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CLOSEDNESS OF THE SINGULAR LOCUS AND GENERATION FOR DERIVED

CATEGORIES

SOUVIK DEY AND PAT LANK

ABSTRACT. This work is concerned with a relationship regarding the closedness of the singular locus of a

Noetherian scheme and existence of classical generators in its category of coherent sheaves, associated bounded

derived category, and singularity category. Particularly, we extend an observation initially made by Iyengar and

Takahashi in the affine context to the global setting. Furthermore, we furnish an example a Noetherian scheme

whose bounded derived category admits a classical generator, yet not every finite scheme over it exhibits the

same property.

1. INTRODUCTION

This note strengthens a relationship between the closedness of the singular locus of a Noetherian scheme

X and the existence of classical generators in the bounded derived category of coherent sheaves, denoted by

Db
coh(X). By doing so, it establishes a useful homological condition that can be used to probe whether an

important topological property concerning singularities of the scheme is satisfied.

In a triangulated category T , an object G is called a classical generator if the smallest thick subcategory

of T containing G, denoted by 〈G〉, coincides with T . Put differently, any object in T can be built from

G utilizing a finite combination of shifts, cones, and retracts of finite coproducts. This concept was first

introduced in [BvdB03].

There has been a very active front towards understanding conditions which Db
coh(X) admit a classical

generator. These cases include quasi-excellent Noetherian schemes of finite Krull dimension [Aok21], Noe-

therian schemes J-2 [ELS20], Noetherian schemes admitting a separator [Jat21], and several instances in

the affine setting [DLT23, Ola23, IT16, IT19].

An objective in this line of work is to explicitly identify classical generators in Db
coh(X). The progress

made here includes Noetherian schemes of prime characteristic [BIL+23], noncommutative techniques

[BDL24], and varieties over a field [Rou08, HHL23, HH23, FH23, Pir23, BE23, LO24, Lan23].

Let us motivate the objective behind our note. In Db
coh(X), a perfect complex is an object which is

locally quasi-isomorphic to a bounded complex of finite locally free sheaves. The triangulated subcategory

of Db
coh(X) consisting of perfect complexes admits a classical generator [BvdB03].

A Noetherian scheme is regular if, and only if, every object in Db
coh(X) is quasi-isomorphic to a perfect;

see [Nee21] for recent developments. In other words, if there exists a perfect complex P such that 〈P 〉 =
Db

coh(X), then X is regular, and vice versa.

On the contrary, if X fails to be regular, yet Db
coh(X) still admits a classical generator, it follows that the

regular locus of X must be open; see [IT19, Lemma 2.6] for the affine case. In this regard, there are varying

singularities based on the openness of the regular locus.

The singular locus of a Noetherian scheme X comprises points p where OX,p is not a regular local ring,

while its set-theoretic complement is called the regular locus. We say X is J-0 if its regular locus contains a

nonempty open subset and J-1 if the regular locus is an open subset. For further details, refer to Remark 2.5.

This leads us to our main result.
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2 S. DEY AND P. LANK

Theorem 1.1. For a Noetherian scheme X, the following conditions are equivalent:

(1) Every closed integral subscheme is J-0.

(2) Every closed integral subscheme is J-1.

(3) Db
coh(Z) admits a classical generator for every closed integral subscheme Z of X

(4) Dsg(Z) admits a classical generator for every closed integral subscheme Z of X
(5) cohZ admits a classical generator for every closed integral subscheme Z of X.

Moreover, if any of these conditions are satisfied, both Db
coh(Y ) and Dsg(Y ) admit a classical generator for

any closed subscheme Y of X.

Theorem 1.1 connects the closedness of the singular locus and the existence of classical generators in var-

ious categories of interest that are constructed from coherent sheaves. For background on these categories,

please see Section 2. Our work is a globalization of [IT19, Theorem 1.1], which observed a similar result in

the setting of an affine scheme. However, we give an independent proof without relying on their techniques,

offering a geometrically flavored strategy.

An important consequence to our result lies in its generality. We exhibit this with an example satisfying

the conditions of Theorem 1.1, yet does not qualify as quasi-excellent nor J-2 scheme, ensuring the results of

[Aok21] and [ELS20] are not applicable. This example is follows a construction by Nagata, cf. Example 3.8.

Acknowledgements. We thank Srikanth Iyengar and Josh Pollitz for comments on an earlier draft. More-

over, the second author would like to thank Takumi Murayama for references and correspondence in regards

to Example 3.8. The first author was partially supported by the Charles University Research Center program

No. UNCE/24/SCI/022 and a grant GA CR 23-05148S from the Czech Science Foundation.

Notation 1.2. Let X be a Noetherian scheme. We will consider the following triangulated categories:

(1) D(X) is the unbounded derived category of complexes of OX -modules

(2) DQcoh(X) is the unbounded derived category of complexes of OX -modules with quasi-coherent

cohomology

(3) Db
coh(X) is the derived category of bounded complexes of OX -modules with coherent cohomology

(4) perfX is category of perfect complexes on X, i.e. those objects in Db
coh(X) which locally are

quasi-isomorphic to a bounded complex of locally free sheaves of finite rank

(5) Dsg(X) is the Verdier quotient of Db
coh(X) by perfX, see Remark 2.7 for details.

2. GENERATION

This section briefly discusses notions of generation for both triangulated and abelian categories. The

primary sources of references are respectively [BvdB03, Nee21, Rou08] and [DT14, DLT23, IT16].

2.1. Triangulated categories. Let T be a triangulated category with shift functor [1] : T → T and S be a

subcategory of T .

Definition 2.1. (1) A triangulated subcategory of T is thick if it is closed under direct summands. The

smallest thick subcategory of T containing S is denoted 〈S〉.
(2) Consider the following additive subcategories of T :

(a) add(S) is the strictly full subcategory of retracts of finite coproducts of shifts of objects in S
(b) 〈S〉0 consists of all objects in T isomorphic to the zero object

(c) 〈S〉1 := add(S)
(d) 〈S〉n := add{cone(φ) : φ ∈ HomT (〈S〉n−1, 〈S〉1)} if n ≥ 2.

Remark 2.2. In the notation of Definition 2.1, there exists an exhaustive ascending chain of (additive)

subcategories for the smallest thick subcategory containing S . That is, 〈S〉i is contained in 〈S〉i+1 for all i
and 〈S〉 coincides with

⋃∞

n=0〈S〉n.

Definition 2.3. An object G of T is called a classical generator if 〈G〉 = T . Additionally, if there exists

n ≥ 0 such that 〈G〉n = T , we say G is a strong generator.
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Example 2.4. (1) If X is a regular Noetherian scheme, then Db
coh(X) admits a classical generator,

cf. [BvdB03, Theorem 3.1.1]. Additionally, if X is separated and of finite Krull dimension, then

there exists a strong generator for Db
coh(X), cf. [Nee21, Theorem 0.5]. In the special case X is

quasi-affine or a quasi-projective variety over a field, one can explicitly identify such objects, cf.

respectively [Ola23, Corollary 5] and [Orl09, Theorem 4].

(2) Let X be a Noetherian F -finite scheme (i.e. whose Frobenius morphism is finite). If G is a classical

generator for perfX, then F e
∗G is a classical generator for Db

coh(X) whenever e ≫ 0. See [BIL+23,

Theorem A] for details.

(3) Db
coh(X) admits a strong generator for any quasi-excellent separated Noetherian scheme X of finite

Krull dimension, cf. [Aok21, Main Theorem].

(4) Suppose π : X̃ → X is an alteration of varieties over a field where X̃ is a smooth projective variety.

If L is an ample line bundle on X̃, then Rπ∗(
⊕dim X̃

i=1 L⊗i) is a strong generator for Db
coh(X).

See [DL24, Example 3.8] for details. If X is a variety over a perfect field, then such alterations

exist, cf. [dJ96, Theorem 4.1].

Remark 2.5. Let X be a Noetherian scheme. For further background on the following, please refer to

[Sta23, Tag 07P6] and [Sta23, Tag 07R2].

(1) The regular locus of X, denoted Reg(X), is the collection of points p of X such that OX,p is a

regular local ring. The singular locus of X is the collection Sing(X) := X \ Reg(X).
(2) We say X is J-0 if the regular locus of X contains an nonempty open subset, and is J-1 if the regular

locus of X is an open subset. If Dsg(X) admits a classical generator, then X is J-1, cf. [IT19,

Lemma 2.9] for the affine case.

(3) A Noetherian scheme X is said to be J-2 if for every morphism Y → X which is locally of finite

type the regular locus Reg(Y ) is open in Y . If X is a J-2 scheme, then Db
coh(X) admits a classical

generator, cf. [ELS20, Theorem 4.15].

(4) Any quasi-excellent Noetherian scheme is J-2, i.e. proper schemes over a complete local ring.

Remark 2.6. Let X be a Noetherian scheme and E an object of Db
coh(X).

(1) Supp(E) := ∪∞
n=−∞ Supp(Hn(E))

(2) E is supported on a closed subscheme Z of X if Supp(E) is contained in Z
(3) E is scheme-theoretically supported on a closed subscheme Z of X if there is an object E′ of

Db
coh(Z) such that i∗E

′ ∼= E where i is the associated closed immersion.

(4) Any object E is supported on a closed subscheme is scheme-theoretically supported on a nilpotent

thickening of the closed subscheme, cf. [Rou08, Lemma 7.40].

Given a closed subscheme Z of X, then we consider the following thick subcategories of Db
coh(X):

(1) Db
coh,Z(X) is the strictly full subcategory of objects in Db

coh(X) whose cohomology is supported in

Z .

(2) perfZ X is the strictly full subcategory of perfect complexes on X whose cohomology is supported

in Z .

Remark 2.7. Let X be a Noetherian scheme. The singularity category of X, denoted Dsg(X), is the

Verdier quotient of Db
coh(X) by perfX. Note that X is regular if, and only if, Dsg(X) is trivial. Please

see [Orl04, Buc21] for further background in both geometric and algebraic contexts. The thick subcategory

of objects E in Dsg(X) which are isomorphic to the image of an object E in Db
coh,Z(X) under the quotient

functor Db
coh(X) → Dsg(X) is denoted Dsg,Z(X).

Remark 2.8. (1) Let X be a Noetherian scheme. If j : U → X denotes an open immersion and Z =
X \ U , then there exists Verdier localization sequences:

(a) Db
coh,Z(X) → Db

coh(X)
Lj∗

−−→ Db
coh(U)

(b) perfZ X → perfX
Lj∗

−−→ perf U

https://stacks.math.columbia.edu/tag/07P6
https://stacks.math.columbia.edu/tag/07R2
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(c) Dsg,Z(X) → Dsg(X)
Lj∗

−−→ Dsg(U)
(2) If there exists a Verdier localization sequence:

K → T → T /S

where K and T /K admit classical generators, then so does T , cf. [ELS20, Proposition 4.3].

Definition 2.9. Suppose T admits all small coproducts. Consider the following additive subcategories of

T :

(1) Add(S) is the strictly full subcategory of retracts of small coproducts of shifts of objects in S

(2) 〈S〉0 consists of all objects in T isomorphic to the zero object

(3) 〈S〉1 := Add(S)

(4) 〈S〉n := Add{cone(φ) : φ ∈ HomT (〈S〉n−1, 〈S〉1)} if n ≥ 2.

2.2. Abelian categories. Let A be an abelian category and S be a subcategory of A.

Definition 2.10. (1) add(S) is the smallest strictly full subcategory of A closed under direct summands

of finite coproducts of S
(2) A strictly full additive subcategory T of A is said to be thick if it is closed under direct summands

and if given any object appearing in a short exact sequence

0 → A → B → C → 0

where the other two objects belong to T , so does the third.

(3) The smallest thick subcategory of A containing S is denoted thick(S).
(4) Consider the following additive subcategories:

(a) th0(S) consists of all objects in A isomorphic to the zero object

(b) th1(S) := add(S)
(c) thn(S) is defined as the strictly full subcategory consisting of direct summands of objects

where appear in a short exact sequence

0 → A → B → C → 0

where the other two objects belong to thn−1(S).

The following is an easy generalization of [DLT23, Lemma 4.2.2].

Lemma 2.11. For any subcategory S of A, we have thick(S) =
⋃∞

i=0 th(S).

Proof. First, we show by induction that thn(S) is contained in thick(S) for each n. Let E belong to

th1(S). Then E is a direct summand of a finite direct sum of objects in S , but any such object must belong

to thick(S). Assume there exists n such that thk(S) is contained in thick(S) for each 1 ≤ k ≤ n. Let E
be in thn+1(S). There exists a short exact sequence in A:

0 → A → B → C → 0

where E is a direct summand of one of the objects and the other two are objects of thn(S). We have three

cases to check, and they can all be shown similarly to one another, so assume that A,B both belong to

thn(S). However, the definition of a thick subcategory tells us C belongs to thick(S) via the two-out-of-

three property for short exact sequences. Hence, we have shown that ∪∞
n=1 th

n(S) is contained in thick(S).
Lastly, we show

⋃∞

i=0 th(S) is a thick subcategory of A. For each N ≥ n, we know that thn(S) is

contained in thN (S). Suppose there is a short exact sequence where two of the three objects belong to⋃∞

i=0 th(S):
0 → A → B → C → 0.

There are three cases to check, and as above, it suffices to check one of them. Assume that A is an object in

ths(S) and B is an object in tht(A). Set v = max{s, t}. Then A,B are objects of thv(A), and so C belongs

to thv+1(S). Moreover, the definition of each
⋃∞

i=0 th(S) ensures it is closed under direct summands, and

so this shows the desired claim. �
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Lemma 2.12. If thick(S) = A, then 〈S〉 = Db(A).

Proof. We know from Lemma 2.11 that thick(S) =
⋃∞

i=0 th(S). Choose an object E in Db(A). There

exists a distinguished triangle in Db(A):

Z(E) → E → B(E)[−1] → Z(E)[1]

where Z(E) is the complex of cycles and B(E) is the complex of boundaries. Note that the differentials

of both Z(E), B(E)[−1] is zero, so these are complexes of shifts of objects in A. If one can show that

Z(E), B(E) belongs to 〈S〉, then the desired claim holds as one would have E is in 〈S〉. It suffices to check

that each object of A belongs to 〈S〉. However, an induction argument tells us thn(S) is contained in 〈S〉2n

for all n. The case n = 1 is clear, so assume there exists n such that thk(S) is contained in 〈S〉2k−1 for all

1 ≤ k ≤ n. Let E belong to thn+1(S). There exists a short exact sequence in A:

0 → A → B → C → 0

where E is a direct summand of one of the objects and the other two are objects of thn(A). This gives us a

distinguished triangle in Db(A):
A → B → C → A[1].

There are three cases, lets prove it for the case where A,B are in thn(S) as the others follow similarly.

The inductive hypothesis tells us A,B belong to 〈S〉2n−1 . Hence, it follows that B belongs to 〈S〉2n . This

completes the proof. �

3. RESULTS

This section establishes Theorem 1.1. The following lemma might be known to experts, but we spell it

out for the sake of convenience. For details on Serre subcategories, please refer to [Sta23, Tag 02MN].

Lemma 3.1. Let A be an abelian category, B be a Serre subcategory, and π : A → A/B be the associated

quotient functor. Let D be a thick subcategory of A containing B. If there exists objects D in D and A in A
such that π(D) ∼= π(A) in A/B, then A is an object of D.

Proof. Let f : π(D) → π(A) be an isomorphism in A/B. There exists a short exact sequence in A/B:

0 → π(D)
f
−→ π(A) → 0 → 0.

The map f is the image of a map f ′ : D′ → A/A′ where D′, A′ are respectively subobjects of D,A and

D/D′, A′ belong to B. We have a short exact sequence in A:

0 → D′ → D → D/D′ → 0.

If both D and D/D′ belong to D (i.e. B ⊆ D), then D′ is in D. Set D1 := D′/ ker f ′. Since π(f ′) is a

monomorphism, we know that ker f ′ is in B, and hence, ker f ′ is in D. There exists a short exact sequence

in A:

0 → ker f ′ → D′ → D1 → 0.

As both ker f ′ and D′ belong to D, we have D1 belongs to D. Note that D1
∼= coim f ′ in A. Let

f1 : coim f ′ → A/A′ be the natural map induced by f ′. There exists a short exact sequence in A:

0 → coim f ′ → A/A′ → coker f1 → 0.

Tying our work so far together, there exists a commutative diagram in A/B (cf. [Gab62, §3.1 Corollaire 1]):

0 π(D) π(A) 0 0

0 π(coim f ′) π(A/A′) π(coker f1) 0
π(f1)

wv

f

u

where u, v, w are isomorphisms in A/B. This tells us that π(f1) is an isomorphism, and so both ker f1 and

coker f1 belong to D as these belong to B (cf. [Gab62, §3.1 Lemme 4]). If both coim f ′ and coker f1 are in

https://stacks.math.columbia.edu/tag/02MN
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D, then A/A′ belongs to D. Once more, there is the short exact sequence in A:

0 → A′ → A → A/A′ → 0.

If A′ and A/A′ are in D, then so is A, which shows the desired claim. �

Lemma 3.2. Let A be an abelian category, B be a Serre subcategory, and π : A → A/B be the associ-

ated quotient functor. There exists a bijective correspondence of thick subcategories C of A/B and thick

subcategories of A containing B.

Proof. Let C be a strictly full subcategory of A/B. Let π : A → A/B be the quotient functor. Set π−1(C)
to be the collection of objects C in A such that π(C) belongs to C.

Suppose C is thick. We show that π−1(C) is a thick subcategory of A containing B. It is clear that B is

contained in π−1(C) as B = kerπ. Suppose we have a short exact sequence in A where two of the three

objects belong to π−1(C). Applying π gives short exact in A/B, and so the third object must belong to C.

Hence, the third object belongs to π−1(C). A similar argument tells us that π−1(C) is closed under direct

summands. It is evident that π(π−1(C)) = C. Let D be a thick subcategory of A containing B. Hence, we

have shown that each thick subcategory of A/B is the essential image of a thick subcategory of A containing

B.

It suffices to check that every thick subcategory D of A containing B is of the form π−1(D′) where D′

is a thick subcategory of A/B. Let D′ be the thick subcategory of A/B generated by the essential image of

π(D). We show that D = π−1(D′). If π(D) is contained in D′, then D is contained in π−1(D′). It suffices

to check the reverse inclusion. Let E belong to π−1(D). Then π(E) is in D′. By Lemma 2.11, there exists

an n ≥ 0 such that π(E) belongs to thn(π(D)). We induct on n to show that if π(E) is in thn(π(D)),
then E belongs to D. If n = 0, then we already know that B is contained in π−1(D′). Suppose π(E) is in

th1(π(D)). There exists E′ in A/B such that π(E) ⊕ E′ is a finite coproduct of objects in π(D). That is,

π(E)⊕E′ ∼= ⊕n
i=1π(Di) for π(Di) in π(D). As the quotient functor π : A → A/B is exact (cf. [Gab62, §3.1

Proposition 1]), it follows that π(E) ⊕ E′ ∼= π(⊕n
i=1Di) in A/B. By Lemma 3.1, we see that ⊕n

i=1Di is in

D. Choose E′′ in A such that π(E′′) ∼= E′. Once more, it follows that π(E ⊕ E′′) ∼= π(⊕n
i=1Di). Hence,

E ⊕E′′ is in D. As D is thick, it follows that E is in D. This shows the inductive step.

Assume there exists n ≥ 0 such that for all 0 ≤ k ≤ n and all objects A of A, if π(A) is in thk(π(D)),
then A belongs to D. Suppose E is an object of A such that π(E) is in thn+1(π(D)). There exists a short

exact sequence

0 → M → N → L → 0

where two of the three objects belong to thn(π(D)) and π(E) is a direct summand of the third object.

Without loss of generality, we can assume π(E) is a direct summand of L. There exists a commutative

diagram in A/B (cf. [Gab62, §3.1 Corollaire 1]):

0 M N π(E)⊕ π(E′) 0

0 π(M ′) π(N ′) π(L′) 0

wvu

where u, v, w are isomorphisms in A/B. The last row above is the direct image of the short exact sequence

in A:

0 → M ′ → N ′ → L′ → 0.

Applying Lemma 3.1, we see that M ′, N ′ are in D. Hence, L′ is in D. As π(E ⊕E′), π(L′) are isomorphic

in A/B, Lemma 3.1 tells us once more that E⊕E′ belongs to D. This completes the proof by induction. �

The following has a special case for the category of coherent sheaves on a Noetherian scheme, cf. [ELS20,

Remark 4.5].
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Lemma 3.3. (Elagin-Lunts-Schnürer) Let A be an abelian category, S be a Serre subcategory, and π : A →
A/B be the associated quotient functor. If there exists B in B and G in A/B such that thick(B) = B and

thick(G) = A/B, then thick(B ⊕G) = A.

Proof. By Lemma 3.2, the smallest thick subcategory generated by G⊕B coincides with A. �

Lemma 3.4. Let X be a Noetherian scheme. If i : Z → X is a closed immersion with Z reduced and there

exists G in cohZ such that thick(G) = cohZ , then thick(i∗G) = cohZ X.

Proof. Note that cohZ X is a thick subcategory of cohX, and so thick(i∗G) is contained in cohZ X. We

check the converse. Let E be an object of cohZ X. Let I be the ideal sheaf corresponding to Z . There is an

n ≥ 0 such that InE = (0). This gives us a descending chain in cohX:

(0) = InE ⊆ In−1E ⊆ · · · ⊆ IE ⊆ E.

Each quotient IjE/Ij+1E are annihilated by I , and so these belong to thick(i∗G). Thus, E belongs to

thick(i∗G). �

Lemma 3.5. Let X be a Noetherian scheme. Let πi : Zi → X denote the closed immersions from the

irreducible components of X. If for each 1 ≤ i ≤ n there exists Gi in cohZi such that thick(Gi) = cohZi,

then thick(⊕n
i=1πi,∗Gi) = cohX.

Proof. Let E be in cohX. An induction on number of irreducible components for Supp(E) to reduce

to case where E is supported on a closed integral subscheme, cf. [Sta23, Tag 01YD]. The desired claims

follows from Lemma 3.4. �

Proof of Theorem 1.1. We prove the desired claim by Noetherian induction on X. It is evident that the claim

holds for the empty scheme, so it may be assumed that X is nonempty. Without loss of generality, we may

further impose that X is integral as it suffices to verify the claim on each irreducible component of X, cf.

Lemma 3.5

It is clear that (3) and (4) are equivalent.

Let Z be a closed integral subscheme of X. If (4) holds, then Dsg(U) admits a classical generator for

each open affine subscheme U of Z . By Remark 2.5, we observe that any such U must be J-1. This shows

(4) implies (2).
Next, we verify (2) implies (3). If X is regular, there is nothing to check, so we may assume additionally

that X is not regular. If X is J-1 and integral, then there exists a nonempty open affine U in the regular

locus of X. In particular, Db
coh(U) admits a classical generator. Note that dimZ < dimX where Z :=

X \ U . Hence, our inductive hypothesis promises that Db
coh(Z) admits a classical generator. Therefore, an

application of Remark 2.8 tells us Db
coh(X) admits a classical generator.

Now we verify (1) ⇐⇒ (2). Clearly, (2) =⇒ (1), so we verify (1) =⇒ (2). If X is regular, there

is nothing to check, so we may assume additionally that X is not regular. If X is J-0 and integral, then

there exists a nonempty open affine U in the regular locus of X. In particular, Db
coh(U) admits a classical

generator. The closed subscheme Z := (X\U)red is properly contained in X, so the claim holds on Z . Note

that every closed integral subscheme of Z is J-0. Hence, our inductive hypothesis promises that Db
coh(Z)

admits a classical generator. Therefore, an application of Remark 2.8 tells us Db
coh(X) admits a classical

generator.

Lastly, we show that (1) ⇐⇒ (5). Assume (5) holds. There exists G in cohX such that G = cohX.

By Lemma 2.12, it follows that 〈G〉 = Db
coh(X), so (5) =⇒ (1).

Suppose (1) holds. There exists a nonempty open affine j : U → X contained in the regular locus, and

hence, a sequence of abelian categories

cohZ X → cohX → cohU.

As Z is properly contained, the induction hypothesis tells us there exists G in cohZ . Hence, we know that

i∗G is a classical generator for cohZ X via Lemma 3.4. The desired claim follows from Lemma 3.3. �

https://stacks.math.columbia.edu/tag/01YD
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The following examples are new instances where Theorem 1.1 can be applied.

Example 3.6. Any Nagata schemes of Krull dimension one is J-2. This is checked locally in light of [Sta23,

Tag 07PJ]. Appealing to [ELS20, Theorem 4.15] or Theorem 1.1, it can be seen that Db
coh(X) admits a

classical generator.

Example 3.7. Let X = Spec(R) where R is a Noetherian semi-local integral domain of Krull dimension

two with open regular locus. We can verify that Db
coh(X) admits a classical generator. Since X has finitely

many closed points, it suffices to check the claim at each closed point. Indeed, if for each maximal ideal p in

X one has Db
coh(OX,p) admitting a classical generator, then it is the image of an object in Db

coh(X) under

the Verdier localization functor Db
coh(X) → Db

coh(OX,p). For each closed point p in X, choose an object

Gp of Db
coh(X) satisfying this condition. By [Let21, Theorem 3.6], we see that G := ⊕p∈mSpec(R)Gp is a

classical generator for Db
coh(X).

Consider the case where R is local. If Z is a properly contained closed subscheme of X, then Z is the

affine spectrum of Noetherian local ring of Krull dimension at most one. By [Sta23, Tag 07PJ], any such

closed subscheme is J-2, and hence, J-0. Therefore, Theorem 1.1 tells us Db
coh(X) admits a classical

generator.

Example 3.8 (Murayama). There is an example of a Noetherian scheme which satisfies condition (2) of

Theorem 1.1, and yet is not J-2. That is, there exists a Noetherian scheme whose closed integral subschemes

are J-1, but X is not J-2. We follow the construction made by Nagata in [Nag59, §4]. Let k be a perfect

field of characteristic p 6= 0 and v1, . . . , vn, . . . be infinitely many algebraically independent elements over

k0. Set k to be the field k0(v1, . . . , vn, . . .). Choose analytically independent elements x1, x2 over k. Set

A = kp{x1, x2}[k]. Then A is a regular local ring. Let p1, . . . , pn, . . . be infinitely many prime elements

in A such that p1A 6= pjA if i 6= j. For n ≥ 0, let qn = p1 · · · pn and c =
∑

i viqi. The singular locus

of Spec(A[c]) is not contained in any proper closed subset of Spec(A[c]). Let I = A[ 1
x1
]. Then I is a

Dedekind domain and B[ 1
x1
] = I[c] is a finite I-algebra. However, the singular locus of I[c] is not closed.

Since I is a Dedekind domain, it satisfies the property that every closed integral subscheme is J - 1.
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