used Wallpaper groups for planar tilings, clusters can be classified using 2D point groups and linear tilings, using
Frieze groups [6]. Specifically, clusters can be classified into cyclic groups with 1, 2, 3, or 6-fold rotational symmetry
in the middle of the cluster, which are denoted as C1, C2, C3, and C6 in Fig. S2. Similarly, linear tilings that are
generated here can be classified into two of the Frieze patterns, ∞∞ or 22∞; ∞∞ is a pattern with only translational
symmetry in one direction, whereas 22∞ has a 2-fold rotational symmetry. The order of symmetry for the patterns is
1, 2, 3, and 6 for C1, C2, C3, and C6, respectively, for point symmetry groups and 1 and 2 for ∞∞ and 22∞ for Frieze
groups, respectively. Given the order of symmetry, the number of unique, interacting edges required to assemble a
pattern is

Ni =
3S − Efree

O
, (1)

where Efree is the number of unbound edges in the PU cell and S is the total number of triangles in the PU cell,
excluding the holey region. For clusters, we define S to be the entire cluster, since there are no translational symmetry.
The equation also describes the number of unique edges necessary for holey 2D planar tilings. Equation (1) applies
only to fully-deterministic tilings and it cannot be extended to globally deterministic tilings, which are defined in
Supplementary Section IIC.
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FIG. S2. Fully deterministic patterns generated by enumerating interaction matrices for up to three species
of triangles. The deterministic patterns for N=1, 2, and 3 species of triangles are separated into clusters, linear tilings, and
planar tilings. The notation indicates the symmetry of the patterns.

C. Definition of deterministic and nondeterministic tilings

We clarify the definition of deterministic and nondeterministic tilings. Nondeterministic tilings are simply systems
that can have more than one final assembly outcome, as in Fig. S4A. Since side 1 of the triangle can bind to either side
1 or 2 of another triangle, the system can either assemble into an ‘S’ like structure or a hexamer. The nondeterministic
nature of the system can also be predicted simply by observing the interaction matrix; the fact that side 1 can interact
with two other sides suggests that depending on the kinetic pathways of assembly, there can be multiple structural
outcomes.

However, there are interaction matrices with such nondeterministic features, but with only one assembly outcome,
such as the one in Fig. S4B. For this system, we find that there are multiple assembly pathways as we expect, though
they all converge onto the same final assembly structure (Fig. S4C). We call such structures globally deterministic
tilings since the interaction matrix encodes for a single ground state structure. However, because the assembly
pathways are variable, the system is locally nondeterministic: either a triangle can bind in more than one orientation
or more than one species of triangles can bind to an existing cluster, as illustrated in the second state of Fig. S4C.
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FIG. S3. Chiral tilings. Two examples of deterministic chiral tilings and their enantiomorphs. The interaction matrices for
all the tilings are also illustrated.

Therefore, we end up with three unique classes of assemblies, namely, nondeterministic, globally deterministic, and
fully deterministic systems. In the main text, we use ‘deterministic assembly’ to refer to fully deterministic systems,
but in other literature, ‘deterministic assembly’ usually refers to globally deterministic systems [7].

FIG. S4. Examples of systems with nondeterministic and deterministic interactions. (A) Interaction matrix and
two possible assembly patterns for globally nondeterministic tiling with one species of triangles. (B) Interaction matrix and
assemblies for globally deterministic but locally nondeterministic tiling with two species of triangles. (C) Assembly pathways
of the (B) system starting from B triangles. Although the final structure is the same, locally nondeterminstic assemblies can
have multiple pathways to reach the final structure.
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III. ENUMERATING EXHAUSTIVE LIST OF TILINGS USING SYMMETRY-BASED METHOD

An important detail for the enumeration of tilings that is not described in depth in the main text is the presence
of variants for 2222 and 333 tilings. Unlike 6-fold rotational symmetry points which can only lie at the vertex of the
triangular lattice, 2-fold rotational symmetry points can be located either at the vertex or the middle of an edge, while
3-fold rotational symmetry points can be located either at the vertex or the middle of a triangular face (Fig. S5A). The
freedom in choosing the location of 2- and 3-fold rotational symmetry points introduces additional tilings for some
PU cells, which we refer to as variants. For example, there are two distinct 2222 tilings with PU cell P (2, 2,−2, 4)
and two distinct 333 tilings with PU cell P (3, 0, 0, 3) (Fig. S5B).

FIG. S5. Constructing variants for 2222 and 333 tilings. (A) Possible locations for 2- and 3-fold rotational symmetry
points on a triangular lattice. (B) Examples of variant tilings for 2222 and 333 tilings. (C) Locations of 2-fold rotational points
on a PU cell P (h1, k1, h2, k2). (D) Possible locations for the origin of the PU cell on the lattice for 2222 tilings. (E) Locations
of 3-fold rotational points on a PU cell P (h1, k1, h2, k2). (F) Possible locations for the origin of the PU cell on the lattice for
333 tilings. (G) An extreme example for 2222 tilings that have 4 unique variant tilings for a single PU cell.

To identify the presence of variants, we track the locations of the rotational symmetry points on the triangular
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lattice. A tiling P (h1, k1, h2, k2) with 2222 symmetry has 2-fold rotational symmetry points located at (0, 0),
(
h1

2 , k1

2

)
,(

h1+h2

2 , k1+k2

2

)
, and

(
h2

2 , k2

2

)
(Fig. S5C), where (0, 0) is usually considered to be on a vertex. Then, depending on the

parity of h1, k1, h2, and k2, the rest of the 2-fold points either lie on a vertex or an edge, as can be seen from the
value of coordinates. For example, if all PU cell components are even numbers, all symmetry points are located at
the vertex (Fig. S5B, left). However, we sometimes obtain different tilings by moving the location of the first 2-fold
point from the vertex (0, 0) to the middle of an edge, ( 12 , 0), (0,

1
2 ), or ( 12 ,

1
2 ) (Fig. S5D). Referring to the example

in Fig. S5B, shifting the first symmetry point to (0, 1
2 ) moves all 2-fold rotational points to the edge, resulting in a

distinct tiling. Similarly, the first symmetry point can be shifted to ( 12 , 0) or (
1
2 ,

1
2 ), but in this case, the tilings turn

out to be identical to already generated ones; upon proper rotation and reflection, the locations of the 2-fold points
and the PU vectors can be matched to the previous tilings.

We apply similar procedures to generate 333 tilings. The locations of the three distinct 3-fold symmetry points are

(0, 0),
(
h1+h2

3 , k1+k2

3

)
, and

(
2(h1+h2)

3 , 2(k1+k2)
3

)
(Fig. S5E). For 333, the modulo of h1 − k1 divided by 3 determines

the location of the 3-fold points; if it is 0, both the second and third coordinate lie on the vertex, whereas if it is 1 or
2, these points lie at the center of a triangle. Similar to 2222 tilings, we generate variant tilings by shifting the 3-fold
points at (0, 0) to ( 13 ,

1
3 ) or (

2
3 ,

2
3 ) (Fig. S5F).

Combining the coloring method explained in the main text and the variant rules explained here, we can easily
generate any deterministic 2D tiling. To show the capabilities of this method, we generate an exhaustive list of 2D
tilings up to S = 200 triangles. We find 1628 o tilings, 2826 2222 tilings, 52 333 tilings, and 38 632 tilings, totaling
4544 2D tilings (Fig. S6). Examples of tilings up to 10 species of triangles for each symmetry are shown in Fig. S15.
The stark difference in the number of tilings between symmetries arises from the allowed Bravais lattice for each tiling;
while o and 2222 tilings can be constructed from PU cell of any two linearly independent vectors, 333 and 632 tilings
can only be constructed from rhombic PU cells with opening angles of 60 degrees, or P (h, k,−k, h+ k). The number
of parallelograms is the same between o and 2222 tilings, but we encounter more 2222 tilings due to allowed variations
in the locations of 2-fold rotational symmetries. In the extreme case, a single PU cell for 2222 tilings can have four
unique variant tilings (Fig. S5G). Similarly, there are more 333 tilings than 632 tilings owing to the variations in the
allowed locations of 3-fold rotational points.

FIG. S6. Deterministic 2D planar tilings with a large number of triangle types. (A) Number of tilings that are
generated for a given PU cell size.
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IV. EXTENSION OF INVERSE DESIGN TO NON-TRIANGULAR TILINGS

The inverse design techniques developed in this paper can be applied to any tilings or crystals with translational
symmetry. Similar to triangular tilings, we follow the procedures below to construct deterministic, multispecies tilings.
As an example, we show inverse design using square, hexagonal, parallelogram, rhombille, and snub square tiling in
Fig. S7.

1. Find the minimal periodicity of the blank tiling. We identify the minimal periodicity of the uncolored
tiling, which can be defined using a parallelogram. We define the two linearly independent vectors that compose
this parallelogram as h and k. They serve as unit vectors to construct the PU cells.

2. Identify the PU cell with the target periodicity. Using the coordinate system developed in 1, we identify
the PU cell P (h1, k1, h2, k2) that has the target periodicity. h1, k1, h2 ,and k2 all have to be integers.

3. Identify the symmetries allowed by the tiling, the chosen PU cell, and the building blocks. Possible
Wallpaper groups are determined by multiple factors. Most importantly, it is dictated by ways in which the
particles can bind. Since we do not allow particles to flip, we obtain Wallpaper groups with only rotational
symmetry, namely o, 2222, 333, 442, and 632. Next, the tilings are also constrained by the shape of the PU cell.
432 tilings require a square PU cell, 333 and 632 a rhombic PU cell, while o and 2222 tilings can be constructed
from any parallelogram shape.

4. Choose a symmetry group to impose on the tiling, which satisfies all the constraints given in 3.
To obtain the most economical design, choose a symmetry with the highest order of symmetry.

5. Identify the locations of symmetry points for a given PU cell. We check the compatibility with the
actual tiling; every symmetry point on the tiling must be located properly such that the symmetry operation
can be imposed. As described in Supplementary Section III, this prohibits the placement of symmetry points
at specific locations, such as a 3-fold rotational symmetry point at the middle of an edge. On the other hand,
variability in the positioning of symmetry points opens up the possibility for variants, or tilings with the same
PU cell but different locations of symmetry points. To search for variants, symmetry points should be shifted
across every unique vertex, the center of a face, and the center of an edge.

6. Determine the species and orientations of particles following the symmetry. We color in the particles
and determine the orientations as described in the main text.

7. Derive the interaction matrix. We determine which particle interactions to encode based on the colors and
relative orientations of the adjacent particles.
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FIG. S7. Inverse design of non-triangular tiling patterns. Example inverse design using (A) square, (B) hexagonal, (C)
parallelogram, (D) rhombille, and (D) snub square tiling. For rhombille and snub square tiling, the black dots indicate the
periodicity of the blank tiling. o tilings are also possible for all examples. Orientations of the particles are also omitted but
can be defined following the symmetry.
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V. ECONOMY OF CRISSCROSS STRUCTURES

In contrast to the conventional tiling schemes discussed in this paper, the crisscross crystals are assembled using
slats with multiple binding sites along their length [8, 9]. As an example, we consider two species of slats, each with
four binding sites, which we refer to as valence, V (Fig. S8A). For each binding site, we assign specific interactions
which are denoted by capital letters. The interactions are assigned such that all bonds are satisfied when one slat
binds to four other slats of different species. As a result, the slats assemble in a slightly staggered manner, and the
final 2D crystal consists of two orthogonal layers of slats, in which each layer consists of the same species of slats
(Fig. S8B).

FIG. S8. An example design of crisscross structures with valence four slats. (A) Design of two species slats of valence
four. Species are illustrated by unique colors, whereas the binding site along the slat is illustrated as a circle. Complementary
interactions are denoted using an asterisk. (B) The assembly structure of the two species crisscross structure. The repeating
unit is highlighted in gray. Extensions to four (C) and eight (D) species slats are illustrated.

Similar to the tiling system, increasing the number of unique slats leads to crystals with larger periodicity. We
characterize the area of the repeating unit, A, in the 2D crystal using a representative length scale set by the length

of the slat, L. In the two species case, we obtain A = L2

4 , shown in Fig. S8B. Further, the crisscross crystal can be
made arbitrarily complex by increasing the number of unique slats in the system (Fig. S8C and D). In short, as the
number of unique slats increases, the periodicity of the slats in both the top and the bottom layer of the crisscross

increases, leading to larger periodicity. For the examples shown, the area of the repeating unit is A = L2

2 and A = L2
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for four and eight species of slats, respectively.
So how does the economy of the crisscross structure compare with the conventional tilings? To answer this question,

we redefine the economy to allow comparison between the two systems. The basic concept is similar to what is described
in the main text; we define the ‘cost’ of assembly as the number of unique components, N , and the ‘value’ as the
area of the repeating unit, A. Here, we distinguish A, which has units of length squared, from the PU cell size, S,
which has units of subunits, described in the main text. Using the slat length, L, the repeating crisscross structure
in Fig. S8 satisfies the equation

A =
NL2

8
. (2)

In general, for a crisscross system with slats of valence V , the area of the repeating unit is

A =
NL2

2V
. (3)

Defining the economy as value over cost normalized by the representative length squared, we obtain

Eslat =
A

NL2
=

1

2V
. (4)

In contrast, using the asymptotic equation for triangle tilings discussed in the main text S = NO, the economy of
triangle tilings is given by

Etiling =
A

NL2
=

√
3

2
O, (5)

where L is the edge length of a triangle. Comparison between the economies of the two systems shows that triangle
tilings are more economical than the crisscross crystals. We note that in both cases, the economy is independent of the
number of unique subunits in the system. However, in the case of crisscross crystals, the economy decreases inverse
proportionally as the valency of the slats increases (Fig. S9). We conclude by highlighting an interesting trade-off
between the economy and the nucleation barrier in the crisscross systems; higher valency allows for heightening the
nucleation barrier, which prohibits spurious nucleation but, in turn, reduces the system economy.

FIG. S9. Economy of crisscross structures compared against that of triangular tilings.
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VI. SSDNA HANDLE DESIGN

Following the strand design protocols established by Seeman [10], we design ssDNA strands to program interactions
between edges of DNA origami triangles, as summarized in Table S2. In short, a unique set of ssDNA sequences is
generated from a library of ‘vocabularies’ composed of five nucleic acid letters. The method allows for the generation of
a large set of orthogonal sequences with minimal crosstalk. Here, we generated 72 unique 6 base pair (bp) sequences
and their complementary sequences, totaling 144 sequences. We combine six of these strands to encode for the
interaction on each side of the triangle, whose locations are illustrated in Fig. S10. The combinations of strands
are chosen such that the sum of the binding free energies of the six strands calculated using the nearest neighbor
model is around −30 kcal/mol [11]. Although the total number of unique edges that can be encoded using 144 unique
sequences is only 24, we generate a far larger library of edge interactions by changing the locations of the sequences.
For example, interactions A and J use the same set of sequences, but their positions are altered. The combinations of
sequences for each assembly experiment are shown in Table S3 and the corresponding interaction matrices in Fig. S11.
Though the same sequence strands are repeated for different interactions, we do not observe any unwanted crosstalks
in the assembly experiment. A more detailed design method for the sequences is described in [12].

FIG. S10. Handle positions on the DNA origami triangles (A) Position of the handles on the DNA origami triangles.
(B) Strands on Position 1 bind to Position 6, Position 2 binds to Position 5, and Position 3 binds to Position 4.

FIG. S11. Interaction matrices of tilings assembled in experiment.
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FIG. S11. Interaction matrices of tilings assembled in experiment (continued).
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TABLE S2: DNA sequence for multispecies assemblies. A list of
the set of six interaction sequences that make up a side interaction of
a monomer and an estimate of their binding free energy. As shown in
Fig. S10, Position 1 binds to Position 6, Position 2 binds to Position 5,
and Position 3 binds to Position 4. A lowercase ‘s’ indicates that the
sequence is self-complementary. An asterisk denotes a sequence that is
complementary to the original.

Name Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 ∆G [kcal/mol]
sA ACTAGC AGTTAC TAGTCT AGACTA GTAACT GCTAGT -30.57
sB TTAACC TCGACA TTGGAT ATCCAA TGTCGA GGTTAA -30.23
sC TCAGAC GTCTAG TACCTT AAGGTA CTAGAC GTCTGA -30.17
sD GATCTT CTGATC TCCACA TGTGGA GATCAG AAGATC -31.27
A CAATAG TGATTG CTAGGA CACATC ACGAAG ACCTGA -31.38
B ATGACA TACAGG AACCTA GAGACA GACAGA ACTAAC -30.57
C GTACAT AGTCAG CGATGG CTTACT AGTATC GTATGT -31.16
D GCATCT TATTCC AGATTC TTCTCA CTGTGA TCGTAC -30.72
E AGATAG TTCCTG TTCCAT GATATG ATGCAC AACATT -30.31
F ACAATT CGTCCA CTTGTA CTACAC GACAGA AACTAT -30.58
G AGTTCC CGATTA ATTCTG ATTCAG CTTGAG GTAGAT -30.27
H GGATAA TCATCC GGTATT GGTAAT ACTGAG AGAGAT -29.84
I TTGGCA GACCTC CCTATG CTTAGG TAACAG TCTTCT -31.1
J CACATC CAATAG ACGAAG TGATTG ACCTGA CTAGGA -31.38
K GAGACA ATGACA GACAGA TACAGG ACTAAC AACCTA -30.57
L CTTACT GTACAT AGTATC AGTCAG GTATGT CGATGG -31.16
M TTCTCA GCATCT CTGTGA TATTCC TCGTAC AGATTC -30.72
N GATATG AGATAG ATGCAC TTCCTG AACATT TTCCAT -30.31
O CTACAC ACAATT GACAGA CGTCCA AACTAT CTTGTA -30.58
P ATTCAG AGTTCC CTTGAG CGATTA GTAGAT ATTCTG -30.27
Q GGTAAT GGATAA ACTGAG TCATCC AGAGAT GGTATT -29.84
R CTTAGG TTGGCA TAACAG GACCTC TCTTCT CCTATG -31.1
S ACGAAG CTAGGA ACCTGA CAATAG CACATC TGATTG -31.38
T GACAGA AACCTA ACTAAC ATGACA GAGACA TACAGG -30.57
U AGTATC CGATGG GTATGT GTACAT CTTACT AGTCAG -31.16
V CTGTGA AGATTC TCGTAC GCATCT TTCTCA TATTCC -30.72
W ATGCAC TTCCAT AACATT AGATAG GATATG TTCCTG -30.31
X GACAGA CTTGTA AACTAT ACAATT CTACAC CGTCCA -30.58
Y CTTGAG ATTCTG GTAGAT AGTTCC ATTCAG CGATTA -29.84
A* TCAGGT CTTCGT GATGTG TCCTAG CAATCA CTATTG -31.38
B* GTTAGT TCTGTC TGTCTC TAGGTT CCTGTA TGTCAT -30.57
C* ACATAC GATACT AGTAAG CCATCG CTGACT ATGTAC -31.16
D* GTACGA TCACAG TGAGAA GAATCT GGAATA AGATGC -30.72
E* AATGTT GTGCAT CATATC ATGGAA CAGGAA CTATCT -30.31
F* ATAGTT TCTGTC GTGTAG TACAAG TGGACG AATTGT -30.58
G* ATCTAC CTCAAG CTGAAT CAGAAT TAATCG GGAACT -30.27
H* ATCTCT CTCAGT ATTACC AATACC GGATGA TTATCC -29.84
I* AGAAGA CTGTTA CCTAAG CATAGG GAGGTC TGCCAA -31.1
J* TCCTAG TCAGGT CAATCA CTTCGT CTATTG GATGTG -31.38
K* TAGGTT GTTAGT CCTGTA TCTGTC TGTCAT TGTCTC -30.57
L* CCATCG ACATAC CTGACT GATACT ATGTAC AGTAAG -31.16
M* GAATCT GTACGA GGAATA TCACAG AGATGC TGAGAA -30.72
N* ATGGAA AATGTT CAGGAA GTGCAT CTATCT CATATC -30.31
O* TACAAG ATAGTT TGGACG TCTGTC AATTGT GTGTAG -30.58
P* CAGAAT ATCTAC TAATCG CTCAAG GGAACT CTGAAT -30.27
Q* AATACC ATCTCT GGATGA CTCAGT TTATCC ATTACC -29.84
R* CATAGG AGAAGA GAGGTC CTGTTA TGCCAA CCTAAG -31.1
S* CAATCA GATGTG CTATTG TCAGGT TCCTAG CTTCGT -31.38
T* CCTGTA TGTCTC TGTCAT GTTAGT TAGGTT TCTGTC -30.57
U* CTGACT AGTAAG ATGTAC ACATAC CCATCG GATACT -31.16
V* GGAATA TGAGAA AGATGC GTACGA GAATCT TCACAG -30.72
W* CAGGAA CATATC CTATCT AATGTT ATGGAA GTGCAT -30.31
X* TGGACG GTGTAG AATTGT ATAGTT TACAAG TCTGTC -30.58
Y* TAATCG CTGAAT GGAACT ATCTAC CAGAAT CTCAAG -29.84



16

TABLE S3: Triangle interactions. This table enumerates the differ-
ent side interactions from Table S2 used to generate the tilings for the
assembly experiment. ‘L’ indicates triangles that were labeled with gold
nanoparticles.

Symmetry Number of subunits Subunit ID Side 1 strands Side 2 strands Side 3 strands
632 N=1 1 sA sA sA
2222 N=2 1(L) sA B sB

2 sC B* sD
2222 N=6 1(L) sA B C

2 D E C*
3 G E* I
4 D* K sB
5 G* B* sD
6 sC K* I*

2222 N=12 1(L) A B C
2 D B* F
3 A* E I
4 G H F*
5 J K I*
6 G* K* L
7 J* E* O
8 M H* L*
9 P N O*
10 M* N* R
11(L) P* Q R*
12 D* Q* C*

333 N=2 1(L) A B C
2 A* C* B*

333 N=6 1(L) A K F
2 J A* F*
3 J* H C
4 D N I
5 C* H* I*
6 D* K* N*

333 N=12 1(L) P H R
2 S Q R*
3 P* T H*
4 V Q* U
5 S* K N*
6 Y T* X
7 A N U*
8(L) V* W X*
9 Y* E K*
10 A* A* A*
11 D W* E*
12 D* D* D*

632 N=2 1(L) A E E*
2 A* A* A*

632 N=6 1(L) D C* C
2 J E D*
3 I* K E*
4 J* K* H*
5 A H I
6 A* A* A*

632 N=12 1(L) D C* C
2 J E D*
3 I* K E*
4 J* K* R
5 M N I
6 P Q R*
7 L* T N*
8(L) M* Q* U
9 P* T* H*
10 S H L
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Symmetry Number of subunits Subunit ID Side 1 strands Side 2 strands Side 3 strands
11 O* W U*
12 S* W* O



18

VII. FOURIER TRANSFORM OF TEM IMAGES

We characterize the patterns of gold nanoparticles on the triangular lattices using Fourier transforms. To analyze the
TEM micrographs, we bandpass filter the micrograph and threshold to isolate the gold nanoparticle on the lattice. The
contrast difference between the background and the gold nanoparticle allows fairly simple thresholding after bandpass
filtering. We further fit the gold nanoparticle with ellipses using Fiji [2]. Due to the thresholding procedure, some
gold nanoparticles seem to change in size and circularity. However, local changes in the gold nanoparticle geometry
do not impact the low-spatial-frequency Fourier transform patterns. Finally, we take a fast Fourier transform (FFT)
of the fitted ellipses using Fiji and enhance the contrast near the center. To focus on the low-wavelength peaks,
the transformed images are cropped near the center, along the first minimum of the enveloping Bessel function that
corresponds to the FFT of the gold nanoparticles. The flow for image analysis is summarized in Fig. S12A.

FIG. S12. Image processing procedures for Fourier transform of the gold nanoparticle pattern. Image processing
procedures for gold nanoparticle patterns for (A) TEM micrographs and (B) ideal lattice. The dotted circle region in the first
FFT image is cropped and contrast-enhanced to obtain the final FFT pattern.

For comparison, we simulate the coordinates of an ideal lattice and the positions of gold nanoparticles. Shown
Fig. S12B, we simulate the locations of each species of the triangles on a lattice, assuming perfectly fitting equilateral
triangles, 50 nm in size. The center of the triangles with target species is labeled with gold nanoparticles, corresponding
to 10 nm in size. Similar to the TEM micrograph analysis, we extract the positions of the gold nanoparticles to Fourier
transform. To reduce the boundary effect in the FFT, we impose circular masks on the gold nanoparticle patterns.
Finally, we obtain the Fourier transform patterns and the center of the pattern is enhanced in contrast. The FFT
patterns are rotated accordingly to match the orientation for comparison.

Unique peak patterns of the FFT near the center are visible for a relatively wide range of gold nanoparticle
conjugation ratios, as long as the fluctuations of the gold nanoparticles are below 2 nm. For the 2 species tiling in
Fig. S12B, we generate gold nanoparticle patterns with conjugation ratios varying from 40% to 100% and the standard
deviation of fluctuations from 0 nm to 5 nm (Fig. S13). We find that both reducing the conjugation and increasing
the fluctuation blur the FFT peaks starting far from the center. The central peak patterns can still be discerned for
conjugation ratio above 40% and standard deviation of fluctuations below 2 nm. In the experiment, we typically find
that the conjugation ratio is above 75%. We suspect that the fluctuation of gold nanoparticles from the center of
the triangle in the experiment is smaller than 2 nm. Other additional factors not considered here include free gold
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FIG. S13. The gold nanoparticle patterns and respective FFT patterns for reduced conjugation and localization.

nanoparticles not conjugated on the lattice and systematic deformation of the triangular lattice.
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FIG. S14. Summary of all assembly experiments and the corresponding FFT patterns. The prescribed tiling
patterns and the corresponding experimental results are shown. For each tiling, the FFT patterns of the gold nanoparticles are
shown, along with the predicted FFT patterns. All scale bars are 100 nm.
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FIG. S15. List of tilings up to 10 species of triangles.
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FIG. S15. List of tilings up to 10 species of triangles (continued).
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FIG. S15. List of tilings up to 10 species of triangles (continued).
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FIG. S16. Example tilings assembled using 6 species of triangles.
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FIG. S17. Assembly time for various tilings. Time passed until assembly structures above 500 nm first appear in TEM
micrographs, annealed under 34 ◦C. Diamond, triangle, and hexagon denote 2222, 333, and 632 tilings from Fig. 3 and S16,
respectively.

FIG. S18. Cryo EM reconstruction of the DNA origami particles (A) Cryo EM reconstruction of the DNA origami
particles along with its cross-sectional views. (B) Plot of the Fourier shell correlation curves used to estimate the resolution of
the DNA origami particle.
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FIG. S19. Helical numbers and caDNAno designs for the DNA origami triangle.


