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SPECTRAL GAP FOR SURFACES OF INFINITE VOLUME WITH

NEGATIVE CURVATURE

ZHONGKAI TAO

Abstract. We prove that the imaginary parts of scattering resonances for negatively

curved asymptotically hyperbolic surfaces are uniformly bounded away from zero and

provide a resolvent bound in the resulting resonance-free strip. This provides an essential

spectral gap without the pressure condition. This is done by adapting the methods of

[NSZ11], [Vas13a] and [Vac22] and answers a question posed in [DyZa16].

1. Introduction

In a seminal paper Bourgain–Dyatlov [BoDy18] showed that a convex cocompact hy-

perbolic surface has an essential spectral gap between the unitarity axis and the set of

scattering resonances. This means the Selberg zeta function has only finitely many zeros

in the region Re s ą 1{2 ´ β for some β ą 0. This holds without any assumptions on the

Hausdorff dimension of the trapped set, in particular without a “pressure condition” which

in this case goes back to the works of Patterson and Sullivan [Pa76, Su79]. The purpose of

this note is to generalize this result to negatively curved surfaces which are asymptotically

hyperbolic in a sense described below. This is done by combining the quantum monodromy

method of Nonnenmacher–Sjöstrand–Zworski [NSZ11] and Vasy’s method for meromorphic

continuation [Vas13a, Zw16, DyZw19] with the recent work of Vacossin [Vac22]. It answers

a question posed by Dyatlov–Zahl [DyZa16] in the first paper on the fractal uncertainty

principle.

Let X be an even asymptotically hyperbolic manifold. This means that X has a com-

pactification X, which is a manifold with smooth boundary BX , and the metric on X near

the boundary takes the form

g “
dx2

1 ` g1px
2
1q

x2
1

, x1|BX “ 0, dx1|BX ‰ 0 (1.1)

where g1px
2
1q is a smooth family of metrics on BX . See [DyZw19, §5.1] for a discussion of

the invariance of this definition. Let ∆ be the (negative) Laplacian on X . We prove
1
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Theorem. Suppose X has dimension 2 and (strictly) negative curvature. Then there exist

C0, β ą 0 such that the resolvent

Rpλq “ p´∆ ´ 1{4 ´ λ2q´1 : L2
comppXq Ñ L2

locpXq (1.2)

continues holomorphically from Imλ ą 1 to t|λ| ą C0, Imλ ą ´βu. Moreover, for any

χ P C8
c pXq, we have the resolvent bound

}χp´∆ ´ 1{4 ´ λ2q´1χ}L2ÑL2 ď C|λ|´1´C1 minp0,Imλq log |λ| (1.3)

for Imλ ą ´β and |λ| ą C0.

The proof of the main Theorem follows from [Vac22] by reducing the problem to quan-

tum monodromy maps using [NSZ11]. Although [Vac22] also uses [NSZ11], our approach

is different by replacing the application of microlocal weight functions with propagation

estimates. This approach simplifies some aspects of [NSZ11] and allows a seamless appli-

cation of Vasy’s method [Vas13a]. The geometric component comes from the now classical

work of Eberlein [Eb72] which shows the trapped set is topologically one dimensional in

our setting (see §2.3).

The spectral gap for open hyperbolic quantum systems has been studied since Ikawa

[Ik88] in mathematics and Gaspard–Rice [GaRi89] in physics – if the topological pressure

(an object from thermodynamical formalism) satisfies P p1{2q ă 0, the statement of the the-

orem above holds with β ă ´P p1{2q. For an experimental manifestation of this gap, see

[B˚13]. A general spectral gap under the pressure condition was proved by Nonnenmacher–

Zworski [NoZw09a, NoZw09b]. The first advances in the direction of improving the pres-

sure gaps were made by Naud [Na05] (in the setting of constant curvature surfaces and

complex dynamics) and Petkov–Stoyanov [PeSt10] (in the setting of obstacle scattering).

These results were based on Dolgopyat’s method [Do98]. However, it was conjectured by

Zworski [Zw17, Conjecture 3] that the pressure condition is not necessary. Dyatlov–Zahl

[DyZa16] made the first breakthrough showing a spectral gap without the pressure condi-

tion by introducing the fractal uncertainty principle. Bourgain–Dyatlov [BoDy18] proved

the fractal uncertainty principle for any porous set in dimension one and showed that any

(noncompact) convex cocompact hyperbolic surface has an essential spectral gap. For re-

cent advances on the fractal uncertainty principle, see [BLT23, Co23]. The spectral gap

was generalized to open quantum maps in dimension 2 by Vacossin [Vac22, Vac23] by com-

bining the method of [BoDy18] and [DJN22]. That provided an essential spectral gap for

classes of obstacles and semiclassical scattering problems.
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2. Microlocal preliminaries

2.1. Review of concepts. We use the terminology of [DyZw19, Appendix E]. For the

reader’s convenience, we review some concepts.

Let X be a smooth manifold without boundary (not necessarily compact). The polyho-

mogeneous symbols Sm
h pT ˚Xq of order m on T ˚X are defined in [DyZw19, Definition E.3]

and their quantizations are semiclassical pseudodifferential operators Ψm
h pXq on X defined

in [DyZw19, Definition E.12]. For a P Sm
h pT ˚Xq there is a non-canonical construction of

Ophpaq P Ψm
h pXq, see [DyZw19, Proposition E.15]. Conversely, for A P Ψm

h pXq, there is a

canonical principal symbol σhpAq P SmpT ˚Xq defined in [DyZw19, Proposition E.14].

We will consider h-tempered distributions on X , that is uh P D1pXq such that for any

χ P C8
c pXq, there exists N with }χu}H´N

h
ď Ch´N . For an h-tempered distribution, the

semiclassical wavefront set WFhpuq Ă T
˚
X is defined as the complement of the union of

open sets U ˆ V in T
˚
X such that

Fhpχuqpξq “ Oph8xξy´8q, χ P C8
c pUq, ξ P V X R

d
ξ .

The semiclassical wavefront set of an operator A : C8
c pY q Ñ D1pXq with h-tempered

Schwartz kernel KA is defined as (see [DyZw19, Definition E.36])

WF1
hpAq :“ tpx, ξ; y, ηq P T

˚
pX ˆ Y q : px, ξ; y,´ηq P WFhpKAqu.

There is also a notation of wavefront set of a pesudodifferential operator A P Ψm
h pXq,

defined in [DyZw19, Definition E.27], which has the property that if A “ Ophpaq then

WFhpAq is the complement of the union of open sets W P T
˚
X such that

apx, ξq “ Oph8xξy´8q, px, ξq P W X T ˚X.

An operator C8
c pXq Ñ D1pXq is called compactly supported if its Schwartz kernel is

compactly supported. We define the compactly microlocalized operators Ψcomp

h pXq as com-

pactly supported operators A P Ψm
h pXq such that WFhpAq is a compact subset of T ˚X , see

[DyZw19, Definition E.28]. For two h-tempered distributions u, v P D1pXq, we say u “ v

microlocally in some open subset U Ă T
˚
X if WFhpu ´ vq X U “ ∅.

If X is compact, we define the semiclassical Sobolev space Hs
hpXq by the norm

}u}2Hs
h

“
ÿ

j

}xhDysϕ˚
j pχjuq}2L2,
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where χj is a partition of unity and ϕj : Rd Ą U Ñ V Ă X are coordinate charts

such that suppχj Ă V . When X is not compact, then we can similarly define the local

semiclassical Sobolev space Hs
h,locpXq and the compactly supported semiclassical Sobolev

spaces Hs
h,comppXq as in [DyZw19, Definition E.20].

If X is a compact manifold with boundary BX and interior X , we embed it into a

compact manifold Xext without boundary, and define H̄s
hpXq by restrictions of functions in

Hs
hpXextq.

Finally we recall the microlocal estimates in [DyZw19, Thereom E.33, E.47]. For A P

Ψm
h pXq, the elliptic set ellhpAq is defined as tpx, ξq P T

˚
X : xξy´mσhpAqpx, ξq ‰ 0u.

Proposition 2.1. Let P P Ψm
h pXq be properly supported such that Imxξy´mσhpP q ď 0.

(1) Suppose A,B1 P Ψ0
hpXq are compactly supported and WFhpAq Ă ellhpP q X ellhpB1q.

Then there exists χ P C8
c pXq such that for any N ,

}Au}Hs
h

ď C}BPu}Hs´m
h

` Oph8q}χu}H´N
h

. (2.1)

(2) Suppose A,B,B1 P Ψ0
hpXq are compactly supported, and for any px, ξq P WFhpAq

there exists T ě 0 such that for p “ Re σhpP q,

expp´T xξy1´mHpqpx, ξq P ellhpBq, expp´txξy1´mHpqpx, ξq P ellhpB1q for all t P r0, T s.

(2.2)

Then there exists χ P C8
c pXq such that for any N ,

}Au}Hs
h

ď C}Bu}Hs
h

` Ch´1}B1Pu}Hs´m`1
h

` Oph8q}χu}H´N
h

.

We will also use the sharp G̊arding inequality [DyZw19, Proposition E.23].

Proposition 2.2. If A P Ψ2m`1
h pXq is compactly supported and Re σhpAq ě 0. Then

RexAu, uyL2 ě ´Ch}u}2Hm
h
. (2.3)

2.2. Vasy’s method revisited. Vasy [Vas13a] provided a very general method for show-

ing meromorphic continuation of the resolvent for asymptotically hyperbolic systems. One

can also look at [Zw16] for an elementary introduction to Vasy’s method and Dyatlov–

Zworski [DyZw19, Chapter 5] for a more detailed presentation. We start by recalling

[DyZw19, Theorem 5.30, Theorem 5.33].

Proposition 2.3. Let X be an even asymptotically hyperbolic manifold of dimension d `

1 with negative curvature, then there exist a compact manifold X1 with boundary BX1,

containing X as an open subset, and a second-order semiclassical differential operator P pzq

on X1 with the following properties.
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‚ For z P r´h, hs ` ir´C0h, Chs and s ą C0 ` 1{2,

P pzq : Ds
h “ tu P H̄s

hpX1q : P p0qu P H̄s´1
h u Ñ H̄s´1

h pX1q (2.4)

is a holomorphic Fredholm family of index 0.

‚ The set of poles of P pzq´1 contains the set of poles of ph2p´∆´ d2{4q ´ p1` zq2q´1

(with multiplicity).

We sketch the proof of Proposition 2.3 and refer the readers to [DyZw19, Chapter 5] for

more details and to [Zw12] for preliminaries on semiclassical analysis. Recall the metric on

X is of the form (1.1) with some boundary defining function x1. First one needs to change

the smooth structure on X so that µ “ x2
1 becomes a boundary defining function. Then

we conjugate the operator h2 p´∆ ´ d2{4q ´ p1 ` zq2 to another operator P pzq, which has

the form

P pzq “ µ´1´d{4`ipz`1q{2h

ˆ
h2

ˆ
´∆ ´

d2

4

˙
´ p1 ` zq2

˙
µd{4´ipz`1q{2h (2.5)

near the boundary BX . Then P pzq is well-defined with smooth coefficients up to the

boundary, and we can extend it over the boundary to some slightly larger manifold X1.

The Fredholm property of P pzq follows from the propagation estimates and radial estimates,

see [DyZw19, §5.5].

From the construction of P pzq and the propagation estimates, we have the following

properties. We recall the trapped set is K0 :“ Γ` X Γ´ where the outgoing/incoming sets

are defined as

Γ˘ :“ tpx, ξq P T ˚Xz0 : expptHpqpx, ξq remains bounded as t Ñ ¯8u X p´1p0q.

‚ ([DyZw19, Theorem 5.34] and Proposition 2.5) There exists Q P Ψcomp

h pXq such

that P pzq ´ ihQ : Ds
h Ñ H̄s´1

h pX1q is invertible for 0 ă h ă h0, with the bound

}pP pzq ´ ihQq´1}H̄s´1

h
ÑH̄s

h
ď Ch´1. (2.6)

‚ ([DyZw19, §5.3]) P pzq has real principal symbol. For any pre-fixed neighbourhood

V0 of the trapped set K0, we can require WFhpQq Ă V0.

‚ ([DyZw19, Theorem 5.35] and Proposition 2.5) Let p “ σhpP p0qq be the principal

symbol and ϕt “ expptxξy´1Hpq, then

WF1
hppP pzq ´ ihQq´1q X T

˚
pX ˆ Xq Ă ∆

T
˚
X

Y Ω` Y ΩΓ (2.7)

where ∆
T

˚
X
:“ tpx, ξ, x, ξq : px, ξq P T

˚
Xu,

Ω` :“ tpϕtpy, ηq, y, ηq : py, ηq P T ˚X, ppy, ηq “ 0, t ě 0u

is the positive flowout and ΩΓ “ Γ` ˆ Γ´.
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Note we use pP pzq ´ ihQq´1 instead of pP pzq ´ iQq´1 to get a slightly better estimate in

(3.7). This works because of the following Lemma.

Lemma 2.4. Let P P Ψm
h pXq and Q P Ψcomp

h pXq. Suppose Im σhpP q ď 0 and Re σhpQq ą 0

near a compact set K Ă T ˚X. Then there exists Y1, Y2, Z P Ψcomp

h pXq and M ą 0 such

that

Y1Y2 “ I ` Oph8q near K, K Ă ellhpZq

and we have the following estimate for any N ą 0 with some χ P C8
c pXq and sufficiently

small h ą 0:

ImxY1pP ´ iMhQqY2u, uyL2 ď ´h}Zu}2L2 ` Oph8q}χu}2
H´N

h

.

We remark that similar modifications are also used in [JiTa23, Proposition 2.7].

Proof. Let Z P Ψcomp

h be a microlocal cutoff to a neighbourhood of K. Since Im σhpP q ď 0

near WFhpZq, by (2.3) we have for some constant C ą 0,

ImxPZu, ZuyL2 ď Ch}Zu}2L2 ` Oph8q}χu}2
H´N

h

.

By assumption σhpQq ą c ą 0 near WFhpZq, by (2.3) we have

RexQZu, ZuyL2 ě c}Zu}2L2 ´ Ch}Zu}2L2 ´ Oph8q}χu}2
H´N

h

.

Consequently,

ImxpP ´ iMhQqZu, ZuyL2 ď pC ´ cMqh}Zu}2L2 ` Oph2q}Zu}2L2 ` Oph8q}χu}2
H´N

h

.

Taking Y1 “ Z˚, Y2 “ Z and Mc ą C ` 10 finishes the proof. �

Using Lemma 2.4, we have the following estimate similar to [DyZw19, Theorem 5.34]

but with Q replaced by MhQ.

Proposition 2.5. Let Q P Ψcomp

h pXq such that σhpQq ě 0 everywhere and σhpQq ą 0 near

the trapped set K0. Then for sufficiently large M ą 0, 0 ă h ă h0, z P r´h, hs`ir´C0h, Chs

and s ą C0 ` 1{2, we have

}u}H̄s
h

pX1q ď Ch´1}pP pzq ´ iMhQqu}H̄s´1

h
pX1q. (2.8)

Proof. First, by [DyZw19, Lemma 5.25], there exists χ1 P C8
c pX1q such that

}u}H̄s
h

ď Ch´1}pP pzq ´ iMhQqu}H̄s´1

h
` C}χ1u}Hs

h
.

The phase space dynamics on T
˚
X1 can be described as follows (see [DyZw19, §5.4]). There

exist Σ˘ such that txξy´2p “ 0u Ă T
˚
X1 is the disjoint union of Σ` and Σ´. Moreover,

Σ` X T
˚
X “ ∅. For px, ξq P Σ˘, we have two possibilities
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‚ ϕtpx, ξq Ñ L˘ as t Ñ ˘8, where L˘ “ tµ “ 0u X Σ˘ X BT
˚
X1 are the radial sets.

‚ ϕtpx, ξq Ñ K0 as t Ñ ´8.

By propagation estimates (Proposition 2.1), it suffices to estimate near L˘ and K0. Near

L˘ we use the radial estimate [DyZw19, Lemma 5.23]. Near K0 we use our Lemma 2.4

which gives for some microlocal cutoff A to a neighbourhood of K0 (see [DyGu16, Lemma

2.7])

}Au}Hs
h

ď C}A1u}Hs
h

` Ch´1}pP pzq ´ ihQqu}H̄s´1
h

` Ch1{2}A2u}
H

s´1{2
h

` Oph8q}χu}H´N
h

,

where A1 has the property that ϕtpWFhpA1qq Ñ L´ as t Ñ ´8, A2 P Ψcomp

h pXq and

χ P C8
c pXq. Then the A1u term can be propagated to L´ and the A2u term can be

improved to hN}χu}H´N
h

by iterating the estimate. �

The resolvent bound (2.6) follows from (2.8). The wavefront set estimate (2.7) fol-

lows from the proof of Proposition 2.5. In order to show (2.7), we need to show for any

px0, ξ0; y0, η0q P T
˚
pX ˆ Xq such that px0, ξ0q R p∆

T
˚
X

Y Ω` Y ΩΓqpy0, η0q, there are open

neighbourhoods U of px0, ξ0q and V of py0, η0q such that

xpP pzq ´ ihQq´1Bu,Avy “ Oph8q}u}H´N
h

}v}H´N
h

(2.9)

for any compactly supported A,B P Ψ0
hpXq with WFhpAq Ă U , WFhpBq Ă V and any

u, v P C8
c pXq. By elliptic estimate (2.1) we may assume ppx0, ξ0q “ ppy0, η0q “ 0. Note

T ˚X X tp “ 0u Ă Σ´, so ϕtpx0, ξ0q Ñ L´ or K0 as t Ñ ´8. If ϕtpx0, ξ0q Ñ L´ as t Ñ ´8,

we conclude (2.9) from the propagation estimate (2.2). If ϕtpx0, ξ0q Ñ K0 as t Ñ ´8, then

px0, ξ0q P Γ`. A dual estimate would then give (2.9) unless py0, η0q P Γ´.

Now we state a forward solvability property (up to Oph8q error) which will be crucial to

our analysis.

Proposition 2.6. Suppose f P Hs´1
h,comppXq and WFhpfq X Γ´ “ ∅. Then there exists

u P H̄s
hpX1q such that P pzqu “ f ` OHN

h,comp
ph8q for any N , and

}u}H̄s
h

ď Ch´1}f}H̄s´1
h

, WFhpuq X T
˚
X Ă

8ď

t“0

ϕtpWFhpfqq.

Proof. Since WFhpfq X Γ´ “ ∅, we may choose a small microlocal cutoff Q P Ψcomp

h to

a neighbourhood of K0 so that the backward flow of WFhpQq does not intersect WFhpfq.

Define u “ pP pzq ´ ihQq´1f , then it suffices to show Qu “ OHN
h,comp

ph8q. By (2.7),

WFhpuq X T
˚
X Ă

8Ť
t“0

ϕtpWFhpfqq Y ΩΓ ˝ WFhpfq. Since WFhpfq X Γ´ “ ∅, we have ΩΓ ˝
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WFhpfq “ ∅. Moreover,
8Ť
t“0

ϕtpWFhpfqq does not intersect with WFhpQq, thus WFhpuq X

WFhpQq “ ∅ and Qu “ OHN
h,comp

ph8q. �

3. Quantum monodromy without weights

In order to apply [Vac22] to obtain the spectral gap, we need to construct quantum

monodromy maps as in [NSZ11] but in the asymptotically hyperbolic setting. In §3.1 we

apply Vasy’s method to construct such quantum monodromy maps without using weights

for d ` 1-dimensional asymptotically hyperbolic manifolds whose trapped set has topolog-

ical dimension 1. In §3.2 we use [Eb72] to verify this assumption for all asymptotically

hyperbolic surfaces.

3.1. Construction of quantum monodromy maps. In this section, we reduce the

problem to a quantum monodromy map following [NSZ11]. In particular we show the

following.

Proposition 3.1. Suppose we are in the setting of Proposition 2.3 and the trapped set K0

has topological dimension 1. Then there exists a holomorphic family of matrices Mpz, hq

acting on CN with N „ h´d for z P r´h, hs ` ir´C0h, Chs so that the poles of P pzq´1 are

given by the zeros of detpI ´ Mpz, hqq.

The proof of this proposition follows from the construction of a Grushin problem. This

construction proceeds in two steps. First one constructs a microlocal Grushin problem

near the trapped set K0, which is done in [NSZ11] and we can directly use it here. The

second step is to construct a global Grushin problem. This is done in [NSZ11, §5] using

weight functions. Here we apply a different construction by using propagation estimates

alone. This allows a simple connection with Vasy’s method and gives better bounds (see

the remark after [Vac23, Corollary 1]).

3.1.1. Dynamical preliminaries. Suppose the trapped set K0 is topologically one dimen-

sional. Then by [BoWa72] (for the statement here we cite [NSZ11, Proposition 2.1]),

there exist finitely many compact contractible smooth (up to boundary) hypersurfaces

Σj Ă p´1p0q so that

‚ BΣj X K0 “ ∅, Σj X Σj1 “ ∅, j ‰ j1;

‚ Hp is transversal to Σj up to the boundary;

‚ The Hamiltonian flow starting from K0 touches YjΣj in both directions. Moreover,

we may assume the successor of a point in Σk X K0 is in Σj for some j ‰ k.
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We recall some notations from [NSZ11]. Let T “ K0 X YjΣj be the reduced trapped set,

and Tj “ K0 X Σj . Let f : T Ñ T be the Poincaré map restricted to T (see [NSZ11,

§2.3.1]) and

Djk “ Tk X f´1pTjq, Ajk “ Tj X fpTkq

be the departure and arrival sets (note fpDjkq “ Ajk). We take (disjoint) neighbourhoods

Djk Ă Σk (Ajk Ă Σj , respectively) of Djk (Ajk, respectively) and extend f to a local

symplectomorphism

Fjk : Djk Ñ Ajk.

We may assume Djk and Ajk are mutually disjoint and denote

Dk “
ď

j

Djk, Aj “
ď

k

Ajk.

As in [NSZ11], we may choose rΣj Ă T ˚Rd and smooth symplectomorphisms κj : rΣj Ñ Σj

up to the boundary (by taking Σj with small diameter). We then define rTj , rDjk, rAjk

and rFjk accordingly using κj ’s. Now the dynamics is encoded by the monodromy map

F “ pFjkq. One quantity that will be useful later is the minimal propagation time

t0 :“ mintt ą 0 : there exist j ‰ k and px, ξq P Σk such that ϕtpx, ξq P Σju ą 0. (3.1)

3.1.2. Microlocal Grushin problem. We now recall the microlocal Grushin problem con-

structed in [NSZ11, §4]. Let HpV q be the space of functions microlocalized in V . We will

always assume z P r´h, hs ` ir´C0h, Chs.

Lemma 3.2. There exist neighbourhoods V0 Ť V1 Ť V2 Ť X of K0, and semiclassical

Fourier integral operators rRj
´ : L2pRdq Ñ HpV2q, rRj

` : L2pXq Ñ HprΣjq such that for any v

microlocalized in V1, and any vk` microlocalized in rDk, we can find u microlocalized in V2,

and uk
´ microlocalized in rDk Y rAk, so that pu, u´q solves

˜
i
h
P pzq rR´

rR` 0

¸ ˆ
u

u´

˙
“

ˆ
v

v`

˙

microlocally inside V1 ˆ p
Ś

k
rDkq.

A more precise description of rR˘ is given as follows.

‚ WF1
hp rRj

`q Ă rΣj ˆ V2 and WF1
hp rRj

´q Ă V2 ˆ rΣj .

‚ For any prefixed ǫ ą 0, we can require

WF1
hp rRj

`q Ă tpx, ξ;ϕtpκpx, ξqqq : px, ξq P rΣj , |t| ă ǫu,

WF1
hp rRj

´q Ă tpϕtpκpx, ξqq; x, ξq : px, ξq P rΣj , t ą ´ǫu.
(3.2)
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The microlocal Grushin problem is solved microlocally by

u “ rEv ` rE`v`, u´ “ rE´v ` rE´`v`

where rE, rE˘ and rE´` are compactly supported operators with compact wavefront sets in

T ˚pX ˆ Xq and the following almost forward propagation properties:

WF1
hp rEq Ă tpϕtpx, ξq; x, ξq : t ą ´ǫu,

WF1
hp rEj

´q Ă tpx, ξ;ϕtpκjpx, ξqqq : px, ξq P rΣj , t ă ǫu,

WF1
hp rEj

`q Ă tpϕtpκjpx, ξqq; x, ξq : px, ξq P rΣj , t ą ´ǫu,

rEjk
´` “ Mjk ´ δjk,

(3.3)

where Mjk is a Fourier integral operator quantizing rFjk.

3.1.3. Global Grushin problem. The next step is to construct a global Grushin problem.

Let V j Ť κ´1
j pV1 X Σjq be small neighbourhoods of rTj in rΣj , Q

j
0 be the (self-adjoint)

quantization of a cutoff which is positive in V j and negative outside V
j
, and Πj be the

orthogonal projection defined by 1ą0pQj
0q. Denote V “ YjV

j . Consider the following

Grushin problem.

Ppzq

ˆ
u

u´

˙
:“

ˆ
i
h
P pzq R´

R` 0

˙ ˆ
u

u´

˙
“

ˆ
v

v`

˙
: Ds

hpX1q ˆ Hh Ñ H̄s´1
h pX1q ˆ Hh. (3.4)

where

Hh “
ą

j

H
j
h, H

j
h “ ΠjHp rDjq, R

j
´ “ rRj

´Πj , R
j
` “ Πj

rRj
`. (3.5)

Note Hh is a finite dimensional space with dimHh „ h´d. Recall WFhpQq Ă V0 and

WFhpΠjq Ă V . We will choose V0 and V to be sufficiently small neighbourhoods in the

following to conclude the well-posedness of the Grushin problem.

Lemma 3.3. There exists

Epzq “

ˆ
E E`

E´ E´`

˙
“ Op1q : H̄s´1

h pX1q ˆ Hh Ñ Ds
hpX1q ˆ Hh (3.6)

solving the Grushin problem (3.4), i.e. PpzqEpzq “ I.

Proof of Lemma 3.3. Since Ppzq is a Fredholm operator of index 0, it suffices to construct a

right inverse of Ppzq. In other words, given pv, v`q P H̄s´1
h pX1qˆHh with }v}2

H̄s´1
h

`}v`}2
L2 ď

1, we want to find pu, u´q P Ds
hpX1q ˆ Hh such that

Ppzq

ˆ
u

u´

˙
“

ˆ
v

v`

˙
, }u}2H̄s

h
` }u´}2L2 “ Op1q.
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Step 1: Microlocalize to the trapped set.

In order to apply the microlocal Grushin problem in Lemma 3.2, we need to first mi-

crolocalize to a neighbourhood of the trapped set. Thus we take

u0 “
h

i
pP pzq ´ ihQq´1v

so that
i

h
P pzqu0 “ P pzqpP pzq ´ ihQq´1v “ v ` ihQpP pzq ´ ihQq´1v. (3.7)

Let

v0 “ ´ihQpP pzq ´ ihQq´1v, v0` “ R`u0,

we aime to solve for Ppzqpu, u´qT “ pv0, v` ´v0`qT . At this point we can use the microlocal

Grushin problem to find pru, ru´q P HpV2q ˆ Hp rD Y rAq such that

i

h
P pzqru ` rR´ru´ “ v0 ´ f, R`ru “ v` ´ v0` ` OL2ph8q

where WFhpfq Ă V2zV1.

Step 2: Correct the error f using forward propagation.

We want to correct the error f without affecting the projection R`. For this we use the

forward propagation property in Proposition 2.6 and the following important observation

(see [DyGu16, Lemma 1.4]):

Suppose U is a neighbourhood of the trapped set K0.

Then there exists a smaller neighbourhood U0 Ă U such that

if px, ξq P U0 and ϕtpx, ξq R U for some t ą 0, then px, ξq R Γ´.

(3.8)

Note (3.2) and (3.3) imply that any px, ξq P WFhpfq is of the form ϕtpy, ηq for some

py, ηq P V0 Y κpV q and t ą ´2ǫ. By choosing V0 and V sufficiently small, (3.8) implies

WFhpfq X Γ´ “ ∅. Consequently, by Proposition 2.6, there exists u1 P Ds
hpX1q such that

i

h
P pzqu1 “ f ` OH̄s´1

h
ph8q, WFhpu1q X T

˚
X Ă

8ď

t“0

ϕtpWFhpfqq.

We then define E p1q by
˜
up1q

u
p1q
´

¸
:“

ˆ
ru ` u1 ` u0

Πru´

˙
“

˜
Ep1q E

p1q
`

E
p1q
´ E

p1q
´`

¸ ˆ
v

v`

˙
.

Since u1 is the forward solution and V0, V are taken sufficiently small, we may also assume

R`u1 “ OL2ph8q. Thus

i

h
P pzqup1q ` R´u

p1q
´ “ v ` rR´pΠ ´ Iqru´ ` OH̄s´1

h
ph8q, R`u

p1q “ v` ` OL2ph8q.



12 ZHONGKAI TAO

In other words

PE
p1q “ I´R, R

ˆ
v

v`

˙
“

ˆ rR´pI ´ Πq rE´
rR´pI ´ ΠqM

0 0

˙ ˆ
v0

v` ´ v0`

˙
`OH̄s´1

h
ˆL2ph8q.

Step 3: Correct R by iteration.

Finally we need to remove the error R. This is done by showing R is nilpotent modulo

Oph8q. First we note M has a minimal propagation time t0 ą 0 defined in (3.1) which

gives

WF1
hpMq Ă tpϕtpx, ξq, x, ξq : t ě t0u.

Moreover, since WF1
hp rE´Qq Ă V2 ˆ V0, for V0 sufficiently small we have

WF1
hppI ´ Πq rE´Qq Ă tpϕtpx, ξq, x, ξq : t ě t0u.

So we conclude

WF1
hpRq Ă tpϕtpx, ξq, x, ξq : t ě t0 ´ 2ǫu.

Due to the projection I ´ Π, the wavefront set of RN does not intersect Γ´ for N ě N0:

WF1
hpRN q Ă tpϕtpx, ξq, x, ξq : t ě Npt0 ´ 2ǫq, px, ξq R Γ´u, N ě N0.

Eventually WFhpRN pv, v`qT q X WFhp rR´q “ ∅ and thus there exists N1 P N with RN1 “

Oph8q. Let

E
p2q :“ E

p1qpI ` R ` ¨ ¨ ¨ ` R
N1´1q,

then PE p2q “ I ` Oph8q. So we finally conclude the inverse

Epzq “ E
p2qpI ` Oph8qq´1 “ E

p1qpI ` R ` ¨ ¨ ¨ ` R
N1´1qpI ` Oph8qq. (3.9)

One checks that each step is uniformly bounded in h. This finishes the proof of Lemma 3.3.

�

Proof of Proposition 3.1. Let E´` be the matrix component defined in (3.6). We define

the matrices Mpz, hq :“ I ` E´`pzq and the statement follows from the Grushin problem

(3.4). �

We remark that Mpz, hq has the form Mpz, hq “ ΠMpz, hqΠ ` R1 where R1 again

satisfies

WF1
hpRN

1 q Ă tpϕtpx, ξq, x, ξq : t ě Npt0 ´ 2ǫq, px, ξq R Γ´u, N ě N0

which implies RN1

1 “ Oph8q. Moreover, a direct computation shows that R1 has the form

R1 “ ApI ´ ΠqMpz, hqΠ ` Oph8q where A satisfies the forward propagation property

WF1
hpAq Ă tpϕtpx, ξq, x, ξq : t ě 0u.



SPECTRAL GAP 13

3.2. Structure of the trapped set. In this section, we verify the dynamical assumption

in Proposition 3.1: K0 is topologically one dimensional. From now on we assume X is

2-dimensional.

Proposition 3.4. Suppose X is a negatively curved (even) asymptotically hyperbolic sur-

face, then the trapped set K0 has topological dimension 1.

Proof. The trapped set K0 we defined before is the same as the trapped set defined by the

geodesic flow Hrp on T ˚Xz0 with rppx, ξq :“ |ξ|2 ´ 1. So we can use knowledge of negative

curved geometry.

Let rX be the universal cover of X , then there is a natural compactification rX, such that

the boundary at infinity B8
rX (which is topologically a circle) can be thought as equivalence

classes of geodesic rays. The original manifold X is then a quotient of the universal cover rX
by a discrete group of isometries Γ. The limit set ΛΓ Ă B8

rX is defined as the accumulation

points of any orbit of Γ in rX . The lift rK0 of the trapped set K0 to S˚ rX is given by the

convex hull of the limit set. Using the Hopf parametrisation, we know rK0 is homeomorphic

to ppΛΓ ˆ ΛΓqz∆q ˆ R.

In order to show K0 has topological dimension 1, it suffices to show the limit set ΛΓ

is totally disconnected. By [Eb72, Theorem 2.5], the limit set is either nowhere dense or

the full B8
rX . But the hyperbolic ends of X correspond to intervals in B8

rX that does not

belong to the limit set ΛΓ. So the second case does not happen, and ΛΓ has to be nowhere

dense and hence totally disconnected. �

4. Proof of the spectral gap and the resolvent estimate

We conclude the proof of the main Theorem in this section. Let X be an (even) asymp-

totically hyperbolic surface with (strictly) negative curvature. Then (see [MaMe87, Gu05,

Vas13a, Vas13b, Zw16]) the resolvent

Rpsq “ p´∆ ´ 1{4 ´ λ2q´1 : L2
comppXq Ñ L2

locpXq (4.1)

has a meromorphic continuation to λ P C. After rescaling λ “ h´1p1 ` zq we can apply

Proposition 2.3 and study the poles of P pzq´1 for z P r´h, hs ` ir´C0h, Chs.

We have reduced the problem to quantum monodromy maps in §3.1. In the case of

surfaces, [Vac22, Proposition 4.1] shows

Proposition 4.1. There exist c0, h0 ą 0 and γ ą 0 such that for 0 ă h ă h0, c0 logp1{hq ď

N ď C logp1{hq, we have

}Mpz, hqN}L2pRqÑL2pRq ď ChγhC1 minp0,h´1 Im zq.
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From this we conclude

Proposition 4.2. There exist c1, h0 ą 0 and γ ą 0 such that for 0 ă h ă h0, c1 logp1{hq ď

N ď C logp1{hq, we have

}Mpz, hqN}L2pRqÑL2pRq ď ChγhC1 minp0,h´1 Im zq.

Proof. Consider

Mpz, hqN`2N2 “ Mpz, hqN2pΠMpz, hqΠ ` R1qNMpz, hqN2 .

We claim this is equal to Mpz, hqN2Mpz, hqNMpz, hqN2 modulo Oph8q, if we take N2 suf-

ficiently large but fixed. It suffices to show

Mpz, hqN2pΠMpz, hqΠqjR1Mpz, hqN´j´1`N2 “ Oph8q, j P t0, 1, ¨ ¨ ¨ , N ´ 1u

and

Mpz, hqN2Mpz, hqkpI ´ ΠqMpz, hqMpz, hqN´k´1`N2 “ Oph8q, k P t1, ¨ ¨ ¨ , N ´ 1u.

This follows from the observation that if px, ξq lies outside V (due to the projection I ´ Π

and the definition of R1), then it has be to disjoint from either Γ` or Γ´, which implies

that either FN2px, ξq or F´N2px, ξq has to escape V for N2 sufficiently large. �

Proposition 4.2 already implies the spectral gap through Proposition 3.1. But we can

further estimate the resolvent as below. By the Grushin problem (3.4), we have

P pzq´1 “
i

h
pE ´ E`E

´1
´`E´q (4.2)

where E,E´, E`, E´` are all Op1q. Moreover, since E´`pzq “ Mpz, hq ´ I,

}E´1
´`pzq} ď 1 ` }Mpz, hq} ` ¨ ¨ ¨ ` }Mpz, hqN´1} ` }Mpz, hqN}}E´1

´`pzq}.

For c1 logp1{hq ď N ď C logp1{hq and Im z ě ´C´1
1 γh{2, we conclude

}E´1
´`pzq} ď 2p1 ` }Mpz, hq} ` ¨ ¨ ¨ ` }Mpz, hqN´1}q.

Similar to the proof of Proposition 4.2, we have for 2N2 ď j ď C logp1{hq,

}Mpz, hqj} ď }Mpz, hqN2Mpz, hqj´2N2Mpz, hqN2} ` Oph8q ď Ce´C1jminp0,h´1 Im zq.

Since we have c1 logp1{hq many terms, we conclude

}E´1
´`pzq} ď C logp1{hqhC1 minp0,h´1 Im zq.

By (4.2), we have

}P pzq´1}H̄s´1
h

ÑH̄s
h

ď Ch´1 logp1{hqhC1 minp0,h´1 Im zq.

The resolvent bound (1.3) follows from the definition (2.5) of P pzq and rescaling.
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