
ar
X

iv
:2

40
3.

19
52

6v
1

 [
cs

.F
L

]
 2

8
M

ar
 2

02
4

Logic and Languages of Higher-Dimensional

Automata

Amazigh Amrane1, Hugo Bazille1, Uli Fahrenberg1 and Marie Fortin2

1 EPITA Research Laboratory (LRE), Paris, France
2 Université Paris Cité, CNRS, IRIF, France

Abstract. In this paper we study finite higher-dimensional automata
(HDAs) from the logical point of view. Languages of HDAs are sets of fi-
nite bounded-width interval pomsets with interfaces (iiPoms≤k) closed
under order extension. We prove that languages of HDAs are MSO-
definable. For the converse, we show that the order extensions of MSO-
definable sets of iiPoms≤k are languages of HDAs. As a consequence,
unlike the case of all pomsets, order extension of MSO-definable sets of
iiPoms≤k is also MSO-definable.

http://arxiv.org/abs/2403.19526v1

2 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

1 Introduction

Connections between logic and automata play a key role in several areas of
theoretical computer science – logic being used to specify the behaviours of
automata models in formal verification, and automata being used to prove the
decidability of various logics. The first and most well-known result of this kind is
the equivalence in expressive power of finite automata and monadic second-order
logic (MSO) over finite words, proved independently by Büchi [3], Elgot [7] and
Trakhtenbrot [24] in the 60’s. This was soon extended to infinite words [4] as
well as finite and infinite trees [6, 20, 21].

Finite automata over words are a simple model of sequential systems with
a finite memory, each word accepted by the automaton corresponding to an ex-
ecution of the system. For concurrent systems, executions may be represented
as pomsets (partially ordered sets). Several classes of pomsets and matching
automata models have been defined in the literature, corresponding to differ-
ent communication models or different views of concurrency. In that setting,
logical characterisations of classes of automata in the spirit of the Büchi-Elgot-
Trakhtenbrot theorem have been obtained for several cases, such as asynchronous
automata and Mazurkiewicz traces [23, 27], branching automata and series-
parallel pomsets [2,17], step transition systems and local trace languages [12,18],
or communicating finite-state machines and message sequence charts [14].

Higher-dimensional automata (HDAs) [19, 25] are another automaton-based
model of concurrent systems that matches more closely an interval-based view
of events. Initially studied from a geometrical or categorical point of view, the
language theory of HDAs has become another focus for research in the past few
years [8]. The language of an HDA is defined as a set of interval pomsets with
interfaces (interval ipomsets) [10]. The idea is that each event in the execution
of an HDA corresponds to an interval of time where some process is active. In
addition, if we shorten some intervals in one possible behaviour of the HDA, we
obtain another valid behaviour for the HDA. In terms of pomsets, this means
that the language of an HDA is closed under subsumption (expanding the partial
order). In addition (for finite HDAs), it also has bounded width, meaning that
each set of pairwise concurrent events has size at most k for some k.

Several theorems of classical automata theory have already been extended
to HDAs, including a Kleene theorem [9] and a Myhill-Nerode theorem [11].
The closure properties of HDAs were also studied in [1]. In particular, regular
languages are not closed under complement, but they are closed under bounded
width complement : the subsumption closure of the complement of the language
restricted to interval ipomsets of bounded width. In this paper, we explore the
relationship between HDAs and MSO. We prove that a set of interval ipomsets is
regular if and only if it is simultaneously MSO-definable, of bounded width, and
downward-closed for subsumption. The latter two assumptions are necessary as
it is possible to define in MSO sets with unbounded width or sets that are not
downward-closed.

The HDA-to-MSO direction is proved similarly to the original Büchi-Elgot-
Trakhtenbrot theorem. We use one second-order variable for each upstep (start-

Logic and Languages of Higher-Dimensional Automata 3

ing events) or downstep (terminating events) of the HDA. The main difference
with words is that each upstep or downstep involves several events. We rely on
the existence of a canonical sparse step decomposition for any interval ipomset.
Intuitively, we prove that this decomposition can be “defined” in MSO.

On the other hand, the usual approach for the MSO-to-automata direction,
which works by induction and relies on the closure properties of regular lan-
guages, does not work for HDAs, as they are not closed under complement.
One could try to use the bounded-width complement instead, but the down-
ward closures present some difficulties. Instead, we rely on a known connection
[1] between regular languages of interval ipomsets and regular languages of step
decompositions. A step decomposition of an ipomset P is a sequence of discrete
ipomsets (that is, pomsets where all events are concurrent) such that their gluing
composition is equal to P . We prove that for every MSO-definable language L
of width at most k, the language of all step decompositions of ipomsets in L,
viewed as words over a finite alphabet of discrete ipomsets, is regular. To do so,
we give a translation from MSO formulas over ipomsets to MSO formulas over
words with this new alphabet. It was shown in [1] that the downward closure of
L is then regular.

The paper is organised as follows. Interval pomsets with interfaces and step
decompositions are defined in Section 2, and higher-dimensional automata in
Section 3. In Section 4, we introduce monadic second-order logic and state our
main result. Section 5 gives the proof for the MSO-to-HDA direction, and Sec-
tion 6 for the HDA-to-MSO one. Missing proofs can be found in the appendix.

2 Pomsets with Interfaces

We fix a finite alphabet Σ throughout this paper. A pomset with interfaces,
or ipomset, is a structure (P,<, 99K, S, T, λ) comprising a finite set P , a (strict)
partial order3 < ⊆ P×P called the precedence order, a pseudo-order 99K ⊆ P×P
called the event order, subsets S, T ⊆ P called source and target sets, and a
labelling λ : P → Σ. We require the following properties:

– for all e 6= e′ ∈ P , exactly one of e < e′, e′ < e, e 99K e′, or e′ 99K e holds;
– for all e1 ∈ S, e2 ∈ P , and e3 ∈ T , e2 6< e1 and e3 6< e2.

That is, all points in P are related by precisely one of the orders, sources are
<-minimal, and targets are <-maximal. We may add subscripts “P ” to the ele-
ments above if necessary.

Ipomsets are a generalisation of standard pomsets (see for example [15]) ob-
tained by adding interfaces and event order. Both are needed in order to properly
connect them with HDAs, see [8]. In particular, event order is necessary in order
to define gluing composition, see below. In [8] and other works, a transitively
closed event order is used instead of the pseudo-order we use here; we find it
more convenient to use the non-transitive version which otherwise is equivalent.

3 A strict pseudo-order is a relation which is irreflexive and asymmetric. It is a strict
partial order if it is also transitive. We will omit the qualifier “strict”.

4 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

a

b

c

•a

c

b

a

b

c

•a

c

b

a

b

c

•a

c

b

Fig. 1: Activity intervals of events (top) and corresponding ipomsets (bottom),
cf. Ex. 1. Full arrows indicate precedence order; dashed arrows indicate event
order; bullets indicate interfaces.

An ipomset P is a word (with interfaces) if < is total and discrete if < = ∅
(then 99K is total). P is a pomset if S = T = ∅, a conclist (short for “concurrency
list”) if it is a discrete pomset, a starter if it is discrete and T = P , a terminator
if it is discrete and S = P , and an identity if it is both a starter and a terminator.
The source and target interfaces of P are the conclists SP = (S, 99K↿S×S , λ↿S)
and TP = (T, 99K↿T×T , λ↿T), where “↿” denotes restriction.

Figure 1 shows some simple examples. Source and target events are marked
by “•” at the left or right side, and if the event order is not shown, we assume
that it goes downwards. Precedence < and event order 99K are intended to order
sequential and concurrent events, respectively.

An ipomset P is interval if <P is an interval order [13]; that is, if it admits
an interval representation given by functions f, g : (P,<P) → (R, <

R

) such that
f(e) ≤

R

g(e) for all e ∈ P and e1 <P e2 iff g(e1) <R f(e2) for all e1, e2 ∈ P .
Given that our ipomsets represent activity intervals of events, any of the ipomsets
we will encounter will be interval, and we omit the qualification “interval”. We
emphasise that this is not a restriction, but rather induced by the semantics, [26].
The width wid(P) of an ipomset P is the cardinality of a maximal <-antichain.

We let iiPoms denote the set of (interval) ipomsets and iiPoms≤k = {P ∈
iiPoms | wid(P) ≤ k}. We write St,Te, Id ⊆ iiPoms for the sets of starters,
terminators, and identities and let Ω = St ∪ Te. Further, for S ∈ {St,Te, Id, Ω},
S≤k = S ∩ iiPoms≤k. Note that Id = St ∩ Te and Id≤k = St≤k ∩ Te≤k. We
introduce special notation for starters and terminators and write A↑U = U\AUU

and U↓B = UUU\B . The intuition is that A↑U does nothing but start the events
in A = U \ SU and U↓B terminates the events in B = U \ TB.

Ipomsets may be refined by shortening activity intervals, potentially remov-
ing concurrency and expanding precedence. The inverse to refinement is called
subsumption and defined as follows. For ipomsets P and Q we say that Q sub-
sumes P and write P ⊑ Q if there is a bijection f : P → Q for which

(1) f(SP) = SQ, f(TP) = TQ, and λQ ◦ f = λP ,
(2) f(e1) <Q f(e2) =⇒ e1 <P e2, and e1 99KP e2 =⇒ f(e1) 99KQ f(e2).

Logic and Languages of Higher-Dimensional Automata 5

a

b c•

∗

d

•c

=

a

b

d

c

Fig. 2: Gluing composition of ipomsets.

This definition adapts the one of [15] to event orders and interfaces. Intuitively,
P has more order and less concurrency than Q.

Example 1. In Fig. 1 there is a sequence of subsumptions from left to right:
•acb ⊑ [•a

c] b ⊑ [•a→b
c]. An event e1 is smaller than e2 in the precedence order if

e1 is terminated before e2 is started; e1 is smaller than e2 in the event order if
they are concurrent and e1 is above e2 in the respective conclist.

Isomorphisms of ipomsets are invertible subsumptions, i.e., bijections f for
which the second item above is strengthened to

(2′) f(e1) <Q f(e2) ⇐⇒ e1 <P e2 and e1 99KP e2 ⇐⇒ f(e1) 99KQ f(e2).

We write P ≃ Q if P and Q are isomorphic. Because of the requirement that all
elements are related by < or 99K, there is at most one isomorphism between any
two ipomsets. That means that we may without danger switch between ipomsets
and their isomorphism classes, and we will do so often in the sequel.

The gluing P ∗ Q of ipomsets P and Q is defined if TP = SQ as conclists
(hence 99KP ↿TP×TP

= 99KQ↿SQ×SQ
and λP ↿TP

= λQ↿SQ
), and then P ∗ Q =

(P ∪Q,<, 99K, SP , TQ, λ), where < = (<P ∪<Q ∪ (P \ TP)× (Q \ SQ))
+, 99K =

99KP ∪ 99KQ, and λ = λP ∪ λQ. (Here + denotes transitive closure.) Ipomsets in
Id are identities for ∗. Figure 2 shows an example.

Any ipomset P can be decomposed as a gluing of starters and terminators
P = P1 ∗ · · · ∗ Pn [10, 16]. Such a presentation we call a step decomposition. If
starters and terminators are alternating, the step decomposition is called sparse.

Lemma 2 ([11]). Every ipomset P has a unique sparse step decomposition.

We will also use the following notion, introduced in [1]. A word P1 . . . Pn ∈ Ω∗

is coherent if the gluing P1 ∗ · · · ∗ Pn is defined. We denote by Coh ⊆ Ω∗ the set
of coherent words and Coh≤k = Coh ∩ iiPoms≤k.

3 Higher-dimensional automata

Let � denote the set of conclists. A precubical set

H = (H, ev, {δ0A,U , δ
1
A,U | U ∈ �, A ⊆ U})

consists of a set of cells H together with a function ev : H → � which to
every cell assigns a conclist of concurrent events which are active in it. We write

6 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

v1

v2

v3

v4

v5

v6

v7 v8

t1

t2

t3

t5

t6

t8

t9

t7

t10

t4q1

q2 q3

δ0a δ1a

δ0a δ1a

δ0a δ1a

δ0c

δ1c

δ0c

δ1c

δ0c

δ1c
δ1ac

δ0ac

δ0d

δ1d

δ0d

δ1d

δ0a δ1a

δ0a δ1a

δ0a δ1a

δ1ad

δ0ad

δ0a δ1a

δ0a δ1a

δ0d

δ1d

δ0d

δ1d

δ0d

δ1d
δ1ad

δ0ad

⊥

⊤

H[∅] = {v1, . . . , v8}, H[a] = {t1, t2, t6, t7, t9}

H[c] = {t3, t4}, H[d] = {t5, t8, t10}

H[[ac]] = {q1}

H[[ad]] = {q2, q3}

⊥H = {t3}, ⊤H = {v8}

a

d

a

c
⊥

⊤

v1

t1
v3

v4
v2

v5

v6

v7
v8

t3 t4

t2

t5

t7

t9t6

t8 t10

q1

q2 q3

Fig. 3: A two-dimensional HDA H on Σ = {a, c, d}, see Ex. 3.

H[U] = {q ∈ H | ev(q) = U} for the cells of type U . For every U ∈ � and A ⊆ U

there are face maps δ0A, δ
1
A : H[U] → H[U \ A] which satisfy δνAδ

µ
B = δ

µ
Bδ

ν
A for

A∩B = ∅ and ν, µ ∈ {0, 1}. The upper face maps δ1A terminate events in A and
the lower face maps δ0A transform a cell q into one in which the events in A have
not yet started. A higher-dimensional automaton (HDA) H = (H,⊥H,⊤H) is a
finite precubical set together with subsets ⊥H,⊤H ⊆ H of start and accept cells.
The dimension of an HDA H is dim(H) = sup{|ev(q)| | q ∈ H} ∈ N.

A standard automaton is the same as a one-dimensional HDA H with the
property that for all q ∈ ⊥H ∪ ⊤H, ev(q) = ∅: cells in H[∅] are states, cells
in H[{a}] for a ∈ Σ are a-labelled transitions, and face maps δ0{a} and δ1{a}
attach source and target states to transitions. In contrast to ordinary automata
we allow start and accept transitions instead of merely states, so languages of
one-dimensional HDAs may contain words with interfaces.

Example 3. Figure 3 shows a two-dimensional HDA as a combinatorial object
(left) and in a geometric realisation (right). It consists of 21 cells: states H0 =
{v1, . . . , v8} in which no event is active (ev(vi) = ∅), transitionsH1 = {t1, . . . , t10}
in which one event is active (e.g., ev(t3) = ev(t4) = c), squares H2 = {q1, q2, q3}
where ev(q1) = [ac] and ev(q2) = ev(q3) = [ad]. The arrows between cells in the
left representation correspond to the face maps connecting them. For example,
the upper face map δ1ac maps q1 to v4 because the latter is the cell in which the
active events a and c of q1 have been terminated. On the right, face maps are
used to glue cells, so that for example δ1ac(q1) is glued to the top right of q1. In
this and other geometric realisations, when we have two concurrent events a and
c with a 99K c, we will draw a horizontally and c vertically.

Computations of HDAs are paths, i.e., sequences α = (q0, ϕ1, q1, . . . , qn−1,

ϕn, qn) consisting of cells qi ∈ H and symbols ϕi which indicate face map types:
for every i ∈ {1, . . . , n}, (qi−1, ϕi, qi) is either

Logic and Languages of Higher-Dimensional Automata 7

– (δ0A(qi),1
A, qi) for A ⊆ ev(qi) (an upstep)

– or (qi−1,%A, δ
1
A(qi−1)) for A ⊆ ev(qi−1) (a downstep).

Downsteps terminate events, following upper face maps, whereas upsteps start
events by following inverses of lower face maps. We denote by ups(H) and
downs(H) the finite set of upsteps and downsteps of H.

The source and target of α as above are src(α) = q0 and tgt(α) = qn. A
path α is accepting if src(α) ∈ ⊥H and tgt(α) ∈ ⊤H. Paths α and β may be
concatenated if tgt(α) = src(β); their concatenation is written α ∗ β.

Path equivalence is the congruence ≃ generated by (q 1A r 1B p) ≃ (q 1A∪B

p), (p %A r %B q) ≃ (p %A∪B q), and γαδ ≃ γβδ whenever α ≃ β. This relation
allows to assemble subsequent upsteps or downsteps into one bigger step.

The event ipomset ev(α) of a path α is defined recursively as follows:

– if α = (q), then ev(α) = idev(q);
– if α = (q 1A p), then ev(α) = A↑ev(p);
– if α = (p %B q), then ev(α) = ev(p)↓B;
– if α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

Note that upsteps in α correspond to starters in ev(α) and downsteps correspond
to terminators. Path equivalence α ≃ β implies ev(α) = ev(β) [9].

Example 4. The HDA X of Ex. 3 (Fig. 3) admits several accepting paths, for
example t3 1a q1 %c t2 1d q2 %a t8 1a q3 %ad v8. Its event ipomset is

a↑[
a
c] ∗ [

a
c]↓c ∗ d↑[

a
d] ∗ [

a
d]↓a ∗ a↑[

a
d] ∗ [

a
d]↓ad =

[
a

•c

a

d

]

which is a sparse step decomposition. This path is equivalent to t3 1a q1 %c t2 1d

q2 %a t8 1a q3 %a t10 %d v8 which induces the coherent word w1 of Fig.4.

The language of an HDA H is L(H) = {ev(α) | α accepting path in H}.
For A ⊆ iiPoms we let

A↓ = {P ∈ iiPoms | ∃Q ∈ A : P ⊑ Q}.

A language is a subset L ⊆ iiPoms for which L↓ = L. The width of L is wid(L) =
sup{wid(P) | P ∈ L}. For k ≥ 0 and L ∈ iiPoms, denote L≤k = {P ∈ L |
wid(P) ≤ k}. The singleton ipomsets are [a] [•a], [a•] and [•a•], for all a ∈ Σ.

A language is regular if it is the language of a finite HDA. It is rational if
it is constructed from ∅, {id∅} and discrete ipomsets using ∪, ∗ and + (Kleene
plus) [9]. Languages of HDAs are closed under subsumption, that is, if L is
regular, then L↓ = L [8, 9]. The rational operations above have to take this
closure into account.

Theorem 5 ([9]). A language is regular if and only if it is rational.

Lemma 6 ([9]). Any regular language has finite width.

It immediately follows that the universal language iiPoms is not rational.

8 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

4 MSO

Monadic second-order (MSO) logic is an extension of first-order logic allowing
to quantify existentially and universally over elements as well as subsets of the
domain of the structure. It uses second-order variables X,Y, . . . interpreted as
subsets of the domain in addition to the first-order variables x, y, . . . interpreted
as elements of the domain of the structure, and a new binary predicate x ∈ X

interpreted commonly. We refer the reader to [22] for more details about MSO.
We interpret MSO over iiPoms. Thus we consider the signature S = {<, 99K,

(a)a∈Σ , s, t} where < and 99K are binary relation symbols and the a’s, s and t
are unary predicates (over first-order variables). We associate to every ipomset
(P,<, 99K, S, T, λ) the relational structure S = (P ;<; 99K; (a)a∈Σ ; s; t) where <
and 99K are interpreted as the orderings < and 99K over P , and a(x), s(x) and
t(x) hold respectively if and only if λ(x) = a, x ∈ S and x ∈ T . We say that
a relation R ⊆ Pn × (2P)m is MSO-definable in S if and only if there exists
an MSO-formula ψ(x1, . . . , xn, X1, . . . , Xm), where the xi’s (resp. Xj ’s) are free
first (resp. second) order variables, such that their interpretation in S is a tuple
of R. The well-formed MSO formulas are built using the following grammar:

ψ ::= a(x) | s(x) | t(x) | x < y | x 99K y | x ∈ X

∃x. ψ | ∀x. ψ | ∃X.ψ | ∀X.ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ¬ψ

In order to shorten formulas we use several notations and shortcuts such as
ψ1 =⇒ ψ2. We define x→ y := x < y ∧ ¬(∃z.x < z < y).

Let ψ(x1, . . . , xn, X1, . . . , Xm) be an MSO formula whose free variables are
x1, . . . , xn, X1, . . . , Xm and let P ∈ iiPoms. The pair of functions ν = (ν1, ν2)
where ν1 : {x1, . . . , xn} → P and ν2 : {X1, . . . , Xm} → 2P is called a valu-
ation or an interpretation. We write P |=ν ψ, or, by a slight abuse of nota-
tion, P |= ψ

(
ν(x1), . . . , ν(xn), ν(X1), . . . , ν(Xm)

)
, if ψ holds when xi and Xj

are interpreted as ν(xi) and ν(Xj). A sentence is a formula without free vari-
ables. In this case no valuation is needed. Given an MSO sentence ψ, we define
L(ψ) = {P ∈ iiPoms | P |= ψ}. Note that this may not be closed under sub-
sumption, hence not a language in our sense. A set L ∈ iiPoms is MSO-definable
if and only if there exists an MSO sentence ψ over S such that L = L(ψ).

Example 7. Let ϕ = ∃x∃y. a(x) ∧ b(y) ∧ ¬(x < y) ∧ ¬(y < x). That is, there
are at least two concurrent events, one labelled a and the other b. L(ϕ) is not
width-bounded, as ϕ is satisfied, among others, by any conclist which contains
at least one a and one b, nor closed under subsumption, given that [ab] |= ϕ but
ab, ba 6|= ϕ. Note, however, that L(ϕ)≤k↓ is a regular language for any k.

We will use also MSO over words of Ω∗
≤k. The definitions above can be easily

adapted to this case by considering the words as structures of the form (w,<, λ :
w → Ω≤k): totally ordered pomsets over the alphabet Ω≤k, and the signature
{<, (D)D∈Ω≤k

}: the atomic predicates are D(x) for D ∈ Ω≤k, x < y and x ∈ X ,
with first-order variables ranging over positions in the word and second-order
variables over sets of positions. We denote by MSOk

Ω the set of MSO formulas

Logic and Languages of Higher-Dimensional Automata 9

over Ω∗
≤k. For example the following MSO2

Ω formula where Pi ∈ Ω≤2 stands for
the ith discrete ipomset of w1 in Fig. 4 is satisfied only by w1.

ϕ′ := ∃y1, . . . , y7.
∧

1≤i≤7

Pi(yi) ∧ y1 → · · · → y7 ∧ ∀y.
∨

1≤i≤7

y = yi

The main result of this paper is the following:

Theorem 8. For all L ⊆ iiPoms,

1. if L is MSO-definable, then L≤k↓ is regular for all k ∈ N.
2. if L is regular, then it is MSO-definable.

Corollary 9. For all k ∈ N, a language L ⊆ iiPoms≤k is regular if and only if
it is MSO-definable.

The next two sections are devoted to the proof of Thm. 8. For the first asser-
tion we effectively build an HDAH from a sentence ϕ such that L(H) = L(ϕ)≤k↓
for all k ∈ N. Since emptiness of HDAs is decidable [1], we have that for MSO
sentences ϕ such that L(ϕ) = L(ϕ)≤k↓, the satisfiability problem (asking given
such a formula ϕ, if there exists P such that P |= ϕ), and the model-checking
problem for HDAs (given ϕ and an HDA H, do we have L(H) ⊆ L(ϕ)) are both
decidable. Actually, looking more closely at our construction which goes through
finite automata accepting step sequences, we get the same result for MSO for-
mulas even without the assumption that L(ϕ) is downward-closed (but still over
iiPoms≤k, and not iiPoms). This could also be shown alternatively by observ-
ing that iiPoms≤k has bounded treewidth (in fact, even bounded pathwidth),
and applying Courcelle’s theorem [5]. In fact our implied proof of decidability is
relatively similar, using step sequences instead of path decompositions.

For the second assertion of the theorem, we show that regular languages
of HDAs are MSO-definable, again using an effective construction. Thus, using
both directions of Thm. 8 and the closure properties of HDAs, we also get the
for all k ∈ N and MSO-definable L ⊆ iiPoms≤k, L↓ is MSO-definable. Note that
this property does not hold for the class of all pomsets [12].

5 From MSO to HDAs

Given an MSO sentence ϕ over iiPoms we build an HDA H such that L(H) =
L(ϕ)≤k↓. The first step is to define an MSO-interpretation of interval ipomsets
of width at most k into words of Ω+

≤k, so that:

Lemma 10. For every MSO sentence ϕ over iiPoms and every k there exists
ϕ̂ ∈ MSOk

Ω such that for all P1 . . . Pn ∈ (Ω≤k \ {id∅})
+, we have P1 . . . Pn |= ϕ̂

if and only if P = P1 ∗ · · · ∗ Pn is well-defined and P |= ϕ.

We will treat the case of the empty ipomset id∅ separately. We want ϕ̂ to
accept only coherent words. This is MSOk

Ω-definable by:

Cohk := ∀x∀y. x→ y =⇒
∨

P1P2∈Coh≤k∩Ω2

≤k

P1(x) ∧ P2(y).

10 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

a

•c

a

d

1 2

3 4

1 2 3 4 5 6 7

w1 =

[

a•

•c•

] [

•a•

•c

] [

•a•

d•

] [

•a
•d•

] [

a•

•d•

] [

•a
•d•

]

[

•d
]

Fig. 4: Ipomset and corresponding coherent words. (Numbers indicate positions.)

That is, discrete ipomsets of Ω≤k at consecutive positions x and y may be glued.
We let ϕ̂ := Cohk∧ϕ′, where ϕ′ is built by induction on ϕ. Therefore, we have

to consider formulas ϕ that contain free variables. The free variables of ϕ′ will
be all the free first-order variables of ϕ and second-order variables X1, . . . , Xk

for every free second-order variable X of ϕ. .
To be precise, let w = P1 . . . Pn ∈ Coh≤k and P = P1 ∗ · · · ∗ Pn. Let E =

{1, . . . , n} × {1, . . . , k}. Our construction is built on a partial function evt :
E → P defined as follows: if Pℓ consists of events e1 99K · · · 99K er, then for
every i ≤ r, evt(ℓ, i) = ei. We sometimes abuse notation and write evt(Pℓ, i).
Since e ∈ P may occur in consecutive Pℓ within w, one must determine when
evt(ℓ, i) = evt(ℓ′, j). This can be done when ℓ′ = ℓ+1 as follows. For all i, j ≤ k,
let Mi,j = {P1P2 ∈ Ω2

≤k | evt(1, i) = evt(2, j)}. Then

gluei,j(x, y) := x→ y ∧
∨

P1P2∈Mi,j

P1(x) ∧ P2(y) .

More generally, let us define the equivalence relation∼ on E generated by (ℓ, i) ∼
(ℓ′, i′) if and only if gluei,i′(ℓ, ℓ

′) holds. Then for all (ℓ1, i), (ℓ2, j) ∈ E, (ℓ1, i) ∼
(ℓ2, j) if and only if evt(ℓ1, i) = evt(ℓ2, j). We have (ℓ, i) ∼ (ℓ′, i′) is MSO-
definable (see Annex.A).

Actually, we construct a formula ϕ′
τ relative to a function τ which associates

with every free first-order variable x of ϕ some τ(x) ∈ {1, . . . , k}. We sometimes
leave τ implicit. Our aim is to have the following invariant property at each
step of the induction: P |=ν ϕ if and only if w |=ν′ ϕ′ for any valuations ν, ν′

satisfying the following: (1) evt(ν′(x), τ(x)) = ν(x) and (2)
⋃

1≤i≤k{evt(e, i) |
e ∈ ν′(Xi)} = ν(X).

Example 11. Figure 4 displays an ipomset P and the coherent word w1 =
P1 . . . P7 such that P1 ∗ · · · ∗ P7 = P . Let e1, . . . , e4 be the events of P labelled
respectively by the left a, the right a, c, and d and let p1, . . . , p7 the positions on
w1 from left to right. Assume that P |=ν ϕ(x,X) for some MSO-formula ϕ and
the valuation ν(x) = e1 and ν(X) = {e2, e3}. Then, w1 |=ν′ ϕ′

[x 7→1](x,X1, X2)

when, for example, ν′(x) = p2, ν
′(X1) = {p6} and ν′(X2) = {p3} since this

valuation satisfies the invariant property. For ∼ we have (p1, 1) ∼ · · · ∼ (p4, 1),
(p1, 2) ∼ (p2, 2), (p3, 2) ∼ · · · ∼ (p6, 2) ∼ (p7, 1) and (p5, 1) ∼ (p6, 1). In particu-
lar (p1, 1) 6∼ (p5, 1) since neither glue1,1(p4, p5) nor glue2,1(p4, p5) hold.

We are now ready to build ϕ′ by induction on ϕ. When ϕ is ψ1 ∨ ψ2 or
¬ψ, then we let ϕ′ be ψ′

1 ∨ ψ
′
2 or ¬ψ′, respectively. For ϕ = ∃X ψ we let ϕ′ :=

Logic and Languages of Higher-Dimensional Automata 11

∃X1, . . . , Xk.ψ
′. The function τ emerges in the case ϕ = ∃xψ, where we let

ϕ′
τ :=

∨
1≤i≤k ∃xψ

′
[x 7→i]. When ϕ = x ∈ X , we let

ϕ′
[x 7→i] :=

∨
1≤j≤k ∃y (x, i) ∼ (y, j) ∧ y ∈ Xj

For ϕ = s(x), we let ϕ′
[x 7→i]

:=
∧

1≤j≤k ∀y (x, i) ∼ (y, j) =⇒ s(y, j), where

s(y, j) is defined as the disjunction of all D(y) where evt(D, j) ∈ SD. We define
ϕ′
[x 7→i] similarly when ϕ = t(x). For ϕ = x < y we let

ϕ′
[x 7→i,y 7→j] :=

∧
1≤i′,j′≤k∀x

′, y′.
(
(x′, i′) ∼ (x, i) ∧ (y′, j′) ∼ (y, j)

)
=⇒ x′ < y′.

For ϕ = x 99K y we let

ϕ′
[x 7→i,y 7→j] :=

∨
1≤i′<j′≤k∃z (z, i

′) ∼ (x, i) ∧ (z, j′) ∼ (y, j).

Finally, when ϕ = a(x), then we let ϕ′
[x 7→i] be the disjunction of all D(x) where

evt(D, i) is labelled by a. As a consequence, we obtain:

Proposition 12. Let ϕ be an MSO sentence over iiPoms, k ∈ N, and L = {P ∈
iiPoms≤k | P |= ϕ}↓. Then L is regular.

Proof. Let K = {P ∈ iiPoms≤k | P |= ϕ}. By Lem. 10, L′ = {P1 . . . Pn ∈ (Ω≤k \

{id∅})
+ | P1 ∗ · · · ∗Pn ∈ K} is MSOk

Ω-definable, and thus so is L′′ = {P1 . . . Pn ∈
Ω+

≤k | P1 ∗ · · · ∗ Pn ∈ K}. By the standard Büchi and Kleene theorems, L′′ is

obtained from ∅ and Ω≤k using ∪, · and +. Replacing concatenation of words by
gluing composition, we see that L is rational and thus regular by Thm. 5. ⊓⊔

6 From HDAs to MSO

In this section we prove the second assertion of Thm. 8. The proof adapt the
classical construction, encoding accepting paths of an automaton, to the case
of HDAs. Our construction relies on the uniqueness of the sparse step de-
composition (Lem. 2) and the MSO-definability of the relation: “an event is
started/terminated before another event is started/terminated” in a sparse step
decomposition (Lem. 15 below).

More formally, let P ∈ iiPoms, then P admits a unique sparse step decompo-
sition P = P1 ∗ · · · ∗Pn. Given e ∈ P \SP , we denote by St(e) the step where e is
started in the decomposition, i.e., the minimal i such that e ∈ Pi. For e ∈ P \TP ,
we similarly denote by Te(e) the step where e is terminated. For x ∈ SP we let
St(x) = −∞ and for x ∈ TP , Te(x) = +∞. Then Pi contains precisely all e ∈ P

such that St(e) ≤ i ≤ Te(e), that is all events which are started before or at
Pi (or never) and are terminated after or at Pi (or never). In particular, if Pi

is a starter, then it starts all e such that St(e) = i, and if it is a terminator, it
terminates all e such that Te(e) = i. Note that St(e) < Te(e) for all e ∈ P .

12 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

Example 13. Proceeding with Ex. 11, letw2 = P1 . . . P6 = [a•

•c•] [
•a•

•c] [•a•

d•] [
•a
•d•]

[a•

•d•] [
•a
•d] be the sparse step decomposition of P (see also Ex. 4). We have

St(e3) = −∞, St(e1) = 1, St(e4) = 3 and St(e2) = 5. Also, Te(e3) = 2,Te(e1) = 4
and Te(e2) = Te(e4) = 6. Further, P1 contains e1 since St(e1) = 1 and e3 be-
cause St(e3) ≤ 1 ≤ Te(e3); P4 contains e1 since Te(e1) = 4 and e4 because
St(e4) ≤ 4 ≤ Te(e4).

The next lemma describes the existence of an accepting path inducing a
sparse step decomposition as the existence of labellings ρ1 and ρ% mapping
each started or terminated event of P to the upstep or downstep of the HDA
performing it.

Lemma 14. Let H be an HDA and P ∈ iiPoms \ Id whose sparse step de-
composition is P1 ∗ · · · ∗ Pn. We have P ∈ L(H) if and only if there exist
ρ1 : P \SP → ups(X) and ρ% : P \TP → downs(X) such that, for all e1, e2 ∈ P :

1. if St(e1) = St(e2) then ρ1(e1) = ρ1(e2);
2. if Te(e1) = Te(e2) then ρ%(e1) = ρ%(e2);
3. if St(e2) = Te(e1) + 1 then src(ρ1(e2)) = tgt(ρ%(e1));
4. if Te(e2) = St(e1) + 1 then src(ρ%(e2)) = tgt(ρ1(e1));
5. if ρ1(e1) = (p,1A, q) then

A =(U = {e | St(e) = St(e1)}, 99KP ↿U
, λP ↿U

),

ev(q) =(V = {e | St(e) ≤ St(e1) < Te(e)}, 99KP ↿V
, λP ↿V

);

6. if ρ%(e1) = (p,%A, q) then

A =(U = {e | Te(e) = Te(e1)}, 99KP ↿U
, λP ↿U

),

ev(p) =(V = {e | St(e) < Te(e1) ≤ Te(e)}, 99KP ↿V
, λP ↿V

);

7. if St(e1) = 1 then src(ρ1(e1)) ∈ ⊥H;
8. if Te(e1) = 1 then src(ρ%(e1)) ∈ ⊥H;
9. if St(e1) = n then tgt(ρ1(e1)) ∈ ⊤H;

10. if Te(e1) = n then tgt(ρ%(e1)) ∈ ⊤H.

As P 6∈ Id, ρ1 or ρ% must be defined for at least one element of P above.
Our goal is to show that the conditions given by Lem. 14 can be expressed

in MSO. We want to define a formula ∃X1 . . .∃Xm. ∃Y1 . . . ∃Yn. ϕ with one Xi

(resp. Yj) for each upstep (resp. downstep) of the HDA. Intuitively, each Xi (Yj)
will contain all the events started (terminated) by performing the corresponding
upstep (downstep). The sentence ϕ expresses that each event belongs to exactly
one Xi (unless it is a source, in which case it belongs to none) and one Yi (unless
it is a target), and that the resulting labellings ρ1 and ρ% satisfy the conditions
of the lemma. Hence, identity events do not belong to anyXi or Yj . Nevertheless,
conditions 5 and 6 ensure that they are consistent with the encoded path. Let
us first prove that the relations used in Lem. 14 are MSO-definable.

Lemma 15. For f, g ∈ {St,Te} and ⊲⊳ ∈ {=, <,>}, the relations f(x) ⊲⊳ g(y),
min(f) and max(f) are MSO-definable.

Logic and Languages of Higher-Dimensional Automata 13

Proof. We first define Te(x) < St(y) as the formula x < y, together with St(x) <
Te(y) := ¬(Te(y) < St(x)). Because starters and terminators alternate in the
sparse step decomposition, we can then let

St(x) < St(y) := ∃z. St(x) < Te(z) ∧ Te(z) < St(y),

St(x) = St(y) := ¬(St(x) < St(y)) ∧ ¬(St(y) < St(x)) ∧ ¬s(x) ∧ ¬s(y)

min(St(x)) := ¬s(x) ∧ ¬∃y.Te(y) < St(x)

max(Te(x)) := ¬t(x) ∧ ¬∃y. St(y) > Te(x) .

The other formulas are defined similarly. ⊓⊔

We can also define St(y) = Te(x) + 1 and Te(y) = St(x) + 1 using standard
techniques. Observe that Te(x) < St(y) implies ¬t(x) ∧ ¬s(y), given that the
end of the x-event precedes the beginning of the y-event. As a consequence
St(x) < St(y) implies ¬s(y). On the other hand St(x) < Te(y) holds in particular
when x or y are interpreted as identities.

Proposition 16. Given an HDA H, one can construct an MSO sentence ϕ such
that L(H) = {P ∈ iiPoms | P |= ϕ}.

Proof. We define

ϕ := (∃x.¬s(x) ∨ ¬t(x)) =⇒ ∃X1, . . . , Xm. ∃Y1, . . . , Yn.
∧

i=0,...,10ϕi

∧ (∀y. s(y) ∧ t(y)) =⇒
∨

p∈⊥H∩⊤H

ev(p) 6=∅

∃y1, . . . , y|ev(p)|.ev(p)(y1, . . . , y|ev(p)|).

where ϕ0 checks that the Xi’s and Yi’s define labellings ρ1 and ρ% as in Lem. 14,
that is, each event belongs to at most one Xi (is associated with at most one
upstep) and one Yi, and to no Xi iff it is a source and to no Yi iff it is a target.
The other formulas ϕi check condition i of Lem. 14. The second line of ϕ is
satisfied by all non-empty identities accepted by H. Thus L(ϕ) = L(H) \ {id∅}.
If id∅ ∈ L(H) then L(H) = L(ϕ ∨ ¬∃x. true).

7 Conclusion

This paper enriches the language theory of higher-dimensional automata with
a Büchi-Elgot-Trakhtenbrot-like theorem. We have shown that the subsumption
closures of MSO-definable subsets of iiPoms≤k are regular and that regular lan-
guages of HDAs are MSO-definable, both with effective constructions. Also, the
MSO theory of iiPoms≤k and the MSO model-checking for HDAs are decidable.

Theorem 8 induces also a construction, for an MSO sentence ϕ over iiPoms≤k,
of ϕ↓ such that L(ϕ↓) = L(ϕ)↓. This property fails when we consider non-interval
pomsets. However, the construction of ϕ↓ is not efficient, as the current workflow
is to transform ϕ to an HDA and then get ϕ↓. We are wondering whether a more
direct construction is possible.

Our work could be continued by considering logics weaker than MSO. For ex-
ample, the study of the expressive power of first order logic over iiPoms≤k would
be useful for model-checking purposes. In this regard, another operational model
that would naturally arise is a class of ω-HDAs: HDAs over infinite ipomsets.

14 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

References

1. Amazigh Amrane, Hugo Bazille, Uli Fahrenberg, and Krzysztof Ziemiański. Clo-
sure and decision properties for higher-dimensional automata. In Erika Ábrahám,
Clemens Dubslaff, and Silvia Lizeth Tapia Tarifa, editors, ICTAC, volume 14446
of Lecture Notes in Computer Science, pages 295–312. Springer, 2023.

2. Nicolas Bedon. Logic and branching automata. Log. Methods Comput. Sci., 11(4),
2015.

3. J. Richard Büchi. Weak second order arithmetic and finite automata. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

4. J. Richard Büchi. On a decision method in restricted second order arithmetic. In
Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, LMPS’60, pages 1–11.
Stanford University Press, 1962.

5. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput., 85(1):12–75, 1990.

6. John Doner. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4(5):406–451, 1970.

7. Calvin C. Elgot. Decision problems of finite automata design and related arith-
metics. Transactions of the American Mathematical Society, 98:21–52, 1961.

8. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Lan-
guages of higher-dimensional automata. Mathematical Structures in Computer
Science, 31(5):575–613, 2021.

9. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. A
Kleene theorem for higher-dimensional automata. In Bartek Klin, S lawomir La-
sota, and Anca Muscholl, editors, CONCUR, volume 243 of Leibniz International
Proceedings in Informatics, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

10. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański.
Posets with interfaces as a model for concurrency. Information and Computation,
285(B):104914, 2022.

11. Uli Fahrenberg and Krzysztof Ziemiański. A Myhill-Nerode theorem for higher-
dimensional automata. In Lúıs Gomes and Robert Lorenz, editors, PETRI NETS,
volume 13929 of Lecture Notes in Computer Science, pages 167–188. Springer,
2023.

12. Jean Fanchon and Rémi Morin. Pomset languages of finite step transition systems.
In Giuliana Franceschinis and Karsten Wolf, editors, PETRI NETS, volume 5606
of Lecture Notes in Computer Science, pages 83–102. Springer, 2009.

13. Peter C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially
Ordered Sets. Wiley, 1985.

14. Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem and model
checking algorithms for existentially bounded communicating automata. Informa-
tion and Computation, 204(6):920–956, 2006.

15. Jan Grabowski. On partial languages. Fundamentae Informatica, 4(2):427, 1981.

16. Ryszard Janicki and Maciej Koutny. Operational semantics, interval orders and
sequences of antichains. Fundamentae Informatica, 169(1-2):31–55, 2019.

17. Dietrich Kuske. Infinite series-parallel posets: Logic and languages. In ICALP,
volume 1853 of Lecture Notes in Computer Science, pages 648–662. Springer, 2000.

18. Dietrich Kuske and Rémi Morin. Pomsets for local trace languages. J. Autom.
Lang. Comb., 7(2):187–224, 2002.

Logic and Languages of Higher-Dimensional Automata 15

19. Vaughan R. Pratt. Modeling concurrency with geometry. In POPL, pages 311–322,
New York City, 1991. ACM Press.

20. Michael O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 141:1–35, 1969.

21. James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968.

22. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume III, pages 389–455. Springer, 1997.

23. Wolfgang Thomas. On logical definability of trace languages. In Algebraic and
Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002, Technical
University of Munich, pages 172–182, 1990.

24. Boris A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian
Mathematical Journal, 3:103–131, 1962. In Russian; English translation in Amer.
Math. Soc. Transl. 59, 1966, 23–55.

25. Rob J. van Glabbeek. Bisimulations for higher dimensional automata. Email
message, June 1991. http://theory.stanford.edu/~rvg/hda.

26. Norbert Wiener. A contribution to the theory of relative position. Proceedings of
the Cambridge Philosophical Society, 17:441–449, 1914.

27. Wies law Zielonka. Notes on finite asynchronous automata. RAIRO – Informatique
Théorique et Applications, 21(2):99–135, 1987.

http://theory.stanford.edu/~rvg/hda

16 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

Appendix

This appendix is provided for the convenience of the referees. It should not be
considered as part of the paper for publication. It contains formulas and proofs
omitted from the paper due to space constraints.

A From MSO to HDAs

Let Gclosed(X1, . . . , Xk) be the following:

∧
i,j≤k ∀x, y. x ∈ Xi ∧ (gluei,j(x, y) ∨ gluej,i(y, x)) =⇒ y ∈ Xj .

This formula is satisfied by a transitively closed interpretation of X1, . . . , Xk

under
∨

i,j≤k gluei,j where if x ∈ Xi and gluei,j(x, y) or gluej,i(y, x) hold then
y ∈ Xj . Hence:

(x, i) ∼ (y, j) := ∀X1, . . . , Xk. (x ∈ Xi ∧ Gclosed(X1, . . . , Xk)) =⇒ y ∈ Xj .

The formula above is thus satisfied by all P1 . . . Pn ∈ Ω+
≤k for which there exist

l1, l2 ≤ n with l1 < l2 and e ∈
⋂

l1≤ℓ≤l2
Pℓ such that evt(l1, i) = evt(l2, j) = e. In

particular e must be an identity in all of Pl1+1, . . . , Pl2−1 when l1 < l2 +1. Note
that such words are not always coherent. The non-coherent words are, however,
excluded by Cohk.

Example 1. Figure 4 displays an ipomset P and the coherent word w1 = P1 · · ·P7

such that P1 ∗ · · · ∗ P7 = P . Let e1, . . . , e4 be the events of P labeled respec-
tively by the left a, the right a, c, and d and let p1, . . . , p7 the positions on
w1 from left to right. Let ν(X1) = {p5} and ν(X2) = {p2}. Observe that
w1 6|=ν Gclosed(X1, X2) since for example glue2,2(p1, p2) but p1 6∈ ν(X2). The
smallest good valuation including the previous one is ν(X1) = {p5, p6} and
ν(X2) = {p1, p2}.

B From HDAs to MSO

Proof (of Lem. 14).
For the direction from the left to the right, since P is accepted by X it

admits a sparse accepting path α1 ∗ · · · ∗αn such that ev(αi) = Pi. Let us define
ρ1(e) = αSt(e) for all xe ∈ P \SP and ρ%(e) = αTe(e) for all e ∈ P \TP . Conditions
1-4 are satisfied by definition, and conditions 7-10 follow from the fact that α is
an accepting path. Finally, ev(αi) = Pi implies conditions 5 and 6.

Conversely, assume that there exist ρ1 and ρ% satisfying conditions 1-10.
From conditions 1-4, we can define a path α = α1∗· · ·∗αn such that ρ1(e) = αSt(e)

and ρ%(e) = αTe(e). By conditions 7-10, this path is accepting. It remains now
to prove that ev(αi) = Pi. Assume that i = St(e) for some e ∈ P \ SP . Then
αi = pi րA qi is chosen by condition 5 such that A is a conclist isomorphic to
the conclist of all events started at position i and ev(qi) is isomorphic to the

Logic and Languages of Higher-Dimensional Automata 17

conclist of all e′ such that St(e′) ≤ St(e) = i < Te(e′) that is the conclist of all
events that are started at position i, started before i, or never started (sources),
and which are not terminated yet. Thus ev(αi) = A↑ev(qi) which is exactly Pi.
The arguments are similar when i = Te(e) for some e ∈ P \ TP . ⊓⊔

Proof (of Lem. 15). We first define Te(x) < St(y) as the formula x < y, to-
gether with St(x) < Te(y) ≡ ¬(Te(y) < St(x)). Because starters and terminators
alternate in the sparse step decomposition, we can then let

St(x) < St(y) := ∃z. St(x) < Te(z) ∧ Te(z) < St(y)

St(x) = St(y) := ¬(St(x) < St(y)) ∧ ¬(St(y) < St(x)) ∧ ¬s(x) ∧ ¬s(y)

Te(x) < Te(y) := ∃z.Te(x) < St(z) ∧ St(z) < Te(y)

Te(x) = Te(y) := ¬(Te(x) < Te(y)) ∧ ¬(Te(y) < Te(x)) ∧ ¬t(x) ∧ ¬t(y)

min(St(x)) := ¬s(x) ∧ ¬∃y.Te(y) < St(x)

min(Te(x)) := ¬t(x) ∧ ¬∃y. St(y) < Te(x)

max(St(x)) := ¬s(x) ∧ ¬∃y.Te(y) > St(x)

max(Te(x)) := ¬t(x) ∧ ¬∃y. St(y) > Te(x) .

⊓⊔

We can also define

St(y) = Te(x) + 1 := Te(x) < St(y) ∧

¬∃z.Te(x) < St(z) ∧ St(z) < St(y)

Te(y) = St(x) + 1 := ¬s(x) ∧ ¬t(y) ∧ St(x) < Te(y) ∧

¬∃z.St(x) < Te(z) ∧ Te(z) < Te(y) .

Example 2. Continuing Ex. 13, observe that P |= St(e) = St(e) for e ∈ {e1, e3, e4}.
This is not the case when e = e2 since e2 is a source neither when x and y are in-
terpreted differently since there is no starter in w2 starting two different events.
We have also P |= Te(e) = Te(e) for all e ∈ P and P |= Te(e2) = Te(e4). Let
ν(x) = e1 and ν(y) = e2. Then P |=ν St(x) < Te(y) but P 6|=ν Te(x) = St(y)+ 1
since e1, e3 are terminating before e2. Nevertheless P |= Te(e) = St(e2) + 1 for
e ∈ {e2, e4} and P |= St(e4) = Te(e3) + 1. We have also P |= St(e1) < Te(e)
for e ∈ {e2, e3, e4}. Finally we have P |= min(St(e1)) and P |= max(Te(e)) for
e ∈ {e2, e4}.

Proof (of Prop. 16). Let ups(X) = {(u1,րA1 , v1), . . . , (um,րAm , vm)} and
downs(X) = {(p1,ցB1 , q1), . . . , (pn,ցBn , qn)}. Then

ϕ := (∃x.¬s(x) ∨ ¬t(x)) =⇒ ∃X1 . . .∃Xm. ∃Y1 . . .∃Yn. ϕ0 ∧ ϕ1 ∧ · · · ∧ ϕ10

∧ (∀y. s(y) ∧ t(y)) =⇒
∨

p∈⊥X∩⊤X

ev(p) 6=∅

∃y1, . . . , y|ev(p)|.ev(p)(y1, . . . , y|ev(p)|).

where the second line of ϕ is satisfied by all the non-empty identities accepted
by X and

18 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg and Marie Fortin

– ϕ0 checks that the Xi’s and Yi’s define labellings ρ1 and ρ%, that is, each
event belongs to at most one Xi (is associated at most one upstep) and one
Yi (is associated at most one downstep), and to no Xi iff it is a source / no
Yi iff it is a target:

ϕ0 = ∀x.
∧

1≤i<j≤m

¬(x ∈ Xi ∧ x ∈ Xj)

∧
∧

1≤i<j≤n

¬(x ∈ Yi ∧ x ∈ Yj)

∧ ¬s(x) ⇐⇒
∨

1≤i≤m

x ∈ Xi

∧ ¬t(x) ⇐⇒
∨

1≤i≤n

x ∈ Yi .

– ϕ1 checks condition 1 from Lemma 14:

ϕ1 = ∀x. ∀y. (St(x) = St(y)) =⇒
∧

1≤i≤m

x ∈ Xi ⇐⇒ y ∈ Xi .

– ϕ2 similarly checks condition 2 from Lemma 14.
– ϕ3 checks condition 3 from Lemma 14:

ϕ3 = ∀x, y. St(y) = Te(x) + 1 =⇒
∨

ui=qj

y ∈ Xi ∧ x ∈ Yj .

– ϕ4 similarly checks condition 4 from Lemma 14.
– ϕ5 checks condition 5 from Lemma 14:

ϕ5 =
∧

1≤i≤m

∀x. x ∈ Xi =⇒ ∃x1, . . . , x|Ai|, y1, . . . , y|ev(vi)|.

(
∀y. St(y) = St(x) ⇐⇒

∨

1≤i≤|Ai|

y = xi

)
∧ Ai(x1, . . . , x|Ai|)

∧
(
∀y. St(y) ≤ St(x) < Te(y) ⇐⇒

∨

1≤i≤|ev(vi)|

y = yi

)

∧ ev(vi)(y1, . . . , y|ev(vi)|)

where for a conclist A =

a1
...
ak

,

A(x1, . . . , xk) =
∧

1≤i<k

xi 99K xi+1 ∧
∧

1≤i≤k

ai(xi) .

– ϕ6 similarly checks condition 6 from Lemma 14.

Logic and Languages of Higher-Dimensional Automata 19

– ϕ7 checks condition 7 from Lemma 14:

ϕ7 = ∀x. min(St(x)) =⇒
∨

ui∈⊥X

x ∈ Xi .

– ϕ8, ϕ9 and ϕ10 similarly check conditions 8, 9 and 10 of Lemma 14. We have
L(ϕ) = L(H) \ {id∅}. If id∅ ∈ L(H) then L(H) = L(ϕ ∨ ¬∃x. true). ⊓⊔

	Logic and Languages of Higher-Dimensional Automata

