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Abstract. Graphs have more expressive power and are widely researched
in various search demand scenarios, compared with traditional relational
and XML models. Today, many graph search services have been deployed
on a third-party server, which can alleviate users from the burdens of
maintaining large-scale graphs and huge computation costs. Neverthe-
less, outsourcing graph search services to the third-party server may
invade users’ privacy. PeGraph was recently proposed to achieve the en-
crypted search over the social graph. The main idea of PeGraph is to
maintain two data structures XSet and TSet motivated by the OXT
technology to support encrypted conductive search. However, PeGraph
still has some limitations. First, PeGraph suffers from high communi-
cation and computation costs in search operations. Second, PeGraph
cannot support encrypted search over dynamic graphs. In this paper,
we propose an SGX-based efficient and confidentiality-preserving graph
search scheme SecGraph that can support insertion and deletion oper-
ations. We first design a new proxy-token generation method to reduce
the communication cost. Then, we design an LDCF-encoded XSet based
on the Logarithmic Dynamic Cuckoo Filter to reduce the computation
cost. Finally, we design a new dynamic version of TSet named Twin-TSet
to enable encrypted search over dynamic graphs. We have demonstrated
the confidentiality preservation property of SecGraph through rigorous
security analysis. Experiment results show that SecGraph yields up to
208× improvement in search time compared with PeGraph and the com-
munication cost in PeGraph is up to 540× larger than that in SecGraph.

1 Introduction

Graphs are gaining increasing attention since they have expressive power and
play an important role in many applications, such as social networks [15], biolog-
ical data analyses [19], recommender systems [10], etc. Essentially, this is because
the core data involved in these applications can be conveniently represented as
graphs. For example, social networks (e.g., Facebook [1] and Instagram [2]) con-
stitute various social users, essentially a graph where vertices represent users and
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edges represent their relationships, such as friendship. The wide use of graphs has
brought about the emergence of graph search, such as shortest path search [11]
and neighbor query [18], etc. As the scale of the graph surges, graph owners
(e.g., enterprises for graph based services) desire to outsource their graphs to
a third-party server, which however may snoop sensitive user information, e.g.,
users’ social connections, interests, and potentially sensitive information.

To enable encrypted graph search, some solutions rely on structure encryp-
tion [3] to enable private adjacent vertices search over encrypted graph [5,12,14].
However, these solutions just support single keyword search (i.e., search for the
neighbor vertices of a vertex). Recently, Wang et al. [16] proposed PeGraph
based on the OXT technology [4] to support encrypted conductive search over
social graphs, i.e., search for common neighboring vertices (e.g., friends) of mul-
tiple vertices (e.g., people). Specifically, PeGraph maintains a multimap data
structure TSet to store the encrypted form of mapping from vertices to all their
neighbor vertices and a set XSet to store pairs of adjacent vertices information
at the server side. Upon receiving search keywords (e.g., w1∧ ...∧wn), the server
first finds the matching neighbor vertices of w1 in TSet as an initial search result.
Then, for each of its neighbor vertex, the server checks the existence of all pairs
where each one is made up by it with a remaining search keyword wi, i ∈ [2, n],
in XSet to determine whether to insert it to the final result.

However, PeGraph suffers from three limitations. First, PeGraph incurs high
communication costs in a search operation since it requires two search roundtrips
between a client and the server, due to the characteristic of the OXT technol-
ogy [4]. Second, PeGraph incurs high computation cost since it requires c · (n-1)
expensive exponentiation modulo operations to check the existence of each neigh-
bor vertex in the initial search result, where c is the number of neighbor vertices
in the initial search result and n denotes the search keywords count. Last, Pe-
Graph cannot support encrypted search over dynamic graphs since the OXT
technology is designed to be applied to static encrypted search.

In this paper, we propose an SGX-based efficient and confidentiality-preserving
graph search scheme (SecGraph) to provide secure and efficient search services
over encrypted dynamic graphs. To address the first limitation, we design a
proxy-token generation method by exploiting the trusted hardware SGX as the
client’s trusted proxy on the server side to reduce the communication cost of
search operations. To address the second limitation, we design a novel data
structure LDCF-encoded XSet based on the Logarithmic Dynamic Cuckoo Fil-
ter [17] to transform the expensive exponentiation modulo operations required
for existence checking operations in the OXT technology into the LDCF-based
membership check process which can be conducted within storage-constraint
SGX to reduce the computation cost. To address the last limitation, we design
a new dynamic version of TSet named Twin-TSet to record the relationships
between adjacent vertices to efficiently handle encrypted searches over dynamic
graphs. In summary, the contributions are the following.

• We propose an SGX-based efficient and confidentiality-preserving graph search
scheme SecGraph to provide secure and efficient graph search services.

In this paper, we assume that the search keywords count issued by a client is n in the
form of w1 ∧ ... ∧ wn and w1 is the least frequent unless otherwise specified.
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• In SecGraph, we design a new proxy-token generation method to reduce the
communication cost. Then, we design an LDCF-encoded XSet to reduce
the computation cost. Moreover, we design a new dynamic version of TSet
named Twin-TSet to enable encrypted search over dynamic graphs.

• We further extend SecGraph into two optimized schemes SecGraph-G and
SecGraph-P by adopting the fingerprint grouping and checking paralleliza-
tion strategies, respectively, to speed up the search procedure.

• Finally, experiment results show that SecGraph, SecGraph-G and SecGraph-P
respectively yield up to 208×, 572× and 3,331× improvements in search time
compared with the state-of-the-art scheme PeGraph, and the communication
cost in PeGraph is up to 540× larger than that in SecGraph.

2 Related Work

Graphs are widely used to model structure data in various domains (e.g., social
networks [15], and protein structures [19], and more) due to their excellent ca-
pability in characterizing the complex interconnections among entities. Graph
search, as one of the fundamental tasks in graph analytics, has gained increasing
attention in recent years. Numerous algorithms have been proposed to address
diverse types of graph search, such as graph similarity search [6] and shortest
path search [11], etc. However, all of them focus on graph search in the plaintext
domain without considering privacy preservation.

Along with the development of the data outsourcing paradigm, enabling ef-
ficient search over encrypted outsourced graphs has attracted widespread at-
tention from both academia and industry. Structure encryption [3] is a promis-
ing cryptographic technique to provide private adjacent vertices search over en-
crypted graphs. For example, Chase et al. [5] firstly extended the notion of struc-
tured encryption to the setting of arbitrarily structured data including complex
graph data. Based on this, Shen et al. [14] proposed a privacy-preserving scheme
PPkNK to achieve top-k nearest keyword search on graphs. Furthermore, Lai et
al. [12] proposed a privacy-preserving graph scheme GraphSE2 to facilitate par-
allel and encrypted graph data access on large social graphs. Recently, Wang et
al. [16] proposed PeGraph using the OXT technique [4] and a more lightweight
secure multi-party computation method to expand the richness of search and im-
prove performance. PeGraph is state-of-the-art privacy-preserving social graph
search scheme. However, there are some drawbacks. First, PeGraph incurs high
communication costs since it requires two search roundtrips between a client and
the server during the search procedure. Second, PeGraph suffers from high com-
putation costs since it requires expensive exponentiation modulo operations to
check the existence of each entry in the initial search result. Last, PeGraph can-
not support encrypted search over dynamic graphs since the OXT technology is
applied to static encrypted search. In this paper, we devote ourselves to achieve
an efficient and confidentiality-preserving graph search scheme while supporting
dynamic graph updates.

3 Preliminaries

Intel SGX and Enclave. Intel SGX [7] is a set of extensions of x86 instruc-
tions that provides trusted execution environments (i.e., enclave) to protect the



4 Wang. et al.

LDCF

Check

Fingerprint

100
0 1

01
0

10
01

1

00

1010
Search

Insert

100

01
10

01
00

0 1

0 1

split

Empty sub-filter
after splitting

Unsplit sub-filter

LDCF

Delete 100
0 1

01
0

10
01

1

00

(a) Insertion (b) Membership check (c) Deletion

0100
1001
1101
1100
1010

Fingerprints LDCF

Fingerprint

1101
Search

Fig. 1. Illustration of the data structure LDCF and three associated operations.

integrity and confidentiality of the application data and the code. The enclave
is limited to 128MB to store data. If this limit is exceeded, the enclave will
automatically apply the page-swapping mechanism, causing severe performance
degradation. The enclave has three main security properties: (1) isolation: any
software outside the enclave can not directly access code or data within it, but it
can access the entire virtual memory of its untrusted host; (2) sealing: it enables
the process of encrypting and authenticating the data within it; (3) attestation:
there is a secure channel between an external party and the enclave.
Oblivious Cross-Tags Protocol. Oblivious cross-tags protocol (OXT) [4] is
a searchable encryption technique designed for secure and efficient conjunctive
search over text files. Generally, the core idea of OXT is maintaining a mul-
timap data structure TSet and a set data structure XSet at the server side,
TSet records a set of pairs (fid, y) for each keyword w labeled by a corre-
sponding value stag(w) where fid is the encrypted file identifier and y is a
blinded value, XSet records a list of values xtag(w, fid) over each keyword-
file-identifier pair. Specifically, given a pseudo-random function (PRF) F and
the keys (KI ,KX ,KT ,KZ), we assume there are c files {fidi}, i ∈ [1, c] con-
taining the keyword w. The client sequentially calculates stag(w) = F (KT , w),
y = F (KI , fidi) · F (KZ , w||i)−1, and xtag(w, fidi) = gF (KX ,w)·F (KI ,fidi), i ∈
[1, c], where g is the generator of a cyclic group and ’||’ represents the con-
catenation operation. When issuing a conjunctive search (e.g., w1 ∧ ... ∧ wn),
the client first sends the search token stag(w1) to retrieve all matching en-
crypted fid containing w1 from the server. With the size c of the initial search
result just retrieved, the client then generates and sends the intersection to-
kens xtoken(w1, wi, j) = gF (KZ ,w1||j)·F (KX ,wi), i ∈ [2, n], j ∈ [1, c] to the server.
Upon receiving them, for each encrypted fid in the initial search result, the
server will determine whether to insert it into the final search result by check-
ing xtoken(w1, wi, j)

y = gF (KX ,wi)·F (KI ,fidj) ?
= xtag(wi, idj), i ∈ [2, n] for each

j ∈ [1, c]. Using the OXT technology, the server can exactly find the search result
without knowing either file identifier fid or keywords wi, i ∈ [2, n].
Cuckoo Filter and Dynamic Cuckoo Filter. Cuckoo Filter (CF) [9] is a
compact data structure that enables approximate set membership checks in
static settings. The main idea of the CF is each element is hashed to one or
more buckets, and these buckets store fingerprint information derived from the
hashed values, where the fingerprint is a small portion of the original hash value,
typically a few bits. To support efficient inserting, deleting, and checking an item
in the CF, Zhang et al. [17] extend the traditional CF to a novel data structure
Logarithmic Dynamic Cuckoo Filter (LDCF) where a fully inserted CF is di-
vided into two CFs in a binary tree shape recursively based on the prefix of the
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(a) A social graph example (b) Posting lists illustration

Fig. 2. A toy example for illustrating a social graph.

fingerprints, as shown in Fig. 1. Due to the features of the tree structure, LDCF
achieves a sub-linear search and reduces space storage overhead by omitting the
storage space of common prefixes for the fingerprints during the process of tree
expansion. For convenience, we refer to each CF in LDCF as a sub-filter in this
paper. LDCF consists of three algorithms:

− LDCF.Insert(x): Upon receiving an inserting element x, the algorithm first
computes its fingerprint δ and uses it to locate the matching sub-filter. Then
it calculates two candidate positions µ and ν and finally puts δ in one of
the two candidate positions in the matching sub-filter. Fig. 1 (a) shows the
procedure of inserting five fingerprints into an LDCF.

− LDCF.Membershipcheck(x): Upon receiving a query element x, the algorithm
first calculates its fingerprint δ and finds the matching sub-filter. Then, it
derives the corresponding positions µ and ν to check whether δ exists in
one of them and returns true if exists, otherwise false. Fig. 1 (b) shows the
procedure of checking a fingerprint whether exists in the LDCF.

− LDCF.Delete(x): Upon receiving a deleting element x, the algorithm first
calculates its fingerprint δ and finds the matching sub-filter. Then, it derives
the corresponding positions µ and ν to locate δ, and finally deletes it and
returns true, otherwise false. Fig. 1 (c) shows the procedure of deleting an
existing fingerprint in the LDCF.

4 System Overview

4.1 Problem Definition

Formally, the social graph can be represented by G = (V,E), where V is a vertex
set in the graph and E is a relationship set among vertices. As shown in Fig.
2(a), each v ∈ V represents a vertex identified by id, it also has an attribute
name, e.g., the vertex ’001’ named ’Harry’. Each e ∈ E represents an edge
between vertices identified by type, with weight representing the importance of
the edge, e.g., there is a friendship relationship between vertices ’001’ and ’002’,
with an importance of 5. A relationship can be defined by (idout, idin, type),
which means the edge labeled by type starts from idout and ends with idin. As
shown in Fig. 2(b), our system maintains a posting list for each vertex. The
posting list is a map data structure, where the keyword is idout : type and the



6 Wang. et al.

value is composed of a set of (idin, weight) pairs, where idin is the identifier
of the neighbor vertex of idout, and weight represents the importance of the
relationship, e.g., the intimacy between friends. In this paper, we denote idout as
w, and the search types on graphs are divided into two types: (1) Exact search.
Search for neighbor vertices with a specific relationship to multiple vertices, e.g.,
the common friend of vertices ’003’ and ’005’ is vertex ’002’. (2) Fuzzy search.
Search for vertices whose name contain the same sub-string, e.g., the vertices
with ’ha’ in their name include vertices ’001’ and ’005’.

4.2 System Model

There are two entities in the system: the client and the SGX-enabled server. (1)
Client. The client launches a remote attestation and establishes a secure channel
with the trusted part (i.e., enclave) of the server, then sends a set of secret
keys to the enclave. The client can securely insert or delete edges or vertices,
and issue conjunctive search. (2) SGX-enabled server: The server will insert
or delete the corresponding encrypted index and provide graph search services
for the client. We assume that the client is absolutely honest but the server
is honest-but-curious. That is, the server will execute the established program
correctly, but powerful enough to get full access over the software stack (such as
OS and hypervisor) outside of the enclave, and can infer sensitive information
from encrypted data by observing search tokens and search results. We state
that a series of side-channel attacks against SGX are out of our scope.

In this paper, SecGraph aims to achieve three goals in terms of efficiency,
functionality, and security : (1) Efficient search. SecGraph should provide effi-
cient search while reducing communication and computation costs. (2) Provi-
sion dynamic update. SecGraph should support encrypted search over dynamic
graphs. (3) Confidentiality preservation. SecGraph should protect the confiden-
tiality of search keywords and results.

5 Detailed Construction of SecGraph

5.1 Design Rationale of SecGraph

As mentioned, Wang et al. [16] proposed PeGraph that can support versatile
search over encrypted social graphs. The main idea of PeGraph is combining the
OXT technology [4] and the additive secret sharing [8] to provide private ranked
conjunctive search. Specifically, PeGraph first extracts each keyword w in the
form of idout : type from graphs and associates the posting list {(idin, weight)}
with w. Then, for each w, PeGraph calculates stag(w) to index its correspond-
ing posting list. In addition, for each idin in the set {(idin, weight)}, PeGraph
calculates xtag(w, idin) and adds it to XSet, which allows the server to check
the existence of an idin without knowing either w or idin. After obtaining the
matching idin, PeGraph further allows the server to obliviously render the en-
crypted search results in a ranked order according to their importance weight
by using the additive secret sharing primitive and returning the top-k results,
avoiding unnecessary downlink traffic.
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Despite its considerable performance, PeGraph still has some problems due to
the characteristics of OXT technology [4]. First, PeGraph incurs high communi-
cation costs since it requires two search roundtrips between a client and the server
during the search procedure. The reason is that the OXT technology requires the
client to retrieve the encrypted matching posting list associated with a certain
keyword (e.g., w1) as an initial search result from the server in advance to assist
in generating intersection tokens (e.g., xtoken(w1, wi, j), i ∈ [2, n], j ∈ [1, c]).
Therefore, the first challenge is how to achieve one search roundtrip to reduce
the communication cost. Second, PeGraph suffers from high computation cost
since it requires c·(n-1) expensive exponentiation modulo operations to check the
existence of each idin in the initial search result, where c is the number of idin in
the initial search result and n is the number of search keywords. Therefore, the
second challenge is how to check the existence of idin without using expensive
exponentiation modulo operations to reduce computation cost. Finally, PeGraph
cannot support encrypted search over dynamic graphs since the OXT technology
only supports static encrypted search. Accordingly, the third challenge is how to
enable dynamic encrypted graph search.

To address the first challenge, we propose a proxy-token generation method
to avoid the procedure of returning the initial search result to the client. The
main idea is to resort to SGX as the client’s trusted proxy at the server side to
generate a search token stag(w1) and intersection tokens xtoken(w1, wi, j), i ∈
[2, n], j ∈ [1, c] due to the trusted computing power of SGX. Specifically, when
issuing a graph search, a client sends the search keywords w1 ∧ ... ∧ wn to the
enclave (i.e., the trusted part of the server) via a secure channel, and the latter
generates stag(w1) and retrieves the initial search result from the untrusted part
of the server to generate intersection tokens independently. In this way, only one
search roundtrip is required between the client and the server, which largely
reduces the communication cost.

To address the second challenge, we start with an observation from the OXT
technology [4]. The server needs to perform a large number of expensive ex-
ponentiation modulo operations to check whether each xtag(wi, idin), i ∈ [2, n]
is in XSet or not to determine whether idin belongs to the final search result,
which can incur significant performance degradation. Fortunately, we note that
the procedure of checking the existence of each idin in the initial search result
is essentially a membership check process. Thus, a naive solution is to load the
data structure XSet into the enclave due to the trusted storage power of SGX
and allow the enclave to check whether each xtag(wi, idin), i ∈ [2, n] exists in
XSet in plaintext rather than perform exponentiation modulo operation over ci-
phertexts. However, as the entire keywords in graphs are encoded into XSet, the
size of XSet will become large and may not be stored in the enclave due to its
limited storage, which will incur the page-swapping mechanism and also cause
performance degradation. To do this, we use a compact data structure Logarith-
mic Dynamic Cuckoo Filter (LDCF) [17] to store XSet. The LDCF-encoded XSet
not only allows the enclave to load a few sub-filters to complete the procedure of
checking the existence of each idin in the initial search result instead of loading
the entire sub-filter set but provides a sub-linear search to locate the matching
sub-filters quickly. In this way, using the LDCF-encoded XSet, the computation
cost is largely reduced during the search procedure.
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To address the last challenge, we note that applying the OXT technology [4]
to the dynamic setting is not straightforward since the pre-computed multimap
data structure TSet does not need to change with time, thus it is impossible
to emulate in the dynamic setting, where the graphs are continuously updated
(including insertion and deletion). To do this, we design a new dynamic version
of TSet named Twin-TSet that contains a pair of map data structures, one is
TSet storing the relationship between a pair made up by a keyword w and an
associated update count c and a neighbor vertex idin the other is ITSet (i.e.,
inverse TSet) storing the relationship between a pair made up by a keyword
w and a neighbor vertex idin and the corresponding update count c. When
inserting a pair (w, idin), we first increase the update count c associated with
w by one and then insert the two pairs ((w, c), idin) and ((w, idin), c) into TSet
and ITSet in the form of ciphertext respectively. When deleting a pair (w, idin),
we first retrieve the corresponding update count c from ITSet and then replace
the idin at position (w, c) of Tset with the latest id′in at position (w, c′), where
c′ is the latest update count associated with w. After that, we accordingly insert
a new pair ((w, id′in), c) into ITSet and decrease c by one. when searching w,
similarly with the OXT technology, we only need to retrieve c values from TSet
at positions (w, i), i ∈ [1, c] without considering deleted identifiers idin since
they have been deleted previously. At present, it seems that the Twin-TSet can
support encrypted search on dynamic graphs, but how to store the update count
for each w privately is still an issue. Fortunately, we can protect it from being
leaked to the server by storing a map data structure UpdateCnt within the
enclave with its trusted storage power.

Until now, we have illustrated the design rationale of the proposed SGX-based
efficient and confidentiality-preserving graph search (SecGraph). It is worth not-
ing that, due to the trusted computing power of SGX, SecGraph can also support
returning top-k ranked search results to the client by directly decrypting and
sorting the neighbor vertice identifiers according to their weight without per-
forming additive secret sharing operations over the encrypted posting lists.

5.2 Design Details of SecGraph

Now we proceed to describe our construction of SecGraph in detail. SecGraph
utilizes a set of PRFs (F1, F2, F3 : {0, 1}λ×{0, 1}∗ → {0, 1}λ), two hash functions
H1 : {0, 1}∗ → {0, 1}α and H2 : {0, 1}∗ → {0, 1}ξ. The workflow of SecGraph
can be divided into the following protocols.

SetUp Protocol. This protocol is responsible for initializing some secret keys
and data structures. Specifically, the client launches a remote attestation and
establishes a secure channel with the enclave first. Then it generates secret keys
(KT ,KZ ,KX) for PRFs (F1, F2, F3) and sends them to the enclave. The enclave
initializes three empty data structures: (1) UpdateCnt that stores the number of
idin corresponding to each w; (2) CFs that stores a mapping from sub-filtersId to
cache sub-filters; (3) IndexTree that stores the split state of LDCF-encoded XSet
to locate the matching sub-filters during the update and search procedures. The
server initializes three empty data structures: (1) TSet that stores the encrypted
posting list; (2) ITSet that stores a mapping from the neighbor vertices’ id to
their location in the posting list to locate the deleting neighbor vertices during
the deletion procedure; (3) XSet that stores the fingerprints of all xtag.
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Algorithm 1: Update

Input: Secrity keys KT , KZ , KX , update
counter UpdateCnt, updated triplet
(w, id, weight), update operation op, an
IndexTree.

Output: Encrypted database EDB=(TSet,
ITSet, XSet).

Client:
1: Send (w, id, weight), op to the enclave;

Enclave:
2: xtag = (w||id), δ = H2(xtag), µ = H1(xtag);
3: Get sub-filterId according to δ and IndexTree;
4: if op = insert then
5: if UpdateCnt[w] =⊥ then
6: UpdateCnt[w] = 0;
7: UpdateCnt[w]++;
8: stag = F1(KT , w||UpdateCnt[w]);
9: Cid = (id||weight) ⊕ F2(KZ , w);

10: ind = F3(KX , w||id);
11: Cstag = (w||UpdateCnt[w]) ⊕ F2(KZ , w);
12: Send (sub-filterId, stag, Cid, ind, Cstag, δ, µ,

op) to the server;
13: else

14: stag-1 = F1(KT , w||UpdateCnt[w]);
15: UpdateCnt[w]--;
16: C-1

id = TSet[stag-1] ; /* ocall */
17: (id-1||sort-1k ) = C-1

id ⊕ F2(KZ , w);
18: ind-1=F3(KX , w||id-1), ind=F3(KX , w||id);
19: Cstag = ITSet[ind] ; /* ocall */
20: (w||c)=Cstag ⊕ F2(KZ , w);
21: stag=F1(KT , w||c);
22: Send (sub-filterId, stag, stag-1, ind, ind-1, δ,

µ, op) to the server;
Server:

23: if op = insert then
24: TSet[stag] = Cid, ITSet[ind] = Cstag ;
25: XSet[sub-filterId].Insert(δ, µ);
26: else
27: TSet[stag] = TSet[stag-1];
28: ITSet[ind-1] = ITSet[ind]
29: Delete ITSet[ind];
30: XSet[sub-filterId].Delete(δ, µ);
31: Update IndexTree if necessary ; /* ecall */

Update Protocol. This protocol allows the client to issue graph updates. At
the beginning, the client generates an update request (w, id, weight, op), where
op is the operation type (insertion or deletion) (line 1). Upon receiving it, the
enclave first calculates xtage using w and id and generates its fingerprint δ and
candidate index µ (line 2). Then, the enclave searches the path of the matching
sub-filter sub-filterId in IndexTree based on δ (line 3). Specifically, the enclave
traverses each bit of δ to deeply search the IndexTree by selecting the left sub-
tree when the bit is 0, otherwise selecting the right subtree, until finding a leaf
node, and the traversed δ sub-string is the path of the sub-filter sub-filterId. If
op = insert, the enclave increases the UpdateCnt [w] by 1, then encrypts the
(w||c, id), (w||id, c) pairs in forms of (stag, Cid) and (ind, Cstag) for TSet and
ITSet respectively. Finally, the enclave sends (δ, µ, sub-filterId) and the pairs to
the server (lines 4-12). If op = delete, the enclave first calculates w’s latest id in-
dex stag−1 = F1(KT , w||UpdateCnt[w]) and decreases UpdateCnt [w] by 1, then
loads the latest encrypted id (i.e., C−1

id ) and encrypts it (lines 14-17). Next, the
enclave computes the indexes of the latest id (i.e., ind−1) and the deleting id
(i.e., ind) in ITSet (line 18). Then, the enclave gets the deleting id’s encrypted
index in TSet (i.e., Cstag) from ITSet [ind] and decrypts it to stag (lines 19-
21). Finally, the enclave sends (stag, stag−1, ind, ind−1, δ, µ, sub-filterId) to the
server (line 22). Upon receiving it from the enclave, if op = insert, the server
will insert the (stag, Cid) and (ind, Cstag) pairs into TSet and ITSet respectively
and insert the fingerprint δ into the XSet (lines 23-25). If op = delete, the server
will overwrite the deleting id with the latest id in TSet and ITSet then delete
the fingerprint δ and deleting ind in XSet and ITSet respectively to remove the
corresponding id (lines 26-30). Finally, if the LDCF-encoded XSet is split, the
server will execute an ecall operation to update the IndexTree (line 31).

Search Protocol. This protocol allows the client to issue conjunctive graph
searches. Specifically, the client selects search keywords (w1∧ ...∧wn) and sends
them to the enclave (line 1). Upon receiving them, the enclave first initializes
two empty lists stokenList and CResList to store w1’s stag and final encrypted
results respectively (line 2). Then, the enclave traverses UpdateCnt [w1] to com-
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Algorithm 2: Search

Input: Secrity keys KT , KZ , KX , update
counter UpdateCnt, search token
(w1 ∧ ... ∧ wn), encrypted database
EDB=(TSet, ITSet, XSet).

Output: search result ResList.
Client:

1: Send (w1 ∧ ... ∧ wn) to the enclave;
Enclave:

2: Initialize two empty lists stokenList,
CResList;

3: for j = 1 to UpdateCnt[w1] do
4: stag = F1(KT , w1||j);
5: Insert stag into the stokenList;
6: Send stokenList to the server;

Server:
7: Initialize an empty list CidList;
8: for j = 1 to stokenList.size do
9: Cidj

= TSet[stokenList[j]];
10: Insert Cidj

into the CidList;
11: Send CidList to the enclave;

Enclave:
12: Initialize an empty map CFs;
13: for each Cidj

∈ CidList do

14: flag = 0;
15: (idj ||weightj) = Cidj

⊕ F2(KZ , w1);
16: for i = 2 to n do
17: xtagi,j = (wi||idj), δ = H2(xtagi,j);
18: Get sub-filterId according to δ and

IndexTree;
19: if sub-filterId not in CFs then
20: Load matching sub-filter ; /* ocall */
21: CFs[sub-filterId] = sub-filter;
22: µ = H1(xtagi,j), ν = µ ⊕ H1(δ);
23: if δ not in CFs[sub-filterId][µ] and

CFs[sub-filterId][ν]
24: flag = 1, break;
25: if flag = 0 then
26: Insert Cidj

into the CResList;
27: Send CResList to the client;

Client:
28: Initialize an empty list ResList;
29: for each Cidj

∈ ResList then
30: (idj ||weightj) = Cidj

⊕ F1(KT , w1);
31: Insert idj into the ResList;

pute all of stags for w1 and sends them to the server (lines 3-6). The server
initializes an empty list CidList, and then traverses the stokenList to get the
encrypted id (i.e., Cid) of w1 from TSet and returns them to the enclave (lines
7-11). For each Cidj

, the enclave decrypts it to get idj and calcualtes the xtagi,j
using {wi}, i ∈ [2, n] (lines 13-17). To hide the xtag’s fingerprint from the server,
the enclave generates the fingerprint δ and finds the corresponding sub-filterId
from IndexTree. If the matching sub-filter doesn’t exist in the cache table CFs,
the enclave will execute an ocall operation to load the matching sub-filter (lines
18-21). After that, the enclave computes two candidate positions µ and ν to
check whether the δ exists in the sub-filter. Only all xtagi,j , i ∈ [2, n] pass the
membership check idj can be added into the final result CResList (lines 19-26).
Finally, the enclave returns CResList to the client (line 27), and the client can
obtain all decrypted idj in ResList (lines 28-31).

5.3 Extension to Fuzzy Search

SecGraph can also support the fuzzy search (such as sub-string search), e.g., find
users whose name contains ’Ha’. To enable this, instead of directly creating a
stag for each user’s name, our idea is to split the name into a set of pairs com-
posed of a sub-string with fixed-length s and an integer. For example, assume the
length of a sub-string is 2, ’Harry’ can be split into {(’#H’, 1), (’Ha’, 2), (’ar’, 3),
(’rr’, 4), (’ry’, 5), (’y$’, 6)}, where each integer part refers to the absolute position
pos of the sub-string in the name, ’#’ is the start character and ’$’s is the ter-
minator. We only make a few changes to SecGraph to enable it to support fuzzy
search. Specifically, in Update protocol (Alg.1), the client sends (w, id, pos, op)
to the enclave, where w is a sub-string (line 1). Then the enclave calculates
xtag = (w||id||pos) (line 2) and Cid = (id||pos)⊕ F2(KZ , w) (line 9). The post-
ing list for each keyword w is a set of (id, pos) pairs, where id is the vertex
whose name contains w and pos is the absolute position of w in the name.
In Search protocol (Alg.2), the client sends the search keywords in the form of
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w1 ∧ (w2, ∆2)∧ ...∧ (wn, ∆i), i ∈ [2, n], where ∆i is the relative position between
wi and w1 (line 1). Upon receiving the CidList from the server, the enclave
obtains (idj ||posj) = Cidj ⊕ F2(KZ , w1) (line 15). After that, for each (wi, ∆i),
the enclave calculates the xtagi,j = (wi||idj ||posj +∆i) (line 17).

6 Optimzation

SecGraph-G: Fingerprint Grouping. We observe that there exists a perfor-
mance bottleneck in SecGraph that much time may be spent on ocall operations
when loading numerous sub-filters into the enclave during a search procedure. To
solve the drawback, we propose an optimized scheme SecGraph-G to reduce the
number of sub-filters to be loaded. The strategy is fingerprint grouping by gen-
erating the fingerprint of w and the fingerprint of xtag(w, idin) and then joining
them together to form the final fingerprint instead of just generating the finger-
print of xtag(w, idin). In this way, the fingerprints generated by a vertex and
each of its adjacent vertices are highly likely to be stored in the same sub-filter
when constructing the LDCF-encoded XSet.
SecGraph-P: Checking Parallelization. Furthermore, we note that the cur-
rent membership check process of xtag is serial which also seriously affects the
search performance of SecGraph (lines 13-24 in Alg.2). With the observation that
each membership check process is independent, we propose another optimized
scheme SecGraph-P to speed up the membership check process during the search
procedure. The strategy is checking parallelization by loading all matching sub-
filters into the enclave first and then parallelizing to check whether each xtag
exists or not. In this way, SecGraph-P only takes one membership check time to
complete all required membership check processes, in the best-case scenario.

7 Security Analysis

Before presenting a formal security analysis to show the security guarantee of
SecGraph, we first define the leakage functions and then use them to prove the
security. In Setup protocol, SecGraph leaks nothing to the server except for the
empty encrypted database EDB. Thus we have LStp=(|TSet |, |ITSet |, |XSet |),
where |TSet |, |ITSet | and |XSet | are ciphertext lengths of data structures of
TSet, ITSet and XSet respectively. In Update protocol, SecGraph leaks access
on TSet, ITSet and XSet. Thus, we have LUpdt=(op, |TSet [stag]|, |ITSet [ind]|,
|XSet [sub-filterId]|), where op = insert/delete denotes the update operation,
TSet [stag] indicates the encrypted identifier to be inserted in TSet with its stag,
ITSet [ind] indicates the encrypted stag to be inserted in ITSet with its ind
and XSet [sub-filterId] indicates the fingerprint to be inserted in XSet with its
sub-filterId. In Search protocol, SecGraph leaks the search token stokenList and
access pattern on TSet when the server finds the matching entries in TSet associ-
ated with w1, defined as apTSet and on XSet when the enclave locates the desired
sub-filters, defined as apXSet . Thus, we have LSrch=(stokenList, apTSet , apXSet).
Following the security definition in [13], we give the formal security definitions.

Definition 1. Let Π=(Setup, Update, Search) be our SecGraph scheme. Con-
sider the probabilistic experiments RealA(λ) and IdealA,S(λ) with a probabilistic
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polynomial-time(PPT) adversary and a stateful simulator that gets the leakage
function L, where λ is a security parameter. The leakage is parameterized by
LStp,LUpdt and LSrch depicting the information leaked to A in each procedure.

RealA(λ): The challenger initialises necessary data structures by running
Setup. When inputting graphs chosen by A, it makes a polynomial number of
updates (i.e., addition and deletion). Accordingly, the challenger outputs the en-
crypted database EDB=(TSet, ITSet, XSet) with Update to A. Then, A repeat-
edly performs graph searches. In response, the challenger runs Search to output
the result to A. Finally, A outputs a bit.

IdealA,S(λ): Upon inputting graphs chosen by A, S initialises the data struc-
tures and creates encrypted database EDB=(TSet, ITSet, XSet) based on LStp,
and passes them to A. Then, A repeatedly performs range queries. S simulates
the search results by using LUpdt and LSrch and returns them to A. Finally, A
outputs a bit.

We say Π is L-adaptively-secure if for any PPT adversary A, there exists a
simulator S such that |Pr[RealA(λ)=1]− Pr[IdealA,S(λ)=1]| ≤ negl(λ), where
negl(λ) denotes a negligible function in λ.

Theorem 1. (Confidentiality of SecGraph). Assuming (F1, F2, F3) are secure
PRFs and (H1, H2) are secure hash functions. SecGraph is L-secure against an
adaptive adversary and ensures forward security and Type-III backward security.

Proof. We model the PRFs and the hash functions as random oracles {OF1
,OF2

,
OF3

,OH1
,OH2

} and sketch the execution of the simulator S. In Setup protocol,
S simulates the encrypted database based on LStp, which has the same size
as the real one. Specifically, it includes two dictionaries D1 and D2 and a set
T . S further simulates the keys in the enclave by generating random strings
(k1, k2, k3), which are indistinguishable from the real ones. When the first graph
search sample (w1, w2) is sent, S generates simulated tokens t̃i = OF1

(k̃1||w1||i)
from c to 1 and c is the number of matched entries from LStp. For each matching
value α in D1 with the address t̃i, another random oracles OF2

is operated as
R̃ = OF2

(k̃2||w1) ⊕ α to obtain R̃ inside, where R̃ has the same length as the
real one. With k̃3, three random strings δ = OH2(k̃3||w2||R̃), β = OH1(δ) and
γ = β ⊕ σ are calculated to check whether δ is in any one of the locations
of the simulated set T . If yes, S adds R̃ into the results. When a new triplet
(w, id, weight) is added, the results can also be simulated based on LUpdt. Due
to the pseudorandomness of PRFs and the hash function, A cannot distinguish
between the tokens and results of RealA(λ) and IdealA,S(λ).

Following the definitions of forward and backward security in [13], we prove
SecGraph achieves both forward security and Type-III backward security. For-
ward security is straightforward since the data structure UpdataCnt ensures that
A cannot generate search tokens to retrieve newly added identifiers when adding
a new triplet. As for backward security, remembering when the entries in ITSet
were added and deleted leaks when additions and deletions for w took place.
Extracting all update counts and correlating them with the update timestamps

Forward security refers to newly inserted data is no longer linkable to searches issued
before, and backward security refers to deleted data is no longer searchable in searches
issued later [13].



Title Suppressed Due to Excessive Length 13

Table 1. Summary of the graph data used in our experiments.

Dataset Nodes Edges Edge typeGraph type Source link
Email 36,692 183,831 Friendship Undirect snap.stanford.edu/data/email-Enron.html

Youtube 1,134,890 2,987,624 Exchange Undirect snap.stanford.edu/data/com-Youtube.html
Gplus 107,614 13,673,453 Share Directed snap.stanford.edu/data/ego-Gplus.html

reveals the specific addition that each deletion canceled. Nevertheless, the iden-
tifiers are encrypted by XORing a PRF value, the server cannot learn which
identifiers contained w but have not been removed. Based on these leakages,
SecGraph guarantees Type-III backward security.

8 Experimental Evaluation

8.1 Experiment Settings

In the experiments, we implement the state-of-the-art encrypted graph search
scheme PeGraph [16], and our four schemes SecGraph, SecGraph-G, SecGraph-P
and SecGraph-A (adopting both the fingerprint grouping and checking par-
allelization strategies) in about 5k LOCs of C++. The client and server are
deployed on a workstation equipped with an SGX-enabled Intel(R) Core(TM)
i7-10700 CPU@2.60GHz with Ubuntu 18.04 server and 64GB RAM. For crypto-
graphic primitives, we use the cryptography library Intel SGX SSL and OpenSSL
(v1.1.1n) to implement the pseudorandom function via HMAC-256 and use SHA-
256 to generate hash values for fingerprint. For implementing the LDCF-encoded
XSet, we adopt the open-source code of the LDCF provided in [17]. We use three
real-world datasets Email, Youtube, and Gplus in our experiments, as shown in
Table.1. All experiments were repeated 20 times and the average is reported.

8.2 Performance Evaluation

In our experiments, we default to setting the fingerprint length, the sub-filter size,
and bucket size in SecGraph as 16 bits, 10,000, and 4, respectively, according to
the recommendation of LDCF [17] since there is an acceptable balance between
the accuracy and speed of membership check under these parameters.
Update Performance. We first evaluate the insertion performance of PeGraph
and SecGraph as the used dataset size ratio increases from 20% to 100%. As we
can see from Fig. 3, the insertion time costs of the two schemes increase with
the used dataset size ratio. It takes 6,128 ms, 103,790 ms, and 383,615 ms for
SecGraph to construct the encrypted database using the entire Email, Youtube,
and Gplus datasets, respectively. It is worth noting that SecGraph is considerably
up to 58× faster than PeGraph. The reason is that PeGraph needs to perform a
large number of expensive exponentiation modulo operations to calculate xtag
for each keyword-identifier pair to build XSet, while SecGraph only computes
the same number of hash values due to the design of the LDCF-encoded XSet.
We further experiment that SecGraph takes on average 0.36 ms and 0.37 ms to
insert and delete a pair, respectively. The experiment results demonstrate that
has better update performance than PeGraph.

Our code: https://github.com/XJTUOSV-SSEer/SecGraph.
The code of LDCF: https://github.com/CGCL-codes/LDCF.
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Fig. 3. Insertion performance in distinct datasets.
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Fig. 4. Search performance in distinct datasets.
Search Performance. Here, we evaluate the search performance of all con-
sidered schemes as the search keyword count increases from 2 to 10. Fig. 4 de-
picts that, for every dataset, SecGraph takes less time to search compared with
PeGraph and our optimized schemes perform better than SecGraph. Specifi-
cally, SecGraph yields up to 208× improvement in search time compared with
PeGraph, and SecGraph-G, SecGraph-P and SecGraph-A respectively yield up
to 572×, 3,331× and 3,430× improvements in search time compared with Pe-
Graph. First, there are two reasons why the search procedure in SecGraph is
faster than that in PeGraph: (1) SecGraph only requires one roundtrip to send
search tokens to the server due to the design of proxy-token generation method,
while PeGraph requires two roundtrips, causing the communication cost in Pe-
Graph is up to 540× larger than that in SecGraph. (2) SecGraph generates one
xtag just by computing a hash value to check whether or not it exists due to the
design of the LDCF-encoded XSet, while PeGraph needs to execute an expensive
exponentiation modulo operation to calculate a xtag. Then, SecGraph-G per-
forms better than SecGraph since the former adopting the fingerprint grouping
strategy reduces the number of ocall (i.e., the number of loaded sub-filters) by
96% compared with the latter. SecGraph-P performs better than SecGraph since
the former parallelizes the procedure of the membership check of the xtag.

Furthermore, we evaluate the enclave storage cost of SecGraph and SecGraph-
G as the search keywords count increases from 2 to 10. As shown in Fig.5, we
observe different results on datasets of different scales. For the small-size dataset
(i.e., Email dataset), the enclave storage cost in SecGraph hardly changes with
the growth of search keywords count as there are only 20 sub-filters in total
and when the search keywords count is 2, all sub-filters need to be loaded into
the enclave. However, SecGraph-G only requires loading 1 sub-filter when the
search keywords count is 2. For the middle-size dataset (i.e., Youtube dataset),
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Fig. 5. Enclave storage cost in distinct datasets.
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Fig. 6. Effect of the sub-filter size.
the enclave storage cost in SecGraph initially increases linearly with the search
keywords count, until the search keywords count reaches 6, and the enclave stor-
age cost in SecGraph remains stable and unchanged. The reason is that when
the search keywords count is 6, all sub-filters need to be loaded into the enclave.
But for SecGraph-G, the enclave storage cost increases linearly with the search
keywords count. For the large-size dataset (i.e., Gplus dataset), the enclave stor-
age cost in SecGraph-G also increases linearly with the search keywords count
and there are 1408 sub-filters in total and even when the search keywords count
is 10, only 9 sub-filters need to be loaded. Besides that, we surprisingly find that
it only takes only 15 MB to store the loaded sub-filters in the enclave.
Effect of Parameters. Next, we evaluate the search time cost in SecGraph
as the sub-filter size (i.e., the number of fingerprints contained in a sub-filter)
increases from 5,000 to 80,000 under different search keywords count settings.
Fig.6 shows that, for every dataset, the search time cost is the lowest when the
sub-filter size is 10,000, which demonstrates the rationality of our default sub-
filter size setting. We analyze that setting the sub-filter size too small will lead
to a large number of sub-filters being loaded during a search procedure, resulting
in a high number of ocalls and a long ocall time. However, setting it too large
can reduce the number of sub-filters to be loaded appropriately, but it increases
the amount of transferred data and also increases the ocall time.
Performance of Fuzzy Search Enabled SecGraph. Finally, we evaluate the
performance of extended SecGraph that supports fuzzy search as the sub-string
length increases from 2 bytes to 6 bytes in the Email dataset. Specifically, as
shown in Fig. 7(a), the total insertion time cost in SecGraph decreases as the
sub-string length increases. This is reasonable since the shorter the sub-string
length, the more sub-strings each vertex’s name is split into, which also means
more keywords to be extracted, requiring more time to construct the encrypted
database. Fig. 7(b) shows that the storage cost of TSet decreases linearly as the
sub-string length increases due to the same reason mentioned above. Fig. 7(c)
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Fig. 7. Performance of fuzzy search enabled SecGraph.
shows that the search time slowly decreases as the sub-string length increases
because the longer the sub-string length, the fewer matching results returned.

9 Conclusion

In this paper, we propose an SGX-based efficient and confidentiality-preserving
graph search scheme SecGraph to provide secure and efficient search services
over encrypted graphs. Firstly, we design a new proxy-token generation method
to reduce the communication cost. Then, we design an LDCF-encoded XSet
to reduce the computation cost. Moreover, we design a Twin-TSet to enable
encrypted search over dynamic graphs. We further extend SecGraph into two
optimized schemes SecGraph-G and SecGraph-P by adopting the fingerprint
grouping and checking parallelization strategies, respectively, to speed up the
search procedure. Finally, experiments and security analysis show that SecGraph
can achieve secure and efficient search over dynamic graphs. In the future, we
will explore efficient and confidentiality-preserving graph search schemes that
support more plentiful search services such as range search, boolean search, etc.
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