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Abstract

Lattice Quantum Chromodynamics (QCD) has significantly contributed
to our understanding of the CKM matrix through precise determinations
of hadronic matrix elements. With advancements in theoretical method-
ologies and computational resources, investigations can now extend to pro-
cesses involving QCD-unstable hadrons such as the ρ and K⋆(892). These
resonances play vital roles in processes such as weak decays of B mesons,
opening new avenues for exploration. Finite-volume lattice QCD tech-
niques involving complex computational methods are used to determine the
transition amplitudes. Here, we present preliminary results for B → ρℓν̄.
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1 Introduction

Lattice Quantum Chromodynamics (QCD) has been pivotal in furthering our un-
derstanding of the CKM matrix. Through collaborative endeavors and targeted
experimental campaigns on a global scale, the community determined many pa-
rameters of the Standard Model, including |Vud|, |Vus|, |Vcd|, and |Vcs| with high
precision [1]. These endeavors, however, have primarily focused on processes
where the initial and final hadron states are stable under QCD. Developments
in theoretical approaches, as well as the availability of computational resources,
allow us to extend calculations to processes that involve QCD-unstable hadrons,
i.e., hadronic resonances, beyond the narrow-width approximation. Two of the
most interesting of such processes are the charged-current decay of a B meson
to a ρ resonance and a pair of lepton and its anti-neutrino, B → ρℓν̄, and the
rare decay of a B meson to a K⋆ resonance and a pair of lepton and anti-lepton:
B → K⋆ℓℓ. Previous lattice calculations of these processes were performed in the
narrow-width approximation [2–13].

The ρ and the K⋆(892) are similar in that they are both elastic vector reso-
nances (JP = 1−) that decay to a single two-hadron channel. The ρ has isospin
I = 1 and decays to a pair of pions in p-wave, while the K⋆(892) has isospin
I = 1/2 and decays to a pion and a kaon in p-wave. In fact, in lattice QCD,
studying resonances means studying the scattering in a given channel, where the
resonances then appear as poles of the scattering amplitude T . From that point of
view, we are then interested in two types of scattering - the first is ππ scattering
with isospin I = 1, and the second is Kπ scattering with isospin I = 1/2. The
former process, ππ scattering in I = 1, has only a single relevant partial wave
ℓ contribution below 1 GeV, the p-wave. The s- and d-wave do not contribute
due to Bose symmetry, and the f -wave contribution is tiny due to the threshold
behavior requiring k2ℓ+1, where k is the ππ scattering momentum. The latter pro-
cess, Kπ scattering in I = 1/2, has two relevant contributions, the s-wave, where
the K⋆

0(700) resonance resides, and the p-wave with the K⋆(892) resonance [14].
The d-wave resonates above the 1 GeV limit at approximately 1.4 GeV, where
the K⋆

2(1430) is.

The scattering amplitudes for the two-hadron systems then enter the hadronic
matrix element of the B → ρℓν̄ and B → K⋆ℓℓ through the rescattering process.
The hadronic matrix elements involving the two-hadron final state can be decom-
posed as

⟨h1h2(P, ℓ)|Jµ|B(p)⟩ =
∑
i

Kµ
iFi(E

⋆, q2)
T (E⋆)

kℓ
, (1.1)

where h1 and h2 are the two hadrons in the final state with total four-momentum
P and in partial wave ℓ, Jµ is the weak current, and the initial-state is a B-meson
with four-momentum p. The kinematic prefactors of the Lorentz decomposition
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Kµ
i differ between different types of currents inserted and dictate the complexity

of the analysis. We choose to express the hadronic matrix element in terms
of functions of the two kinematic variables, E⋆ - the two-hadron energy in the
center-of-momentum frame (CMF), and q2 = (p− P )2. To take care of the two-
hadron rescattering threshold behavior, the scattering amplitude is divided by
kℓ, where k is the two-hadron scattering momentum. In Eq. (1.1), Fi(E

⋆, q2)
are the generalized transition form factors. They are smooth functions of E⋆

and q2 in the studied region, while T (E⋆) - the scattering amplitude of the two-
hadron system, contains all the two-hadron analytic structures: the resonance
poles, the scattering branch cuts, and, if necessary, any left-hand-cut physics. The
quantities of interest to both experiment and theory are the transition amplitudes
Fi(E

⋆, q2)T (E⋆)
kℓ

, and they are present in both the matrix elements determined
on the lattice and the partial branching fractions observed in the experiment.
Here, we briefly describe how such a transition amplitude can be obtained and
what results can be expected from lattice QCD calculations for the example
of the vector-current contribution to the B → ρℓν̄ process. In this case, the
decomposition becomes

⟨ππ, ϵ(P, s)|V µ|B(p)⟩ = 2iV (E⋆, q2)

mB + 2mπ

εµναβϵ(P, s)∗νPαpβ, (1.2)

where

V (E⋆, q2) = F (E⋆, q2)
T (E⋆)

k
, (1.3)

and ϵ(P, s) is the polarization vector of the ℓ = 1 final state labeled by a spin
index s. In the following, we present preliminary results on a single gauge-field
ensemble with Nf = 2+1 clover-Wilson fermions whose quark masses correspond
to mπ ≈ 320 MeV. The lattice spacing is approximately a = 0.114 fm. For the
b-quark, we use an anisotropic action [15, 16], in which we tune the quark mass
and anisotropy parameters to match the Bs meson rest and kinetic mass.

2 Lattice QCD and the finite-volume tool

Lattice-QCD calculations are performed in a finite volume, where the fields obey
periodic boundary conditions in space, with cubic symmetry or its subgroups. As
a direct result of the finite volume, the spectrum of states in a lattice QCD cal-
culation is no longer continuous but rather discrete. Even more, the QCD states
themselves get affected by the finite volume, yielding two major effects that need
to be accounted for in the analysis of lattice-QCD data.

The first effect is the energy shifts, as first pointed out by Lüscher and further
developed by many authors. In short, the finite-volume energies appear as poles of
the energy-dependent two-point correlation function, and the location of the poles
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is related to the infinite-volume scattering matrix T through the quantization
condition [17–22]:

det
[
F−1(E⋆) + T (E⋆)

]
|E⋆=E⋆

n
= 0, (2.1)

where F−1 is a linear combination of the Lüscher Zeta functions and accounts for
the finite-volume symmetries, T is the scattering matrix for the given channel,
and E⋆

n is the center-of-momentum frame discrete set of energies as determined
from the lattice calculation. In this manner, the scattering amplitude can be
determined, and further details on the ρ and K⋆ resonances discussed here can
be found in Refs. [23] and [24].

The second effect is the normalization of the states, first pointed out by Lel-
louch and Lüscher: as the states appear as poles, they will naturally be classified
by their position (related to the energy) and their residue. The latter is related
to the normalization of the finite-volume state [25–29]:

|E⋆
n⟩L =

√
R|h1h2(E

⋆ = E⋆
n)⟩∞, (2.2)

where R is the residue of the pole and can be determined as

R = lim
E⋆→E⋆

n

E⋆ − E⋆
n

F−1(E⋆) + T (E⋆)
. (2.3)

In Eq. (2.2), |h1h2(E
⋆ = E⋆

n)⟩∞ is the infinite-volume two-particle state at its
invariant mass being equal to the lattice energy. While not shown explicitly here,
the states need to be projected to definite irreducible representations of the rele-
vant subgroup of the cubic group.

The energies En, and hence the scattering amplitudes and pole residue can
be extracted from the Euclidean-time dependence of ππ two-point correlation
functions. The matrix elements of the weak current are determined from three-
point correlation functions. These finite-volume matrix elements are related to
the infinite-volume matrix elements through [30]

⟨ππ, ϵ(P, s)|V µ|B(p)⟩L =
√
R⟨ππ, ϵ(P, s)|V µ|B(p)⟩∞. (2.4)

We perform global fits of the matrix elements at all available kinematic points us-
ing suitable parametrizations for T and F . For T , we use the Breit-Wigner models
BWI and BWII of Ref. [23], while for F we use two families of parametrizations
that generalize the z expansion (in which the variable q2 is mapped to the new
variable z that takes on values in the unit disk) [31–33]:

F1) Combined order K:

F (q2, E⋆) =
1

1− q2

m2
P

∑
n+m≤K

Anmz
nSm, (2.5)
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F3) Order N in z, order M is S:

F (q2, E⋆) =
1

1− q2

m2
P

N∑
n=0

M∑
m=0

Anmz
nSm. (2.6)

Above, S = (E⋆−2mπ)2

4m2
π

, and mP = mB∗ for the vector form factor. Altogether, we

consider 10 parametrizations that satisfy the following conditions: χ2

dof
< 1.5,

and all parameters are resolved from zero in at least one of the scattering-
amplitude models, BWI, or BWII. As our central parametrization we choose
“F3N1M1 TBWII”, i.e. F3 with N = 1 and M = 1 and BWII, as our central
parametrization. A plot of the transition amplitude V (E⋆, q2), using the central
parametrization is shown in Fig. 1 in the region of q2 and E⋆ where lattice data
is available.

aE⋆

(aq)2

0.55 0.50 0.45 0.40
6.0

6.5

7.0

Figure 1: Our preliminary results for the transition amplitude V (E⋆, q2), using
the central parametrization “F3N1M1 TBWII”. Here, the bars show the lattice
results at the available kinematic points, with magenta sections indicating the
statistial uncertainties.

A plot of the function F (E⋆, q2), with E⋆ set to the resonance mass mR, is
shown in Fig. 2 (note that this is not the B → ρ resonance form factor). To gauge
the degree of parametrization dependence we compute the root-mean-square de-
viation among the different parametrizations at each q2. We find approximately
4% statistical uncertainty and approximately 5% parametrization uncertainty at
highest q2 for which we have data. The resonance form factor can be obtained
through an analytic continuation of the transition amplitude V (E⋆, q2) to com-
plex E⋆ and extracting the residue of the ρ pole [29].
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E⋆

data

Figure 2: Our preliminary results for the function F (E⋆, q2), with E⋆ set to the
resonance mass mR (note that this is not the B → ρ resonance form factor). The
inner shaded band shows the statistical uncertainty and the outer band shows the
combined statistical and parametrization uncertainty. The region where lattice
data is available is indicated.

3 Summary

We have presented preliminary results for the vector form factor of the process
B → ππℓν̄ with the I = 1, ℓ = 1 ππ final state. For the ensemble used here,
with a pion mass of 320 MeV, we have achieved an approximately 6% statistical
and parameterization uncertainty in the high-q2 region. The analysis of the axial
form factors is more involved, because the three different form factors, A0, A1

and A2, all appear in a single matrix element. This analysis is ongoing. Calcula-
tions on three additional gauge ensembles at different spacings and pion masses
are underway to enable chiral and continuum extrapolations. In summary, we
have demonstrated that analyses of heavy-light 1 → 2 transition form factors
are feasible and reasonable precision can be obtained. This encourages further
investigation in this process as well as other processes such as the B → Kπℓℓ as
well as B → Dπℓν̄ [34].
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