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Coherent control from quantum committment probabilities
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We introduce a general definition of a quantum committor in order to clarify reaction mechanisms and
facilitate control in processes where coherent effects are important. With a quantum committor, we generalize
the notion of a transition state to quantum superpositions and quantify the effect of interference on the
progress of the reaction. The formalism is applicable to any linear quantum master equation supporting
metastability for which absorbing boundary conditions designating the reactant and product states can be
applied. We use this formalism to determine the dependence of the quantum transition state on coherences
in a polaritonic system and optimize the initialization state of a conical intersection model to control reactive
outcomes, achieving yields of the desired state approaching 100%. In addition to providing a practical tool,
the quantum committor provides a conceptual framework for understanding reactions in cases when classical
intuitions fail.

INTRODUCTION

Understanding mechanisms of reactions evolving quan-
tum mechanically is difficult, as delocalization, tunnel-
ing and interference preclude equating a reaction with
the classical idea of motion over a barrier. The commit-
tor, which is the probability of the system to complete
a reaction,1,2 defines an ideal reaction coordinate, and
is used to identify transition states and mechanisms in
classical reactions. Previous work has recently extended
the notion of the committor to systems in which tran-
sition states are delocalized and the dynamics are non-
adiabatic,3,4 but has stopped short of dealing with the
dynamical consequences of coherences, due to the compli-
cations that arise in defining trajectories in such cases.5

Here we overcome these previous limitations by introduc-
ing a definition of a quantum committor consistent with
any quantum dynamical map in which the propagator
can be formed as a linear superoperator acting on the
system density matrix with certain states designated as
absorbing boundary conditions. This allows us to explore
how mechanisms and transition states are influenced by
interference, in addition to quantum uncertainty. We
have applied this framework to investigate how the tran-
sition state in a thermal barrier crossing reaction in a
polaritonic system is affected by coherences and to co-
herently control the outcome of vertical relaxation of a
system with a conical intersection.

Defining a quantum committor, or splitting probabil-
ity, requires the existence of multiple metastable states.
The meaning of metastability in quantum systems re-
mains a topic of active investigation.6,7 In cases where
a system is in contact with a decohering environment,
quantum metastability can be associated with a spec-
tral gap in the generator of the dynamics, evident in a
separation of relaxation timescales.8–10 Imposing defini-
tions of reactants and products on the system, quantum
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incarnations of transition path sampling have been ap-
plied using unravelled quantum master equations,4 and
surface hopping models.11,12 Ensembles of quantum tra-
jectories have been analyzed through extensions of tran-
sition path theory,3 however such analysis requires the
dynamics to be secular.4,13 This assumption decouples
coherences from populations in the energy eigenbasis,
mapping the system dynamics to a classical Markov pro-
cess. Such a mapping eschews any influence of quantum
coherences by assigning each energy eigenstate a commit-
tor probability. Interference effects significantly impact
reaction rates and pathways in many systems of chemical
interest, and the inability to address coherent effects se-
riously limits the applicability of these quantum commit-
tor methods.14–17 This is especially true for systems with
conical intersections17–23 or strongly coupled to light24–28

for which the secular approximation breaks down due to
gaps in the system eigenspectrum being small compared
to the rate of relaxation of the bath.

To investigate the effects of coherences on reactive be-
havior, we have defined a quantum mechanical commit-
tor that can be assigned to any quantum state or su-
perposition. This idea is developed in the context of a
partially secularized Redfield29,30 master equation, but
is general provided an accurate Markovian description
of thermalization and decoherence. With this general-
ization of the committor, we have characterized coher-
ent quantum effects on the transition state in a polari-
tonic system, finding profound alterations in strong light-
matter coupling cases. We have further employed knowl-
edge of the committor to engineer ideal initial states in
which interference effects guarantee relaxation into a pre-
ferred product in a conical intersection model. The ease
of selecting these ideal initial conditions opens intriguing
possibilities. Given recent advances in laser technology
which allow monitoring and manipulation of systems on
timescales relevant to electronic dynamics,31–33 the abil-
ity to determine initial states for desired reactive out-
comes has potential applications in coherent quantum
control where biasing photoisomerization results or con-
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trolling relaxation pathways is a common goal.34–36

PARTIAL SECULAR MASTER EQUATIONS

To preserve the influence of coherences while also guar-
anteeing complete positivity of the density matrix, we
employ a partial secularization of the Redfield master
equation. The Redfield master equation29,37 describes
the evolution of a quantum system with total Hamilto-
nian H = HS+HB+HI , where HS is the Hamiltonian of
the system, HB is the Hamiltonian of the thermal bath,
and HI =

∑
k Sk ⊗Gk represents the weak, bilinear cou-

pling between the system and bath. Operator Sk is an
operator on the system and Gk is the k’th statistically
independent operator on the bath.

The Redfield master equation describing the evolution
of system density matrix, ρ(t), where the bath degrees of
freedom have been traced out, can be formulated as13

ρ̇(t) = −i [HS +HLS , ρ(t)] +
∑

ω,ω′,k

γk(ω
′, ω)ei(ω

′−ω)t

(
Sk(ω)ρ(t)S

∗
k(ω

′)− 1

2
{S∗

k(ω)Sk(ω), ρ(t)}
)
(1)

where ℏ = 1 and ρ̇(t) indicates the time derivative of ρ(t).
The operator Sk(ω) is the portion of the operator Sk

which produces density transfer between any eigenstates
j and i such that ω = ϵi − ϵj are the Bohr frequencies
of the system Hamiltonian, with ϵi being the i’th energy
eigenvalue with eigenvector |i⟩. Specifically,

Sk(ω) =
∑

ϵi−ϵj=ω

|i⟩⟨i|Sk|j⟩⟨j|, (2)

is the operator producing density transfer between eigen-
states separated by an energy gap of ω. We define
S∗
k(ω) as the conjugate transpose of Sk(ω). The factors

γk(ω
′, ω) are given by

γk(ω
′, ω) = Γk(ω) + Γ∗

k(ω
′), (3)

and the one sided Fourier transform of the bath correla-
tion function define

Γk(ω) =

∫ ∞

0

TrB[G̃
∗
k(s)G̃k(0)σB ]e

iωs ds, (4)

with σB being the density matrix of the thermal equi-
librium state of the bath. The interaction picture bath
operators, G̃k, are G̃ = eiHBtGe−iHBt. The Lamb shift
Hamiltonian,

HLS =
∑
kωω′

Πk(ω
′, ω)S∗

k(ω
′)Sk(ω), (5)

includes factors,

Πk(ω
′, ω) =

1

2i
[Γk(ω)− Γ∗

k(ω
′)] , (6)

which are also built from one-sided Fourier transforms.
This expression for the evolution of the reduced density
matrix assumes only weak system-bath coupling and a
Markovian bath.38

Due to the cross terms generated by operators Sk(ω)
and Sk(ω

′) in the summation, the terms which preserve
the influence of coherences on the evolution, this equa-
tion cannot be written in the form of a dynamical semi-
group. The commonly applied secular Redfield master
equation13,37,39 achieves dynamical semigroup form by
arguing that, in the weak coupling limit, the unitary os-
cillation of the coherent phase is much faster than pop-
ulation transfer. Thus the complex exponential under
the summation in Eq. 1, will oscillate many times before
significant population is transferred, averaging to zero
unless ω′ − ω = 0. The nonsecular terms, any which do
not fulfill this requirement, can be neglected, decoupling
populations from coherences and yielding the fully secu-
lar quantum master equation which is in the form of a
dynamical semigroup and thus guarantees positivity of
ρ.13 Any coherences in the initial density matrix at time
zero decay exponentially with no influence on the pop-
ulations. When a near degeneracy occurs in the system
eigenspectrum, the assumption that we may neglect the
average influence of the quickly oscillating exponential
term no longer holds and there is significant influence of
quantum coherences on the evolution of populations.40,41

An alternative partial secularization which preserves
important coherences30,41 can be derived under the piece-
wise flat secular approximation. This approximation de-
mands that the spectral density describing the bath does
not change over energy ranges encompassing all eigen-
states in which coherent effects are relevant. If the co-
herence between eigenstates i and j is important, then
for any ω = ϵi − ϵl l ̸= i, j and ω′ = ϵj − ϵl l ̸= i, j
the Fourier transforms of the bath correlation function
are equal, Γk(ω) = Γk(ω

′). Because coherent effects are
generally large when energy differences between states
are very small relative to system timescales, this approx-
imation is usually not demanding. To apply the approx-
imation, the energy eigenspectrum of HS is organized
into nearly degenerate nonsecular blocks by splitting the

Hamiltonian into two partsHS = H
(0)
S +δHS , whereH

(0)
S

collapses all nearly degenerate states to the same energy
ϵ̄i and δHS breaks the degeneracy to recover the initial
Hamiltonian. If ||δHS || ≪ ||HI ||, then we may perform

the secular approximation on H
(0)
S that retains coher-

ences between degenerate states (i.e. states in the same
nonsecular block) and then add in the degeneracy break-
ing as a perturbative correction. The average energy of
the eigenstates in a nonsecular block is designated ϵ̄i for
nonsecular block i. The energy difference between each
block is denoted ω̄ij = ϵ̄i − ϵ̄j . A block is assigned a first
eigenstate entry and if the next higher energy eigenstate
is less than a limit, ℏγ, higher in energy, it is added to
the block. The difference in energies between the newly
added eigenstate and the next higher eigenstate is tested
and eigenstates added until one exceeds ℏγ. This highier
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eigenstate is the first entry in the next block. The factor,
γ, should formally be equal to the total rate of population
exit from the eigenstate under consideration.30

The operators, Sk(ω̄), in the partial secular quantum
master equation are formed from the system-bath inter-
action Hamiltonian such that each operator is either the
dephasing operator with ω̄ = 0 or defines a jump process
between nonsecular blocks i and j, not a single pair of
eigenstates, such that

Sk(ω̄) =
∑

ϵ̄BL(i)−ϵ̄BL(j)=ω̄

Sk(ω) (7)

where ϵ̄BL(i) refers to the average energy of the nonsec-
ular block to which eigenstate i belongs. After defining
nonsecular blocks and relevant jump operators, the par-
tial secular master equation is identical to the secular
equation save that all ω are replaced by ω̄. This reduces
Eq. 1 to

ρ̇(t) = −i [HS +HLS ] +
∑
ω̄,k

γk(ω̄, ω̄) (8)

(
Sk(ω̄)ρ(t)S

∗
k(ω̄)−

1

2
{S∗

k(ω̄)Sk(ω̄), ρ(t)}
)
,

which is trace preserving and completely positive. The
Lamb shift Hamiltonian becomes block diagonal, its
structure corresponding with that of the selected nonsec-
ular blocks. Coherent evolution occurs within the nonsec-
ular blocks, facilitated both by the Lambshift Hamilto-
nian and the action of Sk(ω̄) operators under the summa-
tion, which produce cross terms linking coherences and
populations within the nonsecular blocks only. Coher-
ences between eigenstates in different nonsecular blocks
still decay exponentially without influencing population
dynamics, but those within the blocks can increase or de-
crease under the influence of these partially secularized
operators and may have significant impacts on popula-
tion dynamics. In the case that each block contains a
single eigenstate, meaning all coherences are decoupled
from all populations, the partial secular equation reduces
to the full secular approximation.

COHERENT QUANTUM COMMITTOR

The committor is conventionally defined as the prob-
ability, given sets of system states A and B, that the
system will visit a state in B before a state in A, denoted
PB|A. In the context of chemical reactions set A can
be considered the reactants and B the products, both of
which are expected to be metastable as defined by the
separation of timescales evident in the eigenspectrum of
the propagator.8,10 In the context of the partial secular
Redfield dynamics we consider, this requires that no state
of A or B be in a nonsecular block with any state not also
in A or B, such that the projective measurement implied
by the conditioning in the reactive trajectory ensemble4

does not destroy coherences relevant to the reactive dy-
namics.
Under these assumptions, the committor can be evalu-

ated by constructing a superoperator in the energy eigen-
basis such that ρ̇(t) = Lρ(t), modified to enforce absorb-
ing boundary conditions in all states within the sets of
states in A and B.13,42 For our partial secular equation,
absorbing boundary conditions are imposed by changing
the relevant rates such that γk(ω̄) = 0 ∀ ω̄ = ϵ̄j − ϵ̄i j ∈
A ∪ B. If this approach were applied to a master equa-
tion in which coherences linked A and B to the rest of
the system, these would have to be approximated as zero,
which would not always be a justifiable assumption. The
modified L with absorbing states is denoted by L′. The
time integrated flux into any eigenstate b ∈ B is then

Vb(ρij) =
(
lim
t→∞

eL
′tρij

)
b,b

(9)

where ρij = |i⟩⟨j| designates an initial condition and
the subscript b, b indicates that the b’th population of
the density matrix has been extracted after propagation.
The time integrated flux for the entirety of set of states
in B is given by the sum VB|A(ρij) =

∑
b∈B Vb(ρij). To-

gether, ρij for all i and j define a basis for any initial
density matrix. By calculating VB|A for all basis en-
tries, we can easily calculate VB|A for any density matrix
ρ =

∑
ij cijρij by summing over the contributions of each

basis state. Because coherences which are not contained
in a nonsecular block cannot have any impact on popu-
lation dynamics, Vb only needs to be calculated for the
subset of the basis where it is not zero by definition. The
final summation,

PB|A(ρ) =
∑
i,j

cijVB|A(ρij), (10)

is the probability that a system initialized in state ρ will
reach state B before any other state in A.

TRANSITION STATES UNDER VIBRATIONAL STRONG
COUPLING

In our first application of the general quantum commit-
tor method, we investigated a polariton model similar to
that used by Lindoy and coworkers.26 Vibrational polari-
tons form when the vacuum photon frequency of a mi-
crocavity is near resonance with the frequency of a vibra-
tional mode of a molecule in the cavity. Experimental in-
vestigations have indicated that resonance effects in cav-
ity confined polariton systems can influence ground state
reactivity, inverting the preferred formation of products
in bond breaking reactions.43–45 Theoretical work has
studied potential origins for the resonance effects both
by classical46–49 and quantum mechanical26,50–52 means,
with evidence indicating that a fully quantum mechani-
cal approach to the dynamics is likely necessary to un-
derstand this phenomenon.26–28,53



4

We have studied the quantum transition state in a po-
lariton model as a function of light-matter coupling using
the generalized quantum committor. This model includes
a single photon and proton degree of freedom under a
Shin-Metiu54 model employing the Pauli-Fierz55 Hamil-
tonian which treats light and matter coordinates on the
same quantum footing. The Hamiltonian is given by

HS =
P 2

2M
+U(R)+

p2c
2
+
ω2
c

2

(
qc +

√
2

ωc
ηcµ(R)

)2

, (11)

where P is the momentum operator of the proton co-
ordinate with position R, M is the proton mass, U(R)
describes a quartic proton potential energy surface, qc is
the position operator for the photon, pc is the momen-
tum operator for the photon, ωc is the photon frequency,
µ(R) is the proton dipole operator, and ηc is the light-
matter coupling strength. The system-bath coupling is
bilinear and independent for both the proton and cavity
modes

HI = R⊗
∑
k

ck,1rk,1 + qc ⊗
∑
k

ck,2rk,2, (12)

and the spectral density describing the coupling
strengths, ck,α, for each bath α = {1, 2} is,

Jα(ω) =
∑
k

c2k,αδ(ω − ωk,α) = ηωe−|ω|/ωb , (13)

an Ohmic exponential form, where ωb is the cutoff fre-
quency and η is the coupling strength for both baths.
Appendix A compiles the parameters used for this study.

We treat the four lowest energy eigenstates only, with
the first and second eigenstates identified as |g1⟩ the reac-
tant A state and |g2⟩ the product B state. The third and
fourth eigenstates, |e1⟩ and |e2⟩, form a nonsecular block.
The system setup, including the four relevant eigenstates,
is shown in Fig. 1 a). The excited state set spanned by
|e1⟩ and e2⟩ can be represented by a Bloch sphere with
the eigenstates at its poles. We define the committor
surface as the locations in the Bloch sphere where the
probabilities to arrive in state |g2⟩ or |g1⟩ are both 0.5, a
generalized transition state for quantum systems. Due to
the linear nature of the propagator, the committor sur-
face is guaranteed to be a plane. The committor plane
is easily found by determining Vg1|g2(ρij) for a basis of
the density matrix in the nonsecular block, solving for
conditions at which Pg1|g2(ρ) = 0.5 and transferring the
obtained solution into Bloch sphere coordinates. To in-
spect the influence of quantum coherent effects, the com-
mittor plane can be defined for the fully secular master
equation as well, in which case the plane must be defined
by a single z coordinate.

We solved for the committor planes for the partially
and fully secular master equation for three different val-
ues of light-matter coupling strength. In the weak light-
matter coupling case, Fig. 1 b), the partial secular plane
is nearly flat. However, it lies above the fully secular com-
mittor plane. This is due to the piecewise flat spectral

FIG. 1. a) The potential energy surface, U(R) and lowest four
eigenstates plotted on the adabiatic potential energy surface
beside an illustration of the |ei⟩ states on the Bloch sphere.
The partial secular (upper) and fully secular (lower) commit-
tor planes through the Bloch sphere for b) weak ηc = 0.01,
c) intermediate ηc = 0.1, and d) strong ηc = 0.2 light-matter
coupling. e) The population of state |g1⟩ as a function of time
given initialization in ρ(0) equal to each of the three marked
density states in panel d). f) Population in |g1⟩ given initial-
ization in ρ(0) equal to ρ2 as indicated in panel d) for master
equations that are partial secular, secular, and partial secular
with the coherences manually set to zero after each time step.

density approximation in the partial secular master equa-
tion, which alters individual jump rates from those found
for equivalent jumps in the fully secular master equation.
As the light-matter coupling increases, the fully secular
committor plane remains largely unchanged whereas the
partial secular committor plane acquires significant tilt,
indicating the increasing importance of quantum coher-
ences. This is evident for moderate coupling in Fig. 1
c) but especially obvious for the strong coupling case in
Fig. 1 d). The angle along the x direction indicates a
significant influence exerted by the real part of the coher-
ence between |e1⟩ and |e2⟩ on determining the outcome
of the reaction. This implies that the transition state is
represented by a particular set of coherent states at the
top of the barrier.

To demonstrate the influence of coherences on dynam-
ics in the strongest coupling case, three points on the
surface of Bloch sphere, two on the fully secular commit-
tor plane and one on the partial secular committor plane,
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were selected as initial conditions to run partial secular
dynamics, displayed in Fig. 1 e). Initial conditions des-
ignated by ρ1 and ρ2 have identical z values, meaning
identical populations in |e1⟩ and |e2⟩. However, the ini-
tial state coherences are different and initialization in ρ2
results in a final population in |g1⟩ below 0.5 whereas ini-
tialization in ρ1 results in a final population of |g1⟩ above
0.5, demonstrating the strong influence of quantum co-
herent effects on dynamics. By contrast the initial condi-
tion ρ3 begins on the partial secular committor plane and
thus reaches a final state with population 0.5, represent-
ing the equal likelihood of evolving to the product state
or back to the reactant state. The particular importance
of the coherence on the population dynamics is confirmed
in Fig. 1 f), in which we ran partial secular, fully secular,
and zeroed coherence dynamics starting from initial ρ2.
Zeroed coherence propagation indicates that the partial
secular master equation was employed but coherences in
the system were manually set to zero at each timestep,
removing their influence. This process artificially re-
moves the population-coherence coupling while making
the piecewise flat spectral density approximation. With-
out effects from coherences, the relaxation dynamics are
nearly identical to the fully secular relaxation dynamics.

COHERENT CONTROL OF A CONICAL INTERSECTION

Conical intersections are commonplace in large
molecules where they offer ultrafast, nonradiative relax-
ation pathways,56–58 making them key in isomerization
of molecular photoswitches,59,60 light harvesting mecha-
nisms in photosynthetic organisms,61,62 and damage mit-
igation in DNA.63 At a conical intersection, the splitting
between states is expected to become small, enhancing
the role of coherent and interference effects in relaxation
following photoexcitation. With the ability to probabilis-
tically understand reaction outcomes with the commit-
tor, we show that this knowledge can be translated into a
control strategy by preparing specific states to optimize
the relaxation outcome following photoexcitation.

The model we consider is similar to a minimal
pyrazine model, with parameters modified to produce
two metastable wells in the excited state.17,18,22,64,65 The
system Hamiltonian is given by,

HS =
∑
i=1,2

|ϕi⟩hi⟨ϕi|+ (|ϕ1⟩⟨ϕ2|+ |ϕ2⟩⟨ϕ1|)λQc, (14)

with i indexing the diabatic electronic states, |ϕi⟩, and

hi = 1/2
∑
j=c,t

ℏωj

{
P 2
j +Q2

j

}
+ Ek + κkQt (15)

where λ is the diabatic coupling strength, Qj is the di-
mensionless coupling (j = c) or tuning (j = t) coordi-
nate, Pj is the dimensionless momentum for Qj , κi is the
displacement along Qt for each diabatic electronic state,
ωj is the coupling (j = c) or tuning frequency (j = t)

FIG. 2. a) A cut through the diabatic electronic potential
energy surfaces of the conical intersection (black) at Qc = 0
and the energies of the fifteen eigenstates of the conical in-
tersection, color coded by nonsecular block, with eigenstates
13 and 14 marked with dashed and dotted lines respectively.
b) The real parts in both diabatic electronic states, |ϕ1⟩ and
|ϕ2⟩, of the optimal initial wavefunction for arrival in eigen-
state 1, |ΨA⟩, and the optimial initial wavefunction for ar-
rival in eigenstate 3, |ΨB⟩. c) Populations in the lowest three
eigenstates as a function of time following initialization of the
system in ρ(0) = |ΨA⟩⟨ΨA|. d) Populations in the lowest
three eigenstates as a function of time following initialization
of the system such that ρ(0) = |ΨB⟩⟨ΨB |.

frequency and Ei is the diabatic electronic state energy.
The system-bath coupling Hamiltonian is bilinear in the
two modes of the conical intersection and bath modes,

HI = (|ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|)
∑
α

∑
j=c,t

cα,jrα,jQj , (16)

where rα,j are dimensionless bath oscillator coordinates,
and diagonal in the diabatic electronic states. The spec-
tral density again takes Ohmic form,

Jj(ω) = ηe−|ω|/ωb j = c, t, (17)

where ωb is the cutoff frequency and η is the system-
bath coupling strength. The parameters of the model
employed are summarized in Appendix A.
An illustration of the structure of the system, including

individual eigenstates, non-secular blocks, and diabatic
potential energy surfaces is shown in Fig. 2 a). The
lowest two eigenstates are localized in a state at positive
Qt, and we group them into the reactant state A, while
the third lowest eigenstate is localized at negative Qt and
considered the product state, B. Each of these states is
its own nonsecular block. There are four other nonsecular
blocks, with eigenstates 13 and 14 in block 6 at the top
of the barrier highlighted with dashes. These states are
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extremely close in energy, which suggests that quantum
coherences between them are likely to be important.

We have calculated VA|B for the populations and co-
herences of and between eigenstates 13 and 14. We find
that VA|B(ρ14,14) ≈ 0.85 and that VA|B(ρ13,13) ≈ 0.15,
with the time integrated fluxes corresponding well with
the diabatic character of these eigenstates. We also find
that VA|B(ρ13,14) is very large. To illustrate how under-
standing the committment probability informs coherent
quantum control, we optimized population and coherence
to direct evolution of the system into either A or B by
optimizing the committor value over all possible coherent
superpositions of eigenstates 13 and 14. When inspect-
ing the optimized wavefunctions displayed in Fig. 2 b),
the wavefunction optimized to arrive in A, |ΨA⟩, with
PA|B(ρ = |ΨA⟩⟨ΨA|) approaching 1.0, is nearly entirely
localized in the right well. Similarly, the wavefunction
optimized to arrive in B, |ΨB⟩, for which the committor
PB|A(ρ = |ΨB⟩⟨ΨB |) approaches 1.0, is fully localized in
the left well. In other words, this system behaves diabat-
ically despite being highly excited. Thus we can optimize
the reactive outcomes by using quantum interference to
engineer an initial condition. This optimization is also
robust to small changes of the model as illustrated in
Appendix B.

The differences in population dynamics following ex-
citation to ρ(0) = |ΨA⟩⟨ΨA| in Fig. 2 c) is strikingly
different from dynamics following excitation to ρ(0) =
|ΨB⟩⟨ΨB | in Fig. 2 d), which is not unexpected given
that the initial populations are very different, but reflects
the selectivity that could not be achieved by incoherent
initialization into a combination of eigenstates 13 and 14.
Population in B, i = 3, in Fig. 2 c) remains at nearly
zero for the entire 50000 au period whereas virtually all
population is in B over that period in Fig. 2 d). Note
that in Fig. 2 d) some population has become trapped
in what is effectively a dark state in nonsecular block 4
and has not relaxed down to eigenstate 3 over the time
period displayed, but will do so in the long time limit.

The location of the density trapped in a dark state can
be determined, as can the overall relaxation pathways,
by constructing a hidden Markov state model between
the nonsecular blocks, with the precise quantum state in
the block being the hidden variable which changes over
time due to coherent evolution. This hidden state of the
block determines when and how density will depart from
the block. This removes information about the specific
history of individual pathways that would be evident in
a quantum jump approach,3 but is comparatively very
simple to implement and provides adequate information
for our needs. In Fig. 3 a) the relaxation pathway fol-
lowing excitation into ρ(0) = |ΨA⟩⟨ΨA| moves between
nonsecular blocks with 90% of density arriving in eigen-
state 1 over the simulation period and 8% remaining in
eigenstate 2 with the remaining density largely found in
nonsecular block 4. This is a very different pathway than
that following excitation to ρ(0) = |ΨB⟩⟨ΨB | in Fig. 3 c)
where two alternate relaxation pathways exist, one fol-

FIG. 3. a) The net reactive flux traveling between nonsecular
blocks for the system initialized in ρ(0) = |ΨA⟩⟨ΨA| over a
duration of 50000 au. b) Population density in electronic state
2 for the system relaxing from ρ(0) = |ΨA⟩⟨ΨA| at 2000 au
(top) and 5000 au (bottom). c) The net reactive flux trav-
eling between nonsecular blocks for the system initialized in
ρ(0) = |ΨB⟩⟨ΨB | over a duration of 50000 au. Note that
not all density arrives in block 3 over this period of time,
with a significant amount remaining in block 4. d) Popula-
tion density in electronic state 1 for the system relaxing from
ρ(0) = |ΨB⟩⟨ΨB | at 2000 au (top) and 5000 au (bottom).

lowing from 6 to 5 to 3 and the other from 6 to 4 to
3, with almost 14% of density remaining in nonsecular
block 4 after 50000 au. Despite the difference in relax-
ation pathways, inspecting probability density distribu-
tions during early times of relaxation in 3 b) and d) shows
that the system remains localized in both cases, relaxing
quickly towards the bottom of the destination well. This
method of flux tracing illuminates the general pathways
of relaxation, showing that a bifurcation is involved in
optimal relaxation to B.

CONCLUSIONS

By generalizing the definition of the committor to
quantum coherent systems, we have quantified the im-
pact of coherences on dynamics in polaritonic systems
and conical intersections. Following initial calculations
of committors for a basis of the density matrix, the com-
mittor value of any quantum state can be trivially ob-
tained. This method can be used to define committors
for any linear master equation in which absorbing bound-
ary conditions can be defined, allowing fast determina-
tion of initial excitations providing the desired outcome
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in coherent quantum control problems and access to the
committor surface, the quantum generalization of a tran-
sition state, which is valuable in the study of quantum
reaction mechanisms.
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Appendix A: Simulation Parameters

Simulations for the polariton were carried out accord-
ing to parameters in Table 1 with a DVR66 basis for R
and a harmonic oscillator basis for qc with respective di-
mensions of 81 and 60 with ∆R for the DVR basis of
0.03 au, although a significantly smaller basis was likely
sufficient. The system was then truncated to include the
lowest four energy eigenstates.

The polariton model employs a quartic potential en-
ergy surface,26

E(R) =
c4ob
16ceb

R4 − c2obR
2

2
− ccuR

3, (18)

with the dipole operator approximated by

µ(R) = vtanh(yR) + zR, (19)

although its exact form does not appear to change the
observed trends. The coordinates on the surface of the
Bloch sphere used to define density matrix ρ1 in Fig. 1
d are (x, y, z) = (−0.87,−0.17,−0.31). Those for ρ2 are
(0.87, 0.383,−0.31) and those for ρ3 are (0.87, 0.17, 0.46).
Simulations for the conical intersection were carried

out according to parameters in Table 2 with a harmonic
oscillator basis for Qc and Qt with dimensions 40 and 90
respectively, although a significantly smaller basis was
likely sufficient. The system was then truncated to in-
clude fifteen eigenstates.

Appendix B: Coherent Control Stability Analysis

In order to assess the sensitivity of the optimized wave-
functions and optimization efficiency to small changes in
the Hamiltonian parameters, we determined the optimal
initial wavefunction for relaxation into A obtainable from
a coherent superposition of eigenstates 13 and 14 as we
modified ωt. The original ωt is designated ω0. Modifica-
tions were small to avoid changing the energy ordering of
the eigenstates. Optimization of relaxation outcomes was
effective for significantly perturbed systems. In Fig. 4,
the optimal initial wavefunctions for the case of slightly

Parameter atomic units unless specified

β 1052.584413

ωb 0.05

ωc 0.025344

η 0.2 (unitless)

cob 0.8

ceb 0.05

M 1836

ccu 0.004

v -1.7

y 3.0 (unitless)

z 0.6

TABLE 1. Parameters employed during simulation of the
polariton model

.

Parameter atomic units unless specified

β 1052.584413

ωb 0.01

η 0.1 (unitless)

E1 -0.00139

E2 0.00139

ωc 0.004116

ωt 0.002279

κ1 -0.006836

κ2 0.006836

λ 0.00091153

TABLE 2. Parameters employed during simulation of the
conical intersection model. Note that this simulation is car-
ried out with Qc,t and Pc,t in dimensionless units.

smaller ωt, original ωt and slightly larger ωt are seen to
be very similar, although as ωt increases the amount of
wavefunction density located in the metastable well, dia-
batic electronic state 1, increases, and, correspondingly,
efficiency decreases somewhat.

Comparing the overlap between the optimal wavefunc-
tion for the unperturbed system with ωt = ω0 and the
optimal wavefunction for systems with perturbed ωt in
Fig. 5, the overlap decreases in tandem with the fall in
the committor value obtained from employing the opti-
mal wavefunction for ωt = ω0 as an initial condition in
the perturbed system. However, the decrease in over-
lap and committor value is not drastic indicating that
small variations in the Hamiltonian will not disrupt the
process of wavefunction optimization. Similarly, in Fig.
5 an optimal wavefunction with yield of 98% or higher
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could be identified for all perturbed systems, indicating
that the chosen parameters in this work are not unique
in providing opportunities for optimization.

Perturbations of other parameters produced similar re-
sults or, in the case of ωc and E2, showed much greater
stability of the optimized wavefunction to parameter per-
turbation. A sufficiently large perturbation of any pa-
rameter will, however, completely change the eigenstate
ordering and, though an optimal coherent initialization
may still exist, it will no longer involve a superposition
of eigenstates 13 and 14 and direct comparisons cannot
be drawn.

Appendix C: Derivation of Quantum Committor

In this section, we will derive Eq. (10) for the commit-
tor from the main text. This derivation will proceed by
first defining the quantum jump unraveling correspond-
ing to the partial secular master equation, Eq. (8), and
using this stochastic Poisson process to define a commi-
tor equivalently to standard classical Poisson processes.
Then, we define an auxiliary stochastic process that im-
plements absorbing boundary conditions in the reactant
and product non-secular blocks while leaving dynamics
unchanged outside of this manifold, which conveniently
expresses the commitor. Finally, we average over the
realizations of the jump process to obtain a new quan-
tum master equation with absorbing boundary condi-
tions yielding Eq. (9). Crucially, we see that this com-

FIG. 4. The real part of the optimal wavefunctions, Ψm (mul-
tiplied by a factor for easy viewing) for arrival in eigenstates 1
and 2 in the unperturbed and two perturbed systems, where
the perturbation adjusts ωt relative to the default value of
0.002279 au. The change occurs smoothly. The optimal wave-
function is largely localized in the lower energy well in all
cases.

FIG. 5. Asterisk symbols indicating the overlap between the
optimal wavefunction in the unperturbed case and the op-
timal wavefunction in the perturbed case, |Ψ∗

0Ψm|, together
with committor to A, designated PA|B(ρ), as ωt is modified for
both the optimal initialization density matrix for the unper-
turbed system, ρ0, and the perturbed optimal initialization
density matrix, ρm.

mittor, and the resulting interpretation, are independent
of the unraveling used in the derivation.
Equation (8) is a quantum master equation that we can

equivalently solve as the average over a stochastic Poisson
process for a density matrix, ρ̂, called the quantum jump
unraveling,

dρ̂(t) =

[
L0 +

∑
Ω

γΩ (AΩ + ⟨nΩ(ρ̂)⟩)

]
ρ̂dt

+
∑
Ω

(
JΩ

⟨nΩ(ρ̂)⟩
− 1

)
ρ̂dNΩ(ρ̂) (20a)

E [dNΩ(ρ̂)] = γΩ⟨nΩ(ρ̂)⟩dt (20b)

⟨nΩ(ρ̂)⟩ ≡ Tr{JΩρ̂} = −Tr{AΩρ̂}, (20c)

where the double index Ω = (k, ω) has been introduced
for brevity, γΩ ≡ γk(ω̄, ω̄), 1 is the identity superoper-
ator, L0 = −i[HS + HLS , ·] is the unitary system prop-
agator, JΩ = Sk(ω) · S∗

k(ω) is the jump operator de-
scribing the change in system state due to observing a
change in bath eigenstate, and AΩ = {S∗

k(ω)Sk(ω), ·} is
the anti-unitary (sometimes called Zeno) drift due to not
observing a change in bath eigenstate. The differentials
dNΩ are the increments of independent Poisson processes
with state dependent rates given by Eq. (20b). Each
realization of the stochastic process ρ̂ corresponds to a
different history of bath measurement outcomes. In the
partial secular limit we know that the jumps couple su-
perpositions in one secular manifold to superpositions in
another, decoupled from intra-manifold coherences. We



9

will use the decorator ·̂ throughout to indicate random
variables defined for single realizations of the unraveling.
This stochastic differential equation is connected to Eq.
(8) by E[ρ̂] = ρ, where E denotes an average over real-
izations of the stochastic unraveling. Conditional density
matrices remain normalized but the evolution is nonlin-
ear in σ since ⟨nΩ(ρ̂)⟩ is itself a linear function of ρ̂.

We now proceed to define the committor equivalently
to the case of a classical jump process. We are able
to use this approach since the quantum jump unravel-
ing is simply a classical jump process over an unusual
state-space of density matrices. First, we select a reac-
tant non-secular block A and a product block B. The
committor can be constructed from the trajectory ob-
servable P̂A|B [ρ̂(t)] which is 1 if the trajectory visits B
before A and 0 otherwise. If we average over all tra-
jectories with initial state ρ, we obtain the committor

PA|B(ρ) = E
[
P̂A|B [ρ̂(t)]|ρ̂(0) = ρ

]
. The commutator

can then be computed by sampling realizations of this
stochastic process starting in state ρ and computing the
average over the trajectory ensemble. However, since the
stochastic equation is nonlinear in ρ̂ this must be re-
computed for every initial state ρ repeatedly which can
rapidly become costly since the size of the state space
grows rapidly with increasing system dimensions.

It is therefore desirable to obtain an expression for
the committor using a quantum master equation which
is linear in ρ. We could then compute the contribu-
tion to the committor from each density matrix element
VB|A(ρij) separately. The linearity of the master equa-
tion would then allow us to compute the commutator for
any ρ =

∑
ij cijρij , a superposition of the density ma-

trix elements ρij , by evaluating the same superposition
of VB|A(ρij). To accomplish this, we define an auxil-

iary unraveling ˆ̃ρ, identical to Eq. (20), but removing all
jumps out of blocks A and B. This stochastic process
has the same dynamics as the original unraveling outside
of A ∪ B but does not allow population to leave A or
B once it enters either block. If we ignore all dynamics
within A and B and consider only the total population
of the blocks, this procedure implements two absorbing
boundary conditions at the reactant and product states.

Using the absorbing auxiliary unraveling, ˆ̃ρ, we can
easily rewrite the trajectory observable,

P̂A|B [ρ̂(t)] = P̂A|B [ ˆ̃ρ(t)] = lim
t→∞

Tr{PB
ˆ̃ρ(t)} (21)

as the steady-state population of non-secular product
block B, written in terms of the B projection operator
PB =

∑
b∈B |b⟩ ⟨b|. For each trajectory, this quantity

is always exactly 1 or 0 since the probability of simul-
taneous jumps vanishes, and in the non-secular master
equation each jump can only connect one pair of blocks.
Therefore, it is impossible for the unraveling to simulta-
neously enter blocks A and B.
The introduction of the absorbing process has now re-

duced the calculation of the committor to the expectation
of a steady-state population. This can be equivalently

done after averaging over the stochastic processes to ob-
tain an auxiliary quantum master equation with genera-
tor L′, yielding Eq. (10) in the main text. Notably, this
definition of the committor is independent of the choice
of unraveling used in the derivation, indicating that it
captures the properties of the underlying dynamical pro-
cess independent of any assumed measurement protocol
on the bath.
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