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The Simple Inclusion Process (SIP) interpolates between two well-known lattice gas models: the
independent random walkers and the Kipnis-Marchioro-Presutti model. Here we study large devi-
ations of nonstationary mass transfer in the SIP at long times in one dimension. We suppose that
N ≫ 1 particles start from a single lattice site at the origin, and we are interested in the probability
P(M,N, T ) of observing M particles, 0 ≤ M ≤ N , to the right of the origin at a specified time
T ≫ 1. At large times, the corresponding full probability distribution has a large-deviation behav-
ior, − lnP(M,N, T ) ≃

√
Ts(M/N,N/

√
T ). We determine the rate function s exactly by uncovering

and utilizing complete integrability, by the inverse scattering method, of the underlying equations of
the macroscopic fluctuation theory. We also analyze different asymptotic limits of the rate function
s.

I. INTRODUCTION

The full statistics of mass or energy transfer (otherwise
called integrated current) in macroscopic systems of in-
teracting particles out of equilibrium has been a focus of
attention in statistical mechanics in the past two decades.
A minimal set of models for detailed studies of this quan-
tity is stochastic lattice gases [1–4]. A great deal of
progress has been achieved in determining the full statis-
tics of mass transfer for nonequilibrium steady states,
see e.g. Refs. [5–8]. Nonstationary regimes proved to
be much harder for analysis, and exact results for the
full statistics of the integrated current (or of the closely
related tagged particle position) here are quite limited [9–
17]. Exact results were obtained for the Symmetric Ex-
clusion Process (SEP) (see, e.g. Ref. [1]) and the Kipnis-
Marchioro-Presutti (KMP) model [18]. Here we focus
on a bosonic counterpart of the SEP: the Symmetric In-
clusion Process (SIP), and study its full non-stationary
mass-transfer statistics. The SIP, first introduced in Ref.
[19], describes particles which perform independent sym-
metric random walks. In addition, each particle “invites”
any other particle, located at a nearest-neighbor posi-
tion, to join it on its site, and the invitation is always
accepted. The resulting “inclusion jumps” create an at-
tractive inter-particle interaction. For comparison, the
inter-particle interaction in the SEP is repelling, because
a particle is not allowed to jump to a site already occu-
pied by another particle.

We consider a system of N particles which start at
t = 0 from a single lattice site at the origin x = 0. The
particles will spread along the lattice because of the ran-
dom walk and inclusion jumps. As the process is stochas-
tic, the number of particles M to the right of the origin
will fluctuate in time around the expected value N/2.
We focus on the fluctuating excess number of particles
K = N/2 − M to the right of the origin at some ob-
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servation time t = T . Our main goal is to determine
P(K,N, T ), the probability of K at time T , in the limit
of N ≫ 1 and T ≫ 1. In the continuum limit, the corre-
sponding probability distribution has a compact support,
|K| ≤ N/2. It is intuitively clear that, at large N and
T , the probability distribution P(K,N, T ) must have a
large-deviation form, as it is unlikely to observe nonzero
K.
A similar non-stationary large-deviation problem for

the KMP model has been recently solved exactly [13, 16],
see also Ref. [17]. (The KMP model involves immobile
agents which occupy a whole lattice and can carry con-
tinuous amounts of energy. At each random move the
combined energy of a randomly chosen pair of nearest
neighbors is randomly redistributed among them.) The
solution in Refs. [13, 16] combined two formalisms: the
macroscopic fluctuation theory (MFT) and the inverse
scattering method (ISM). The MFT (see Ref. [20] for a
review) is a weak-noise large-deviation formalism rooted
in fluctuational hydrodynamics [1, 3, 21]. The ISM (see
e.g. Ref. [22]) is a method of solving classical integrable
nonlinear equations. It relies on an auxiliary scattering
problem which in effect make these equations linear.
Here we apply the MFT and ISM to the SIP. The

MFT formulation reveals the large-deviation scaling of
the probability distribution:

− lnP(K,N, T ) ≃
√
Ts

(
K

N
,
N√
T

)
,

√
T → ∞, (1)

and our goal is to calculate the rate function s. We find
that the Hopf-Cole transformation brings the MFT equa-
tions for the mass transfer statistics to the form of the
derivative nonlinear Schroedinger equation (DNLSE) in
imaginary space and time. The latter equation can be
exactly solved by the Zakharov-Shabat ISM adapted for
the DNLS [23] and extended to boundary-value problems
[13, 16]. We obtain the rate function s exactly and also
analyze its different asymptotic limits.
In Sec. II we present the governing equations of the

fluctuational hydrodynamics and the MFT. Then we
perform the Hopf-Cole transformation which brings the
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MFT equations to the DNLSE. In Sec. III we employ the
ISM to determine the rate function s. We briefly summa-
rize and discuss our findings in Sec. IV. In the Appendix
we derive four different asymptotics of the rate function.
These include very small and very large deviations of K,
as well as the limits of very small and very large effective
densities n = N/

√
T , where our results agree with those

for the independent random walkers (RWs) and the KMP
model, respectively.

II. FLUCTUATIONAL HYDRODYNAMICS
AND MFT

Exploiting the large parameters N and
√
T , we can de-

scribe the system by fluctuational hydrodynamics. For
a general one-component stochastic lattice gas fluctua-
tional hydrodynamics involves a single Langevin equa-
tion: a stochastic partial differential equation for the
coarse-grained particle density ρ(x, t):

∂tρ = ∂x

[
D(ρ)∂xρ+

√
σ(ρ) ξ(x, t)

]
, (2)

where ξ(x, t) is white Gaussian noise

⟨ξ(x1, t1)ξ(x2, t2)⟩ = δ(x1 − x2)δ(t1 − t2) . (3)

Particular lattice gases are specified by the two transport
coefficients D(ρ) and σ(ρ). With a convenient choice of
units one obtains for the SIP D = 1 and σ(ρ) = 2ρ(1+ρ).
For comparison, D = 1 and σ(ρ) = 2ρ(1 − ρ) for the
SEP, D = 1 and σ(ρ) = 2ρ2 for the Kipnis-Marchioro-
Presutti (KMP) model, and D = 1 and σ(ρ) = 2ρ for
the independent random walkers (RWs) [1]. As one can
see, the SIP interpolates between the RWs and the KMP
models. That is, the SIP behaves as the independent
RWs at ρ→ 0, whereas at very large densities it becomes
similar to the KMP model.

The initial condition for the density is

ρ(x, t = 0) = Nδ(x) . (4)

At the observation time t = T we have

1

N

∫ ∞

0

ρ(x, t = T ) dx− 1

2
= κ , (5)

where κ ≡ K/N is the relative excess of transferred mass
with respect to its expected zero value. Obviously, |κ| ≤
1/2.

Let us rescale the variables, x/
√
T → x and t/T → t.

For the SIP, the rescaled Langevin equation (2) is

∂tρ = ∂x

[
∂xρ+ T−1/4

√
ρ(1 + ρ) ξ(x, t)

]
. (6)

The MFT equations are obtained via the saddle-point
approximation to the exact path integral for Eq. (6)
subject to the condition (5). The saddle-point approxi-
mation relies on the small parameter T−1/4 in the noise

term. As this parameter goes to zero, the probability
density P(K,N, T ) becomes dominated by the optimal
(that is, most likely) gas density history ρ(x, t) and the
“conjugate momentum” density history p(x, t) which is
closely related to the optimal history of the noise ξ(x, t).
A derivation of the MFT equations for the integrated cur-
rent can be found in many papers, see e.g. Refs. [10, 13].
The dynamics of the rescaled ρ(x, t) and p(x, t) are de-
scribed by Hamilton’s equations

∂tρ = ∂xxρ− 2∂x [ρ(1 + ρ)∂xp] , (7)

∂tp = −∂xxp+ (2ρ+ 1)(∂xp)
2 , (8)

The rescaled initial condition (4) is

ρ(x, t = 0) = nδ(x) . (9)

The parameter n = N/
√
T describes the characteristic

particle density at the observation time t = T . As we
will see, it plays an important role in the solution.
The rescaled “final” condition (5) becomes

1

n

∫ ∞

0

ρ(x, t = 1) dx− 1

2
= κ . (10)

It can be accounted for via a Lagrange multiplier which
leads to the following “final” condition on p:

p(x, t = 1) = λθ(x) , (11)

where θ(x) is the Heaviside’s function. The Lagrange
multiplier λ is ultimately determined by the constraint
(10).
The large-deviation scaling of the probability distri-

bution P(K,N, T ), announced in Eq. (1), follows di-

rectly from the rescaling transformation x/
√
T → x and

t/T → t. The rate function s(κ, n) in Eq. (1) is given by
the rescaled mechanical action of the Hamilton’s system
(7) and (8):

s(k, n) =

∫ 1

0

dt

∫ ∞

−∞
dx ρ(1 + ρ)(∂xp)

2 . (12)

It is much simpler, however, to calculate s(k, n) by using
the “shortcut relation” ds/dκ = nλ, see e.g. Ref. [24].
This calculation only requires the knowledge of the den-
sity profile at t = 1 as a function of λ, or the inverse
relation.
Nonstationary MFT equations, similar to Eqs. (7) and

(8), have appeared in many large-deviation problems for
diffusive lattice gases. Such coupled nonlinear partial dif-
ferential equations are usually unamenable to exact solu-
tion, and one should resort to numerics and asymptotic
limits. Until now only a small number of exceptions have
been found [13, 15–17]. The list remains quite short even
if we add to it recent exact results obtained in a different
physical context of full short-time statistics of height as
described by the KPZ equation [25, 26].
As we show here, the present problem presents us with

one more fortunate exception. In order to see it, let
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us perform the Hopf-Cole canonical transformation from
ρ(x, t) and p(x, t) to the new variables

u = ρe−p , P = ep . (13)

In the new variables u(x, t) and P (x, t) the Hamilton’s
equations (7) and (8) are

∂tu = ∂xxu− 2∂x(u
2∂xP ), (14)

∂tP = −∂xxP − 2u(∂xP )
2. (15)

Remarkably, Eqs. (14) and (15) in the new variables for-
mally coincide with the MFT equations for the KMP
model in the original variables [10, 13, 16].

The boundary conditions in time, Eqs. (9) and (11)
become

u(x, t = 0) = ν δ(x) , where ν =
n

P (0, 0)
, (16)

and

P (x, t = 1) = eλθ(x) . (17)

Now let us introduce v(x, t) = −∂xP (x, t). Equations
(14) and (15) become

∂tu = ∂x
(
∂xu+ 2u2v

)
, (18)

∂tv = ∂x
(
−∂xv + 2uv2

)
. (19)

They should be solved with the initial condition (16) and
the final condition

v(x, t = 1) = −Λ δ(x) , (20)

where we have introduced Λ = eλ − 1. Using Eq. (17),
we can rewrite the integral constraint (10) in the new
variables:

1

n

∫ ∞

0

u(x, t = 1) dx =
1
2 + κ

1 + Λ
. (21)

The MFT problem obeys a nontrivial symmetry relation
in the new variables:

νv(x, t) = −Λu(−x, 1− t) . (22)

Remarkably, Eqs. (18) and (19) are equivalent to the
derivative nonlinear Schroedinger equation (DNLSE) in
imaginary space and time [27]. Formally, they coincide
with the MFT equations for the KMP model. This fact
was already exploited in Refs. [13, 16] (see also Ref. [17])
for exactly solving by the ISM a similar MFT problem
for the KMP model. A complication of the present case
is in that, because of the Hopf-Cole transformation, the
initial condition (9) becomes “spoiled” by the presence
of an a priori unknown quantity P (x = 0, t = 0). As
we show here, this complication can be overcome in a
relatively straightforward manner leading us to the exact
rate function s(κ, n). At this stage we only note that
P (x = 0, t = 0) can be expressed as an integral of v(x, t =
0) over x:

P (0, 0) = 1−
∫ 0

−∞
v(x, 0) dx , (23)

or alternatively

P (0, 0) = 1 + Λ +

∫ ∞

0

v(x, 0) dx . (24)

III. SOLUTION OF THE PROBLEM BY THE
ISM

A. Adapting the Kaup-Newell procedure of the
ISM

The problem posed by Eqs. (18) and (19) with bound-
ary conditions in time (16) and (20) can be solved using
the ISM. The derivation proceeds along the lines of Ref.
[13] with some adjustments that we will discuss shortly.
One defines an auxiliary scattering problem for a wave
function ψ(x, t; k), where k is an auxiliary parameter,
called ‘the spectral parameter’. The function ψ satisfies
the evolution equations ∂xψ = Uψ, ∂tψ = V ψ, where U
and V are given by the following expressions:

U =

(
−ik/2 −iv

√
ik

−iu
√
ik ik/2

)
, (25)

V =

(
k2/2− ikuv −i(

√
ik)3v + i

√
ik ∂xv − i

√
ik2v2u

−i(
√
ik)3u+ i

√
ik ∂xu− i

√
ik2u2v −k2/2 + ikuv,

)
. (26)

As one can check, the compatibility condition ∂t∂xψ =
∂x∂tψ, which corresponds to the equation

∂tU − ∂xV + [U, V ] = 0 (27)

applied to all k, is equivalent to our MFT equations (18)
and (19). The scattering problem ψ consists in finding
ψ(x, t) for given t and for x → ∞, given its behavior at
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x → −∞. In particular, given that, as x → −∞, the
function ψ is given by

ψ(x→ −∞, t) →
(
αe−

ikx
2

βe
ikx
2

)
, (28)

one searches for a 2×2 matrix T (k, t) such that at x→ ∞
the function ψ is given by

ψ(x→ ∞, t) →
(
e−

ikx
2 0

0 e
ikx
2

)
T (k, t)

(
α
β

)
. (29)

The elements of the matrix T (k, t) can be written as fol-
lows:

T (k, t) =

(
a(k) b̃(k)ek

2t

b(k)e−k2t ã(k)

)
. (30)

As one can see, the diagonal elements are time-
independent, while the off-diagonal ones have a very sim-

ple e±k2t time dependence. The reason for this simple
form is the simplified form of the matrix V at x → ±∞
because all the fields vanish there.

One can find the expressions for T (k, t) at t = 0 and
t = 1 in terms of the fields v(x, 0) and u(x, 1), respec-
tively, by making use of the boundary conditions in time
for Eqs. (18) and (19). Indeed, due to these boundary
conditions, the equation ∂xψ = Uψ becomes rather sim-
ple, and the result can be given by the Fourier transform
of the fields v(x, 0) and u(x, 1). In fact, one can compute

b̃(k) in two different ways – by using the data either at
t = 0 or at t = 1 – and obtain the following equation:

−i
√
ik [Q(k)− ikνQ−(k)Q+(k)]= b̃(k)= iλe

−k2√
ik,
(31)

where

Q+(k) =

∫ ∞

0

eikxv(x, 0)dx, Q+(k)=

∫ 0

−∞
eikxv(x, 0)dx,

Q(k) = Q+(k) +Q−(k). (32)

Equation (31) can be recast in the form

[1− ikνQ+(k)] [1− ikνQ−(k)] = 1 + iλνke−k2

. (33)

Note that the factors 1 − ikνQ±(k) are analytic in the
upper or lower half planes, respectively. Therefore, the
logarithm of the left hand side is a Wiener-Hopf decom-
position of the logarithm of the right hand side. Since
the Wiener-Hopf decomposition is achieved by a Cauchy
integral, we can write down a solution for Q±(k) in terms
of an exponent of that integral:

1− ikνQ±(k)

= (1± νv±) exp

± ∫ ∞

−∞

ln
(
1 + iλk′e−k′2

)
k′ − k ∓ i0+

dk′

2πi

 ,(34)
where v± are constants to be determined from the de-
mand that Q±(k) be regular at the origin. These con-
stants arise from the ambiguity of the Wiener-Hopf de-
composition with respect to an additive constant (which
is exponentiated here to form a multiplicative constant).
The demand that Q±(k) is regular at the origin, en-

suring a well-behaved v(x, 0) at infinity, yields:

1± νv± = exp

∓∫ ∞

−∞

ln
(
1 + iλk′e−k′2

)
k′ ∓ i0+

dk′

2πi

 . (35)

Since Q± is the Fourier transform of v(x, 0)θ(±x), one
can obtain v(x, 0) by an inverse Fourier transform. The
result is:

v(x, 0) =
1

ν

∫ ∞

−∞

e−ikx

ik

{
1− exp

±∫ ∞

−∞

 ln
(
1 + iΛνk′e−k′2

)
k′ − k ∓ i0+

−
ln
(
1 + iΛνk′e−k′2

)
k′

 dk′

2πi

}dk, (36)

where ± in this equation is equal to the sign of x.

B. Calculating the rate function s(κ, n)

Using Eq. (36), we obtain v± = v(0±, 0) as follows:

∓νv± = 1− exp

∓∫ ∞

−∞

ln
(
1 + iΛνke−k2

)
k

dk

2πi

 (37)

Now we use Eq. (23) for P (0, 0):

P (0, 0)−1 =
1

4πν

∫ ∞

−∞

ln
(
1 + Λ2ν2k2e−2k2

)
k2

dk +
Λ

2
.

(38)
Since ν = n/P (0, 0), Eq. (38) is actually a transcendental
equation which relates P (0, 0) to Λ at given n. This
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equation can be rewritten as

∫ ∞

−∞

ln
(
1 + Λ2n2

µ2 k2e−2k2
)

k2
dk

4π
=
n

µ

(
µ− 1− Λ

2

)
.

(39)

where we have denoted P (0, 0) = µ for brevity. Now we
turn to condition (21), for which we need to compute∫∞
0
u(x, 1) dx. By virtue of the symmetry relation (22),

we have∫ ∞

0

u(x, 1) dx = − ν

Λ

∫ 0

−∞
v(x, 0) dx =

ν

Λ
(µ− 1) , (40)

where the second equality uses Eq. (23). Then Eq. (21)
yields

µ = µ(κ,Λ) =
2(1 + Λ)

2− 2κΛ + Λ
. (41)

Plugging it into Eq. (39), we arrive at a single equation
for Λ at given κ and n:

∫ ∞

−∞

ln
(
1 + Λ2n2

µ2 k2e−2k2
)

k2
dk

4π
=

Λn [2κ(Λ + 2)− Λ]

4(Λ + 1)
,

(42)
where µ is given by Eq. (41).

n= N

T
=1

-0.4 -0.2 0.0 0.2 0.4

-4

-2

0

2

4

κ=K/N

λ

FIG. 1. The Lagrange multiplier λ = ln(1+Λ) vs. the relative
excess of transferred mass κ = K/N , found by numerically

solving the transcendental equation (42) for n = N/
√
T = 1.

Equation (42) is invariant under the transformation
κ→ −κ and Λ → −Λ/(1 +Λ), which corresponds to the
antisymmetry relation λ(−κ) = −λ(κ). In view of the
shortcut relation ds/dκ = nλ, this antisymmetry relation
reflects the physically obvious symmetry s(−κ) = s(κ) of
the rate function.

Equation (42) can be solved numerically for λ ≡
ln(1+Λ) as a function of κ at any given effective particle
density n. An example of such a solution is shown in
Fig. 1 for n = 1. With the function λ(κ, n) at hand, one
can compute the rate function by integrating λ(κ, n) over
κ: s(κ, n) = n

∫ κ

0
λ(κ′, n)dκ′. Because of the reflection

symmetry of the problem, x→ −x, it suffices to consider
0 ≤ κ ≤ 1/2.

Figure 2 compares the resulting rate function s(κ, n)
versus κ for three different values of n. At fixed κ the

n= N

T
=0.1

n=1

n=10

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

κ=K/N

s

FIG. 2. The rate function s(κ, n) vs. the relative excess of
transferred mass κ for n = 0.1, 1 and 10.

rate function grows with n, as to be expected on physical
grounds.
It is instructive to consider several asymptotic regimes

of the exact rate function s(n, κ). One of them is the
asymptotic at κ≪ 1 which is shown, for different values
of n, in Figs. 3-5. This asymptotic describes typical,
small fluctuations of κ, and it can be obtained from the
linear theory [28], see section A of the Appendix.
Another interesting asymptotic describes s(n, κ) close

to the edges of support of the distribution, κ = ±1/2.
Here the SIP and the KMP models behave very differ-
ently. For the KMP model the probability distribution
of κ vanishes at κ = ±1/2, so the corresponding rate
function diverges at these points [13]. As we elaborate in
section B of the Appendix, for the SIP the rate function
remains finite at κ = ±1/2, as is the case for the RWs.

n= N

T
=0.1 linear theory RWs

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

κ=K/N

s

FIG. 3. The rate function s(κ, n) vs. the relative excess of
transferred mass κ for n = 0.1. Also shown, for the same
n = 0.1, the κ ≪ 1 asymptotic and the rate function for the
RWs.

As we mentioned earlier, the SIP interpolates between
two lattice gas models: the noninteracting random walk-
ers (RWs) and the KMP model. Therefore, one can ex-
pect that, at n ≪ 1 and n ≫ 1 the rate function s(κ, n)
for the SIP should approach that for the RWs and for
the KMP model, respectively. These properties are in-
deed observed in Figs. 3 (for n = 0.1) and 4 (for n = 50),
respectively. For comparison, for an intermediate value
of n = 10 the predicted rate function for the KMP model
is still considerably higher than that for the SIP (Fig. 5).
In section C of the Appendix we present exact solution
of the mass excess problem for the RWs and compare
it with the n → 0 limit of the SIP. Then, in section D
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n=50 linear theory KMP

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

κ=K/N

s

FIG. 4. The rate function s(κ, n) vs. relative excess of trans-
ferred mass κ for n = 50. Also shown, for the same n = 50,
the κ ≪ 1 asymptotic and the rate function for the KMP
model [13].

n=10 KMPlinear theory

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

κ=K/N

s

FIG. 5. The rate function s(κ, n) vs. κ for n = 10. Also
shown, for the same n = 10, the κ ≪ 1 asymptotic and the
rate function for the KMP model [13].

of Appendix, we show how the KMP limit arises from
Eq. (42) at large n.

IV. SUMMARY AND DISCUSSION

We employed the ISM to determine exactly the full
long-time statistics of mass transfer, for a localized ini-
tial condition, of the SIP. The resulting large-deviation
rate function s(κ, n) interpolates in a nontrivial way be-
tween two lattice gas models – the RWs and the KMP
model, for each of which the exact mass transfer statis-
tics has been known. This interpolation is controlled by
the parameter n = N/

√
T , the effective density of the

system at the observation time T . In particular, there is
a difference in behavior between the SIP, even with an ar-
bitrary large effective density n = N/

√
T , and the KMP

model: At κ = ±1/2 the rate function remains finite for
the former, but diverges for the latter. This fundamental
difference can be traced down to the different nature of
the microscopic models: a continuous energy variable in
the KMP model versus discrete particles in the SIP and
RWs.

The MFT is as a particular example of the optimal fluc-
tuation method (OFM), a universal and versatile tool for
studying large deviations of macroscopic systems. Re-
vealing and exploiting exact integrability of the OFM
equations in different contexts offers pathway toward

making substantial progress in some of them.
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APPENDIX. ASYMPTOTICS OF THE RATE
FUNCTION s(κ, n)

A. κ ≪ 1: linear theory

For small κ Eqs. (7) and (8) can be linearized with
respect to |λ| [28]:

∂tρ = ∂xxρ, (A1)

∂tp = −∂xxp. (A2)

As a result, the rate function (12) becomes in the leading
order

slin =

∫ 1

0

dt

∫ ∞

−∞
dx ρ0(x, t) [1 + ρ0(x, t)] [v(x, t)]

2
,

(A3)
where

ρ0(x, t) =
ne−

x2

4t

√
4πt

and v(x, t) = − λe−
x2

4(1−t)√
4π(1− t)

. (A4)

are the solutions of Eqs. (A1) and (A2) with the corre-
sponding initial or final condition, respectively. Notice
that ρ0(x, t) describes the deterministic (zero-noise) evo-
lution of the system. Plugging Eqs. (A4) into Eq. (A3)
and evaluating the double integral, we obtain

slin(λ) =
1

16
λ2n

(√
2

π
n+ 2

)
. (A5)

Using the “shortcut relation” ds/dκ = nλ, we finally
obtain

s =
4nκ2√
2
πn+ 2

. (A6)

Exactly the same expression (A6) is obtained by expand-
ing the left- and right-hand sides of the exact equations
(42) and (41) at small Λ (which in this limit is equal to
λ). To this end one should expand the logarithm in the
numerator of the integrand,

ln

(
1 +

Λ2n2

µ2
k2e−2k2

)
≃ Λ2n2

µ2
k2e−2k2

, (A7)
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and evaluate the resulting integral over k.
In each of the limits of n → 0 and n → ∞ Eq. (A6)

coincides with the corresponding κ ≪ 1 asymptotics for
the RWs and the KMP model, see sections C and D of
this Appendix, respectively. For the RWs the distribu-
tion of K is independent of time, and the variance, back
in the original variables, is equal to N/4, as we also show
in section C of this Appendix.

B. κ → 1/2

When κ approaches 1/2, Λ goes to ∞, and Eq. (42)
becomes, in the leading order,

∫ ∞

−∞

ln
[
1 + n2(1 + Λδ)2k2e−2k2

]
k2

dk

4π
=
n

2
(1− Λδ) ,

(B1)
where δ = 1/2− κ≪ 1. As one can see, Λ and δ appear
only through the combination Λδ. Therefore, the solution
of Eq. (B1) has the form Λ ≃ f(n)/δ, with a function g(n)
that can be found numerically. Since Λ = eλ − 1 ≫ 1,
this is equivalent to λ ≃ ln[f(n)/δ]. Now it is evident

from the relation s = n
∫ 1/2

0
λ(κ′, n) dκ′ that s remains

finite at κ = 1/2, as indeed observed in Figs. 2-5. At κ
close to 1/2 the rate function behaves as

s(κ, n) ≃ s0(n)− n

(
1

2
− κ

)
ln

f(n)
1
2 − κ

. (B2)

C. n ≪ 1: Noninteracting Random Walkers

Here we consider the complete mass transfer statistics
in the system of N ≫ 1 independent random walkers
(RWs), simultaneously released at the origin at t = 0.
At long times this model becomes identical to that of
independent Brownian particles. Let us start with a mi-
croscopic solution, which is very simple. At t > 0 the
expected number of particles in the region x > 0 is equal
to N/2. We are interested in the probability P that,
at time t = T , there are exactly M particles at x > 0,
where 0 ≤ M ≤ N . The probability that a single par-
ticle is found at x > 0 is 1/2; it is independent of time
T . Since the RWs are independent, the probability P we
are after is given by the binomial distribution

P (M,N) =

(
N

M

)
2−N . (C1)

Now we assume that N,M ≫ 1 and solve the same
problem by using the MFT. In this way we can also de-
termine the optimal path of the system conditioned on a
specified K. The MFT equations for the RWs are, in the
original variables:

∂tρ = ∂x(∂xρ− 2ρ∂xp), (C2)

∂tp = −∂2xp− (∂xp)
2. (C3)

These equations coincide with the ρ→ 0 limit of Eqs. (7)
and (8) for the SIP. The initial condition is ρ(x, t = 0) =
Nδ(x), and the condition at t = T is p(x, T ) = λθ(x),
where λ is the Lagrange multiplier, and θ(x) is the theta-
function. The action, − lnP ≃ S, takes the form

S =

∫ T

0

dt

∫ ∞

−∞
dx ρ(∂xp)

2. (C4)

This MFT problem is exactly solvable via the Hopf-Cole
transformation (13). In the new variables one obtains
two decoupled linear equations

∂tu = ∂xxu , (C5)

∂tP = −∂xxP , (C6)

with the boundary conditions in time

u(x, 0)P (x, 0) = Nδ(x) , P (x, T ) = eλθ(x) . (C7)

This problem can be solved first for P (x, t) and then for
u(x, t). In particular, we obtain, already in the original
variables, the optimal density history

ρ(x, t) =
Ne−

x2

4t

[(
eλ − 1

)
erf
(

x
2
√
T−t

)
+ eλ + 1

]
√
4πt (eλ + 1)

.

(C8)
The Lagrange multiplier λ can be found from the condi-
tion

1

N

∫ ∞

0

ρ(x, T ) dx− 1

2
=
K

N
≡ κ , (C9)

where again K =M −N/2 is the excess number of par-
ticles at x > 0. Equation (C9) yields

λ = 2arctanh (2κ) , (C10)

Using Eq. (C10) and the relation dS/dκ = Nλ, we obtain
the rate function s(κ) ≡ S(κ,N)/N :

s(κ) =
1 + 2κ

2
ln (1 + 2κ) +

1− 2κ

2
ln (1− 2κ) . (C11)

As to be expected, this expression is independent of
the measurement time T . The ensuing probability
P(K,N) ∼ exp[−Ns(κ)] coincides with the N ≫ 1
asymptotic of the binomial distribution (C1). Figure 6
shows a plot of S/N vs. κ.
The quadratic asymptotic of S at κ ≪ 1 describes

typical, small fluctuations of K, with VarK = N/4.
The largest possible deviations of K correspond to the
maximum values of S, Smax(K = ±N/2) = N ln 2,
which are achieved at the edges of the distribution sup-
port and agree with the exact microscopic probabilities
P(M = 0) = P(M = N) = 2−N . This probability is
manifestly finite.
The optimal density profiles ρ(x, t) at different rescaled

times t/T , as described by Eqs. (C8) and (C10), are
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FIG. 6. The rate function s = S/N vs. κ = K/N for the
RWs.
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FIG. 7. The spatial profiles of the optimal density history
ρ(x, t) for the RWs for κ = K/N = 1/4 at times t/T = 0.05
(black), 0.7 (blue) and 1 (red).

shown in Fig. 7. Noticeable is a growing with time left-
right asymmetry which culminates at t = T as a density
discontinuity at x = 0.

Now we show how Eq. (C10) for the RWs arises in

the limit of n → 0 of Eq. (42) for the SIP. At small n
the numerator of the integrand in Eq. (42) can again be
expanded at small argument, as in Eq. (A7). Evaluating
the resulting integral, we arrive, after cancellations, at
the following equation:

Λn(Λ− 2κΛ + 2)2

4
√
2π(Λ + 1)

= 2κ(Λ + 2)− Λ . (C12)

In the limit of n → 0 the right hand side must vanish,
and we obtain

Λ =
4κ

1− 2κ
. (C13)

The resulting λ ≡ ln(1 + Λ) yields Eq. (C10).
Finally, at κ close to 1/2 the rate function (C11) agrees

with Eq. (B2) with s0 = n ln 2 and f(n) = 1/2, indepen-
dent of n.

D. n ≫ 1: the KMP limit

The rate function for the KMP model was calculated
in Ref. [13]. Here we show how it can be recovered from
our Eq. (42) for the SIP in the limit of n → ∞. When
n → ∞, and once κ is not too close to 1/2, Λ goes to
zero in such a way that Λn = O(1), and Eq. (42) yields

κ =
1

nΛ

∫ ∞

−∞

ln
(
1 + Λ2n2k2e−2k2

)
k2

dk

4π
. (D1)

This expression exactly coincides with Eq. (27) of Ref.
[13], once we identify nΛ with the Lagrange multiplier λ
of Ref. [13] to account for the slightly different rescalings
in Ref. [13] and here.
This KMP-like behavior breaks down in a narrow

boundary layer near κ = 1/2 leading to a finite rate func-
tion at κ = 1/2, see section B of this Appendix. This
boundary layer shrinks to zero in the limit of n→ ∞.
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