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Abstract

Data-Free Knowledge Distillation (DFKD) is a promis-
ing task to train high-performance small models to enhance
actual deployment without relying on the original training
data. Existing methods commonly avoid relying on private
data by utilizing synthetic or sampled data. However, a
long-overlooked issue is that the severe distribution shifts
between their substitution and original data, which mani-
fests as huge differences in the quality of images and class
proportions. The harmful shifts are essentially the con-
founder that significantly causes performance bottlenecks.
To tackle the issue, this paper proposes a novel perspec-
tive with causal inference to disentangle the student mod-
els from the impact of such shifts. By designing a cus-
tomized causal graph, we first reveal the causalities among
the variables in the DFKD task. Subsequently, we propose a
Knowledge Distillation Causal Intervention (KDCI) frame-
work based on the backdoor adjustment to de-confound the
confounder. KDCI can be flexibly combined with most exist-
ing state-of-the-art baselines. Experiments in combination
with six representative DFKD methods demonstrate the ef-
fectiveness of our KDCI, which can obviously help existing
methods under almost all settings, e.g., improving the base-
line by up to 15.54% accuracy on the CIFAR-100 dataset.

1. Introduction
Deep Neural Networks (DNNs), as a powerful and reli-
able tool, are increasingly expected to be applied to prac-
tical artificial intelligence scenes [1–7]. Despite significant
progress, good performance of deep learning models is of-
ten inseparable from large-scale models [8–13] and high-
quality original training data [14–20]. The dependencies
hinder the deployment of this technology on mobile devices
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Figure 1. Diagrams of the distribution shifts between the original
and substitute data for existing DFKD methods on CIFAR-10. (a)
represents the random visualization and FID score of the synthetic
data by DAFL, DeepInv, and sampled by DFND. (b) indicates the
proportion of sample numbers in various classes (%) of the origi-
nal and substitute data.

and data privacy scenes. Therefore, model compression
and data-free technology have become the key to breaking
through the bottleneck. To this end, Lopes et al. [21] pro-
pose the Data-Free Knowledge Distillation (DFKD) task. In
this process, knowledge is transferred from the cumbersome
model to a small model that is more suitable for deployment
[22–24] without relying on the original training data. As a
result, DFKD has received more attention due to its conve-
nience and wide application.

Since the original training data is not available for pri-
vacy or other reasons [25], the key is how to supplement
the new training data, i.e., the substitution data. Based
on the source of the substitution data, almost all existing
DFKD methods can be divided into generation-based and
sampling-based methods. Despite the impressive improve-
ments achieved by these DFKD methods through complex
loss stacking [26, 27] and knowledge distillation strategies
[28, 29], the trained students still suffer from distribution
shifts between the substitution and original data, which has
long been overlooked. First, the quality of the synthetic
or sampled images significantly differs from the original.
Besides, for generation-based methods, the synthetic data
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relies on the teacher’s guidance, and it is easier to syn-
thesize the class familiar to the generator. For sampling-
based methods, the sampled data entirely depends on the
teacher’s preference for various classes. These protocols
make the preference of the teacher model inevitably affect
class proportions and also lead to distribution shifts. Such
shifts confound the student learning process. For example,
if a pre-trained teacher model is not familiar with a spe-
cific class A, i.e., it is difficult to obtain high confidence,
resulting in fewer synthetic or sampled data belonging to
A. For the class balance, the teacher tends to classify am-
biguous and indistinguishable data into A, leading to the
distribution shifts [30]. Relying on these data, the student
is inevitably confused with the original testing data with the
different distributions.

More intrigued, we select three DFKD methods (DAFL
[31], DeepInv [26], and DFND [32]) and perform a toy
experiment on the CIFAR-10 [33]. This toy experiment
aims to show the distribution shifts between the substitu-
tion and original data. These methods include generation
with generators (DAFL), generation through teacher model
inversion (DeepInv), and sampling based on teacher pref-
erences (DFND). We use the original data as a comparison
benchmark and compare them from two aspects: the quality
of images and class proportions. The results are shown in
Figure 1. In Figure 1a, we randomly visualize the original
data, the substitution data of DAFL, DeepInv, and DFND,
and calculate the Fréchet Inception Distance (FID, lower is
better) [34], a metric widely used to evaluate the quality
of images. The substitution and original data are different
for the data distribution domain. In Figure 1b, we test the
class proportions (the substitution data is based on teacher
pseudo-labels). A prominent result is that the classes of the
substitution data are unbalanced due to teacher preferences,
which greatly differ from the original data. These observa-
tions confirm the distribution shifts between the substitution
and original data, confounding the student model.

Based on these observations, we attempt to introduce a
new perspective with causal inference to handle the distri-
bution shifts. During the application of theoretical causal
inference [35] to the DFKD task, the challenges lie in de-
scribing and designing plausible causal effects and identi-
fying and compensating for biased student learning on the
substitution data with shifts. To this end, this paper at-
tempts to address the challenges by drawing on instinctive
human causalities [36] to find causal relationships among
the variables in the DFKD task and optimize the biased stu-
dent training process. We first disentangle the causalities
and customize the causal graph according to the properties
of the variables in the DFKD task. Based on this, we ex-
plore the causal paths from the substitution inputs X to the
student predictions S. Then, we propose a simple yet ef-
fective Knowledge Distillation Causal Intervention (KDCI)

framework to achieve de-confounded DFKD and use the
do-calculus P (S|do(X)) to calculate the actual causal ef-
fect, instead of classic likelihood P (S|X) without consid-
ering the shifts. KDCI can be easily combined with ex-
isting methods and use the backdoor adjustment [37] to de-
confound and alleviate the impact of the shifts. Experiments
on KDCI combined with six representative DFKD methods
demonstrate its strong positive effect on the existing DFKD
pipeline. Specifically, the primary contributions and exper-
iments are summarized below:
• To our best knowledge, we are the first to alleviate the

dilemma of the distribution shifts in the DFKD task from
a causality-based perspective. Such shifts are regarded as
the harmful confounder, which leads the student to learn
misleading knowledge.

• We propose a KDCI framework to restrain the detri-
mental effect caused by the confounder and attempt to
achieve the de-confounded distillation process. Besides,
KDCI can be easily and flexibly combined with existing
generation-based or sampling-based DFKD paradigms.

• Extensive experiments on the combination with six
DFKD methods show that our KDCI can bring consis-
tent and significant improvements to existing state-of-the-
art models. Particularly, it improves the accuracy of the
DeepInv [26] by up to 15.54% on the CIFAR-100 dataset.

2. Related Work
Data-Free Knowledge Distillation. Data-free knowledge
distillation is a promising task to train small models while
avoiding leakage of original training data [21, 38]. The
critical point is how to supplement substitution data [39–
42]. The existing methods are mainly divided into three
types: Generative Adversarial Networks (GANs) gener-
ation [29, 31], teacher-based model inversion generation
[26, 27], and unlabeled data sampling [28, 32, 43]. Chen
et al. [31] introduce the generator into the DFKD task and
improve teachers’ familiarity with generating data. Fang et
al. [29] propose feature sharing to simplify the generation
process. To better generation quality, Yin et al. [26] explore
the prior knowledge of the data. Fang et al. [27] introduce
contrastive learning to enhance student performance. Chen
et al. [32] and Fang et al. [28] select wild data and out-
of-domain (OOD) data to reduce generation costs. Despite
the promising performance, a long-overlooked issue is data
distribution shifts, i.e., the distribution bias of the student’s
training data and the original data is a confounder that sig-
nificantly causes performance bottlenecks.
Causal Inference. Causal inference is a theory-oriented
tool that seeks actual effects in a specific phenomenon [35],
which has been studied and followed by diverse fields such
as economics [44] and psychology [45] communities. The
mainstream causal inference studies applied to neural in-
formation processing consist of two aspects: intervention
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Figure 2. The causal graph. (a) The existing methods ignore dis-
tribution shifts. (b) The shifts are alleviated by causal inference.

[46–51] and counterfactuals [52–55]. Intervention is a tech-
nique for manipulating the original data distribution to re-
veal causal effects [37]. Counterfactual describes the imag-
ined results generated by factual variables when treated dif-
ferently [56]. Benefiting from the strong potential of causal
inference to decouple spurious correlations among vari-
ables, it is gradually adopted to improve the performance of
models for different downstream tasks, such as visual ques-
tion answering [57], emotion recognition [58], and scene
graph generation [52]. In contrast, to our best knowledge,
this is the first work to identify the distribution shifts in the
DFKD task through the causal intervention and alleviate the
confounding effect caused by the shifts.

3. Methodology

3.1. Causal Graph of DFKD Task

First, we customize the causal graph according to the prop-
erties of the variables in the DFKD task. Specifically, the
teacher is pre-trained with original training data, which is
not disturbed by distribution shifts. For the student, it uses
the substitution data to train while testing on the original
data. The data distribution shifts indicate that it will be
disturbed by the biased data [30]. During the distillation
process, the teacher and student are fed the same substitu-
tion data. In this case, the student’s predictions are con-
strained to learn the teacher’s predictions. Following the
same graphical notation as [59] for clarity and interpretabil-
ity, we denote the variables with the notes N and construct
the direct causal effects with the links E . From Figure 2,
there are four variables involved in the DFKD causal graph
G = {N , E}, which includes the substitution inputs X , the
confounder Z, the teacher’s predictions T , and the student’s
predictions S. In particular, our causal graph is applicable
to almost all existing DFKD methods so that it can be used
as a general framework. The details of the causal relation-
ships are described as follows.

Z → X . Existing DFKD methods rely on teacher
predictions to supplement substitution data. For the
generation-based methods, the generator is guided by the
teacher and more inclined to synthesize data that is easier to
synthesize [26, 27, 29, 31]. For the sampling-based meth-
ods, the data that the teacher is most [32] or least [28] fa-

miliar with is sampled. On the one hand, these synthetic
or sampled data are always class-imbalanced. On the other
hand, these sources of substitution data rely heavily on the
teacher, so they are highly volatile and vulnerable to teacher
preferences. These issues cause the distribution shifts be-
tween the original and substitution data. The shifts are
treated as the harmful confounder Z [56]. On this basis,
the confounder Z causes the substitution data X to be bi-
ased compared to the original data, i.e., Z →X .

Z → S. Due to the distribution shifts between the sub-
stitution and original data, the student trained on the substi-
tution data tends to produce and exhibit biased predictions
during the testing stage. The detrimental confounder Z con-
founds and affects the student’s training via the causal link
Z → S, which causes the performance bottleneck.

X → T /S & T ↔ S. As with existing DFKD meth-
ods, both teacher and student make predictions on the sub-
stitution data X simultaneously. By constraining their pre-
diction distributions, the student’s parameters are updated
for optimization. In our DFKD causal graph, the predic-
tion processes of the teacher and student are represented
as X → T and X → S. The link T ↔ S reflects the
interaction causal effect between these two predictions dur-
ing knowledge distillation. Through these paths, the student
can learn consistent knowledge from its teacher.

According to the causal theory [35], the confounder Z
as a common cause directly or indirectly impacts the sub-
stitution inputs X and the student’s predictions S simulta-
neously. The knowledge transfer process from T to S in-
creases the student’s familiarity with these substitution data.
However, the confounder Z causes X to shift the original
data distribution, leading to impure knowledge, which ad-
versely affects student performance. The detrimental effects
follow the backdoor causal path as X ← Z → S.

3.2. Causal Intervention via Backdoor Adjustment

In the existing DFKD task, the pre-trained teacher model is
fixed while the student model is learnable. As shown in Fig-
ure 2a, existing methods rely on the likelihood estimation of
the student model as P (S|X). The knowledge transfer pro-
cess is expressed as:
P (S|X)=

∑
z

P (S|X,KD⟨T =fT (X),S=fS(X,z)⟩)P (z|X),

(1)
where KD ⟨ , ⟩ represents the knowledge distillation process
between T and S. fT (·) and fS(·) represent the teacher
model and the student model. The confounder Z intro-
duces the data distribution shifts via P (z|X), which makes
the knowledge learned by the student impure. To get rid
of the confounding effect caused by Z, an intuitive idea is
changing inputs X to overcome the data distribution shifts
and make X unaffected by Z, i.e., we have to use the
data from the same distribution with the original training
set as the student’s training data. However, it is not pos-
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Figure 3. The overview of our KDCI. In stage (a), all substitution data is fed a pre-trained model to explore the prior knowledge and
construct the confounder dictionary. In stage (b), the prototype integration is built by the confounder dictionary and is used to compensate
for biased student predictions. The distillation loss is calculated between the teacher’s prediction and the student’s compensated prediction.

sible under the setting of the DFKD task. To tackle this
issue, we introduce the backdoor adjustment [35] to con-
struct causal intervention P (S|do(X)) and block the back-
door path between X and S via Z. As a theoretical op-
eration, implementing backdoor adjustment can be viewed
as measuring the distribution shifts by estimating the aver-
age causal effect based on the class proportions. By com-
pensating for shifted student predictions, we alleviate the
shift issue and suppress the disturbance of the confounder
Z. In this case, the causal path from Z to X is cut-off in
Figure 2b. The student learns pure knowledge with causal
intervention P (S|do(X)) rather than original biased likeli-
hood P (S|X). This process can be expressed as:

P (S|do(X))=
∑
z

P (S|X,KD⟨T =fT (X),S=fS(X,z)⟩)P (z),

(2)
where X is no longer disturbed by z since causal interven-
tion forces X to integrate each z fairly into the predictions
of S, according to the corresponding prior P (z).

3.3. De-confounded DFKD with KDCI

To de-confound the DFKD task, we propose a Knowledge
Distillation Causal Intervention (KDCI) framework to alle-
viate the distribution shift issue. The overview of KDCI
is shown in Figure 3, which contains two stages: con-
founder dictionary construction and knowledge distillation
with bias compensation. First, after obtaining the substitu-
tion data and before training the student, we model the prior
knowledge of these substitution data through the prototype
clustering algorithm to obtain an intervention-driven con-
founder dictionary. Then, the biased student predictions are
compensated based on the subcenters and proportions. No-
tably, for a general DFKD pipeline, our framework can be
easily combined with other methods. The implementation
of KDCI is as follows.
Confounder Dictionary Construction. Since the substi-

tution data has no ground-truth information and the actual
classes are ambiguous, we define a confounder dictionary
Z = [z1, z2, . . . ,zN ] to explore the prior knowledge of
these data. N is a hyperparameter representing the con-
founder size and zi ∈ Rd is a single prototype. The prior
knowledge implies the potential shifts and the differentia-
tion information of class proportions. From Figure 3a, all
substitution data is fed to an experienced pre-trained model
(e.g., the teacher model itself) to obtain the prediction fea-
ture set M =

{
mj ∈ Rd

}Nm

j=1
, where Nm is the number

of the substitution data. We employ the K-Means++ with
principle component analysis as the prototype clustering al-
gorithm. After clustering, each zi represents a prototype
feature cluster, and the prototype subcenter is put into the
confounder dictionary as a prototype representation. The
feature cluster is denoted as

∑Ni

k=1m
i
k and the subcenter is

denoted as zi = 1
Ni

∑Ni

k=1m
i
k, where Ni is the number of

the prediction features in i-th cluster. Therefore, the proto-
type proportion can be calculated as P (zi) = Ni/Nm.
Knowledge Distillation with Bias Compensation. After
confounder dictionary construction, we approximate a the-
oretical causal inference by the confounder dictionary and
prototype proportions to compensate for biased student pre-
dictions to learn pure knowledge, as shown in Figure 3b.
In practice, the calculation of P (S|do(X)) requires multi-
ple forward passes of all z resulting in expensive compu-
tational costs. To simplify the above process, we apply the
Normalized Weighted Geometric Mean (NWGM) [60] and
approximate the Eq. (2) as:

P (S|do(X))≈P (S|X,KD⟨fT (X),
∑
z

fS(X,z)P (z)⟩). (3)

During the knowledge transfer process, the update of stu-
dent model parameters depends on the difference in predic-
tions between the teacher and student, e.g., calculating the
Kullback-Leibler (KL) divergence as fS ← η∇sKL(T ,S),
where η denotes learning rate, and∇s denotes the gradient.
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Considering the distribution shift of training data, we intro-
duce the prepared prior information of the cofounder dictio-
nary to optimize the above process. Based on this, the stu-
dent predictions after compensation are represented as the
integration of the biased predictions and the prior informa-
tion as: P (S|do(X)) = ϕ(fS(X), F (z)), where ϕ(·) is a
practically simple yet empirically powerful addition fusion
strategy. The prior information F (z) is calculated as:

F (z) =

N∑
i=1

λiziP (zi), (4)

where λi is a weight coefficient that measures the impor-
tance of each prototype subcenter zi. P (zi) is the propor-
tion of data in the i-th cluster. Here, we design an imple-
mentation of λi with the additive attention as:

λi = softmax(Wt · Tanh(WqfS(X) +Wkzi)), (5)

where Wt ∈ Rdn×1, Wq ∈ Rdn×dh , and Wk ∈ Rdn×d are
learnable mapping matrices.

4. Experiments
4.1. Datasets and Models

Datasets. We evaluate the proposed framework on widely
used classification datasets: CIFAR-10 [33], CIFAR-100
[33], Tiny-ImageNet [61], and ImageNet [16]. CIFAR-10
and CIFAR-100 contain 50,000 training samples and 10,000
testing samples of 32×32 resolution. Tiny-ImageNet con-
tains 100,000 training samples, 10,000 validating samples,
and 10,000 testing samples of 64×64 resolution. ImageNet
contains 1000 classes with 1.28 million training samples
and 50,000 validating samples of 224×224 resolution.
Models. We test the performance of various DFKD meth-
ods on several network architectures, including resnet [1],
vgg [62], and wide resnet [63]. For CIFAR-10 and CIFAR-
100, we use the pre-trained teacher models from CMI [27],
unify the teacher models among all methods, and set up
five teacher-student backbone combinations following ex-
isting settings [27–29]. For Tiny-ImageNet, we train a
renset-34 teacher model without the mixup data augmen-
tation [64]. And the student utilizes the renset-18 as its
backbone. For ImageNet, we choose the same pre-trained
resnet-50 teacher model with [65] for all baseline methods.

4.2. Method Zoo

To comprehensively verify the effectiveness of KDCI, we
select representative DFKD methods, including generation-
based and sampling-based methods. The generation-based
methods spend extra computing costs to obtain substitute
data by generative adversarial networks and teacher inver-
sion, including DAFL [31], Fast [29], CMI [27], and Deep-
Inv [39]. The sampling-based methods use unlabeled data

as the substitute data, including Mosaick [28] and DFND
[32]. For DAFL, Fast, and DeepInv, we follow the same
settings as their original papers. For CMI, due to the un-
published pre-inversion data, we choose the base version of
CMI, which leads to the performance slightly lower than
that reported in the original paper. For Mosaick and DFND,
we sample 600k unlabeled data in ImageNet [16] for CIFAR
and Tiny-ImageNet, and 600k unlabeled data in Flicker1M
dataset for ImageNet. Due to the image quality, the reported
performance of Mosaick is slightly better than the original
paper. The implementation details and loss functions of all
the above methods are shown in Supplementary Sec.7.

4.3. Confounder Setup

We use a pre-trained model to obtain the prediction feature
set M . By default, the pre-trained model is the teacher
itself, which is trained on original data. Each prediction
feature m is extracted from the logits output of the last
layer, and the hidden dimension d is equal to the number
of classes. By default, the number of clusters N is the same
across different datasets. For the substitution data in a mini-
batch of model inversion [27, 39], the number of clusters
N is 32. For the synthetic mini-batch from GANs [29, 31],
the number of clusters N is 8. For the unlabeled substitu-
tion data in sampling methods [28, 32], the number of clus-
ters N is 128. Due to different training paradigms, the way
KDCI is combined with these methods is different. For the
generation-based process, the generator and student models
are updated alternately. We use a mini-batch of synthetic
training data to construct the cofounder dictionary, and the
dictionary will be updated as the generator is updated. For
the sampling-based process, unlabeled data only needs to
be filtered once. We build the confounder dictionary once
before distillation. Pseudocode for the above processes and
other training settings are shown in Supplementary Sec.1.

4.4. Performance Comparison

To verify the proposed KDCI framework, we compare the
original version and their KDCI-based version.
Results on CIFAR-10 and CIFAR-100. The results in
Table 1 show the following vital observations. (i) KDCI
consistently improves the performance of existing meth-
ods on all baselines across two datasets. (ii) For CIFAR-
10, although the original students’ performance is already
close to their teachers’, KDCI still provides promising gains
(mostly 1%-2% improvement) for students by eliminating
the harmful impact of confounder. For some baselines
with poor results, KDCI brings significant improvement,
e.g., up to 8.85%† for DAFL. (iii) For CIFAR-100, KDCI
can significantly improve various SOTA methods (about
3%-5% improvement on average). Under some settings,
KDCI improves the original methods with slightly lower
performance to competitive performance, e.g., 15.54%‡ and
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Table 1. The accuracy (%) on CIFAR-10 and CIFAR-100 about baseline methods vs. their KDCI-based version. T.backbone and
S.backbone represent the backbones of the teacher and student. Teacher and Student refer to scratch training on original data. The
improved results are marked in bold. {†, ‡, ♮, ♯} denote the provenance mentioned in the analysis.

Dataset CIFAR-10 CIFAR-100

T.backbone resnet-34 vgg-11 wrn-40-2 wrn-40-2 wrn-40-2 resnet-34 vgg-11 wrn-40-2 wrn-40-2 wrn-40-2
S.backbone resnet-18 resnet-18 wrn-16-1 wrn-40-1 wrn-16-2 resnet-18 resnet-18 wrn-16-1 wrn-40-1 wrn-16-2

Teacher 95.70 92.25 94.87 94.87 94.87 78.05 71.32 75.83 75.83 75.83
Student 95.20 95.20 91.12 93.94 93.95 77.10 77.10 65.31 72.19 73.56

DAFL 92.22 81.10 65.71† 81.33 81.55 74.47 54.16 20.88♯ 42.83 43.70
DAFL+KDCI 92.62 81.31 74.56† 82.91 82.65 74.51 58.79 31.75♯ 46.16 48.48

Fast 94.05 90.53 89.29 92.51 92.45 74.34 67.44 54.02 63.91 65.12
Fast+KDCI 94.56 91.16 89.62 93.09 92.85 75.10 68.97 54.69 67.09 68.12

CMI 94.24 91.24 89.16 91.93 92.00 74.64 66.68 55.28 63.44 64.22
CMI+KDCI 94.43 91.28 89.52 92.84 92.73 75.07 69.07 57.19 67.47 67.68

DeepInv 93.26 90.36 83.04 86.85 89.72 61.32♮ 54.13‡ 53.77 61.33 61.34
DeepInv+KDCI 93.67 91.42 83.47 89.32 91.06 74.59♮ 69.67‡ 55.22 62.13 65.90

Mosaick 95.27 91.69 90.03 93.28 92.94 75.91 71.58 59.32 66.61 67.36
Mosaick+KDCI 95.43 92.36 92.25 94.45 94.20 77.06 71.86 62.03 72.19 72.39

DFND 95.36 91.86 90.26 93.33 93.11 74.42 68.97 59.02 69.39 69.85
DFND+KDCI 95.44 92.54 92.47 94.43 94.43 77.09 72.12 66.37 74.20 74.52

Table 2. The accuracy (%) on Tiny-ImageNet dataset. The teacher
uses resnet-34, and the student uses resnet-18 as the backbones.
The teacher achieves an accuracy of 52.74%. The GPU time indi-
cates the training time of one epoch on a single RTX 3090 GPU.

Method Accuracy (%) GPU time Memory-Usage

Fast 28.79 101.67s 5745M
Fast+KDCI 38.23 (+9.44) 104.43s (+2.71%) 5748M (+0.05%)

DeepInv 20.68 255.26s 3312M
DeepInv+KDCI 34.84 (+14.16) 258.51s (+1.27%) 3316M (+0.12%)

DFND 42.64 129.16s 4196M
DFND+KDCI 49.54 (+6.90) 133.42s (+3.30%) 4198M (+0.05%)

13.27%♮ for DeepInv & 10.87%♯ for DAFL. These strong
gains demonstrate that KDCI can compensate for biased
student predictions to learn pure knowledge by constructing
prior knowledge on the substitution data whose data distri-
bution differs from the original data distribution. (iv) We
notice a small increase for KDCI-based Fast & CMI. The
reasonable explanation is that they extract prior knowledge
about the substitution data by accessing the statistics in the
teacher’s Batch Normalization layers [66], which implicitly
apply the likelihood estimation and weaken our causal in-
tervention. (v) Besides, we are pleasantly surprised to find
that the students trained by sampling-based methods (e.g.,
Mosaick & DFND) can slightly outperform the teacher in
some settings (e.g., vgg-11→resnet-18), both the original
and KDCI-based versions. Both Mosaick and DFND uti-
lize the unlabeled data. With the additional rich semantic
knowledge, more students outperform their teachers with
the help of KDCI framework.
Results on Tiny-ImageNet. For the Tiny-ImageNet, we
conduct experiments with Fast, DeepInv, and DFND. The
results are shown in Table 2. With the help of KDCI, the ac-
curacy of the three methods is increased by 9.44%, 14.16%,

Table 3. The accuracy (%) on ImageNet dataset. “→” denotes the
teacher’s (left) and student’s (right) backbone pair.

Settings resnet-50→ resnet-18 resnet-50→ mobilenetv2

Fast 53.45 43.02
Fast+KDCI 58.24 (+4.79) 50.12 (+7.10)

Deeplnv 51.36 40.25
Deeplnv+KDCI 55.27 (+3.91) 46.24 (+5.99)

DFND 42.82 16.03
DFND+KDCI 51.26 (+8.44) 34.32 (+18.29)

and 6.90%, respectively. The Tiny-ImageNet dataset con-
tains richer semantic information, which helps construct
more expressive confounders and facilitates KDCI to bring
more sufficient gains. Besides, we test and show the addi-
tional calculation and memory overhead. The overhead in-
troduced by KDCI mainly comes from the confounder ma-
trix. The additional overhead can be almost negligible since
only a simple clustering algorithm is used.
Results on ImageNet. For the ImageNet, we conduct two
backbone combinations with three baseline methods. The
results are shown in Table 3. The generation-based meth-
ods (Fast & Deeplnv) have to train 1,000 generators (one
generator for one class). We speculate that a possible reason
why KDCI has smaller gains for these two generation-based
methods is that ‘one generator for one class’ may alleviate
the distribution shifts issue to a certain extent and thereby
weaken the effect of causal intervention. In comparison, the
gain of KDCI for DFND is higher. Overall, from the exper-
imental results of ImageNet, the positive impact of KDCI
on students is also consistent. These results further validate
the effectiveness of our method.

Combining the performance on the above datasets, we
conclude that KDCI can provide more significant help on
more complex datasets (e.g., ImageNet & Tiny-ImageNet
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Table 4. Ablation studies about the prior information F (z) =
∑N

i=1 λiziP (zi) in Eq. (4). The results include (1) original F (z), (2)
random weight coefficient λi, (3) random confounder dictionary zi, and (4) without (w/o) prototype proportion P (zi).

Settings (1) Original F (z) (2) Random λi (3) Random zi (4) w/o P (zi)

Methods Fast DeepInv DFND Fast DeepInv DFND Fast DeepInv DFND Fast DeepInv DFND
CIFAR-10 94.56 93.67 95.38 93.92 91.56 95.28 93.35 91.84 94.94 93.70 92.76 95.11

CIFAR-100 75.10 74.59 77.09 74.79 72.72 76.86 73.76 72.81 76.14 74.60 72.66 76.97

DFND

N

Fast DeepInv

N N
Figure 4. The test accuracy (%) on CIFAR-10 and CIFAR-100 datasets about different confounder dictionary size N . The teacher uses
resnet-34, and the student uses resnet-18 as the backbones.

with more classes and various visual effects). More com-
plex datasets are more susceptible to teacher preferences,
leading to more severe distribution shifts. Further, the
detrimental shifts inevitably lead to biased substitution data
compared to the original data. Fortunately, KDCI favorably
de-confound the biased student predictions, achieving sig-
nificant performance improvements.

4.5. Analysis of Prior Information F (z)

We conduct ablation studies to validate the effectiveness of
the components of prior information F (z) in Eq. (4) used to
compensate students for biased predictions in Table 4. We
select three methods (Fast, DeepInv, and DFND) on both
CIFAR-10 and CIFAR-100 datasets. The teacher and stu-
dent use resnet-34 and resnet-18 as their backbones, respec-
tively. Other settings are the same as Table 1.

Necessity of Weight Coefficient λi. The weight λi repre-
sents the degree of each confounder. Comparing (1) and (2),
the random λi causes a decline in performance. Such results
indicate that depicting the importance of each confounder is
essential to achieve effective causal intervention.

Rationality of Confounder zi. The confounder zi comes
from the predicted feature representation of the pre-trained
model, which directly implies prior knowledge about the
substitution data. Comparing (1) and (3), students using our
custom confounder significantly outperform the alternative
confounder that are randomly initialized, which proves the
validity of extracted prior knowledge.

Impact of Prototype Proportion P (zi). The prototype
proportion P (zi) denotes the frequency of each confounder
containing the knowledge of feature proportions. From (1)
and (4), the proportion of each confounder plays a vital role
in precise intervention implementation.

4.6. Analysis of Confounder Dictionary Z

The confounder dictionary Z is proposed to explore the
prior knowledge of the substitution data. We investigate the
effectiveness of Z in two perspectives: the confounder pro-
totype size N and the selected pre-trained models. For the
size, we select representative methods to test the effect of
different N . For the selected pre-trained models, we use the
models coming from other datasets with different numbers
of classes. We swap the pre-training models on CIFAR-10
and CIFAR-100 to build the confounder and align the fea-
ture dimensions through a learnable mapping matrix.
Impact of Confounder Dictionary Size N . To justify the
size N of the confounder Z, we set five sets of N for each
method. For Fast and DeepInv, Z comes from a mini-batch
synthetic data. For DFND, Z comes from the sampled data.
In Figure 4, designing the suitable N for methods that suffer
from varying degrees of harmful shifts helps to perform de-
confounded training better.
Impact of Confounder Dictionary Sources. Table 5
shows three settings with/without confounder dictionary Z.
We have two interesting discoveries. (i) First, an obvi-
ous conclusion is that using Z outperforms the original
DFKD methods without Z in almost all settings. Such ob-
servations demonstrate the effectiveness of causal interven-
tion. (ii) Second, swapping the confounders from CIFAR-
10 and CIFAR-100 teacher models brings the performance
decrease. For CIFAR-10, the distribution of the substitu-
tion data is simple. Simple distributions are over-separated
when features are extracted using pre-trained models from
complex distributions. We call this phenomenon over-
intervention. The excessive causal intervention potentially
causes the deviation of the confounder itself. For CIFAR-
100, the distribution is more complex. The complex distri-
butions are not well approximated when using pre-trained
models with less discriminative ability. We call this phe-
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Table 5. Ablation studies about the confounder dictionary Z. “w/o Z” denotes the vanilla version of DFKD methods. “original Z”
denotes the original confounder from the teacher itself. “other Z” denotes the confounder from another pre-trained model, i.e., swapping
the confounder from the pre-training teacher models on CIFAR-10 and CIFAR-100 datasets.

Dataset CIFAR-10 CIFAR-100

Settings resnet-34→ resnet-18 vgg-11→ resnet-18 resnet-34→ resnet-18 vgg-11→ resnet-18

Z w/o Z original Z other Z w/o Z original Z other Z w/o Z original Z other Z w/o Z original Z other Z

Fast 94.05 94.56 93.96 90.53 91.16 90.73 74.42 75.10 74.75 67.44 68.97 68.75
DeepInv 93.26 93.67 93.56 90.36 91.42 91.26 61.32 74.59 73.04 54.13 69.67 68.04
DFND 95.36 95.44 95.41 91.86 92.54 92.34 74.34 77.09 76.97 68.97 72.12 71.97

(c) DeepInv(a) Fast (b) Fast+KDCI (d) DeepInv+KDCI

Figure 5. T-SNE results of vanilla and KDCI-based models performance on Tiny-ImageNet dataset. KDCI helps models obtain clearer
clustering results, which show its strong positive impact.

Figure 6. Qualitative results of the vanilla and KDCI-based ver-
sion on ImageNet and Tiny-ImageNet.

nomenon under-intervention. The incomplete causal inter-
vention would lead to gain reduction.

4.7. Qualitative Results

Further, we present qualitative results to further demon-
strate the positive gains of KDCI over baseline methods.
Visualization Results. To intuitively show the help of
KDCI to existing DFKD methods, we first visualize the
student classification results with t-SNE [67] on the Tiny-
ImageNet dataset. We reserve 100 classes of validating
samples. From Figure 5, the KDCI-based versions (b)&(d)
have fewer outliers and clearer clustering effects than the
vanilla versions (a)&(c). These phenomena further confirm
that our KDCI can well disentangle features from different

classes, thus improving existing methods’ performance.
Case Study of Causal Intervention. We select representa-
tive examples from ImageNet and Tiny-ImageNet datasets
to show differences in student predictions before and after
the intervention. As shown in Figure 6, KDCI can eliminate
the prediction offset caused by some misleading features
to a certain extent. For example, students from the vanilla
Fast misclassify “albatross” as “missile” or “coral reef” as
“lawn mower” due to large patches of similar background
colour, and misclassify “manhole cover” as “petri dish” or
“seashore” as “lampshade” due to similar shape. Fortu-
nately, KDCI can repair prediction shifts in the above cases.

5. Conclusion
This paper proposes a novel perspective from causal in-
ference to handle the distribution shifts in the Data-Free
Knowledge Distillation (DFKD) task. By customizing the
causal graph according to the properties of the variables in
the DFKD, we propose a Knowledge Distillation Causal In-
tervention (KDCI) framework to de-confound the adverse
effect caused by the shifts between the substitution and orig-
inal data. KDCI can be flexibly combined with most exist-
ing methods. Numerous experiments prove that KDCI can
consistently help existing methods and provide an alterna-
tive causal intervention insight.
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De-confounded Data-free Knowledge Distillation for Handling Distribution Shifts

Supplementary Material

In this supplementary material, we provide more details
of our method, organized as follows:

• In Section A, we provide the detailed training settings and
illustrate how KDCI combines with existing DFKD meth-
ods, and show the algorithm process, corresponding to
Section 4.3 of the main body.

• In Section B, we qualitatively assess students’ learning
progress about vanilla DFKD methods and their KDCI-
based version to verify the positive effect of KDCI on the
existing DFKD method.

• In Section C, we analyze the possible reasons for the dif-
ference in performance improvement, corresponding to
Section 4 of the main body.

• In Section D, we provide more observable visualization
results as more sufficient evidence, corresponding to Sec-
tion 4.7 of the main body.

• In Section E, we discuss the significant differences be-
tween our KDCI and other methods focusing on data dis-
tribution.

• In Section F, we discuss the broader impact and potential
limitations.

• In Section G, we provide the detailed experimental set-
tings for the used baseline methods, corresponding to
Section 4.2 of the main body.

A. Additional Training Details & Algorithm
Process of Combining KDCI with Existing
DFKD Methods

A.1. Training Details

We provide the detailed experimental settings for our KDCI
framework. Our KDCI and reproducible methods are im-
plemented through PyTorch [68]. All models are trained
on RTX 3090 GPUs. For CIFAR-10 and CIFAR-100, all
training settings (e.g., loss function, optimizer, batch size,
learning rate, etc) of the reported methods are consistent
with the released codebase. The results are shown in Ta-
ble 1 of the main body. For Tiny-ImageNet, initially, we
try to find a unified teacher model for the Tiny-ImageNet
dataset in open-sourced projects. However, one problem is
that the teacher model pre-trained on Tiny-ImageNet seems
confidential, so finding an open-source unified model is dif-
ficult. In this case, we train the unified renset-34 teacher
model for 200 epochs on the original training data. Dur-
ing the teacher’s training, we use the SGD optimizer with
the momentum as 0.9, weight decay as 5e−4, the batch size
as 128, and cosine annealing learning rate with an initial
value of 0.1. The teacher model can converge without addi-

Algorithm 1 Training process of generation-based methods
combined with our KDCI
Input: A pre-trained teacher model T , a generator g, a student

model S, distillation epochs T , batch size Nm, the iterations
of generator g in each epoch Tg, the iterations of student fs
in each epoch Ts, the confounder size N .

1: for epoch = [1, . . . , T ] do
2: // Generation stage
3: for generator iterations = [1, . . . , Tg] do
4: Randomly sample noises and labels (z, y)
5: Synthesize a mini-batch training data X = g(z, y)
6: Update generator g with the generator loss
7: end for
8: Synthesize training data X = g(z, y). Obtain the predic-

tion feature M =
{
mj ∈ Rd

}Nm

j=1
9: Prototype clustering for M . Calculate the number of the

prediction features in i-th cluster
Ni, the feature cluster

∑Ni
k=1m

i
k and the subcenter

zi =
1
Ni

∑Ni
k=1m

i
k.

10: Construct a confounder dictionary Z = [z1,z2, . . . ,zN ]
and calculate the prototype proportion Ps(zi) = Ni/Nm

11: // Distillation stage
12: for student iterations = [1, . . . , Ts] do
13: Synthesize training data X = g(z, y). Get models’s

predictions T (X) and S(X)
14: Calculate the prior information:

F (z) =
∑N

i=1 λiziPs(zi)
15: Compensate the student’s predictions:

S′(X) = ϕ(S(X), F (z))
16: Update the student S with KD⟨T (X),S′(X)⟩
17: end for
18: end for
Output: The student model S.

tional tuning. Based on this pre-trained teacher, we train all
students for 200 epochs. For the student, we use the SGD
optimizer with the momentum as 0.9, the weight decay as
1e−4, the batch size as 256, the cosine annealing learning
rate with an initial value of 0.2 for Fast [29], and 0.1 for
DeepInv [39] & DFND [32]. The results are shown in Ta-
ble 2 of the main body. For ImageNet, We choose the same
pre-trained resnet-50 model with [65] and unify the teacher
model of different baseline methods. For Fast, we test di-
rectly on the open-source project. For DeepInv, we repro-
duce the corresponding results with the specified backbone
pair. For DFND, we select 600k samples from the unlabeled
FlickerlM dataset. The teacher’s backbone is different from
the original paper. The different backbones may cause the
results we reproduce to differ from the original paper. The
results are shown in Table 1 of the supplementary material.
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Figure 7. The test accuracy on Tiny-ImageNet dataset across different local training epochs E = {10, 20, . . . , 200}. Our KDCI framework
improves the performance of baselines consistently.

For the implementation of our KDCI, the hidden dimension
dn is set to 256. And dh equals the hidden dimension d and
the number of classes. By default, ϕ(·) uses feature addi-
tion. For various baseline methods, the settings are shown
in Section G of the supplementary material.

A.2. Algorithm Process

In the existing DFKD task, the generation-based and
sampling-based method processes are different. There-
fore, the way KDCI combines these methods and the hy-
perparameter settings are also slightly different. For the
generation-based process, the generator and student mod-
els are updated alternately, which means the student’s train-
ing data is updated in each epoch. We use a mini-batch of
synthetic training data to construct the confounder dictio-
nary, and the dictionary will be updated as the generator is
updated. For the sampling-based process, existing meth-
ods select unlabeled data according to the preferences of
the teacher model. Then, the student relies on these un-
labeled data for data-based knowledge distillation training.
We use all sampled data to construct the confounder dictio-
nary. During subsequent student training, the dictionary is
fixed. For a clearer understanding, we describe the above
process as Algorithm 1 and 2, respectively.

B. Vanilla DFKD Methods vs. Their KDCI-
based Versions

In the main body, we have compared the quantitative re-
sults of vanilla DFKD methods and their KDCI-based ver-
sions. To observe the positive effect of KDCI on the exist-
ing DFKD methods more clearly, we visualize the student’s
test accuracy on the Tiny-ImageNet dataset. The results are
shown in Figure 7. KDCI can consistently help students
from the beginning of training to the end, which verifies its
effectiveness.

Algorithm 2 Training process of sampling-based methods
combined with our KDCI
Input: A pre-trained teacher model T , a student model S, unla-

beled training dataset D = {xj}nj=1, distillation epochs T ,
batch size m, number of batches M , the number of sampled
data Nm, the confounder size N .

1: // Sampling stage
2: Sample the training data {xj}Nm

j=1 from D. Obtain the predic-

tion feature set M =
{
mj ∈ Rd

}Nm

j=1
3: Prototype clustering for M . Calculate the number of the

prediction features in i-th cluster Ni, the feature cluster∑Ni
k=1m

i
k and the subcenter zi =

1
Ni

∑Ni
k=1m

i
k.

4: Construct a confounder dictionary Z = [z1,z2, . . . , zN ] and
calculate the prototype proportion Ps(zi) = Ni/Nm

5: // Distillation stage
6: for epoch = [1, . . . , T ] do
7: for mini-batch = [1, . . . ,M ] do
8: Sample a mini-batch training data:

X = {xi}mi=1 from {xj}Nm
j=1

9: Get teacher and student predictions T (X) and S(X)
10: Calculate the prior information:

F (z) =
∑N

i=1 λiziPs(zi)
11: Compensate the student’s predictions:

S′(X) = ϕ(S(X), F (z))
12: Update the student S with KD⟨T (X),S′(X)⟩
13: end for
14: end for
Output: The student model S.

C. Analyses of Difference in Performance Im-
provements

Judging from the experimental results, KDCI has different
gains for different DFKD methods on different datasets. We
think such observations arise from various factors.
• By default, we choose the teacher model itself to extract

the confounding dictionary. The prediction feature set
provided by teachers of different backbones has different
expressiveness, which affects the compensation degree of
backdoor adjustment for bias during the causal interven-
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tion. The tests in Lines 513-531 and Table. 5 of the main
body also verify this conclusion.

• The degree of distribution shift of synthetic data on
distinct datasets is different. More complex datasets
may degrade the generation quality for generation-based
methods, resulting in more significant distribution shifts.
KDCI tends to be more effective for more sophisticated
datasets.

• Different baseline methods with different training losses
are influential. Observations such as Section 4.4 of the
main body suggest that methods that already incorporate
prior likelihood knowledge of the data may weaken the
KDCI gain.

• In addition, there may be many underlying factors. Nev-
ertheless, KDCI, as a model-agnostic general framework,
has promising and competitive improvements and gains
for various models as a whole. We believe that a deeper
exploration of the relevant mechanisms is a promising
perspective. For this topic, we leave it to future work.
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Figure 8. Qualitative results of the vanilla and KDCI-based ver-
sion on CIFAR-10, CIFAR-100, ImageNet, and Tiny-ImageNet.

D. More Visual Evidence

To further verify the effectiveness, we provide more case
studies of causal intervention. As shown in Figure 8,
we visualize some test instances corrected by our KDCI
compared to the vanilla version (Fast) on four kinds of
datasets (i.e., CIFAR-10, CIFAR-100, ImageNet, and Tiny-
ImageNet). The vanilla version sometimes confuses some
test instances due to shape or color. Our KDCI can repair
these prediction shifts to enhance student performance.

E. Discussion with Other Works that Address
Distribution Shifts

Several DFKD works already address distribution shifts in
adversarial contexts [30, 69–71]. The works reveal distri-
bution shift issues in the DFKD task from different aspects,
but our method is significantly different from these works.
Specifically, the differences between our KDCI and others
are as follows:

• Applicability. These existing works tacitly use the same
motivation, i.e., as the generator gets updated, the dis-
tribution of synthetic data will change, causing the stu-
dent to forget the knowledge it acquired at previous steps.
However, such motivation does not apply to sampling-
based methods. After selecting the training samples, they
will not change during the entire student training pro-
cess. Our motivation comes from the observed distribu-
tion shifts between the substitution data and can cover the
two methods mentioned.

• Economy. Existing methods often rely on substantial ad-
ditional computational and storage costs, e.g., the need
to store and maintain an additional dynamic collection of
generated samples [69], the need for additional generator
architectures to memorize knowledge of past generated
data (an additional Variational Autoencoder (VAE) [70]
or Exponential Moving Average generator [30]), and ad-
ditional memory bank or additional loss calculation and
gradient update [71]. In contrast, our method only needs
to compute and store a small number of matrix computa-
tion results. Compared with the update of the models, the
computational cost of the clustering process is basically
negligible.

• Plug-and-play. Existing works are to propose new meth-
ods. Undoubtedly, these methods can provide a potential
reference for other DFKD methods, but whether they can
be easily combined with existing DFKD methods and im-
prove overall performance is still unknown. Our proposed
technique is model-agnostic, as a plug-and-play paradigm
that integrates well with existing works. A large number
of experiments have proved this conclusion.
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F. Further Discussion
F.1. Broader Impact

The positive impact of this work: the proposed KDCI mod-
ule can suppress the distribution shifts between the substi-
tution and original data in the DFKD task, preventing the
potential discrimination of the student’s learning. While
the pre-trained model for extracting prior knowledge uses
the teacher itself, our method does not require additional
dependencies and auxiliary information. The negative im-
pacts of this work: students may be forced to identify mi-
nority groups for malicious purposes with customized bi-
ased teacher models. Therefore, we have to make sure that
the DFKD technique is used for the right purpose.

F.2. Limitations

Since there are countless methods with insights for the
DFKD task, other ways of classifying forms may also be
reasonable. In this paper, we simply divide the source of the
substitution data into generation-based and sampling-based
methods. Similarly, it is impossible to cover all DFKD
methods, so only open-source and representative methods
are selected as the baseline. Nevertheless, the existing per-
formance improvement is enough to prove the positive im-
pact of KDCI on students.

In addition, since what we propose is a framework rather
than a specific method, the test on the effectiveness of KDCI
relies on the experimental setting of the existing DFKD
methods. Currently, the mainstream open-source DFKD
methods rarely use real-life medical or facial datasets for
testing, so we only follow the mainstream experimental
settings. Following the consensus of peers is necessary
to increase the impact of our work. In this work, we
select datasets that are widely used and accepted by the
vast majority of DFKD methods. Following previous data
paradigms is beneficial for acceptance by the relevant re-
search community and enhances the persuasiveness of our
method.

G. Experimental Setup of the Baseline DFKD
Methods

DAFL. DAFL [31] is a data-free generation method. We
keep the generator loss from the original as: LGEN =
Loh + αLa + βLie. The knowledge distillation loss is:
LKD = DKL(NS(x),NT (x)). Following the original set-
tings, we set α = 1e − 3, β = 20. We use SGD with the
weight decay of 5e−4, the momentum of 0.9, and the initial
learning rate set as 0.1.
Fast. Fast [29] is a fast data-free generation method via fea-
ture sharing. We keep the generator loss from the original
as: LGEN = αLcls + βLadv + γLfeat. The knowledge
distillation loss is: LKD = DKL(NS(x),NT (x)). We set
α = 0.4, β = 1.1, and γ = 10, which are the same as

the original settings. We use the Adam Optimizer with a
learning rate of 1e− 3 to update the generator and the SGD
optimizer with a momentum of 0.9 and a learning rate of
0.1 for student training.
CMI. CMI [27] is a model inversion method with con-
trastive learning. We keep the generator loss from the origi-
nal as: LGEN = αLbn+βLcls+γLadv+δLcr. The knowl-
edge distillation loss is: LKD = DKL(NS(x),NT (x)).
We set α = 1, β = 0.5, γ = 0.5, and δ = 0.8. We use
the Adam Optimizer with a learning rate of 1e−3 to update
the generator and the SGD optimizer with a momentum of
0.9 and a learning rate of 0.1 for student training.
DeepInv. DeepInv [26] is a model inversion method that
combines prior knowledge and adversarial training. We
keep the inversion loss from the original as: LGEN =
αtvRtv+αl2Rl2+αfRfeature+αcRcompete. The knowl-
edge distillation loss is: LKD = DKL(NS(x),NT (x)).
We set αtv = 2.5e − 5 , αl2 = 3e − 8, αf = 0.1 and
αc = 10, which are the same as the original setting. Be-
sides, we set the number of iterations as 1000 and use Adam
for optimization with a learning rate of 0.05.
DFND. DFND [32] is a sampling-based method using
open-world unlabeled data as the substitution data. Fol-
lowing the original, we select 600k data with the highest
teacher confidence from the ImageNet dataset [16] as the
sampled data and resize them to the resolution of the corre-
sponding dataset. We use the same noisy distillation loss
LKD = HCE(Q(NS(x)), ŷ) + λDKL(NS(x),NT (x)),
and λ is set as 4. The student network is optimized using
SGD and the initial learning rate is set as 0.1 Weight decay
and momentum are set as 5e− 4 and 0.9, respectively.
Mosaick. Mosaick [28] is a sampling-based method us-
ing out-of-domain (OOD) unlabeled data as the substitution
data. We select 600k data with the lowest teacher confi-
dence from the ImageNet dataset [16] as the OOD data.
Following the original settings, we use Adam for optimiza-
tion, with hyper-parameters lr = 1e − 3, β1 = 0.5, and
β2 = 0.999 for the generator and discriminator. The distil-
lation loss is LKD = λDKL − λR(G,D, T ) The student
network is optimized using SGD, and the initial learning
rate is set as 0.1. Weight decay and momentum are set as
1e− 4 and 0.9, respectively.
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