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Abstract

Distributed cooperative spectrum sensing usually involves a group of unlicensed secondary users

(SUs) collaborating to detect the primary user (PU) in the channel, and thereby opportunistically utilize

it without causing interference to the PU. The conventional energy detector (ED) based spectrum sensing

ignores the dynamic nature of the PU by using energy statistic only from the present sensing interval

for the PU detection. However, for a dynamic PU, previous studies have shown that improved detection

capabilities can be achieved by aggregating both present and past energy samples in a test statistic.

To this end, a weighted sequential energy detector (WSED) has been proposed, but it is based on

aggregating all the collected energy samples over an observation window. For a highly dynamic PU,

that involves also combining the outdated samples in the test statistic. In this paper, we propose a

modified WSED (mWSED) that uses the primary user states information over the window to aggregate

only the highly correlated energy samples in its test statistic. In practice, since the PU states are a priori

unknown, we also develop a joint expectation-maximization and Viterbi (EM-Viterbi) algorithm based

scheme to iteratively estimate the states by using the energy samples collected over the window. The

estimated states are then used in mWSED to compute its test statistics, and the algorithm is referred to

here as EM-mWSED. Simulation results are presented to demonstrate the states estimation performance
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of EM-Viterbi and the PU detection performance of EM-mWSED. The results show that, for both highly

dynamic as well as slowly time-varying PU, these algorithms outperform the ED and WSED at PU

detection, and their performances improve by either increasing the average number of neighbors per SU

in the network, or by increasing the SNR or the number of samples per energy statistic.

Index Terms

Cognitive radio systems, dynamic primary user, distributed cooperative spectrum sensing, expecta-

tion maximization, energy detector, modified weighted sequential energy detector.

I. INTRODUCTION

A cognitive radio system is an intelligent wireless communication system that learns from

its surrounding radio environment and adapts its operating parameters (e.g., carrier frequency,

transmit power, and digital modulation scheme) in real-time to the spatiotemporal variations

of the RF spectrum. The primary objective of the cognitive scheme is to enable the unlicensed

(secondary) users to opportunistically utilize the spectrum owned by the licensed (primary) users,

where the reconfigurability of the radio is accomplished using software-defined radio based

platforms [1]. Since the secondary users (SUs) are a lower priority for spectrum access than the

primary users (PUs), an indispensable condition for the SUs is to avoid causing interference to

the PUs during their spectrum use, which can be achieved by improving the spectrum sensing

capabilities of the SUs. Several sensing algorithms have been reviewed in [2], [3] for cognitive

radio systems. Among them, matched filtering is considered an optimal method when the PU’s

transmitted signal is known to the SUs; however, when the signal knowledge is not available

then energy detection emerges out as a favorable choice due to its low computational and

implementation complexities.

Spectrum sensing (or PU detection) can be done by the SUs either by using a non-cooperative

scheme or a cooperative scheme. In a non-cooperative scheme, each SU performs PU detection

individually without any direct communication with the other SUs or a fusion center (FC). In

contrast, in cooperative spectrum sensing, a group of SUs communicate with each other or with

a fusion center to collaboratively perform the PU detection. Consequently, in comparison, the

cooperative sensing approach is resilient to the deep fading and shadowing at an SU level, aids

in eliminating the hidden terminal problem, reduces the sensing time per SU, and demonstrates

a better performance for PU detection [4], [5].



Cooperative spectrum sensing schemes can be further categorized into either a centralized

scheme or a distributed scheme. In a centralized scheme, a fusion center collects the sensing

information from the SUs, detects the unused band, and broadcasts that information via a control

channel to the SUs [4], [6]–[8]. However, the centralized approach is not scalable to large

networks as the available communication resources are limited at the FC. Furthermore, an FC

involvement defines a single point of failure for the centralized network. In comparison, in a

distributed scheme, the SUs share their sensing statistics with their neighboring users in the

network and use a consensus protocol to collaboratively decide on the presence or absence of

PU in the channel [9], [10]. This approach not only eliminates the single point of failure from

the network, but it is also scalable as the communication resources need to be shared only among

the neighboring users.

The distributed cooperative spectrum sensing (DCSS) scheme usually has three critical phases,

namely the sensing phase, the consensus phase, and the transmission/wait phase. In the sensing

phase, a group of SUs observes the same PU channel for a certain time duration to collect a

sufficient number of samples for computing the summary statistics (e.g., energy statistics [3],

[11]). Next, in the consensus phase, the SUs locally share their summary statistics and use,

e.g., an average consensus protocol [12], [13] to iteratively compute a weighted average of the

globally shared values across the network. Upon consensus in such an approach, the final value

is compared against a threshold at each SU to locally detect the presence or absence of the PU

in the channel. Finally, in the transmission/wait phase, the detection outcome is used to either

transmit in the channel or wait for some duration before restarting the cycle. This DCSS scheme

was proposed in [9] wherein the authors analyzed its convergence speed as well as the detection

performance for varying false alarm rates. In [14], [15], DCSS was extended to protect against

the eavesdropper attack by encrypting the summary statistics shared between the SUs, whereas

in [16], [17], the authors considered the scenarios in which some malicious SUs (aka Byzantines)

may inject falsified data into the network and proposed a data-driven approach to mitigate the

Byzantine attacks in DCSS.

The above-mentioned DCSS algorithms use the conventional approach in which each SU uses

energy samples only from the current sensing time period to make the PU detection. However, in

the case of a dynamic PU whose activity varies over the consecutive sensing periods, aggregating

present and past samples at each SU usually results in an improved detection performance. In [7],

[8], the dynamic PU is modeled using a two-state Markov chain model and a weighted sequential



energy detector (WSED) is proposed in which the present and past samples over an observation

window are weighted appropriately and aggregated to achieve improved detection capability. For

a slowly varying PU, equal weighting of the samples is suggested whereas for a highly dynamic

PU, exponential weighting is proposed to reduce the impact of out-dated measurements. For the

highly dynamic PU, a two-stage detector is also proposed in [8] in which a threshold is used at

the first stage to detect the change in the PU’s state between the consecutive sensing periods,

based on which a decision is made to either include or ignore completely the past out-dated

samples in the WSED statistic. However, due to hard detection on the first stage and exclusion

of all the past samples during a state change, only a slight improvement in performance was

observed with the two-stage detector as compared to WSED. Finally, [7], [8] assume a centralized

scheme for cooperative spectrum sensing which as discussed before is not a scalable approach.

In this paper, we also consider the problem of DCSS in which the PU follows a two-state

Markov chain model for switching between the active and idle states over the consecutive sensing

periods [8]. However, a modified WSED (mWSED) is proposed in which instead of aggregating

all the present and past samples over an observation window1, we aggregate only those samples

that correspond to the state of the PU in the present sensing period. An underlying assumption in

mWSED is that the actual states of the PU are known over the observation window. In practice,

the states are unknown, and thus we also develop an algorithm to iteratively estimate them using

the samples collected over the window. Specifically, we first develop an expectation maximization

(EM) based algorithm to estimate the model parameters of the joint probability distribution over

the observation and the state vectors. Next, using their estimate, we use the Viterbi algorithm [18]

to estimate the state vector by the maximization and back tracing operations. The estimated state

vector produced by the joint EM and Viterbi (EM-Viterbi) algorithm is then used in mWSED to

aggregate only the highly correlated samples in its test statistic. This approach avoids aggregating

the outdated samples in computing the detection statistic and thus manifests a better detection

performance than WSED for a dynamic PU. Since EM is the main algorithm that enables the use

of the Viterbi algorithm, the resulting algorithm is referred to here as the EM-mWSED algorithm.

For fair comparison, the WSED algorithm of [8] is also extended to the DCSS scheme. Simulation

results are included which show that both EM-Viterbi and EM-mWSED outperform WSED and

1An observation window is defined herein as a vector of length D containing all the energy detection statistics from the

D − 1 past sensing periods as well as the energy statistic from the present sensing period.



the conventional energy detector for both slowly varying PU and a highly dynamic PU in all

the considered scenarios. Furthermore, the results demonstrate that their performances improve

by either increasing the average number of connections per SU in the network, or by increasing

the SNR or the number of samples per energy statistics.

This paper is outlined as follows. Section II provides a brief review of the energy detection

based spectrum sensing. Distributed cooperative spectrum sensing is discussed in Section III,

also including a review of WSED and presentation of our proposed mWSED. Next, Section IV

delivers an expectation maximization and Viterbi algorithm based scheme for estimating the PU

states over an observation window and using it with mWSED. Simulation results are presented

in Section V. Finally, Section VI summarizes this work.

II. ENERGY DETECTOR BASED SPECTRUM SENSING

We consider a distributed spectrum sensing system in which a network of N SUs are spatially

distributed and cooperating with each other to detect the PU in the channel. As discussed in the

previous section, we assume that the SUs deploy an energy based statistic to sense the channel.

As such, the energy computed by an i-th SU under the null hypothesis (H0) and the alternate

hypothesis (H1) can be written as follows.

xi =


∑L

l=1 |ni,l|2, if H0∑L
l=1 |hisl + ni,l|2, if H1

(1)

in which L is the total number of samples collected over the sensing interval, hi is the channel

gain for SU i, sl represents the PU signal at time index l, and finally, ni,l denotes the noise in

the sensing interval which is assumed to be normally distributed with zero mean and variance

σ2
n. The signal to noise ratio (SNR) at the SU is defined by ηi =

∑L
l=1 |hisl|2

σ2
n

which is L times

the SNR at the output of the energy detector.

Now when the PU is idle under H0, i.e., the channel is unoccupied, the normalized energy

statistics zi =
xi

σ2
n

follow a central chi-square distribution with L degrees of freedom. Its proba-

bility density function (pdf) is written as

p(zi|H0) =
z

L
2
−1

i e−
zi
2

2
L
2 Γ

(
L
2

) , (2)

for zi ≥ 0, in which Γ(.) is the gamma function [19]. Using the pdf in (2), the probability of

false alarm can be computed in closed-form as

Pf (λ) =

∫ ∞

λ

p(zi|H0)dzi =
Γ
(
L
2
, λ
2

)
Γ
(
L
2

) , (3)



Fig. 1. A graphical representation of the two-state Markov chain model describing the change in primary user activity over

the sensing intervals. The parameters α and β represent the transition probabilities of switching between the two states in the

Markov model.

where λ is the threshold for energy detection, and Γ(., .) is the upper incomplete gamma function

[19]. Note that for a selected value of false alarm probability, the threshold λ can be computed

from (3) by using the inverse of the incomplete gamma function. In contrast, when the PU is

active under H1, i.e., the channel is busy, then zi follows a non-central chi-square distribution

with L degrees of freedom and a non-centrality parameter ηi. Thus, its pdf is written as

p(zi|H1) =
e−

ηi
2 F0,1

(
L
2
, ηizi

4

)
2

L
2 Γ

(
L
2

) e−zi/2z
L
2
−1

i , (4)

for zi ≥ 0, where F0,1(., .) is the hypergeometric function [19] and parameter ηi is the SNR at

the i-th SU. Assuming a Rayleigh fading channel, the probability of detection for the SU can

be computed in a closed-form as follows [8].

Pd(λ) =

∫ ∞

λ

p(zi|H1)dzi

=
Γ
(
L
2
− 1, λ

2

)
Γ
(
L
2
− 1

) + e
− λ

2+η̄i

(
1 +

2

η̄i

)L
2
−1

1− Γ
(

L
2
− 1, λη̄i

4+2η̄i

)
Γ
(
L
2
− 1

)
 , (5)

where η̄i =
∑L

l=1 E[|hisl|2]
σ2
n

denotes the average value of the SNR due to randomness in the channel,

and the threshold λ can be identified based on a selected Pf as discussed above.

Next we consider a practical scenario wherein the PU’s activity is dynamic over the sensing

intervals and follows a two-state Markov chain model as shown in Fig. 1. Specifically, the current

state visited by the PU depends only upon its immediate previous state. Accordingly, in this

figure, the parameter α denotes the transition probability of switching to an idle state (H0) given

that previously the PU was in the active state (H1), whereas β represents the transition probability

of switching to an active state (H1) if previously the PU was in the idle state (H0). Thus, higher
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Fig. 2. Energy statistics of SUs vs. DCSS iterations for (a) N = 10, c = 0.2, (b) N = 10, c = 0.5, and (c) N = 60, c = 0.2,

when SNR = −3 dB, number of samples per energy statistic L = 12, and the PU follows the two-state Markov model with

α = β = 0.1.

values of α and β imply a highly dynamic PU, whereas their smaller values represent its slowly

time-varying behavior. For such modeling of the PU, a WSED algorithm was proposed in [7],

[8] in which the SUs combine a fixed number of present and past observations (i.e., the energy

statistics from (1)) to calculate a weighted sequential energy test statistic. The observations in

WSED are weighted either by using uniformly distributed weights for a slowly varying PU,

or exponentially distributed weights for a highly dynamic PU wherein the weights over the

past observations are reduced exponentially by a factor of e. However, the authors in [7], [8]

considered a centralized scheme for the cooperative spectrum sensing where the existence of a

fusion center makes it a non-scalable approach. In the following, we first describe a scalable

distributed cooperative spectrum sensing scheme as considered here, followed with a brief review

of the WSED algorithm and our modified WSED algorithm.

III. DISTRIBUTED COOPERATIVE SPECTRUM SENSING

Consider a network of SUs represented by an undirected graph G = (V , E) in which V =

{1, 2, . . . , N} is the set of N number of SUs in the network, and E = {(i, j),∀i, j ∈ V } repre-

sents the set of all possible bidirectional communication links between them. The connectivity

of the network in any realization is denoted by c which is defined as a ratio of the number of

active connections in the network (Na) to the number of all possible connections among the

SUs (N(N − 1)/2). We consider a connected network in which the neighboring users that are

one hop away from each other share their information to reach a consensus. Therefore, wireless

and computing resources such as bandwidth, processing power, and data storage capabilities,



need to be only locally managed at the SUs, and scale proportionally to the average number of

connections per SU in a network.

A distributed cooperative spectrum sensing algorithm is a scalable and a fully distributed

approach which deploys a consensus protocol at an SU. The protocol iteratively updates the

sensing information at the user, by using the locally shared information, to reach consensus with

the other users in the network. To elaborate, let yi(0) = xi represents the initial energy statistic

for an i-th SU, then in iteration k of the DCSS algorithm, the SU updates its estimate by using

a weighted average method as follows.

yi(k) = yi(k − 1) +
∑
j∈Ni

wij(yj(k − 1)− yi(k − 1)) (6)

in which Ni is the set of neighboring users of the i-th SU. The weight wij can be selected as wij =

1/max(di, dj) where di and dj represent the number of neighbors of SU i and SU j, respectively.

This selection of weights results in a doubly-stochastic Metropolis-Hasting weighting matrix

which guarantees convergence of the consensus algorithm [13]. Thus, starting with a set of

initial values {yi(0), for i = 1, 2, . . . , N}, the algorithm running locally at each SU iteratively

updates the values using (6) until it converges to an average of the globally shared values across

the network. The average value is defined by y∗ =
∑N

i=1 xi

N
. Upon convergence, the decision can

be made locally at the i-th SU by using the following rule

di =

H1 if y∗ ≥ λ

H0 otherwise
(7)

A. Simulation Results

Herein, we analyze the consensus performance of an energy detector (ED) based DCSS scheme

when the network of SUs is randomly generated for different number of SUs N and with varying

connectivity c. The primary user follows a two-state Markov chain model for switching states

between H0 and H1 over the multiple sensing intervals. Each SU uses L = 12 samples for

computing the energy statistic following (1), and has an SNR= −3 dB for the PU channel.

In Fig. 2, we demonstrate the convergence performance of the ED-based DCSS algorithm for

N = 10 and 60 users when the connectivity is either c = 0.2 or 0.5. It is observed that when

N = 10 and c = 0.2, the consensus occurs in about 96 iterations, but when the connectivity

increases to c = 0.5, it happens in about 7 iterations. Similar observation is made if N increases

from 10 to 60 SUs for c = 0.2. This is because the average number of connections per SU is



represented by R = c(N − 1), and thus when either c or N increases, then the local averages

computed at the SUs using (6) are more accurate and stable resulting in the faster convergence

speed.

Next, we first briefly review the WSED detector of [8] and discuss its extension for using it

with the DCSS algorithm in (6). After that, we propose a modified WSED which as shown later

in Section V outperforms the DCSS-based WSED algorithm.

B. Weighted Sequential Energy Detector

As proposed in [7], [8], the WSED algorithm computes a weighted sum of all the present and

past samples over an observation window of length D to define a new test statistic, which for

the i-th SU is given by

Si =
D∑

d=1

wdxi,d, (8)

where xi,d represents the energy statistic of the SU i (as in (1)) in the sensing interval d, with

xi,D representing the energy at the present sensing interval. Thus, a total number of D present

and past observations are combined in the WSED statistic. The weights obey
∑D

d=1wd = 1 and

the authors in [7], [8] propose to use equal weights (wd = 1/D) for a static PU and exponential

weights (wd = ed/
∑D

d=1 e
d) for a highly dynamic PU. Specifically, the exponential weighting

is motivated to reduce the impact of aggregating the outdated past samples in (8) in a highly

dynamic scenario. However, a centralized scheme is considered in [7], [8] wherein the SUs

forward their statistics in (8) to a fusion center where a decision is made using an OR rule. As

the use of a fusion center is a non-scalable approach, so in Section V, we extend WSED to the

DCSS scheme with consensus relating to the energy samples aggregated in (8) as in (6). This

aids in improving the SNR at each SU as discussed in Section V. Thus, the decision can be

made locally at each SU by comparing Si against a threshold. Finally, as pointed out in [8],

the exact closed-form expressions for the probability of detection and the probability of false

alarm for WSED are in general intractable to compute analytically, due to the aggregation of

observations that may correspond to different states of the PU. However, the authors in [8] have

derived approximated expressions which are also applicable for the DCSS scheme based WSED.



Fig. 3. A notional view of the correspondence between the primary user states ({si,d ∈ {0, 1},∀d = 1, 2, . . . , D}) and the

energy samples ({xi,d, ∀d = 1, 2, . . . , D}) collected by the i-th secondary user in an observation window of length D.

C. Modified Weighted Sequential Energy Detector

In this subsection, we present our proposed modified WSED (mWSED). It is based on the

motivation that instead of combining all the present and past energy samples upon consensus

over the observation window of length D, we combine only those energy samples (observations)

in the summary statistic that belong to the present state of the PU. As such, in mWSED, we

begin by assuming that the states visited by the PU over the observation window are known to

each SU. Notably, this assumption provides a starting point to derive mWSED, but later on in

Section IV we also develop an EM algorithm to compute an estimate of those states at each SU,

using the energy samples collected over the window as shown in Fig. 3. Thus, by comparing

the present and past states over the observation window, each SU locally combines only those

samples that correspond to the state of the PU in the present sensing interval. Therefore, the test

statistics computed in mWSED at the i-th SU in the present D-th sensing interval is defined as

Ti =
D∑

d=1

xi,d1 (si,d = si,D, wd) , (9)

where xi,d represents the energy computed by SU i in the d-th sensing interval and si,d is the

PU’s state in that interval with si,d = 0 denoting H0 and si,d = 1 implying H1. 1(A,wd) is a

weighted indicator function which outputs a non-zero weight wd if A is true, and outputs wd = 0

if A is false. Thus, given the state information of PU over the observation window, either xi,d

is included or excluded from Ti. Parameter wd is the weight assigned to the aggregated sample,

and note that depending on the output of the indicator function, the non-zero weights on the

aggregated samples in Ti can be distributed either uniformly or exponentially as for WSED.

Finally, at each SU, the statistic Ti is compared against the threshold in Algorithm 1 to make

the PU detection.



Now, we derive the expressions for the probability of false alarm and the probability of

detection for mWSED as follows. Let C be the number of samples with non-zero weights in

(9), then for the purpose of derivation, we use the fact that the sum of C independent chi-square

random variables with L degrees of freedom is a chi-square random variable with CL degrees

of freedom, and that the sum of C independent non-central chi-square random variables with L

degrees of freedom and non-centrality parameter η is a non-central chi-square random variable

with CL degrees of freedom and non-centrality parameter Cη [19]. Thus, when the PU is idle

in the present sensing interval, the normalized statistic zi = Ti

σ2
n

follows a central chi-square

distribution with CL degrees of freedom. Its pdf is given by

p(zi|H0) =
z

CL
2

−1

i e
−zi
2

2
CL
2 Γ

(
CL
2

) , (10)

for zi ≥ 0, and where Γ(.) is the gamma function [19]. Consequently, the probability of a false

alarm can be computed in a closed-form as

Pf (λ) =

∫ ∞

Cλ

p(zi|H0)dzi

=
Γ
(
CL
2
, Cλ

2

)
Γ
(
CL
2

) (11)

in which λ is the threshold for PU detection, and Γ(., .) is the upper incomplete gamma function

[19]. Hence, by selecting a suitable value for the false alarm probability, the threshold λ can be

estimated from the above equation using an inverse of the incomplete gamma function.

Next, when the PU is active and the channel is quasi-static, then zi follows a non-central

chi-square distribution with CL degrees of freedom and non-centrality parameter Cη. Then, the

pdf of zi is given by

p(zi|H1) =
e

−Cη
2 F0,1

(
CL
2
, Cηzi

4

)
2

CL
2 Γ

(
CL
2

) e
−zi
2 z

CL
2

−1

i , (12)

for zi ≥ 0, and where F0,1(., .) is the hypergeometric function [19]. In particular, when the

channel is a Rayleigh fading channel, we can write the detection probability for mWSED using

(5) as follows.

Pd(λ) =

∫ ∞

Cλ

p(zi|H1)dzi

=
Γ
(
CL
2

− 1, Cλ
2

)
Γ
(
CL
2

− 1
) + e

− Cλ
2+Cη̄i

(
1 +

2

Cη̄i

)CL
2

−1
1− Γ

(
CL
2

− 1, C2λη̄i
4+2Cη̄i

)
Γ
(
CL
2

− 1
)

 , (13)



where η̄i is the average SNR due to the random variations in the channel. Thus, for the

threshold λ computed using a false alarm probability in (11), an SU’s operating point is given

by (Pf (λ), Pd(λ)).

IV. EXPECTATION MAXIMIZATION BASED STATE ESTIMATION FOR DYNAMIC PRIMARY

USER

The mWSED algorithm described in the previous section assumes that the actual states visited

by the PU over the observation window are a priori known to the SUs. In practice, this may

not be a valid assumption, and thus in this section we aim to compute an estimate of the states

locally at each SU from the samples collected over the observation window.

To begin, let an SU i collect D energy samples over consecutive sensing intervals using

(1), denoted by xi = [xi,1, xi,2, . . . , xi,D]
T with T representing the transpose operation. Using

the central limit theorem assumption [17], [19], it can be shown that xid follows a normal

distribution represented by N (xi,d|µh, σ
2
h) with mean µh and variance σ2

h, and with h = 0 when

the PU is idle, and h = 1 when the PU is active. These means and variances in the binary

hypothesis setting can be easily computed as

µ0 = Lσ2
n

µ1 = (L+ ηi)σ
2
n

σ2
0 = 2Lσ4

n

σ2
1 = 2(L+ 2ηi)σ

4
n (14)

Further, if for the i-th SU the state of the PU at the sensing interval d is denoted by si,d ∈ {0, 1},

then for θ0 ≜ {µ0, σ
2
0} and θ1 ≜ {µ1, σ

2
1}, the conditional probability distribution of xi can be

written as

p(xi|si,θ0,θ1)

=
D∏

d=1

(
N

(
xi,d|µ1, σ

2
1

))1(si,d=1) (N (
xi,d|µ0, σ

2
0

))1(si,d=0)
, (15)

where si = [si,1, si,2, . . . , si,D]
T denotes the PU state vector, and 1(A) is an indicator function

which is one if A is true, and is zero otherwise [19]. Next, as discussed before and shown in Fig.



1, we assume that the state vector si follows a two-state Markov chain model with the transition

probabilities α and β. Thus, the probability distribution of si is written as

p(si|α, β) = p(si,1)
D∏

d=2

p (si,d|si,d−1)

= p(si,1)
D∏

d=2

[
(1− α)1(si,d−1=1) β1(si,d−1=0)

]1(si,d=1) [
α1(si,d−1=1) (1− β)1(si,d−1=0)

]1(si,d=0)
.

(16)

where considering the steady-state distribution for the Markov process, we assume si,1 is Bernoulli

distributed with mean β
α+β

.

Now if the model parameters of the above probability distributions are defined by Θ =

{θ0,θ1, α, β}, an optimal scheme for estimating both Θ and si for SU i involves solving the

following optimization problem

(s∗i ,Θ
∗) = argmax

(si,Θ)

p(si,Θ|xi)

= argmax
(si,Θ)

p (xi|si,θ0,θ1) p (si|α, β) , (17)

where for the sake of simplicity, we assumed a uniform prior distribution on Θ. Note that due to

the large dimensionality of the search space, jointly optimizing for si and Θ is computationally

difficult. Alternatively, we can aim to sequentially optimize for si and Θ which involves solving

the following two optimization problems:

Θ̂ = argmax
Θ

log p (xi|Θ)

= argmax
Θ

log
∑
si

p (xi, si|Θ) (18)

where (18) maximizes the likelihood function of Θ. Then using Θ̂ we can solve,

ŝi = argmax
si

p
(
si|xi, Θ̂

)
= argmax

si

p
(
xi|si, θ̂0, θ̂1

)
p
(
si|α̂, β̂

)
, (19)

However, note that due to the log-sum in (18), directly optimizing for the elements of Θ, e.g.,

using the derivative trick, does not result in the closed-form update equations, whereas using the

numerical methods for optimization have the inherent complexity with the tuning of the step-size

parameter [20]. Furthermore, the optimization problem in (19) is still a complex combinatorial

search problem where the dimensionality of the search space increases exponentially with D. In



the following, we propose an expectation maximization based algorithm to estimate si and Θ

in a computationally efficient way using the closed-form update equations.

A. Expectation Maximization Algorithm

An expectation maximization algorithm [21]–[23] is an iterative algorithm which can be

derived by first selecting a complete data model in order to compute an objective function

of the model parameters. Next, given an initial estimate of the parameters, it tends to improve

this estimates in each iteration by maximizing the objective function which in turn maximizes

the likelihood function [22]. The EM algorithm has been developed for a variety of estimation

problems in recent years [22], [24], [25], and in this subsection, we develop it to facilitate

joint PU states and the model parameters estimation in order to enable distributed cooperative

spectrum sensing by the SUs.

To begin, let the complete data model for the i-th SU be denoted by [xT
i , s

T
i ]

T , and suppose

Θ(l−1) is the (l − 1)-st estimate of the model parameters, then in the l-th iteration it computes

an expectation step (E-step) and a maximization step (M-step). In the E-step, it computes an

expectation of the complete data log-likelihood function as follows

Q
(
Θ;Θ(l−1)

)
= Ep(si|xi,Θ(l−1)) [log p (xi, si|Θ)] , (20)

where we note that the expectation is with respect to the posterior distribution on si given xi and

an old estimate Θ(l−1). In the M-step, it maximizes the objective function in (20) with respect

to Θ by solving

Θ(l) = argmax
Θ

Q
(
Θ;Θ(l−1)

)
, (21)

in which Θ(l) represents the new estimate of Θ in the l-th iteration. The above E-step and

M-step are repeated iteratively by replacing the old estimate with the new one until convergence

is achieved.

Now using the distributions in (15) and (16), and the following notation for the expectation

operations, i.e., γ(si,d = h) ≜ E[1(si,d=h)] and ξ(si,d = h, si,d−1 = g) ≜ E[1(si,d=h)1(si,d−1=g)],

for g, h ∈ {0, 1}, it can be easily derived that the objective function in (20) can be written as

shown in (22). Further, note that γ(si,d = h) = p
(
si,d = h|xi,Θ

(l−1)
)

and ξ(si,d = h, si,d−1 =

g) = p
(
si,d = h, si,d−1 = g|xi,Θ

(l−1)
)

for g, h ∈ {0, 1}, where these probability distributions

are derived in the Appendix.



Q
(
Θ;Θ(l−1)

)
=

D∑
d=1

[
γ(si,d = 1) logN

(
xi,d|µ1, σ

2
1

)
+ γ(si,d = 0) logN

(
xi,d|µ0, σ

2
0

)]
+

D∑
d=2

[ξ(si,d = 1, si,d−1 = 1) log(1− α) + ξ(si,d = 1, si,d−1 = 0) log β+

ξ(si,d = 0, si,d−1 = 1) logα + ξ(si,d = 0, si,d−1 = 0) log(1− β)] + const, (22)

In order to compute the M-step in (21), we use the sequential optimization approach [24],

[25] for simplicity, i.e., we maximize Q(Θ;Θ(l−1)) with respect to each parameter individually

by keeping the others fixed to their current estimate. To that end, we use the derivative trick,

and thus to maximize Q(Θ;Θ(l−1)) with respect to µh for h ∈ {0, 1}, we compute its derivative

and set it equal to zero as follows.

∂Q(Θ;Θ(l−1))

∂µh

= 0

D∑
d=1

[
γ(si,d = h)

(xi,d − µh)

σ2
h

]
= 0, (23)

solving it gives us a new estimate of µh, in the l-th iteration of EM, which is written as

µ
(l)
h =

∑D
d=1 γ(si,d = h)xi,d∑D

d=1 γ(si,d = h)
, (24)

for h = 0, 1. Now to maximize Q(Θ;Θ(l−1)) with respect to σ2
h, we solve

∂Q(Θ;Θ(l−1))

∂σ2
h

= 0

D∑
d=1

[
γ(si,d = h)

(
1

2σ2
h

− (xi,d − µh)
2

2σ4
h

)]
= 0, (25)

from which we get the update equation for σ2
h as

(
σ2
h

)(l)
=

∑D
d=1 γ(si,d = h)

(
xi,d − µ

(l)
h

)2

∑D
d=1 γ(si,d = h)

, (26)



where h = 0, 1. Similarly, using the same approach, it can be easily shown that the update

equations for the Markov chain transition probabilities α and β are given by

α(l) =

∑D
d=2 ξ(si,d = 0, si,d−1 = 1)∑D

d=2[ξ(si,d = 0, si,d−1 = 1) + ξ(si,d = 1, si,d−1 = 1)]
, (27)

β(l) =

∑D
d=2 ξ(si,d = 1, si,d−1 = 0)∑D

d=2[ξ(si,d = 1, si,d−1 = 0) + ξ(si,d = 0, si,d−1 = 0)]
. (28)

Thus, all the model parameters are updated iteratively in EM using the closed-form update Eqns.

(24), (26), (27), and (28) until convergence is achieved.

Finally, upon the convergence of EM, the state vector si = [si,1, si,2, . . . , si,D]
T for the i-th

user can be estimated, in a computationally efficient way, by using the Viterbi algorithm [18].

Thus, at SU i, let the EM estimate of the model parameters is denoted by Θ̂, then the Viterbi

algorithm uses it to recursively solve the following optimization problem

ωi,d(si,d) = max
si,d−1

[
p
(
xi,d|si,d, Θ̂

)
p
(
si,d|si,d−1, Θ̂

)
ωi,d−1(si,d−1)

]
, (29)

for d = 2, 3, . . . , D with the initialization ωi,1(si,1) = p(xi,1|si,1, Θ̂)p(si,1, Θ̂). The distributions

p
(
xi,d|si,d, Θ̂

)
and p

(
si,d|si,d−1, Θ̂

)
are given in (15) and (16), respectively, and note that

they are computed in (29) using only the required parameters estimate from the set Θ̂. Hence,

by keeping track of the maximizing sequence at each time instant in (29) and by finding

maxsi,D ωi,D(si,D) at time instant D, we can back trace the most probable sequence to get

ŝi.

Note that the combination of EM and Viterbi algorithm is named here as the EM-Viterbi

algorithm. However, once the state vector of the PU is estimated then we can use it in the

mWSED algorithm proposed in Section III-C to combine only the highly correlated energy

samples in its test statistic, and the resulting algorithm is referred to here as the EM-mWSED

algorithm. Both EM-Viterbi and EM-mWSED are summarized for SU i in Algorithm 1.

The computational complexity of EM-mWSED is dominated by the use of the distributed

consensus algorithm of (6) in Step 1. This step has the complexity of O(|Ni|) per its iteration,

where |Ni| is the cardinality of the set of neighboring users of SU i. Furthermore, the forward

and backward passes on the observation window in Steps 2 and 3, to compute the distributions in

(32) and (33), respectively, as well as the Viterbi algorithm in Step 6 and (29) also dominate the

computational complexity. These steps have the complexity of O(2D) where D is the length of

the observation window. Thus, the computational complexity of EM-mWSED is O(Ic|Ni|+2DIe)



Algorithm 1: States Estimation Based PU Detection for SU i

Input: l = 0, xi and xj for j ∈ Ni, Θ(0).

1) Use the distributed consensus algorithm of (6) to reach consensus

on xi with the other users in the network.

while convergence criterion is not met do
l = l + 1

2) Use the forward recursion in (32) to compute νd(si,d = h)

for all d = 1, 2, . . . , D and h = 0, 1.

3) Use the backward recursion in (33) to compute πd(si,d = h)

for all d = D,D − 1, . . . , 1 and h = 0, 1.

4) Compute γ(si,d = h) from (34) for all d = 1, 2, . . . , D

and h = 0, 1, and compute ξ(si,d = h, si,d−1 = g) from

(35) for all d = 2, . . . , D and h = 0, 1, g = 0, 1.

5) Update the model parameters Θ(l) using (24), (26), (27),

and (28).

end

6) Use the Viterbi algorithm in (29) to estimate the PU state vector ŝi for SU i.

7) Compute the test statistics for mWSED using (9) and compare it against a threshold to make PU detection.

Output: ŝi, Θ̂, Ti

where Ic is the number of consensus iterations whereas Ie denotes the number of EM iterations

till convergence. The complexity of the energy detector based DCSS is O(Ic|Ni|) whereas that of

the WSED based DCSS is O(Ic|Ni|+D). Thus, the performance improvement of EM-mWSED,

as demonstrated in the next section, is at the cost of a slight increase in the computational

complexity per a single iteration of the EM algorithm.

V. SIMULATION RESULTS

In this section, we demonstrate the performance of our expectation maximization and Viterbi

algorithms based PU states estimation scheme, referred to here as EM-Viterbi, as well as that

of our EM-mWSED algorithm. For comparison purposes, we compare the performance of the

proposed algorithm to the conventional energy detector (ED) and the weighted sequential energy

detector (WSED) of [7], [8] under different scenarios, when ED and WSED are used with the

DCSS scheme and with the consensus happening on the present and past observations as proposed

herein. As suggested in [7], [8] for WSED, we use a total of 3 past energy samples in its test

statistics for a highly dynamic PU, whereas ED uses only the present energy sample in its

test statistics. Further, we consider a network of N secondary users randomly generated with a
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Fig. 4. Primary user states estimation error of EM for an SU as a function of SNR (dB) and the number of samples per energy

statistics L, for (a) N = 10 SUs, (b) N = 20 SUs, and (c) N = 60 SUs, and when the network connectivity is c = 0.2 and

the PU follows the two-state Markov model with α = β = 0.1.

connectivity c and the weighting matrix as defined in (6). The average number of connections

per SU in the network is given by R = c(N − 1). The primary user follows a two-state Markov

chain model to switch between the active and idle states with the transition probabilities α and β.

The SUs collect L samples individually to compute the energy statistic, and combine D = 150

present and past observations over the consecutive sensing intervals after consensus to define an

observation window as in Algorithm 1. For the initialization of the EM algorithm, we determine

the initial estimate of the means and variances by using the K-means clustering algorithm [22]

with K = 2, whereas the initial estimate of the transition probabilities can be computed by

performing a coarse grid search over the likelihood function in (18) in the (0, 1) interval with

grid resolution of 0.1.

In Fig. 4, we demonstrate the performance of the joint EM and Viterbi (EM-Viterbi) algorithm

at estimating the state vector of the PU as a function of SNR (dB) and the number of samples per

energy statistics L. The states estimation error for SU i is defined here as Estimation Error (si) =
1
D

∑D
d=1 E [1 (ŝi,d ̸= si,d)] where the expectation is computed over several Monte Carlo trials.

Further, we assume that the consensus is reached on the energy samples in Step 1 in Algorithm

1 prior to estimation, thus the error plots in this figure are observed at all the SUs in the

network. We consider here that the secondary users network has N = 10, 20, and 60 users

with connectivity c = 0.2. The PU displays a highly dynamic nature with transition probabilities

α = β = 0.1. It is observed that, in general, the estimation error is higher at lower SNR and

L values for all the considered cases in Fig. 4. This is because the distribution of the energy

samples under the two hypotheses highly overlap at those values making it harder to separate the

samples into two clusters. Particularly, we observe that for a fewer number of SUs (N = 10) in
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Fig. 5. Mean-squared error (MSE) of estimating the model parameters Θ vs. EM iterations for N = 10 SUs and connectivity

c = 0.2, when SNR= −5 dB, −3 dB, or 0 dB and when the number of samples per energy statistics L = 12 or 36. The PU

states transition probabilities are α = β = 0.1.

the network, the estimation error is higher at the lower SNRs and the lower L values, but when

the number of SUs in the network increases from N = 10 to 20 and then to 60, the estimation

error decreases significantly even for the lower SNR and L values. This is because the SNR upon

consensus in Step 1 of Algorithm 1 is directly proportional to
√
R because each SU exploits R

independent observations of the PU channel’s energy statistics. Thus, with the increase in either

N or c, the SNR upon consensus improves due to the increase in R which in turns results in

decreasing the estimation error. This explains our motivation behind using DCSS scheme prior

to the estimation process in Algorithm 1 that improves the performance of EM-Viterbi at the

lower SNR and L values for larger networks.

In Fig. 5, we illustrate the convergence performance of the EM algorithm in estimating the

model parameters Θ when N = 10 SUs are considered in the network with network connectivity

c = 0.2. The mean-squared error (MSE) of Θ is defined as MSE (Θ) = E
[
|| Θ− Θ̂ ||2

]
. It is

observed that for L = 12 samples per energy statistics, as the SNR increase from −5 dB, to −3

dB, and then to 0 dB, the EM algorithm converges faster in fewer iterations. Similar observation

is also made when for a lower SNR value of −5 dB, we increase L from 12 to 36. This is due

to the fact that the initial estimates for EM are improved at the larger SNR and L values which

results in its faster convergence response.

Since our joint EM and Viterbi algorithm, referred to here as EM-Viterbi, also outputs an



Fig. 6. Illustrating detection performance of the joint EM and Viterbi (EM-Viterbi) algorithm for different SNR (dB) values

or the number of samples per energy statistics L, and comparing it to the conventional ED and the weighted sequential energy

detector with exponential weighting (WSED (EXP)) for (a) N = 10 SUs, connectivity c = 0.2, and the number of energy

samples L = 12, and (b) N = 20 SUs, connectivity c = 0.5, and SNR= −5 dB. The PU follows the states transition

probabilities α = β = 0.1.

estimate of the present state (si,D) at the i-th SU by going back and forth on the observation

window, therefore in Fig. 6, we show its detection performance for different SNR and L values

and compare it with the ED and the WSED algorithms. For WSED, we use the exponential

weighting on the aggregated energy samples, named here as WSED (EXP), as suggested in [8]

and discussed earlier in Section III-B. Two network configurations are considered for demonstra-

tion purposes. In configuration (a), we consider N = 10 SUs in the network with connectivity

c = 0.2 and when L = 12 samples per energy statistics are used. For this case, either an

SNR= −3 dB or −5 dB is assumed and the probabilities of false alarm of 0.8% and 4.4%,

respectively, were recorded for EM-Viterbi. In contrast, in configuration (b), it is assumed that

we have N = 20 SUs in the network with connectivity c = 0.5 and SNR= −5 dB. The number

of samples L is considered to be either 8 or 12, and similarly the probabilities of false alarm of

2.66% and 1.08%, respectively, were observed for EM-Viterbi. These false alarm probabilities

in each case were selected also for ED and WSED (EXP) to define a threshold and determine

their probability of detection for comparison purposes. In general, from Fig. 6, it is observed

that EM-Viterbi outperforms EM and WSED (EXP) in improving the detection probability of

PU, and its performance improves with the increase in SNR and the number of samples L as

expected. Specifically, in Fig. 6 (a), when SNR= −5 dB and L = 12 the detection probability



of EM-Viterbi is 96.30% and that of WSED (EXP) is 96.14%, however, when the network size

increase from N = 10 to 20 and connectivity increases from c = 0.2 to 0.5 in going from Fig. 6

(a) to Fig. 6 (b), there is an improvement in SNR upon consensus by
√
R and thus the detection

probability of EM-Viterbi reaches 99.09% and that of WSED (EXP) is 96.94%. Further, Fig.

6 (b) also illustrates that the detection performance of EM-Viterbi improves by increasing the

number of samples L from 8 to 12 due to further decrease in the estimation error.

While EM-Viterbi outputs a single operating point for SUs in terms of detection probability

and false alarm probability, in contrast, by using the estimated state vector in mWSED, the

EM-mWSED algorithm can provide a wide range of operating points. As such, in Figs. 7 and

8, we show the receiver operating characteristic (ROC) curves of the proposed EM-mWSED

algorithm and compare it with those of the ED, WSED (EXP), and WSED with equal weighting

of the present and past energy samples, viz named here as WSED (EQ). Accordingly, in these

figures, we demonstrate the performance of EM-mWSED with either equal weighting (EM-

mWSED (EQ)) or with the exponential weighting (EM-mWSED (EXP)) of the aggregated energy

samples. Notably, we observed that exponential weighting results in better detection performance

than equal weighting at lower SNR or L values due to the rise in the estimation error.

In Fig. 7, we consider N = 20 SUs in the network with connectivity c = 0.2. The PU states

transitioning probabilities are selected as α = β = 0.1. The SNR is assumed to be either −3 dB

or −5 dB, whereas the number of samples per energy statistic L is assumed to be either 8 or 12.

As expected, it is observed that the detection performance of EM-mWSED improves with the

increase in either SNR or L values, due to decrease in the states estimation error. Further, EM-

mWSED outperforms both ED and WSED at increasing the detection probability and reducing

the false alarm probability, and thereby provides a wide range of operating points for SU.

Fig. 8 compares the ROC curves of EM-mWSED with that of ED and WSED with both

exponential and equal weighting of the aggregated energy samples. The PU is either considered

to be slowly time-varying with α = β = 0.05 or highly dynamic with α = β = 0.1 as

considered earlier. There are N = 10 SUs in the network with connectivity c = 0.2, and the

SNR is considered to be −3 dB with the number of samples per energy statistics as either

L = 12 or 36. Firstly, by comparing Figs. 7 and 8 for L = 12, SNR= −3 dB, and α = β = 0.1,

we observe a decay in the detection performance of EM-mWSED (EXP) due to decrease in the

value of R in Fig. 8, which reduces the SNR upon consensus as discussed above. Secondly, it

is observed in Fig. 8 that for both slowly and highly dynamic natures of the PU, EM-WSED
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Fig. 7. Receiver operating characteristic curves of EM-mWSED (EXP), conventional ED, WSED (EQ), and WSED (EXP), for
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PU states transition probabilities α = β = 0.1 are used.
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Fig. 8. Receiver operating characteristic curves of EM-mWSED (EXP), EM-mWSED (EQ), conventional ED, WSED (EQ),

and WSED (EXP), for slowly time-varying PU with α = β = 0.05 and a highly dynamic PU with α = β = 0.1. The number

of SUs N = 10, connectivity c = 0.2, SNR= −3 dB, and the number of samples per energy statistics L = 12 or 36.

(EXP) performs better than EM-mWSED (EQ) since it avoids aggregating the outdated energy

samples at the lower SNR or L values. Further, we also observe that, for both kinds of PUs, our

EM-mWSED algorithm performs better than the other detectors as expected. However, when

L = 12, its detection performance appears to be dependent on the time-varying nature of the

PU, and it is seen to be better in case of slowly time-varying PU than a highly dynamic PU.

This is because at the lower SNR or L values, EM-Viterbi can easily characterize the energy



samples, corresponding to the two states of PU, when the PU is slowly time-varying than when

it is highly dynamic, and thus results in a lower estimation error in the former case. However,

when L increases to 36, then the estimation error of EM-Viterbi decreases for a highly dynamic

PU as well, which in turn results in the similar performance of EM-mWSED (EXP) for both

kinds of PUs, as shown in this figure.

Finally, while the focus herein is on investigating the detection vs. false alarm probabilities, it

is worth noting that, on the one hand, where the throughput performance of an SU under H1 is

proportional to (1− pd), on the other hand, the throughput under H0 is proportional to (1− pf )

[26]. Thus, the higher detection probability of EM-Viterbi and EM-mWSED as compared with

that of ED and WSED implies a higher throughput of SUs with reduced interference to the

primary user, whereas its capability of simultaneously decreasing the false alarm probability

with the increase in the average connections per SUs in the network, SNR, or L, implies a

higher throughput during the idle state of the PU.

VI. CONCLUSION

We considered the problem of DCSS for a dynamic PU when the present and past energy

samples are aggregated in a test statistic to enable improved PU detection capabilities. To this

end, a modified weighted sequential energy detector is proposed which utilizes the PU states

information over an observation window to combine only the highly correlated energy samples

in its test statistics. In practice, the states information is unknown, and thus we developed

an EM-Viterbi algorithm to iteratively estimate them using the energy samples collected over

the window. The estimated states are then used in mWSED to compute its test statistics, and

the resulting algorithm is named here as the EM-mWSED algorithm. Simulation results are

included to demonstrate the estimation performance of EM-Viterbi and compare the detection

performance of both EM-Viterbi and EM-mWSED with that of the conventional energy detector

and the WSED algorithm. The results demonstrate that our proposed algorithms perform better

than both ED and WSED, and their performances improve by either increasing the average

number of connections per SU in the network, or by increasing the SNR or the number of

samples per energy statistics, for both slowly varying and highly dynamic PU.



VII. APPENDIX

In this section, we present the derivation of the probabilities γ(si,d = h) = p
(
si,d = h|xi,Θ

(l−1)
)

and ξ(si,d = h, si,d−1 = g) = p
(
si,d = h, si,d−1 = g|xi,Θ

(l−1)
)

for g, h ∈ {0, 1} and the l-th

iteration of EM. To begin, the posterior distribution of si,d given xi and Θ(l−1) can be written

as

p
(
si,d|xi,Θ

(l−1)
)

∝ p
(
si,d,xi|Θ(l−1)

)
= p

(
si,d,xi,1:d,xi,d+1:D|Θ(l−1)

)
= p

(
xi,d+1:D|si,d,Θ(l−1)

)
p
(
xi,1:d, si,d|Θ(l−1)

)
≜ πd(si,d)νd(si,d), (30)

where the distributions πd(si,d) and νd(si,d) are computed later herein. The notation xi,m:n ≜

[xi,m, xi,m+1, . . . , xi,n]
T which is a shorthand to represent the elements in xi from index m to n

where m,n ∈ {1, 2, . . . , D}. Similarly, we can write the joint distribution of si,d and si,d−1 as

p
(
si,d, si,d−1|xi,Θ

(l−1)
)

∝ p
(
xi,1:d−1, si,d−1, si,d,xi,d:D,Θ

(l−1)
)

= p
(
xi,1:d−1, si,d−1|Θ(l−1)

)
p
(
xi,d:D, si,d|si,d−1,Θ

(l−1)
)

= νd−1(si,d−1)p
(
xi,d,xi,d+1:D, si,d|si,d−1,Θ

(l−1)
)

= νd−1(si,d−1)πd(si,d)p
(
xi,d|si,d,Θ(l−1)

)
p
(
si,d|si,d−1,Θ

(l−1)
)
, (31)

where the conditional distribution of xi,d and the conditional prior distribution of si,d that are

used above are both defined in (15) and (16). Next we follow the forward-backward recursion

approach in [23] to compute the distributions νd(si,d) and πd(si,d). First, to compute νd(si,d), we

write

νd(si,d) = p
(
si,d,xi,1:d|Θ(l−1)

)
=

∑
si,d−1

p
(
si,d, si,d−1,xi,1:d−1, xi,d|Θ(l−1)

)
=

∑
si,d−1

p
(
xi,d|si,d,Θ(l−1)

)
p
(
si,d|si,d−1,Θ

(l−1)
)
p
(
si,d−1,xi,d−1|Θ(l−1)

)
=

∑
si,d−1

c(si,d, si,d−1)νd−1(si,d−1), (32)



where we have defined c(si,d, si,d−1) = p
(
xi,d|si,d,Θ(l−1)

)
p
(
si,d|si,d−1,Θ

(l−1)
)
, and in (32) the

summation is over si,d−1 ∈ {0, 1}. The forward recursion in (32) occurs in the l-iteration of EM

for all d = 2, 3, . . . , D with the initialization ν1(si,1) = p(si,1|Θ(l−1))p(xi,1|si,1,Θ(l−1)) which is

defined in (15) and (16). Next we write the backward recursion equation to compute πd(si,d) as

follows

πd(si,d) = p
(
xi,d+1:D|si,d,Θ(l)

)
=

∑
si,d+1

p
(
xi,d+1:D, si,d+1|si,d,Θ(l)

)
=

∑
si,d+1

p
(
xi,d+2:D|si,d+1,Θ

(l)
)
p
(
xi,d+1|si,d+1,Θ

(l)
)
p
(
si,d+1|si,d,Θ(l)

)
=

∑
si,d+1

πd+1(si,d+1)c(si,d+1, si,d), (33)

in which the summation runs over si,d+1 ∈ {0, 1} for all d = D − 1, D − 2, . . . , 1 with the

initialization πD(si,D) = 1. Finally, the probabilities γ(si,d = h) = p
(
si,d = h|xi,Θ

(l−1)
)

and

ξ(si,d = h, si,d−1 = g) = p
(
si,d = h, si,d−1 = g|xi,Θ

(l−1)
)

for g, h ∈ {0, 1} can be computed as

γ(si,d = h) = p
(
si,d = h|xi,Θ

(l−1)
)

=
νd(si,d = h)πd(si,d = h)∑

si,d
νd(si,d)πd(si,d)

, (34)

and,

ξ(si,d = h, si,d−1 = g)

= p
(
si,d = h, si,d−1 = g|xi,Θ

(l−1)
)

=
νd−1(si,d−1 = g)πd(si,d = h)c(si,d = h, si,d−1 = g)∑

si,d

∑
si,d−1

νd−1(si,d−1)πd(si,d)c(si,d, si,d−1)
, (35)
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