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POISSONIAN ACTIONS OF POLISH GROUPS

NACHI AVRAHAM-RE’EM & EMMANUEL ROY

Abstract. We define and study Poissonian actions of Polish groups
as a framework to Poisson suspensions, characterize them spectrally,
and provide a complete characterization of their ergodicity. We further
construct spatial Poissonian actions, answering partially a question of
Glasner, Tsirelson & Weiss about Lévy groups. We also construct for
every diffeomorphism group an ergodic free spatial probability preserv-
ing actions. This constitutes a new class of Polish groups admitting
non-essentially countable orbit equivalence relations, obtaining progress
on a problem of Kechris.
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1. Introduction

A well-known construction in probability theory is the Poisson point pro-
cess, in which every standard (typically infinite) measure space (X,B, µ) is
associated a standard probability space (X∗,B∗, µ∗), whose points are con-
figurations of points from X and their distribution is governed by Poisson
distribution with intensity µ. In ergodic theory, one naturally associates
with every measure preserving transformation T of (X,B, µ) a probability
preserving transformation T ∗ of (X∗,B∗, µ∗), namely the Poisson suspen-

sion. In the first part of this work we aim to put the constructions of Poisson
point process and the Poisson suspension in a general, more axiomatic frame-
work, thus defining the notion of measure preserving Poissonian action of
Polish groups.

For a parameter 0 6 α 6 ∞, denote by Poiss (α) the Poisson distribution
with mean α, with the convention that for α ∈ {0,∞} it is the distribution
of the constant α.

Definition 1.1 (Poisson point process). Let (X,B, µ) be a standard measure
space and (Ω,F ,P) be a standard probability space. A collection

P = {PA : A ∈ B}

of random variables that are defined on (Ω,F ,P) is called a Poisson point

process with the base space (X,B, µ), if the following properties hold:

(1) PA has distribution Poiss (µ (A)) for every A ∈ B.
(2) PA∪B = PA + PB P-a.s. whenever A,B ∈ B are disjoint.

Such a Poisson point process P will be called generative if, in addition,

(3) The members of P generate F modulo P.

Remark 1.2. By the famous Rényi Theorem, which is valid in our general
setting, a Poisson point process P as in Definition 1.1 automatically satisfies
that PA1

, . . . , PAn are independent whenever A1, . . . , An ∈ B are disjoint.

The measure µ is sometimes referred to as the intensity of P. The classi-
cal (generative) Poisson point process with an arbitrary base space (X,B, µ),
is usually constructed on a standard probability space (X∗,B∗, µ∗), where
X∗ consists of Borel simple counting measures on X, and it is the collection

N = {NA : A ∈ B} given by NA (ω) = ω (A) .

As we shall see in Proposition 3.1, this construction of Poisson point pro-
cess amounts to a choice of topology which is not always canonical, and
N in its A-variable becomes a random measure on X, a property that is
not assumed a priori for general Poisson point process as in Definition 1.1.
Nevertheless, as we shall see in Proposition 3.3, all Poisson point processes
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are essentially unique, and in particular all form random measures in a pre-
cise sense. Despite this universality of the Poisson point process, the ability
to deviate oneself from the aforementioned concrete construction will be of
great importance to us as we shall see in Theorems 3 and 4.

Given a Poisson point process P as in Definition 1.1, let Bµ be the Borel
sets in B with finite measure, and look at the real Hilbert space

H (P) := span {PA : A ∈ Bµ} ⊂ L2
R (Ω,F ,P) .

Definition 1.3 (Poissonian action). Let P be a generative Poisson point
process as in Definition 1.1. A probability preserving action S : G y

(Ω,F ,P) of a Polish group G is said to be a Poissonian action with respect
to P, if its Koopman representation preserves H (P) within L2

R
(Ω,F ,P).

In the next theorem we provide a characterization of Poissonian action.
We will start by introducing the natural source for Poissonian actions,
namely the Poisson suspension construction, omitting essential techni-
cal details that will be treated with a great care in Proposition 3.1. Observe
that if T is a measure preserving transformation of (X,B, µ), one may define
a probability preserving transformation T ∗ of (X∗,B∗, µ∗) by the property
that for every ω in an appropriate µ∗-conull set,

T ∗ (ω) = ω ◦ T−1.

Evidently, we have the property

NA (T ∗ (ω)) = NT−1(A) (ω) for A ∈ B and for µ∗-a.e. ω ∈ X∗.

This readily implies that T ∗ is a Poissonian transformation with respect
to the Poisson point process N . As we shall see later on, this source of
Poissonian actions is not limited to a single transformation but for every
measure preserving action T : G y (X,B, µ) of an arbitrary Polish group
G we obtain a Poissonian action T∗ : Gy (X∗,B∗, µ∗) with respect to the
Poisson point process N . In the Poisson suspension construction, the action
T is referred to as a base action of T∗, and for a general Poissonian action
this is put as follows.

Definition 1.4 (Base of a Poissonian action). Let S : G y (Ω,F ,P) be a
Poissonian action of a Polish group G with respect to a generative Poisson
point process P as in Definition 1.3. An action T : G y (X,B, µ) is called
a base action for S if

PA ◦ Sg = PT−1
g (A) P-a.e. for every g ∈ G and A ∈ B.

The following theorem is our main result about Poissonian actions. We
put it in a principled form so to make things clear and the precise formula-
tions can be found in Theorems 4.4 and 4.5 and Corollary 4.6.
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Theorem 1. Suppose P is a generative Poisson point process as in Defini-
tion 1.1, and that a Polish group – the acting group – is given. Then:

(1) Every measure preserving action on the base space of P is a base
action of an essentially unique Poissonian action with respect to P.

(2) Every Poissonian action with respect to P admits an essentially
unique base action on the base space of P.

In the next we completely characterize the ergodicity of Poissonian actions
in terms of their base actions, to the generality of measure preserving actions
of Polish groups. For G = Z it was proved by Marchat [27] and other proofs
were given later by Grabinsky [16, Theorem 1] and Roy [36, §4.5].

Theorem 2. Suppose S is a Poissonian action with a base action T. The
following are equivalent.

(1) S is ergodic.
(2) S is weakly mixing.
(3) T admits no invariant set of a positive finite measure.

The continuation of our study of Poissonian actions is in the more re-
strictive framework of spatial actions of Polish groups. As opposed to
the general notion of measure preserving actions, in which every group ele-
ment corresponds to a transformation that is defined almost everywhere, in
spatial actions one requires an actual Borel action which happens to admit
an invariant (or quasi-invariant) measure. In many common cases, such as
locally compact Polish groups, the Mackey property ensures that there is no
essential difference between the two notions. However, this completely fails
for general Polish groups, as was demonstrated by Becker and by Glasner,
Tsirelson & Weiss in Lévy groups. We discuss this in Section 5.1.

Observe that the usual construction of the Poisson suspension N fails in
the spatial category. Indeed, the standard Borel space (X∗,B∗) is classically
defined as the space of simple counting Radon measures, namely Radon
measures that taking nonnegative integer values and are finite on bounded
sets, with respect to an appropriate choice of metric topology. Then for
a general Borel transformation T of (X,B), there is no apparent way to
identify it as a Borel transformation of (X∗,B∗), not even when T is a
homeomorphism, as it does not ensure that T preserves the class of bounded
sets, hence the map ω 7→ ω◦T−1 is not well-defined as transformation of X∗.
In order to solve this we introduce a construction of Poisson point process
as a random closed set, calling it Poisson random set. This provides a
construction of Poisson point processes in Polish topologies that may not
be locally compact, and manifests the advantage of treating Poisson point
processes abstractly.
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Recall that if (X,B) is a standard Borel space, then with every Polish
topology τ on X that generates B is associated the Effros Borel space,

Fτ (X) := {F ⊂ X : X\F ∈ τ} ,

whose points are the τ -closed sets in X. It is known that Fτ (X) has a
structure of a standard Borel space, that will be referred to as the Effros
σ-algebra and denote it Eτ (X). We define this in Section 5.2. Thus, a
random closed set is a probability measure on (Fτ (X) , Eτ (X)).

Theorem 3 (Poisson random set). Let (X,B) be a standard Borel space.
For every Polish topology τ that generates B, there are random variables

{ΞA : A ∈ B} of the form ΞA : Fτ (X) → Z>0 ∪ {∞} ,

with the following property:

For every Borel non-atomic measure µ on (X,B) that is τ -
locally finite, there exists a unique random closed set µτ on
(Fτ (X) , Eτ (X)), with respect to which {ΞA : A ∈ B} forms
a Poisson point process with base space (X,B, µ).

Our first main result about spatial Poissonian actions allows one to con-
struct spatial probability preserving actions out of spatial infinite measure
preserving actions. This will be established for actions with an appropriate
Polish topology in the following sense.

Definition 1.5. A locally finite Polish action is a measure preserving
action T : G y (X,B, µ) with a Polish topology for which, simultaneously,
T is Polish and µ is locally finite.

Theorem 4. Every locally finite Polish action of a Polish group is a base
action of a spatial Poissonian action.

As simple it may look, the construction of spatial Poissonian actions
in Theorem 4 provides a valuable tool to construct probability preserving
spatial actions for Polish groups without appealing to the Mackey property.
Our following results demonstrate the strength of this construction.

In their work on probability preserving spatial actions of Lévy groups,
Glasner, Tsirelson & Weiss showed that all such actions are necessarily triv-
ial [13, Theorem 1.1], and they asked whether Lévy groups admit nontrivial
nonsingular spatial actions [13, Question 1.2]. Using Theorem 4 we obtain
the following partial answer:

Theorem 5. A Polish group admits a nontrivial probability preserving spa-
tial action if it admits any of the following nontrivial actions:

(1) A locally finite Polish (measure preserving) action.
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(2) A locally finite Polish nonsingular action with continuous Radon-
Nikodym cocycle.

In particular, Lévy groups admit no such nontrivial actions.

An immediate strengthening of Theorem 5 can be obtained using a re-
cent result of Kechris, Malicki, Panagiotopoulos & Zielinski [22, Theorem
2.3]. Recall that an action is faithful if each group element, except for the
identity, acts nontrivially on a positive measure set.

Corollary 1.6. Every Polish group G admitting one of the actions (1) or (2)
as in Theorem 5 which is also faithful, admits a free probability preserving
spatial action.

We now move to use the construction of spatial Poissonian action in The-
orem 4 to construct nontrivial spatial actions in the class of diffeomorphism
groups. LetM be a Hausdorff connected compact finite dimensional smooth
manifold. We call by a diffeomorphism group ofM , for some 1 6 r 6 ∞,
the group

Diffr (M)

of all Cr-diffeomorphisms of M to itself, considered as a (non-locally com-
pact) Polish group with the compact-open Cr-topology.

The aforementioned Mackey property, established by Mackey for locally
compact groups, was generalized by Kwiatkowska & Solecki to groups of
isometries of locally compact metric spaces and, to the best of our knowl-
edge, currently this is the largest class of Polish groups for which the Mackey
property is known to hold. In the following theorem we show that diffeo-
morphism groups are not in this class, and it is the consequence of two
highly nontrivial results: one is a theorem of Thurston, generalizing a the-
orem by Herman and following a theorem by Epstein, about the simplicity
of the identity component in certain diffeomorphism groups, and another
by Kwiatkowska & Solecki, following Gao & Kechris, about the topological
structure of isometry groups of locally compact metric spaces.

Theorem 6. Diffeomorphism groups are never groups of isometries of a
locally compact metric space.

Although the Mackey property for diffeomorphism group is unknown,
we use the construction of spatial Poissonian actions to construct spatial
actions of such groups. In this context it is worth mentioning that by a
result of Megrelishvili [28, Theorem 3.1] (see also [13, Remark 1.7]), the
homeomorphism group of the unit interval admits no action whatsoever.
The picture in diffeomorphism groups turns out to be very different.

Theorem 7. Every diffeomorphism group admits an ergodic free probability
preserving spatial action. Hence, diffeomorphism groups are never Lévy.
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Theorem 7 has a consequence in the theory of equivalence relations on
standard Borel spaces. An open problem of Kechris asks whether every non-
locally compact Polish group admits a non-essentially countable equivalence
relation. Recently, this question was answered affirmatively for groups of
isometries of a locally compact metric space by Kechris, Malicki, Pana-
giotopoulos & Zielinski, and to the best of our knowledge this is the largest
class of Polish groups for which the answer is known. Since diffeomorphism
groups do not belong to this class according to Theorem 6, the following
corollary, which is the result of Theorem 7 together with a theorem by Feld-
man & Ramsay, shows that the class of diffeomorphism groups constitutes
a completely new class with positive answer to Kechris’ problem:

Corollary 1.7. Every diffeomorphism group admits a non-essentially count-
able orbit equivalence relation.

Acknowledgment. We are grateful to Zemer Kosloff for early discussions that
led to this work. We thank Cy Maor, Klas Modin and Alexander Schmeding
for sharing with us from their expertise in diffeomorphism groups.

2. General preliminaries

Let (X,B) be a standard Borel space. Thus, X is equipped with a σ-
algebra B that is the Borel σ-algebra of some unspecified Polish topology
τ on X. A transformation of (X,B) is an invertible Borel mapping T :
X → X. A Borel (τ -Polish) action of a Polish group G on X is a jointly
Borel (jointly τ -continuous, resp.) map T : G×X → X, T : (g, x) 7→ Tg (x),
such that Te = IdX , where e ∈ G is the group identity, and Tg ◦ Th = Tgh
for every g, h ∈ G. By a standard measure space we refer to (X,B, µ),
where (X,B) is a standard Borel space and µ is a measure that belongs to
one of the following of classes:

M1 (X,B): non-atomic Borel probability measures on X.
Mσ (X,B): non-atomic infinite σ-finite Borel measures on X.
Mτ

σ (X,B): those measures in Mσ (X,B) that are τ -locally finite.

Being τ -locally finite, by definition, means that every point in X has a
τ -neighborhood of finite measure. It is equivalent to the existence of a
countable base, or to the existence of a countable open cover, that consists
of finite measure sets. The general theory of point processes is usually
developed for Radon measure, which are nothing but locally finite measure
with respect to a locally compact topology (see e.g. [10, Theorem 7.8]). Here
we deal with general Polish topologies.

If (X,B, µ) is a standard measure space, we denote by

Bµ
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the ideal of sets A ∈ B for which µ (A) <∞. We use the common terminol-
ogy of µ-a.e. or µ-conull, applied to a specified property of the elements
of X, to indicate that the property holds true for all the members of some
set in B whose complement is µ-null, namely is assigned zero by µ. By
a transformation of (X,B, µ) we refer to a bi-measurable bijective map
between two µ-conull sets of X. A transformation T of (X,B) is said to be
measure preserving if µ◦T−1 = µ, and nonsingular if µ◦T−1 and µ are
in the same measure class, namely they are mutually absolutely continuous.
We denote by

Aut (X,B, µ) and Aut (X,B, [µ])

the groups of equivalence classes, up to equality on a µ-conull set, of measure
preserving and nonsingular transformations, respectively. The latter group
clearly depends only on the measure class [µ] of µ rather than µ itself, and
it becomes a Polish group with the weak topology, in which Sn −−−→

n→∞
Id if

µ (SnA△A) −−−→
n→∞

for every A ∈ B with µ (A) < ∞ and dµ◦Sn

dµ −−−→
n→∞

1 in

measure. The former group then becomes a closed, hence Polish, subgroup
of the latter (see e.g. [1, end of §1.0], [18, Exercise (17.46)]).

3. Foundations of Poisson point processes

Recall Definition 1.1 for the general notion of Poisson point process. In
the following we introduce the usual concrete construction of the Poisson
point process that should be regarded as a folklore. The details of this
construction will be important to us for the general context and later uses.

Let (X,B) be a standard Borel space. By the Isomorphism Theorem of
standard Borel spaces (see e.g. [18, §15.B]) there can be found a complete
metric on X that induces a locally compact Polish topology τ on X, and
thus we may relate to bounded Borel sets in X with respect to a fixed choice
of such a metric. We may further assume that τ admits a countable base
that consists of bounded sets and, in fact, we may assume that this topology
has all properties of the usual topology on R. Denote by X∗

τ the space of
simple counting Radon measures on X. That is, a Borel measure ω on X is
in X∗

τ if it satisfies the following properties:

(1) (Radon) ω (A) <∞ for every bounded set A ∈ B.
(2) (counting) ω (A) ∈ Z>0 ∪ {∞} for every A ∈ B.
(3) (simple) ω ({x}) ∈ {0, 1} for every x ∈ X.

The space X∗
τ becomes a standard Borel space with the σ-algebra B∗

τ that
is generated by the canonical mappings

(3.0.1) N = {NA : A ∈ B} , NA : X∗
τ → Z>0 ∪ {∞} , NA : ω 7→ ω (A) .

For details on the standard Borel structure of X∗
τ see [6, §9.1].
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Suppose now that (X,B, µ) is a standard infinite measure space, that is
we are given a measure µ ∈ Mσ (X,B). By the Isomorphism Theorem for
standard measure spaces (see e.g. [18, §17.F]) there can be found a complete
metric that induces a Polish topology τ that satisfies all of the above and,
at the same time, turns µ into a Radon measure, i.e. µ ∈ Mτ

σ (X,B).
In fact, up to a Borel isomorphism, we may assume that (X,B, µ) is R

with its usual Borel structure and the Lebesgue measure. By the classical
construction of the Poisson point process, there exists a unique probability
measure µ∗τ ∈ M1 (X

∗
τ ,B

∗
τ ) with respect to which the random variables N as

in (3.0.1) form a generative Poisson point process with base space (X,B, µ).
For details about this classical construction we refer to [5, §2.4], [24, § 3], [39,
Proposition 19.4]. In our context we put this as follows:

Proposition 3.1. For every standard measure space (X,B, µ) there exists a
Polish topology τ and a standard probability space (X∗

τ ,B
∗
τ , µ

∗
τ ) that is defined

uniquely by the property that the collection of random variables N as in
(3.0.1) forms a generative Poisson point process with base space (X,B, µ).
Moreover, there is a continuous embedding of Polish groups

Aut (X,B, µ) →֒ Aut (X∗
τ ,B

∗
τ , µ

∗
τ ) , T 7→ T ∗,

such that for every T ∈ Aut (X,B, µ) there is a µ∗τ -conull set on which

(3.1.1) NA ◦ T ∗ = NT−1(A) for every A ∈ B.

Proof. Thanks to the Isomorphism Theorem for standard measure spaces,
we may assume that (X,B, µ) is nothing but the real line with its Lebesgue
measure, for which the aforementioned classical construction of the Poisson
point process with respect to the usual topology is well known. Let us
show the second part. Pick a countable base O for τ consisting of µ-finite
measure sets. An arbitrary element [T ]µ ∈ Aut (X,B, µ) will be mapped

to [T ∗]µ∗
τ
∈ Aut (X∗

τ ,B
∗
τ , µ

∗
τ ) as follows. Pick a representative T ∈ [T ]µ and

consider the measurable set

X∗
τ (T ) :=

⋂

O∈O

⋂

n∈Z

{
NTn(O) <∞

}
.

By the construction of µ∗τ , as T preserves µ we see that µ∗τ (X
∗
τ△X

∗
τ (T )) = 0.

Let T ∗ be the automorphism of
(
X∗

τ (T ) ,B
∗
τ (T ) , µ

∗
τ |X∗

τ (T )

)
that is given by

T ∗ (ω) = ω ◦ T−1, ω ∈ X∗
T .

As µ∗τ (X
∗
τ△X

∗
τ (T )) = 0, the element [T ∗]µ∗

τ
∈ Aut (X∗

τ ,B
∗
τ , µ

∗
τ ) is well-

defined. This defines the desired mapping, that from now on we abbreviate
without the equivalence class notations, i.e. Aut (X,B, µ) → Aut (X∗

τ ,B
∗
τ , µ

∗
τ ),

T 7→ T ∗. It is clearly a homomorphism. In order to see that it is in-
jective, note that if T 6= IdX ∈ Aut (X,B, µ) there is a Borel set of the
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form A = T−1 (B) \B with µ (A) > 0. Since µ
(
A ∩ T−1 (A)

)
= 0 we have

µ∗τ (NA ◦ T ∗ > 0, NA = 0) > 0, hence T ∗ 6= IdX∗
τ
∈ Aut (X∗

τ ,B
∗
τ , µ

∗
τ ). The

equivariance property (3.1.1) is verified by noting that for every A ∈ Bµ, for
ω in an appropriate µ∗-conull set,

NA ◦ T ∗
g (ω) = NA

(
ω ◦ T−1

g

)
= ω

(
T−1
g (A)

)
= NT−1

g (A) (ω) .

The continuity of this embedding can be verified using elementary consider-
ations, but it is also an immediate consequence of the automatic continuity
property of Aut (X,B, µ) by Le Mâıtre [25, Theorem 1.2]. �

Definition 3.2 (Classical Poisson point process). The construction in Propo-
sition 3.1, while depending on the highly non-canonical choice of τ , serves
as a concrete Poisson point process with an arbitrary base space (X,B, µ).
Ignoring τ , we will refer to it as the classical Poisson point process and
denote it by

(X∗,B∗, µ∗) and N = {NA : A ∈ B} .

While the choice of τ affects directly X∗ = X∗
τ as a subspace of the τ -

Radon measures on X, the following proposition shows that the Poisson
point process is a universal object to which the choice of τ is irrelevant up
to a Borel isomorphism. In fact, we will show that the Poisson point process
is universal in the widest sense of Definition 1.1 up to a Borel isomorphism.

Proposition 3.3. All generative Poisson point processes on the same base
space are isomorphic. More explicitly, let (X,B, µ) be a standard measure
space and P = {PA : A ∈ B} be a generative Poisson point process that is
defined on (Ω,F ,P) with base space (X,B, µ). There is an isomorphism of
measure spaces

ϕ : (Ω,F ,P) → (X∗,B∗, µ∗) ,

such that on a P-conull set,

NA ◦ ϕ = PA for all A ∈ B.

Thus, P is a random measure on X in that for every ω in an appropriate
P-conull set, the map A 7→ PA (ω) defines a measure on (X,B).

Proof. For ω ∈ Ω define ϕ (ω) : B → R>0 by

ϕ (ω) (A) = PA (ω) .

First we prove that for ω in a P-conull set it holds that ϕ (ω) ∈ X∗, namely
that ϕ (ω) extends to a genuine measure on B. To this end we verify the
conditions appears in [6, p. 17]. The finite additivity of ϕ (ω) for every
ω ∈ Ω is immediate from the definition of P as a Poisson point process. As
for the continuity, we note that the finite additivity implies that PA 6 PB

whenever A ⊂ B, hence if Bµ ∋ An ց ∅ as n → ∞ then the pointwise



POISSONIAN ACTIONS OF POLISH GROUPS 11

limit of the monotone descending sequence PAn as n→ ∞ is a nonnegative
random variable and, by the dominated convergence theorem, it has zero
mean, hence PAn ց 0 as n → ∞, establishing the continuity. It follows
from [6, Lemma 9.1.XIV] that ϕ (ω) ∈ X∗ for ω on a P-conull set. Thus we
obtain a map ϕ : Ω → X∗ that is defined on an appropriate P-conull set. In
order to see that P ◦ ϕ−1 = µ∗, note that for every ω in a P-conull set,

NA (ϕ (ω)) = ϕ (ω) (A) = PA (ω) , A ∈ B,

from which it readily follows that N forms a Poisson point process on the
same base space with respect to P ◦ ϕ−1 as well. The uniqueness of the
classical Poisson point process implies that P ◦ ϕ−1 = µ∗. �

4. Foundations of Poissonian actions

4.1. Preliminaries: actions and representations of Polish groups.

The very definition of ’measure preserving action’ of a Polish group has more
than one possible meaning, essentially two meanings, which is the source of
a substantial part of our study. The first and more general definition can be
put in two ways, namely near actions, as was put by Zimmer, and Boolean
actions, a classical object that admit a convenient formulation due to Glas-
ner, Tsirelson & Weiss (see [13, Introduction] and the references therein).
The other, more restrictive notion of spatial actions will be presented in the
second part of this work, starting in Section 5.

Definition 4.1 (Zimmer). A near action of a Polish group G on a stan-
dard measure space (X,B, µ) is a jointly measurable map T : G ×X → X,
T : (g, x) 7→ Tg (x), such that:

(1) Te = IdX on a µ-conull set, where e ∈ G is the identity element.
(2) Tg ◦ Th = Tgh on a µ-conull set for every g, h ∈ G.1

(3) µ ◦ T−1
g = µ for every g ∈ G.

There is a natural way to view Aut (X,B, µ) as the group of Boolean
isometries of the measure algebra associated with (X,B, µ) (i.e. the Boolean
algebra of Borel sets in X modulo µ-null sets, with its natural complete
metric). With this point of view, Glasner, Tsirelson & Weiss put the notion
of Boolean action as follows.

Definition 4.2 (Glasner, Tsirelson & Weiss). A Boolean action of a
Polish group G on a standard measure space (X,B, µ) is a continuous (or
equivalently, measurable)2 homomorphism T : G→ Aut (X,B, µ).

1It is crucial here that the µ-conull set may depend on g, h.
2The equivalence of measurability and continuity for homomorphisms between Polish

group is by Pettis’ automatic continuity (see e.g. [18, §9.C]).
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The reader may recall Proposition 3.1 that suggests why the formulation
of Boolean action is the one that is more convenient for our purposes. How-
ever, as it was observed by Glasner, Tsirelson & Weiss [13, Introduction],
both definitions are essentially the same. Thus, we relate to near actions
and Boolean actions simply as actions, and denote this unified object by

T : Gy (X,B, µ) .

We may refer to an action as a finite action or an infinite action, to indicate
whether the underlying measure is a probability measure or an infinite one.

A pair of actions T : G y (X,B, µ) and T′ : G y (X ′,B′, µ′) are con-
sidered to be isomorphic, if there exists a bi-measurable bijection ϕ : X →
X ′, that is possibly defined only on corresponding conull sets, such that
µ ◦ ϕ−1 = µ′ and T ′

g ◦ ϕ = ϕ ◦ Tg for each g ∈ G on a µ-conull set.
Recall that a unitary representation U of a Polish group G on a Hilbert

space H is a group homomorphism U : G → U(H), U : g 7→ Ug, where
U (H) denotes the unitary group of H, such that the mapping (g, f) 7→ Ugf
is jointly continuous.3 When H is a subspace of some L2

R
-space, we say that

U is unital if Ug1 = 1 for every g ∈ G (when 1 is integrable), and that
U is positivity preserving if f > 0 implies Ugf > 0 for every g ∈ G
(see [39, p. 207]). The (real) Koopman representation of an action
T : Gy (X,B, µ) is the unitary representation

U : G→ U
(
L2
R (X,B, µ)

)
, Ug : f 7→ f ◦ T−1

g , g ∈ G.

4.2. Poissonian actions. Recall Definition 1.3 for the general notion of
Poissonian action. Let us now introduce the Poisson suspension construc-
tion in a precise way as a natural source for Poissonian actions. Sup-
pose T : G y (X,B, µ) is an action of a Polish group G on a stan-
dard measure space (X,B, µ). Consider the classical Poisson point pro-
cess N = {NA : A ∈ B} that is defined on (X∗,B∗, µ∗), and using the
continuous embedding introduced in Proposition 3.1, we obtain an action
T∗ : Gy (X∗,B∗, µ∗) by composing

T∗ : G→ Aut (X,B, µ) →֒ Aut (X∗,B∗, µ∗) , g 7→ Tg 7→ T ∗
g .

The equivariance property (3.1.1) readily implies that the Koopman repre-
sentation of T∗ preserves H (P), thus T∗ is a Poissonian action with respect
to N , and its base action is nothing but T : Gy (X,B, µ).

Remark 4.3. Note that in the setting of Definition 1.4, if P is not generative
we may move to the sub-σ-algebra on Ω that is generated by P. Then if

3In fact, from [41, Theorem 4.8.6] or [18, Exercise (9.16) i)] it follows that if the mapping
(g, f) 7→ Ugf is jointly measurable then it is automatically jointly continuous.
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the equivariance relations of S and T hold, this sub-σ-algebra is S-invariant
and we obtain a factor of S which is a Poissonian action.

We now formulate and prove each of the statements in Theorem 1.

Theorem 4.4. Let T : G y (X,B, µ) be an action and P = {PA : A ∈ B}
be a generative Poisson point process that is defined on (Ω,F ,P) with base
space (X,B, µ). There exists a Poissonian action S : G y (Ω,F ,P) with
respect to P whose base action is T. Moreover, S is essentially unique in
that Poissonian actions associated with isomorphic actions are isomorphic.

Proof. By Proposition 3.3 we may assume without loss of generality that
(Ω,F ,P) = (X∗,B∗, µ∗) and that P = N . Then the aforementioned con-
struction of the Poisson suspension, using the embedding described in Propo-
sition 3.1, is a Poissonian action with respect to N whose base action is T.

In order to show the uniqueness, we start by showing that all Poisso-
nian actions with base action T are isomorphic to the Poisson suspension
T∗ : G y (X∗,B∗, µ∗). Let S : G y (Ω,F ,P) be such a Poissonian action
with respect to a generative Poisson point process P = {PA : A ∈ B} that
is defined on (Ω,F ,P). By Proposition 3.3 there is an isomorphism of prob-
ability spaces ϕ : Ω → X∗ such that P ◦ ϕ−1 = µ∗, that interchanges P and
N in that NA ◦ ϕ = PA for every A ∈ B. In order to verify that indeed
ϕ ◦ Sg = T ∗

g ◦ ϕ on a P-conull set for every g ∈ G, note that

NA ◦ ϕ ◦ Sg = PA ◦ Sg = PT−1
g (A) = NA ◦ T ∗

g ◦ ϕ for every A ∈ B,

and since N is generative the desired property follows. Thus, ϕ is an iso-
morphism of actions.

Now for the general case, suppose that T′ : G y (X ′, µ′) is an infinite
action that is isomorphic to T : G y (X,B, µ) through ψ : X → X ′.
From the classical Poisson point process N ′ = {N ′

A : A ∈ B′} associated
with (X ′, µ′) we obtain the Poisson point process P :=

{
N ′

A ◦ ψ−1 : A ∈ B
}

associated with (X,B, µ). It is then evident that the Poisson suspensionT′∗ :
G y (X ′∗, µ′∗) is a Poissonian action with base action T : G y (X,B, µ)
via the Poisson point process P. Hence, by the previous part of the proof
it is isomorphic to the Poisson suspension T∗ : Gy (X∗,B∗, µ∗). �

The following theorem generalizes the second statement of Theorem 1,
which can be seen as a statement on Koopman representations, to a larger
family of unitary representations.

Theorem 4.5. Suppose P is a generative Poisson point process that is de-
fined on (Ω,F ,P) with base space (X,B, µ). Every unital positivity preserv-
ing unitary representation U : G → U(H (P)), admits a Poissonian action
S : G y (Ω,F ,P) with respect to P, whose Koopman representation is U.
Moreover, S admits an essentially unique base action T : Gy (X,B, µ).
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Noting that Koopman representations are unital and positivity preserv-
ing, we obtain from Theorem 4.5 for Koopman representations:

Corollary 4.6. Every Poissonian action arises from an essentially unique
base action.

For the proof of Theorem 4.5 we introduce two lemmas. First, we will use
the following substitution for the notion of unital Koopman operators when
dealing with infinite measure spaces. A unitary operator U of L2

R
(X,B, µ)

for some standard measure space (X,B, µ) will be called quasi-unital if
∫

X
Ufdµ =

∫

X
fdµ for every f ∈ L1

R (X,B, µ) ∩ L2
R (X,B, µ) .

In particular, U preserves L1
R
(X,B, µ) ∩ L2

R
(X,B, µ). The group of quasi-

unital positivity preserving unitary operators of L2
R
(X,B, µ) is a closed sub-

group of the unitary group of L2
R
(X,B, µ), hence it is a Polish group.

In the following we formulate in our terminology a well-known fact which
is a version of the Banach-Lamperti Theorem for L2. As it was observed in
[42, footnote 3], while the general Banach-Lamperti Theorem is formulated
for unitary operators of Lp-spaces for p 6= 2, for positivity preserving unitary
operators the proof of Lamperti applies for L2-spaces as well. A byproduct of
the following lemma is that when µ is a probability measure, for a positivity
preserving unitary operator of L2

R
(X,B, µ) being unital and quasi-unital is

the same.

Lemma 4.7. For every standard measure space (X,B, µ), the Koopman
embedding

T 7→ UT , UT f = f ◦ T−1,

forms an isomorphism of Polish groups between Aut (X,B, µ) and the group
of quasi-unital positivity preserving unitary operators of L2

R
(X,B, µ).

Proof. By the Banach-Lamperti Theorem in L2 (see the aforementioned [42,
footnote 3]), there is a bijective correspondence between the group of non-
singular transformations of (X,B, µ) and the group of positivity preserving
unitary operators of L2

R
(X,B, µ), that is given by

T 7→ UT , UT f =

√
dµ ◦ T−1

dµ
f ◦ T−1.

This is a homomorphism of groups and, since T is necessarily measure pre-
serving when UT is quasi-unital, the measure preserving transformations cor-
respond to the quasi-unital positivity preserving unitary operators. Thus,
the restriction of this homomorphism to Aut (X,B, µ), which is the usual
Koopman embedding, forms a bijective homomorphism from Aut (X,B, µ)
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onto the closed subgroup of quasi-unital positivity preserving unitary oper-
ators of L2

R
(X,B, µ). Finally, the Polish topology of Aut (X,B, µ) is, by def-

inition, induced from this correspondance, so this is a homeomorphism. �

For the next step toward proving Theorem 4.5 we will take a further
look into unitary operators of H (P). The following objects and their basic
properties are presented in more details in Appendix A. Fix a Poisson point
process P as in Definition 1.1. The first chaos of P is the space

H1 (P) := span {PA − µ (A) : A ∈ Bµ} ⊂ L2
R (Ω,F ,P) .

As part of the Fock space structure associated with P, there is an isometric
isomorphism of Hilbert spaces

Iµ : L2
R (X,B, µ) → H1 (P) , Iµ : f 7→ Iµ (f) ,

that is given by a stochastic integral against P in an appropriate sense.
Recalling the space

H (P) = span {PA : A ∈ Bµ} ⊂ L2
R (Ω,F ,P) ,

the first chaos is its direct summand,

H (P) = H1 (P)⊕ R.

For every unital positivity preserving unitary operator U of H (P) we have

〈U (Iµ (f)) , 1〉 =
〈
Iµ (f) , U

−1 (1)
〉
= 〈Iµ (f) , 1〉 , f ∈ L2

R (X,B, µ) .

Thus, U preserves H1 (P) as a direct summand of H (P). Since Iµ is an
isometric isomorphism of Hilbert spaces, the conjugation by Iµ forms a map
between the unitary groups,

(4.7.1) U (H (P)) → U
(
L2
R (X,B, µ)

)
, U 7→ Uµ := I−1

µ ◦ U ◦ Iµ.

This map will be important to the proof of Theorem 4.5. The following
lemma deals with its fundamental properties, with its proof following a
similar approach to the proof of [37, Proposition 4.4].

Lemma 4.8. In the map U 7→ Uµ as in (4.7.1), unital positivity preserving
unitary operators of H (P) are mapped to quasi-unital positivity preserving
unitary operator of L2

R
(X,B, µ).

The proof makes essential use of the properties of the Poisson stochastic
integral Iµ as well as the fundamentals of infinitely divisible Poissonian
(henceforth idp) random variables. We present this in Appendix A.
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Proof. Since Iµ is an isometric isomorphism of Hilbert spaces, Uµ is a uni-
tary operator. Let us fix an arbitrary f ∈ L1

R
(X,B, µ) ∩ L2

R
(X,B, µ). As

described in Proposition A.1, we have the idp random variable

Wf := Iµ (U
µf) +

∫

X
fdµ = U (Iµ (f)) +

∫

X
fdµ = U

(∫

X
fdP

)
,

whose Lévy measure is given by

ℓUµf = µ |{Uµf 6=0} ◦ (U
µf)−1 .

Assume further that f > 0 so that also
∫
X fdP > 0 and, since U is positivity

preserving, also Wf > 0. From Proposition A.1(3) it follows that

µ (Uµf < 0) = ℓUµf (R<0) = 0 and

∫

X
Uµfdµ =

∫

R>0

tdℓUµf (t) <∞.

The first property shows that Uµ preserves positivity for every f in a dense
subspace, hence it is positivity preserving. The second property shows that
Uµf ∈ L1

R
(X,B, µ) ∩ L2

R
(X,B, µ), so that by Proposition A.1(1),

Iµ (U
µf) =

∫

X
UµfdP −

∫

X
Uµfdµ.

Plugging this into the definition of Wf and using that Wf > 0, we obtain
∫

X
Uµfdµ−

∫

X
fdµ =

∫

X
UµfdP −Wf 6

∫

X
UµfdP.

With f being fixed, the left hand side is a constant, while the right hand
side is a nonnegative idp random variable that is obtained as a stochastic
integral of an integrable function. It follows from [39, Corollary 24.8] that
the infimum of the right hand side (as a random variable) is zero, and we
conclude that ∫

X
Uµfdµ 6

∫

X
fdµ.

Since the map (4.7.1) respects inverses, the same proof shows that the same

inequality holds when Uµ is replaced by (Uµ)−1. Both inequalities readily
imply that ∫

X
Uµfdµ =

∫

X
fdµ,

hence Uµ is quasi-unital. �

Proof of Theorem 4.5. Suppose U : G → U(H (P)) is a unital positivity
preserving unitary representation of a Polish group G as in the proposition.
We construct a continuous homomorphism along the following arrows

G
U
−→ U(H (P))

(4.7.1)
−−−−→ U

(
L2
R (X,B, µ)

) Banach-Lamperti
−−−−−−−−−−→ Aut (X,B, µ)
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as follows. The first arrow is the given representation g 7→ Ug. The second
arrow is the map Ug 7→ Uµ

g as in (4.7.1), whose image lies in the closed
subgroup of quasi-unital positivity preserving unitary operators by Lemma
4.8. Then on the image of the second arrow, the third arrow Uµ

g 7→ Tg is
given by Lemma 4.7. Since all the arrows are continuous, the map g 7→ Tg
constitutes an action T : G y (X,B, µ). We now use Theorem 4.4, and
take a Poissonian action S : G y (Ω,F ,P) whose base action is T. The
equivariance property that relates T and S as in Definition 1.4 implies that

Ug (Iµ (f)) = Iµ
(
Uµ
g f
)
= Iµ

(
f ◦ T−1

g

)
= Iµ (f) ◦ Sg, g ∈ G,

for every f ∈ L1
R
(X,B, µ) ∩ L2

R
(X,B, µ). Thus, U is the Koopman repre-

sentation of S, which is a Poissonian action with base action T as required
in the theorem.

It is clear that all actions whose Koopman representation is U are isomor-
phic, hence S is essentially unique. In order to see the essential uniqueness
of T, we note that if T′ is another base action for S then

PT−1
g (A) = PA ◦ Sg = PT ′−1

g (A) P-a.e. for every g ∈ G and A ∈ B.

However, just as in the uniqueness argument in the proof of Proposition
3.1, if for some g ∈ G we have Tg 6= T ′

g, then for A ∈ Bµ for which

µ
(
T−1
g (A) ∩ T ′−1

g (A)
)
= 0 it holds that

P

(
PT−1

g (A) > 0, PT ′−1
g (A) = 0

)
> 0,

which is a contradiction. This completes the proof. �

4.3. Ergodicity of Poissonian actions. Here we prove Theorem 2. Let
us first recall some basic definitions. For an action T : G y (X,B, µ) we
denote the invariant σ-algebra

IT :=
{
A ∈ B : µ

(
A△T−1

g (A)
)
= 0 for every g ∈ G

}
.

We say that T is:

• Null: for every A ∈ IT either µ (A) = 0 or µ (A) = ∞;
• Ergodic: for every A ∈ IT either µ (A) = 0 or µ (X\A) = 0;
• Doubly Ergodic: the diagonal action T⊗T : Gy (X ×X,B ⊗ B, µ⊗ µ)

is ergodic;
• Weakly mixing: for every ergodic action S : G y (Y, C, ν) of G, the

diagonal action T⊗ S : Gy (X × Y,B ⊗ C, µ ⊗ ν) is ergodic.

Remark 4.9. A few general remarks about those properties:

(1) Being null is equivalent to the non-existence of a T-invariant prob-
ability measure that is absolutely continuous with respect to µ.
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(2) Double ergodicity and weak mixing are equivalent in probability pre-
serving actions of general groups. For locally compact groups this
is a classical fact, and it was pointed out to us by Benjy Weiss in a
personal communication that this is true in full generality. Indeed,
one implication is obvious, and the other was proved by Glasner &
Weiss in [15, Theorem 2.1], that while is formulated for locally com-
pact groups the proof holds in full generality. With the terminology
of [15, Definition 1.1], this can be seen by looking at the proofs of
the implications DE =⇒ EIC =⇒ EUC =⇒ WM .

(3) As a consequence of the Lévy 0-1 Law, weak mixing is equivalent
to that the infinite diagonal action T⊗N : G y

(
XN,B⊗N, µ⊗N

)
is

ergodic. This will be useful in the proof of Theorem 7.

In proving Theorem 2 we will need the following key result that was
established in [31, Theorem 1]. We will refer to the chaos structure of
L2
R
(X∗,B∗, µ∗) that arises from its structure as the Fock space of L2

R
(X,B, µ)

as we introduce in Appendix A.0.1.

Theorem 4.10 (Parreau & Roy). Let (X,B, µ) be a standard infinite mea-
sure space. Every orthogonal projection of L2 (X∗,B∗, µ∗) that preserves its
chaos structure and vanishes on the first chaos H1 (N ), necessarily vanishes
on all higher chaoses, i.e. it is the projection to the constants.

The following technical lemma was proved for a single transformation in
[38, § 3.2], and the following extension to general groups is straightforward.

Lemma 4.11. Let T : Gy (X,B, µ) be an action of a Polish group G, and
consider the projection

πT : L2
R (X,B, µ) → L2

R (X,IT, µ) .

Then the projection

πT∗ : L2
R (X∗,B∗, µ∗) → L2

R (X∗,IT∗ , µ∗) .

preserves the chaos structure of L2
R
(X∗,B∗, µ∗).

Proof. We start with a single transformation T ∈ Aut (X∗,B∗, µ∗). Let
UT be the Koopman operator of T and set ΨT = UT − Id, noting that
ImπT = kerΨT . Since UT preserves the chaos structure of L2

R
(X∗,B∗, µ∗)

then so is ΨT , so that for every f =
∑∞

n=0 fn ∈ L2
R
(X∗,B∗, µ∗), where

fn ∈ Hn (X,B, µ) for every n, we have

ΨT =
∑∞

n=0ΨTfn and ΨT fn ∈ Hn (X,B, µ) for every n.

It follows that f ∈ kerΨT if and only if ΨT fn = 0 for every n, that is to say

kerΨT =
⊕∞

n=0 (kerΨT ∩Hn (X,B, µ)) .
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However, we have that ImπT = kerΨT on each Hn (X,B, µ), so we obtain

(4.11.1) ImπT =
⊕∞

n=0 (ImπT ∩Hn (X,B, µ)) .

Since ker πT is the orthogonal complement of ImπT on each Hn (X,B, µ),
we deduce that also

(4.11.2) ker πT =
⊕∞

n=0 (kerπT ∩Hn (X,B, µ)) .

Then (4.11.1) and (4.11.2) imply that πT preserves the chaos structure of
L2
R
(X∗,B∗, µ∗), proving the lemma for a single transformation.
Now for an action T, if we let Ψg = ΨT ∗

g
= UT ∗

g
− Id for each g ∈ G, then

by the same reasoning
⋂

g∈G kerΨg =
⊕∞

n=0

⋂
g∈G (kerΨg ∩Hn (X,B, µ)) .

Since ImπT =
⋂

g∈G kerΨg on each Hn (X,B, µ), it similarly follows that

ImπT =
⊕∞

n=0 (ImπT ∩Hn (X,B, µ))

and then that

kerπT =
⊕∞

n=0 (kerπT ∩Hn (X,B, µ)) .

This completes the proof of the lemma also for actions. �

Proof of Theorem 2. By Proposition 3.3 and Theorem 1 it is sufficient to
prove the theorem for Poisson suspensions T∗ : G y (X∗,B∗, µ∗). If the
action is null then the projection πT vanishes on the first chaos H1 (N ).
From Lemma 4.11 and Theorem 4.10 we obtain that ImπT consists of con-
stant functions, namely the Poisson suspension is ergodic. Conversely, if the
action is not null so that IT contains a set A with 0 < µ (A) <∞, then NA

is a non-constant, T∗-invariant function in L2 (X∗,B∗, µ∗), so the Poisson
suspension is not ergodic.

Let us now show that for the Poisson suspension ergodicity implies weak
mixing, and in doing so we will use the previous part of the proof twice. The
Poisson suspension being ergodic implies that T : Gy (X,B, µ) is null, and
it is clear that in this case also the diagonal action

T⊗ Id : Gy
(
X × {0, 1} , µ ⊗ 1

2 (δ0 + δ1)
)

is null, so that the Poisson suspension associated with this latter action
is ergodic as well. However, this Poisson suspension, (T⊗ Id)∗, when is
taken with respect to the product of the topology τ for which X∗ was de-
fined with the discrete topology of {0, 1}, is isomorphic to T∗ ⊗T∗ : G y

(X∗ ×X∗,B∗,B∗, µ∗ ⊗ µ∗), hence T∗ is weakly mixing. �
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5. Spatial Poissonian actions

Our main object of study in this part is a more restrictive notion of
measure preserving actions, namely spatial actions.

5.1. Preliminaries: spatial actions and the point-realization prob-

lem.

Definition 5.1. A (measure preserving) spatial action of a Polish group
G on a standard measure space (X,B, µ) is a Borel action T : Gy (X,B),
T : (g, x) 7→ Tg (x), such that µ ◦ T−1

g = µ for every g ∈ G. We denote
spatial actions by

T : G
sp

y (X,B, µ) .

Every spatial action induces a (near/Boolean) action in an obvious way,
and in this case it can be thought of as a point-realization of the resulting
(near/Boolean) action. However, in general, not every action admits a point-
realization, and this leads to the point-realization problem in ergodic theory,
which revolves around whether a given action admits a point-realization.
As it turns out, for important classes of Polish groups this problem has a
striking solution.

A Polish group G is said to possess theMackey property (following [19])
if every finite action of G admits a point-realization. The following classes
of groups are known to possess the Mackey property:

• Locally compact Polish groups: This is the celebrated Mackey-Ramsay
Point-Realization Theorem [33, Theorem 3.3].

• Non-Archimedean groups: Polish groups with a base of clopen sub-
groups at the identity. This is Glasner & Weiss’ [14, Theorem 4.3].

• Groups of isometries of a locally compact metric space: closed sub-
groups of the group of isometries of a locally compact metric space,
with the Polish topology of pointwise convergence. This is Kwiatkowska
& Solecki’s [23, Theorem 1.1].

The class of groups of isometries of a locally compact metric space includes
both, locally compact Polish groups and non-Archimedean groups, and to
the best of our knowledge this is the largest class of Polish groups on which
the Mackey property is known to hold (beyond Polish groups see [7]).

The fact that there are Polish groups without the Mackey property was
demonstrated by Becker for the Abelian group L0

(
[0, 1] , S1

)
of measurable

functions [0, 1] → S1, identified up to equality on a Lebesgue-conull set, with
the topology of convergence in measure (see [13, Appendix A], [32, §7.1] and
the references therein).

This was vastly generalized by Glasner, Tsirelson & Weiss [13, Theorem
1.1] in showing that the the Mackey property fails miserably for the class of
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Lévy groups, a class of groups that was studied by many following Gromov
& Milman (see [32, § 4] and the references therein). This class includes,
among others, the group Aut (X,B, µ) itself with the weak topology; the
unitary group U (H) of a separable Hilbert space H with the strong operator
topology; and, the aforementioned L0

(
[0, 1] , S1

)
. Thus, it was shown by

Glasner, Tsirelson & Weiss that Lévy groups admit no finite spatial actions
whatsoever except for trivial ones, and a fortiori do not possess the Mackey
property. There are also non-Lévy Polish groups that do not possess the
Mackey property [14, §6], [30].

Remark 5.2. A spatial action is considered to be trivial if the set of fixed
points of the action has full measure. Note that the set of fixed points of a
Borel action of a Polish group is a Borel set. This is clearly true for Polish
actions, and for Borel action this follows from the theorem of Becker &
Kechris [4, § 5.2] by which every Borel action is a Polish action with respect
to some Polish topology that induces the given Borel σ-algebra.

Every Poissonian action of a group that possesses the Mackey property,
admits a point-realization that serves as a spatial Poissonian action. By a
spatial Poissonian action we refer to a Poissonian action (as in Definition
1.3) which is also a spatial action. Our goal here is to show that the point-
realization problem in Poissonian actions can be solved without appealing
to the Mackey property.

5.2. Poisson random set. For a standard Borel space (X,B), with every
Polish topology τ that generates B is associated the Effros Borel space

Fτ (X) = {F ⊂ X : X\F ∈ τ} .

This is a standard Borel space with the Effros σ-algebra Eτ (X), that is
generated by the sets

BO := {F ∈ Fτ (X) : F ∩O 6= ∅} , O ∈ τ.

See e.g. [18, Section (12.C)]. A random closed set is nothing but a proba-
bility measure on (Fτ (X) , Eτ (X)), namely an element ofM1 (Fτ (X) , Eτ (X)).
A common way to construct random closed sets for locally compact topolo-
gies is the Choquet Capacity Theorem (see e.g. [29, §1.1.3]), but here we
shall construct the Poisson random closed set also for Polish topologies that
may not be locally compact.

Let us denote by

(F∗
τ (X) , E∗

τ (X)) ⊂ (Fτ (X) , Eτ (X))

the subspace of infinite sets in Fτ (X) with its induced Effros σ-algebra.
Note that F∗

τ (X) is indeed an Effros-measurable set: fixing a countable
base O for τ , for every n ∈ Z>0 the property #F > n of F ∈ Fτ (X) is



22 AVRAHAM-RE’EM & ROY

witnessed by the existence of pairwise disjoint O1, . . . , On ∈ O such that
F ∈ BO1

∩ · · · ∩BOn .

Theorem 5.3 (Poisson random set). Let (X,B) be a standard Borel space.
For every Polish topology τ that generates B, there are random variables

{ΞA : A ∈ B} of the form ΞA : F∗
τ (X) → Z>0 ∪ {∞} ,

and a one-to-one correspondence

Mτ
σ (X,B) → M1 (F

∗
τ (X) , E∗

τ (X)) , µ 7→ µ∗τ ,

such that {ΞA : A ∈ B} forms a Poisson point process with base space (X,B, µ).
Furthermore, for every µ the following properties hold.

(1) µ∗τ is supported on the class of τ -discrete sets.4

(2) On the support of µ∗τ it holds that ΞA (·) = # (A ∩ ·) for every A ∈ B.

In order to spot the inherent difficulty in defining the Poisson point pro-
cess as a random closed set in Fτ (X), it should be noted that as long as τ
is not locally compact, then for a general A ∈ B, the function

Fτ (X) → Z>0 ∪ {∞} , F 7→ #(A ∩ F ) ,

may not be Effros-measurable unless A ∈ τ . In fact, by a theorem of Chris-
tensen this function may fail to be Effros-measurable even if A ∈ Fτ (X) [18,
Theorem (27.6)]. In order to resolve this issue we use the following simple
modification on the Kuratowski & Ryll-Nardzewski’s Selection Theorem.

Proposition 5.4. Let (X,B) be a standard Borel space. For every Polish
topology τ that generates B there is a countable collection of mappings

{ξn : n ∈ N} of the form ξn : F∗
τ (X) → X,

such that the following properties hold.

(1) (Measurability) Each ξn is Effros-measurable.
(2) (Injectivity) For each F ∈ F∗

τ (X), the mapping N → X given by
n 7→ ξn (F ) is injective.

(3) (Selectivity) For each F ∈ F∗
τ (X), the set {ξn (F ) : n ∈ N} is a

(countable) dense subset of F .

We will refer to such {ξn : n ∈ N} as a measurable injective selection.

Proof. By the Kuratowski & Ryll-Nardzewski’s Selection Theorem (see [18,
Theorem (12.13)]) there is a measurable selection: mappings θn : Fτ (X) \ {∅} →
X, n ∈ N, satisfying the first and the third properties. For each n ∈ N,

4While the class of τ -discrete sets is generally not Effros-measurable, by a theorem
of Hurewicz it is co-analytic (see [18, Theorem (27.5), Exercise (27.8)]) hence universally
measurable.
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restrict the mapping θn to F∗
τ (X) and modify it into the mapping ξn :

F∗
τ (X) → X by letting

ξn (F ) = θπn(F ) (F ) , F ∈ F∗
τ (X) ,

where πn : F∗
τ (X) → N is given by

πn (F ) = inf {k ∈ N : # {θ1 (F ) , . . . , θk (F )} = n} .

Clearly, {ξn : n ∈ N} forms an injective selection, and an elementary proof
by induction on πn and ξn shows that each ξn is Effros-measurable. �

Proposition 5.5. Let (X,B) be a standard Borel space. For every Polish
topology τ that generates B there are mappings

{ΞA : A ∈ B} of the form ΞA : F∗
τ (X) → Z>0 ∪ {∞} ,

with the following properties:

(1) ΞA∪B = ΞA +ΞB for every disjoint A,B ∈ B.
(2) Each ΞA is Effros-measurable, and together {ΞA : A ∈ B} generate

the Effros σ-algebra of F∗
τ (X).

(3) The identity ΞA (F ) = # (A ∩ F ) holds in the following cases:
(i) A ∈ τ (and every F ).
(ii) There is O ∈ τ such that A ⊂ O ∈ τ and #(F ∩O) <∞.
(iii) A ∈ B and F is τ -discrete.

Proof. Pick a measurable injective selection {ξn : n ∈ N} of F∗
τ (X) as in

Proposition 5.4, and for A ∈ B put

ΞA (F ) = # {n ∈ N : ξn (F ) ∈ A} =
∑

n∈N

1{ξn∈A} (F ) .

Property (1) follows from the injectivity of the measurable injective se-
lection. As for Property (2), the Effros-measurability of each ΞA follows
from the measurability of the measurable injective selection. We now make
the observation that if A ∈ τ and C ⊂ A is any countable set, then
#
(
A ∩C

)
= #(A ∩ C), where C denotes the closure of C, in the sense

that they are either infinite together and otherwise both are finite and of
the same cardinality. The same is true when A ⊂ O ∈ τ and C ⊂ O is a
finite set, for some O ∈ τ . Thus, using the properties of measurable injective
selection, this establishes Property (3)(i) and (ii), and in a straightforward
way also Property (3)(iii). Finally, we note that by Property (3)(i) we have

BO ∩ F∗
τ (X) = {ΞO > 0} , O ∈ τ,

and this completes the proof of the second part of Property (2). �



24 AVRAHAM-RE’EM & ROY

We can now prove Theorem 5.3. To this end we exploit the existence of
the classical Poisson point process for locally compact Polish topologies as
follows. Thus, let (X,B, µ) be a standard infinite measure space. Consider
the classical construction of the Poisson point process: Following Proposi-
tion 3.1, pick a locally compact Polish topology ϑ for which µ is Radon,
and let (X∗

ϑ,B
∗
ϑ, µ

∗
ϑ) with the random variables NA : ω 7→ ω (A) for A ∈ B.

Consider the map

Φ : X∗
ϑ → F∗

ϑ (X) , Φ (ω) = Supp (ω) .

Since the Poisson point process consists of simple counting Radon measures,
Φ is well-defined. It is injective and, since Φ−1 (BO) = {NO > 0} for every
O ∈ τ , it is measurable. Define now

Ξϑ
A : Φ (X∗

ϑ) ⊂ F∗
ϑ (X) → Z>0 ∪ {∞} , Ξϑ

A = NA ◦ Φ−1, A ∈ B.

Evidently, the random variables
{
Ξϑ
A : A ∈ B

}
satisfies the condition of

Proposition 5.5. Thus, the classical Poisson point process

(X∗
ϑ,B

∗
ϑ, µ

∗
ϑ) with {NA : A ∈ B}

can be naturally identified via Φ with the Poisson random set

(5.5.1) (F∗
ϑ (X) , E∗

ϑ (X) , µ∗ϑ) with
{
Ξϑ
A : A ∈ B

}
.

Proof of Theorem 3. Let (X,B, µ) be a standard infinite measure space and
by the assumption there is a Polish topology τ onX for which µ ∈ Mτ

σ (X,B).
The proof will be divided into three part. In the first part we construct a
generating algebra of sets A on F∗

τ (X). In the second part we define µ∗τ by
defining it as a pre-measure onA and extending using the Hahn-Kolmogorov
Extension Theorem. In the third part we show the desired properties of µ∗τ .

Part 1. By the τ -local-finiteness of µ, there exists a countable base O =
{O1, O2, . . . } for τ such that µ (On) < ∞ for every n. Since τ -closed sets
are Gδ-sets in τ , by removing the largest τ -open set which is µ-null and
restricting τ to the remaining τ -closed set, we may assume that µ (On) > 0
for every n. For every n, let ρn be the finest partition of O1 ∪ · · · ∪ On

that is generated by {O1, . . . , On}, hence every atom of ρn is a τ -open set
with finite positive measure. Since O is a base for τ , the ascending sequence
of partitions (ρn)

∞
n=1 converges to the partition into points of X, and the

ascending sequence of σ-algebras (σ (ρn))
∞
n=1 generates B modulo µ.

Fix {ΞA : A ∈ B} as in Proposition 5.5. For every A ∈ B denote by ΠA the
partition of the measurable set {ΞA <∞}, so that its atoms are {ΞA = k},
k ∈ Z>0. More generally, for every finite partition ρ of a set A ∈ B, denote
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by Πρ the finest partition of {ΞA <∞} that is generated by the partitions
ΠB, B ∈ ρ. For every n, recalling the partition ρn, we put

Πn = Πρn .

Thus, ρn is a finite partition of O1 ∪ · · · ∪ On ⊂ X and Πn is an infinite
partition of {ΞO1∪···∪On <∞} ⊂ F∗

τ (X). Since the σ-algebra of F∗
τ (X) is

generated by {ΞO : O ∈ τ}, it follows that the ascending sequence of par-
titions (Πn)

∞
n=1 converges to the partition into points of F∗

τ (X), and the
ascending sequence of σ-algebras (σ (Πn))

∞
n=1 generates the Effros σ-algebra

of F∗
τ (X). Thus, we obtain that

A := σ (Π1) ∪ σ (Π2) ∪ · · ·

is an algebra of sets that generates its Effros σ-algebra of F∗
τ (X).

Part 2. Observe that the atoms of each Πn are in one-to-one correspondence
with all functions κ : ρn → Z>0, B 7→ κB , in that every such function
corresponds to the nonempty atom

⋂
B∈ρn

{ΞB = κB} ∈ Πn.

To see why this is true, note that every atom B ∈ ρn ⊂ τ is a nonempty
open set with 0 < µ (B) < ∞, and thus µ (X\B) = ∞. Then pick a
(closed) set F ′ ⊂ B with #F ′ = κB , and look at the closed set F :=
F ′∪(X\B). By the properties of ΞB we see that ΞB (F ) = # (B ∩ F ) = κB ,
namely F ∈ {ΞB = κB}. Since the atoms ρn are disjoint, this shows that⋂

B∈ρn
{ΞB = κB} is nonempty for whatever choice of κ.

Define µ∗0 on A as follows. For each n, we specify µ∗n on Πn by letting
{ΞB, B ∈ ρn} be independent and Poisson distributed with respective means
µ (B), B ∈ ρn. Thus, we obtain a set function µ∗0 on A be letting µ∗0 |σ(Πn)=
µ∗n for each n. It is not hard to show directly that µ∗0 is a consistent pre-
measure on A, but it would be shorter to utilize the existence of the classical
Poisson point process with respect to some other Polish topology ϑ which
is chosen to be locally compact and for which µ is a Radon, as is presented
in (5.5.1). First, for every n and κ : ρn → Z>0 we have the obvious identity

(5.5.2) µ∗0

(⋂
B∈ρn

{ΞB = κB}
)
= µ∗ϑ

(⋂
B∈ρn

{
Ξϑ
B = κB

})

We now observe that for each n, since Πn is a countable partition, σ (Πn) is
nothing but all countable disjoint unions of the atoms of Πn. Consequently,
as the sequence of σ-algebras (σ (Πn))

∞
n=1 is ascending, the algebra A con-

sists of countable disjoint unions of atoms of the partitions (Πn)
∞
n=1. Then

the family of identities (5.5.2) together with the fact that µ∗ϑ is a probability
measure and in particular σ-additive, readily imply that µ∗0 is a consistent
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pre-measure on A. Finally, by the Hahn-Kolmogorov Extension Theorem,
µ∗0 extends to a genuine probability measure µ∗τ on F∗

τ (X).

Part 3. We now show that {ΞA : A ∈ B} forms a Poisson point process on
the base space (X,B, µ). Let A ∈ Bµ be arbitrary. For every n denote

An = A ∩ (O1 ∪ · · · ∪On) ,

and define ρAn to be the finest partition of O1 ∪ · · · ∪ On that is generated
by An, O1, . . . , On. While the sets An may not be in τ , since they are
contained in O1 ∪ · · · ∪ On we may apply Proposition 5.5(3)(ii). Thus,
repeating the same construction as above when the partitions (ρn)

∞
n=1 are

replaced by the partitions
(
ρAn
)∞
n=1

, we obtain a probability measure µAτ
on F∗

τ (X) with respect to which ΞA∩On is Poisson distributed with mean
µ (A ∩On) for every n. Then by standard arguments it follows that ΞA

is Poisson distributed with mean µ (A) with respect to µAτ . However, we
evidently have that

µAτ (BOn) = 1− e−µ(On) = µ∗τ (BOn) , n = 1, 2, . . . ,

and the distribution of a random closed set in Fτ (X) is determined by the
probabilities of BO, O ∈ O (see e.g. [29, Theorem 1.3.20], whose proof is
valid also for a base for the topology), and it follows that µAτ = µ∗τ . This
shows that {ΞA : A ∈ B} forms a Poisson point process with respect to µ∗τ
and, moreover, µ∗τ is unique with respect to this property, establishing that
the correspondence Mτ

σ (X,B) → M1 (F
∗
τ , E

∗
τ (X)), µ 7→ µ∗τ , is one-to-one.

Finally, in order to see that µ∗τ is supported on the class of τ -discrete sets,
note that

⋂
n>1 {ΞOn <∞} is an Effros-measurable subset of F∗

τ (X) that
consists only of τ -discrete sets and, since µ∗τ (ΞOn <∞) = 1 for each n > 1,
we deduce that it is a µ∗τ -conull set. �

5.3. Spatial Poisson suspensions. In this section we prove Theorem 4.
Let (X,B) be a standard Borel space, and τ a Polish topology on X that

generates B. For every τ -homeomorphism T of X we define

T ∗ : F∗
τ (X) → F∗

τ (X) , T ∗ (F ) := T (F ) = {T (x) ∈ X : x ∈ F} .

Lemma 5.6. Let µ ∈ Mσ (X,B). If T is a τ -homeomorphism that preserves
µ, then T ∗ is a transformation that preserves µ∗τ (as in Theorem 5.3).

Proof. For every O ∈ τ we have

µ∗τ
(
T ∗−1 (BO)

)
= µ∗

(
BT−1(O)

)
= µ∗

(
ΞT−1(O) > 0

)
= 1− e−µ(T−1(O))

= 1− e−µ(O) = µ∗ (ΞO > 0) = µ∗τ (BO) ,
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thus µ∗ ◦ T ∗−1 and µ∗ coincide on BO, O ∈ τ . Since the values on BO,
O ∈ τ , determines random closed sets uniquely (see [29, Theorem 1.3.20])
it follows that T ∗ preserves µ∗ �

Note that (T ◦ S)∗ = S∗ ◦ T ∗ whenever T, S are τ -homeomorphism, and

in particular T ∗ is invertible by (T ∗)−1 =
(
T−1

)∗
. Obviously, F∗

τ (X) is
T ∗-invariant for whatever τ -homeomorphism T of X. Then from a τ -Polish
action T : Gy (X,B) we obtain the action

T∗ : Gy (F∗
τ (X) , E∗

τ (X)) , T∗ : (g, F ) 7→ T ∗
g (F ) .(5.6.1)

Lemma 5.7. If T : G y (X,B) is a τ -Polish action then T∗ : G y

(Fτ (X) , Eτ (X)), and in particular T∗ : Gy (F∗
τ (X) , E∗

τ (X)) as in (5.6.1),
is a Borel action.

Remark 5.8. In the literature this fact is viewed as elementary (see e.g. [4, §
2.4, Example (ii)], [11, § 3.3]). It is worth mentioning that when τ is locally
compact (and only then), the Fell topology on Fτ (X) is Polish and generates
Eτ (X) (see [18, Exercise (12.7)]). It can be verified, with the assistance
of [41, Theorem 4.8.6], [18, Exercise (9.16) i)], that in this case T∗ is further
a Polish action in the Fell topology.

Proof. Evidently T∗ is an action and we verify that T∗ is a Borel map
by showing that T∗−1 (BO) is measurable in G × F∗

τ (X) for each O ∈ τ .
To this end we use the Kuratowski & Ryll-Nardzewski’s Selection Theorem
(see [18, Theorem (12.13)]), to fix a measurable selection {θn : n ∈ N} for
Fτ (X), that is a countable collection of Effros-measurable mappings θn :
Fτ (X) → X such that {θn (F ) : n ∈ N} is a (countable) dense subset of F
for each F ∈ F∗

τ (X) \ {∅}. Fix also a countable base U for τ .
Let O ∈ τ be arbitrary. For each g ∈ G and F ∈ Fτ (X), using that

T−1
g (O) is τ -open,

Tg (F ) ∩O 6= ∅ ⇐⇒ F ∩ T−1
g (O) 6= ∅

⇐⇒ ∃n∈N
[
θn (F ) ∈ T−1

g (O)
]

⇐⇒ ∃n∈N∃U∈U

[(
U ⊂ T−1

g (O)
)
∧ (θn (F ) ∈ U)

]
,

so we may write

T∗−1 (BO) =
⋃

n∈N

⋃

U∈U

{
g ∈ G : U ⊂ T−1

g (O)
}
× {F ∈ Fτ (X) : θn (F ) ∈ U} .
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Each set {F ∈ Fτ (X) : θn (F ) ∈ U} is clearly Effros-measurable. In order
to see the measurability of each

{
g ∈ G : U ⊂ T−1

g (O)
}
, write

{
g ∈ G : U 6⊂ T−1

g (O)
}
= {g ∈ G : Tg (U) ∩X\O 6= ∅}

=
⋃

x∈X\O

{g ∈ G : x ∈ Tg (U)} .

Since for each x ∈ X the map G → X, g 7→ T−1
g (x), is continuous, the set

{g ∈ G : x ∈ Tg (U)} is open. This readily implies that {g ∈ G : U ⊂ Tg (O)}
is closed hence measurable. �

Proof of Theorem 4. Given a locally finite Polish action T : G
sp

y (X,B, µ)
with respect to a Polish topology τ , using the construction of Theorem 5.3,
the construction of the action as in (5.6.1), together with Lemmas 5.6 and
5.7, we obtain the spatial action

T∗ : G
sp

y (F∗
τ (X) , E∗

τ (X) , µ∗τ ) .

We complete the proof by showing that this is a Poissonian action, whose

base action is T : G
sp

y (X,B, µ), with respect to the Poisson point process
{ΞA : A ∈ B} that is defined on (F∗

τ (X) , E∗
τ (X) , µ∗τ ) as in Theorem 5.3.

Recall that by Proposition 5.5, for every A ∈ B, we have that ΞA (F ) =
# (A ∩ F ) whenever F ∈ F∗

τ (X) is τ -discrete. Since µ∗τ is supported on the
class of τ -discrete sets, it follows that for F in a µ∗τ -conull set,

ΞA (T ∗ (F )) = # (A ∩ T ∗ (F )) = #
(
T−1 (A) ∩ F

)
= ΞT−1(A) (F ) .

This readily shows that T is a base action for T∗ as in Definition 1.4,
completing the proof of Theorem 4. �

6. Constructing spatial actions from nonsingular spatial

actions

Here we aim to establish Theorem 5. Recall the Polish group

Aut (X,B, [µ])

of the (equivalence classes of) nonsingular transformations of a standard
measure space (X,B, µ). It is worth mentioning that similarly to Aut (X,B, µ),
also Aut (X,B, [µ]) is a Lévy group [12, Theorem 6.1], [32, §4.5]. Let us start
with the important construction of the Maharam Extension, which allows
one to realize the nonsingular transformations of one space as measure pre-
serving transformations of another space.
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Proposition 6.1 (Maharam Extension). For every standard (finite or infi-
nite) measure space (X,B, µ) there exists a standard infinite measure space(
X̃, B̃, µ̃

)
, with a continuous embedding of Polish groups

Aut (X,B, [µ]) →֒ Aut
(
X̃, B̃, µ̃

)
, T 7→ T̃ .

Proof. For a standard measure space (X,B, µ) define
(
X̃, B̃, µ̃

)
by

X̃ = X × R, B̃ = B ⊗ B (R) , dµ̃ (x, t) = dµ (x) etdt.

Obviously, this is a standard infinite measure space. In order to define the
desired embedding, let us denote the Radon-Nikodym cocycle by

∇ : Aut (X,B, [µ])×X → (0,∞) , ∇T (·) =
dµ ◦ T−1

dµ
(·) ∈ L0 (X,B, µ) .

Note that this is only an almost cocycle in the sense that for every T, S ∈
Aut (X,B, [µ]) it holds that

∇T◦S = ∇T ◦ S · ∇S in L0 (X,B, µ) .

We now define the embedding Aut (X,B, [µ]) →֒ Aut
(
X̃, B̃, µ̃

)
by

(6.1.1) T 7→ T̃ , T̃ (x, t) = (T (x) , t− log∇T (x)) .

It is straightforward to verify that this is a well-defined, continuous embed-
ding of Polish groups. �

Suppose G is a Polish group. A nonsingular (Boolean) action of G on a
standard measure space (X,B, µ) is a continuous (equivalently, measurable)
homomorphism T : G→ Aut (X,B, [µ]). We denote such an action by

T : Gy (X,B, [µ]) .

A nonsingular spatial action of G on a standard measure space (X,B, µ)
is a Borel action T : G y (X,B), T : (g, x) 7→ Tg (x), such that for every
g ∈ G, Tg is a nonsingular transformation of (X,B, µ). We denote such an
action by

T : G
sp

y (X,B, [µ]) .

Using the Maharam Extension construction, from every nonsingular action
we obtain a (measure preserving) action, however this does not work in
the spatial category since the Radon-Nikodym cocycle is merely an almost
cocycle. When G is locally compact, by the Mackey Cocycle Theorem the
Radon-Nikodym cocycle admits a pointwise version (strict version in the
terminology of [3]) and then the Maharam Extension does admit a point-
realization. However, as it was shown by Becker [3, Section E], in general a
strict version of the Radon-Nikodym cocycle may not exist.
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Proof of Theorem 5. If G admits a locally finite Polish action, then by The-
orem 4 the spatial Poisson suspension of this locally finite Polish action,
with an appropriate Polish topology, is a finite spatial action. If G ad-

mits a τ -locally finite Polish nonsingular action T : G
sp

y (X,B, [µ]), T :
(g, x) 7→ Tg (x), such that for each g ∈ G the Radon-Nikodym derivatives
x 7→ ∇g (x) := ∇Tg (x) is τ -continuous, then the Maharam Extension

T̃ : G
sp

y

(
X̃, B̃, µ̃

)
, T̃ : (g, (x, t)) 7→ (Tg (x) , t− log∇g (x)) ,

is a spatial action. In the coming discussion we omit the precise Polish
topologies with respect to which the continuity properties are defined, as
these are given by products of the obvious topologies on G, X and R. We
further claim that this Maharam Extension is a locally finite Polish action.
First, clearly the measure µ̃ is locally finite. In order to see that the action is

Polish, namely that T̃ is a continuous map, we note that by the assumption

it follows that T̃ is separately continuous, and by [18, Theorem (9.14)] it

automatically follows that it is indeed jointly continuous. Having that T̃ is
a locally finite Polish action with respect to τ̃ := τ⊗τR, where τ is the given
Polish topology on X and τR is the usual topology of R, again by Theorem
4 we obtain that the spatial Poisson suspension

T̃∗ : G
sp

y

(
F∗
τ̃

(
X̃
)
, E∗

τ̃

(
X̃
)
, µ̃∗τ̃

)

is a finite spatial action of G. �

Proof of Corollary 1.6. By [22, Theorem 2.3], if S : G
sp

y (Y, ν) is any finite
spatial action that is faithful, the diagonal action on the infinite product

SN : G
sp

y
(
Y N, νN

)
is essentially free in the sense that there is a ν-conull

invariant subset of Y N (where the invariance is pointwise) on which the
action S is free. Evidently, this diagonal action is also a finite spatial action,
so this completes the proof. �

7. Diffeomorphism groups: classification and spatial actions

Let M be a compact smooth manifold. We will always assume, further,
that M is d-dimensional Hausdorff connected and without boundary. Let a
parameter 1 6 r 6 ∞ be fixed, and denote by

Diffr (M)

the group of all Cr-diffeomorphisms fromM onto itself. It becomes a Polish
group with the compact-open Cr-topology. Denote the connected compo-
nent of the identity, as a normal subgroup, by

Diffr
o (M) ⊳ Diffr (M) .
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Diffeomorphism groups are locally connected (see [2, Proposition 1.2.1]), so
Diffr

o (M) is a clopen subgroup, hence a Polish subgroup, of Diffr (M). Of
course, Diffr

o (M) is also not locally compact. We also note that for every
1 6 r 6 ∞ there is an embedding of Polish groups

Diff∞
o (M) 6 Diffr

o (M) .

This is because Diff∞ (M) is a closed subgroup of Diffr (M), together with
that the identity component of Diffr (M) is precisely the Cr-diffeomorphisms
which are Cr-isotopic to the identity (see [2, Corollary 1.2.2]).

Observe that the local-connectedness of Diffr (M) implies that it is a
(not non-)Archimedean group. Indeed, non-Archimedean groups, admitting
a base of clopen subgroups, are totally disconnected. Here we aim to show
the stronger statement of Theorem 6. To this end we exploit the following
celebrated result that was established by Herman in the case when M is a
torus and by Thurston generally. See [2, §2] and the references therein.

Theorem 7.1 (Thurston). For allM as above, Diff∞
o (M) is a simple group.

The second tool we need is the following characterization of groups of
isometries of a locally compact metric space [23, Theorem 1.2].

Theorem 7.2 (Kwiatkowska & Solecki). A Polish group G is a group of
isometries of a locally compact metric space if and only if it possesses the
following property:

Every identity neighborhood contains a closed subgroup H
such that G/H is a locally compact space and the normalizer

NG (H) :=
{
g ∈ G : gHg−1 = H

}
is clopen.

We now formulate and prove Theorem 6.

Theorem 7.3. For every compact smooth manifold M as above and 1 6

r 6 ∞, the Polish group Diffr (M) is not a group of isometries of a locally
compact metric space.

Proof. As we mentioned before, we have the embeddings of Polish groups

Diff∞
o (M) →֒ Diffr

o (M) →֒ Diffr (M) .

Thus, it suffices to prove that Diff∞
o (M) is not a group of isometries of a lo-

cally compact metric space. Suppose otherwise toward a contradiction, then
by Theorem 7.2 there exists a closed subgroup H 6 Diff∞

o (M) for which
Diff∞

o (M) /H is a locally compact space and the normalizer NDiff∞
o (M) (H)

is clopen. Since Diff∞
o (M) /H is a locally compact space while Diff∞

o (M) is
not, it follows that H, hence also NDiff∞

o (M) (H), cannot be the trivial group.
Since NDiff∞

o (M) (H) is clopen and Diff∞
o (M) is connected, it follows that
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NDiff∞
o (M) (H) = Diff∞

o (M), namely H is a normal subgroup of Diff∞
o (M).

This contradicts Theorem 7.1. �

We move now to construct spatial actions of diffeomorphism groups.

Proof of Theorem 7. Let M be a compact smooth manifold and pick a vol-
ume form Vol on M . In fact, the following construction works also when
M is merely paracompact and accordingly has an infinite total volume in
Vol; indeed, the compact-open Cr-topology on Diffr (M) is still Polish and
the Maharam Extension can be taken with respect to an infinite measure as
well. Whether M is compact or merely paracompact, look at the tautolog-
ical action of Diffr (M) on M which is obviously nonsingular with respect
to Vol. Thus, we have a nonsingular locally finite Polish action

D : Diffr (M)
sp

y (M,Vol) , f.x = f (x) .

The Radon-Nikodym cocycle of this action is the corresponding Jacobian,
which is jointly continuous as a map Diffr (M) ×M → (0,∞), hence by
Theorem 5 we conclude that Diffr (M) admits a nontrivial probability pre-
serving spatial action. Using Corollary 1.6 we immediately obtain that there
exists also such a free action.

In order to obtain also the ergodicity we look back at the steps in the
construction as in the proof of Theorem 5: starting with the locally finite

Polish nonsingular action D, we constructed the Maharam Extension D̃,

from which we constructed the spatial Poisson suspension D̃∗ (with respect

to the obvious Polish topology on M̃). Then, in order to obtain a free action,

we took the infinite diagonal product action
(
D̃∗
)N

. We then argue that the

action
(
D̃∗
)N

is ergodic. To this end we exploit the fact that the Maharam

Extension D̃ is ergodic, which will be proved in Appendix B, and then, as

every infinite measure preserving action, the ergodicity of D̃ implies that

it is null. From Theorem 2 it follows its Poisson suspension D̃∗ is weakly

mixing. Recalling Remark 4.9(3), this readily implies that
(
D̃∗
)N

is ergodic.

This completes the proof of Theorem 7. �

7.1. Non-essentially countable orbit equivalence relations. We in-
troduce the necessary background to Corollary 1.7. A general reference to
the subject, with many references therein, is [21].

An equivalence relation E on a standard Borel space (X,B) is a set
E ⊂ X × X such that the condition x ∼ x′ ⇐⇒ (x, x′) ∈ E defines
an equivalence relation on X. Such an equivalence relation is said to be
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Borel if it is a Borel subset of X ×X, and countable if each of its equiva-
lence classes is countable. The Borel complexity of one equivalence relation
relative to another can be tested by the possibility of producing a Borel
reduction of the former into the latter in the following sense. A Borel

reduction of an equivalence relation E on a standard Borel space (X,B)
into an equivalence relation F on a standard Borel space (Y, C), is a Borel
function f : X → Y such that

(
x, x′

)
∈ E ⇐⇒

(
f (x) , f

(
x′
))

∈ F for all x, x′ ∈ X.

An equivalence relation is said to be essentially countable if it admits a
Borel reduction into a countable Borel equivalence relation.

An important class of equivalence relations are orbit equivalence rela-

tions. If T : Gy (X,B) is a Borel action of a Polish group G on a standard
Borel space (X,B), the associated orbit equivalence relation is

EX
T = {(x, Tg (x)) : x ∈ X, g ∈ G} ⊂ X ×X.

It was shown by Kechris [20] that if G is locally compact then EX
T

is always
essentially countable, and he left as open question whether this property
characterizes locally compact groups among the Polish groups (see [22, Prob-
lem 1.2], [21, Problem 4.16]). Recently, this was answered affirmatively for
groups of isometries of a locally compact metric space by Kechris, Malicki,
Panagiotopoulos & Zielinski [22]. In their proof they used the aforemen-
tioned Mackey property of these groups due to Kwiatkowska & Solecki [23,
Theorem 1.2], which is unavailable for diffeomorphism groups in light of
Theorem 6.

Proof of Corollary 1.7. By Theorem 7, every diffeomorphism group admits
a free spatial action on a standard probability space. If the orbit equivalence
relation of this action would be essentially countable, then by a theorem of
Feldman & Ramsay [9, Theorem A] (c.f. [22, Theorem 2.1]) it would follow
that the acting group is locally compact, which is false, hence this orbit
equivalence relation is non-essentially countable. �

8. Open problems

We revisit the question of Glasner, Tsirelson & Weiss [13, Question 1.2]
of whether Lévy groups admits nonsingular spatial action. In their proof of
the non-existence of probability preserving actions of Lévy groups, it was
sufficient to show the non-existence of such Polish actions. This reduction
was possible thanks to a theorem of Becker & Kechris [4, § 5.2], by which
every Borel action of a Polish group admits a Polish topology with respect
to which it becomes a Polish action. In locally finite Polish actions, by def-
inition, there exists such a topology that, simultaneously, makes the action
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Polish and the measure locally finite. It is then natural to ask about the
following refinements of Becker & Kechris’ theorem:

Question 8.1. Let T : G y (X,B) be a Borel action of a Polish group G,
preserving an infinite measure µ. When does there exist a Polish topology on
X with respect to which, simultaneously, T is Polish and µ is locally finite?

Diffeomorphism groups were shown, in Theorems 6 and 7, to belong nei-
ther to the class of groups of isometries of a locally compact metric space
nor the class of Lévy groups. Thus it is natural to ask:

Question 8.2. Do diffeomorphism groups possess the Mackey property?

The following related question was posed by Moore & Solecki [30, §4].
For a compact smooth manifold M , let C∞

(
M,S1

)
be the group of C∞-

functions fromM to the unit circle S1 with pointwise multiplication and the
compact-open C∞-topology. It was shown by Moore & Solecki [30, Theorem
1.1] that the Mackey property fails for homeomorphisms from M to S1,
and they ask about the Mackey property for C∞

(
M,S1

)
, describing it as

’tempting to conjecture’.
The Mackey property of a Polish group refers to all of its actions at once.

However, it is possible for a Polish group without the Mackey property to
admit spatial actions. Indeed, the homeomorphism group of the circle S1

does not possess the Mackey property by the aforementioned result of Moore
& Solecki, and yet it acts spatially and ergodically on S1 with its Lebesgue
measure by f.z = f (1) z. This suggests to deviate from the general Mackey
property and raise the following problem that seems to be widely open:

Problem 8.1. Consider the following actions a Polish group may posses:5

• Type II1: Spatial ergodic probability preserving actions.
• Type II∞: Spatial ergodic infinite measure preserving actions.
• Type III: Spatial ergodic nonsingular actions without an absolutely con-

tinuous invariant measure.

Beyond the locally compact case, little is known about whether a given Polish
group admits an action of Type II1, II∞ or III. A particular important case
is Glasner, Tsirelson & Weiss’ question: Lévy groups do not admit actions
of Type II1, but do they admit actions of Type III? What about Type II∞?
There are also classification aspects of this problem: does the admission of
an action of a certain type imply the admission of an action of some other
type? On the contrary, is there a Polish group that admits an action of a
certain type but not an action of some other type?

5The notations were borrowed from the Krieger-type of countable groups actions, which
in turn were borrowed from the classification of factors in von Neumann algebras.
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Remark 8.1. We comment on known results in the above problem

(1) Groups of isometries of locally compact metric spaces admit actions
of Types II∞ (there is a Haar measure) and II1 (the Poisson suspen-
sion of the Haar measure, which is spatial by [23, Theorem 1.1] or
by Theorem 4). See [8] with regard to Type III.

(2) Diffeomorphism groups of compact smooth manifolds admit actions
of Types III (tautologically), II∞ (the Maharam Extension) and II1
(the spatial Poisson suspension as in Theorem 7).

(3) The group Homeo+ ([0, 1]) of orientation preserving homeomorphisms
admits not even a Boolean action whatsoever by a theorem of Megrel-
ishvili [28, Theorem 3.1] (see also [13, Remark 1.7]).

(4) The Maharam Extension construction demonstrates that in certain
cases, the admission of a Type III action implies the admission of a
Type II∞ action. The Poisson suspension construction demonstrates
that in certain cases, the admission of a Type II∞ action implies the
admission of a Type II1 action. By Theorem 5, these implications
are valid when the actions possess appropriate continuity properties.

Appendix A. The First Chaos of Poisson point processes

Fix a generative Poisson point process P = {PA : A ∈ B} that is defined
on (Ω,F ,P) with base space (X,B, µ) as in Definition 1.1. In the following
we describe some fundamental properties of the first chaos of P, namely
the real Hilbert space

H1 (P) := span {PA − µ (A) : A ∈ Bµ} ⊂ L2
R (Ω,F ,P) .

A.0.1. Fock space and Chaos decomposition. The (real, symmetric) Fock

space associated with a Hilbert space H is, by definition, the Hilbert space

F (H) =
∞⊕

n=0

H⊙n,

where H⊙0 = R and H⊙n for n > 1 is the symmetric nth tensor product of
H, i.e. its elements are the vectors in the usual tensor product H⊗n that
are invariant to permutations of their coordinates, which are generated by
elements of the form

u1 ⊙ · · · ⊙ un :=
1

n!

∑

σ∈Sym(n)

uσ(1) ⊗ · · · ⊗ uσ(n),

and with the inner product that is given by

〈u1 ⊙ · · · ⊙ un, v1 ⊙ · · · ⊙ vn〉H⊙n :=
1

n!

∑

σ∈Sym(n)

n∏

j=1

〈
uj , vσ(j)

〉
H
.
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Here the operation
⊕

denotes the operation of taking the Hilbert space
obtained as the completion of the direct sum.

For the classical Poisson point process N that is defined on (X∗,B∗, µ∗)
with the base space (X,B, µ), the Fock space decomposition refers to the iso-
metric isomorphism between L2

R
(X∗,B∗, µ∗) and F

(
L2
R
(X,B, µ)

)
. See [26]

(see also [24, §18]). Suppose P is a Poisson point process that is defined
on (Ω,F ,P) with a base space (X,B, µ) as in Definition 1.1. Using Propo-
sition 3.3 we obtain an isometric isomorphism between L2

R
(Ω,F ,P) and

F
(
L2
R
(X,B, µ)

)
. Thus, the Hilbert space L2

R
(Ω,F ,P) has the chaos de-

composition into

(A.0.1) L2
R (Ω,F ,P) =

∞⊕

n=0

Hn (P) ,

each Hn (P) is called the nth chaos with respect to P. The following descrip-
tion of the chaos structure for an abstract P requires performing stochastic
integration against P as a random measure, which is justified in Proposition
3.3.

• H0 (P) = R.
• H1 (P) := span {PA − µ (A) : A ∈ Bµ} ⊂ L2

R
(Ω,F ,P).

• · · ·
• Hn (P) = span

{∫
X⊙n 1

⊙n
A d (P − µ)⊙n : A ∈ Bµ

}
⊂ L2

R
(Ω,F ,P), where

X⊙n is the set of sequences in Xn consisting of n disjoint elements.

With this chaos decomposition of L2
R
(Ω,F ,P), the isometric isomorphism

Iµ : L2
R (Ω,F ,P) → F

(
L2
R (X,B, µ)

)
,

is given by stochastic integration against P as follows.

• Iµ : Rf0 → H0 (P) is given by Iµ : cf0 7→ c, where Rf0 is a one-
dimensional space that is spanned by a distinguish norm-one vector
f0 ∈ L2

R
(X,B, µ), called vacuum vector, whose specification will be

unimportant for us.
• Iµ : L2

R
(X,B, µ) → H1 (P) is given by the stochastic integral

Iµ : 1A 7→

∫

X
1Ad (P − µ) = PA − µ (A) , A ∈ Bµ.

• · · ·
• Iµ : L2

R
(X,B, µ)⊙n → Hn (P) is given by the stochastic integral

Iµ : 1⊙n
A 7→

∫

X⊙n

1⊙n
A d (P − µ)⊙n , A ∈ Bµ.

In general, every unitary operator U of a Hilbert space H induces a
unitary operator F (U) of the Fock space F (H), that is defined by let-
ting F (U) acts on H⊙n as the nth tensor product U⊗n. Thus, for every
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T ∈ Aut (X,B, µ), by looking at the Koopman operator UT we obtain the op-
erator F (UT ) of F

(
L2
R
(X,B, µ)

)
∼= L2

R
(Ω,F ,P). This operator can also be

described without reference to the Fock space structure: if S ∈ Aut (Ω,F ,P)
is a Poissonian transformation with base transformation T (for instance,
S = T ∗ as in Proposition 3.1), we obtain the Koopman operator US of
L2
R
(Ω,F ,P). The equivariance property that relates T and S as in Defini-

tion 1.4 implies that

F (UT ) = US .

A.0.2. Infinitely Divisible distributions and the First Chaos. We start by
recalling some of the basics of infinitely divisible distributions. A general
reference to the subject is [39].

A distribution is infinitely divisible if for every positive integer n it can
be presented as the nth-power convolution of some other distribution. By
the fundamental Lévy-Khintchine Representation (see [39, Chapter 2, §8]),
every infinitely divisible distribution is completely determined by a triplet

(σ, ℓ, b) , where σ > 0, b ∈ R and ℓ is a Lévy measure.

By definition, a Lévy measure is a σ-finite Borel (possibly with atoms) mea-
sure ℓ on R with

ℓ ({0}) = 0 and

∫

R

t2 ∧ 1dℓ (t) <∞.

According to the Lévy-Khintchine Representation, a random variable W
has infinitely divisible distribution associated with a triplet (σ, ℓ, b) if its
characteristic function takes the form

E (exp (itW )) = exp

(
−
t2σ2

2
+

∫

R

(
eitx − 1− itx · 1[−1,+1] (x)

)
dℓ (x) + itb

)
.

Thus, every infinitely divisible distribution is the convolution of a centred
Gaussian distribution with variance σ2, and another infinitely divisible dis-
tribution that is determined by a Lévy measure ℓ and a constant b via
the Lévy-Khintchine Representation. An infinitely divisible distribution for
which the Gaussian part vanishes, namely σ = 0, is referred to as infinitely
divisible Poissonian distribution, henceforth idp. The fundamental ex-
amples of idp distributions are Poisson distributions and, more generally,
compound Poisson distributions. We refer to a random variable as idp if its
distribution is idp.

Given a generative Poisson point process P, the restriction of the Poisson
stochastic integral in the aforementioned chaos decomposition to the first
chaos H1 (P), forms an isometric isomorphism of the Hilbert spaces

Iµ : L2
R (X,B, µ)

∼
−→ H1 (P) .



38 AVRAHAM-RE’EM & ROY

We introduce some useful properties of this stochastic integral.

Proposition A.1. In the above setting the following hold.

(1) For every f ∈ L1
R
(X,B, µ) ∩ L2

R
(X,B, µ),

Iµ (f) =

∫

X
fdP −

∫

X
fdµ.

(2) For every f ∈ L2
R
(X,B, µ), Iµ (f) is an idp random variable whose

Lévy measure is given by

ℓf := µ |{f 6=0} ◦f−1.

(3) For every f ∈ L2
R
(X,B, µ) for which Iµ (f) is bounded from below,

ℓf (R<0) = 0 and

∫

R>0
tdℓf (t) <∞.

Proof. The stochastic integral Iµ is generally defined on the dense subspace
L1
R
(X,B, µ) ∩ L2

R
(X,B, µ) as in part (2), and extends to L2

R
(X,B, µ) by

continuity. It is a classical fact that if f ∈ L2
R
(X,B, µ) then Iµ (f) is an

idp random variable and its Lévy measure is ℓf as in part (1) (see e.g. [39,
Lemma 20.6], [34, Proposition 2.10] and note that on the dense subspace
L1
R
(X,B, µ) ∩ L2

R
(X,B, µ) the stochastic integral Iµ differs from the sto-

chastic integrals in these references only by a constant, whence they have
the same Lévy measure). This establishes parts (1) and (2).

In order to establish part (3) we exploit the general characterization of
idp random variables that are bounded from below as in [39, Theorem 24.7],
by which if Iµ (f) is bounded from below then its Lévy measure ℓf satisfies
the following two properties. First, ℓf (R<0) = 0 as in the first property in
part (3). Second, one of the following alternatives occurs (type A or type B
in the terminology of [39, Definition 11.9]):

(1) ℓ (R>0) <∞, in which case by the Cauchy-Schwartz inequality
∫

R>0

tdℓf (t) =

∫

{f>0}
fdµ 6 ℓf (R>0)

(∫

{f>0}
f2dµ

)
<∞.

(2) ℓf (R>0) = ∞ and
∫
{06t61} tdℓf (t) <∞, in which case we have

∫

R>0

tdℓf (t) =

∫

{06t61}
tdℓf (t) +

∫

{t>1}
tdℓf (t) <∞,

where the finiteness of the second term follows from∫

{t>1}
tdℓf (t) =

∫

{f>1}
fdµ 6

∫

{f>1}
f2dµ <∞.

This completes the proof of part (3). �
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Appendix B. Ergodicity of Maharam Extensions

A useful criteria for the ergodicity of the Maharam Extension is based
on Krieger’s theory of orbit equivalence classification of nonsingular trans-
formations (i.e. nonsingular actions of Z). While this theory, by its nature,
applies to countable amenable groups, by reviewing its details one may de-
rive a general criterion to the ergodicity of Maharam Extensions for actions
of general groups. In the following discussion, an action of a general group
G is a homomorphism from G into Aut (X,B, [µ]), and the measurability or
continuity of this homomorphism are irrelevant.

Let G be a group. Suppose we are given a nonsingular action of G on a
standard measure space (X,B, µ), that is a homomorphism

T : G→ Aut (X,B, [µ]) , T : (g, x) 7→ Tg (x) .

Denote its Radon-Nikodym cocycle by

∇g (·) =
dµ ◦ Tg
dµ

(·) ∈ L1 (X,B, µ) , g ∈ G.

Let η be the measure on R that is defined by dη (t) = etdt, where dt denotes
the Lebesgue measure on R, and put

X̃ = X × R, B̃ = B ⊗ B (R) and µ̃ = µ⊗ η.

The Maharam Extension of T is the infinite measure preserving action

T̃ : G→ Aut
(
X̃, B̃, µ̃

)
, T̃g : (x, t) 7→ (Tg (x) , t− log∇g (x)) .

A number s ∈ R is said to be an essential value of T if:

Given any A ∈ B with µ (A) > 0 and any ǫ > 0, there exist
A ⊃ B ∈ B with µ (B) > 0 and some g ∈ G, such that
Tg (B) ⊂ A and log∇g (B) ⊂ (s− ǫ, s+ ǫ).

The set of all essential values of T is called the ratio set and is denoted by

r (T, µ) , or also r (T) when µ is understood.

The ratio set is a closed subgroup of R depending only on the measure class
of µ, and as such it is a principle invariant in Krieger’s theory [40, § 3].

Proposition B.1 (Schmidt). Suppose T is an ergodic nonsingular action.

If r (T) = R then the Maharam Extension T̃ is ergodic.

Proof. Let A ∈ B̃ be a T̃-invariant set. Denote by (Ss)s∈R the flow on X̃

given by Ss (x, t) = (x, t+ s). Since r (T) = R, by [40, Theorem 5.2]6 it

6Schmidt’s theorem is formulated when G is countable and η is the Lebesgue measure.
The proof of the part that is being used here remains valid for every group. Also, since η
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follows that

µ̃ (A△Ss (A)) = 0 for every s ∈ R,

so that A is (Ss)s∈R-invariant. By the Fubini Theorem there are A1 ∈ B
and A2 ∈ B (R) such that µ̃ (A△ (A1 ×A2)) = 0 and A2 is invariant to all
the translations of R, hence either η (A2) = 0 or η (R\A2) = 0. Since A is

T̃-invariant it follows that A1 is T-invariant, and from the ergodicity of T
it follows that either µ (A1) = 0 or µ (X\A1) = 0. Thus, either µ̃ (A) = 0 or
µ̃ ((X × R) \A) = 0, completing the proof. �

Proposition B.2. Let M be a paracompact smooth manifold with a volume
form Vol, let 1 6 r 6 ∞, and denote by D : Diffr (M) → Aut (M, [Vol])

the tautological nonsingular action. Then the Maharam Extension D̃ :

Diffr (M) → Aut
(
M̃, Ṽol

)
is ergodic.

Remark B.3. While this proposition requires a proof which turns to be
somehow technical, it should be regarded as easy. In fact, in common cases
much more is known: when M is compact and the dimension is either d = 1
(Katznelson) or d > 3 (Herman), there exists a single diffeomorphism whose
Maharam Extension is ergodic. See the introduction of [17, §9] and the
references therein.

Proof. Note that D acts transitively on M (for d = 1 it is trivial, and for
d > 2 see [2, Lemma 2.1.10]). Then every function φ ∈ L1 (M,Vol) that
satisfies φ ◦ f = φ for every f ∈ Diffr (M) is constant, thus D is ergodic.
Then applying Proposition B.1, it suffices to show that r (D,Vol) = R. Since
the defining property of essential values is local in nature, it is enough to
verify that on every neighborhood in M , every number is an essential value
by diffeomorphisms that are supported on this neighborhood. Let ϕ : U →
ϕ (U) ⊂ R

d be any local chart for some relatively compact neighborhood
U ⊂ M , and denote by Diffr (U) those diffeomorphisms f ∈ Diffr (M) for
which Supp (f) ⊂ U . Denote by ϕ∗Vol the push-forward of Vol via ϕ from
U to ϕ (U). Then with every f ∈ Diffr (ϕ (U)), letting fϕ := ϕ−1 ◦ f ◦ ϕ ∈
Diffr (U) we have the relation

dϕ∗Vol ◦ f

dϕ∗Vol
◦ ϕ =

dVol ◦ fϕ

dVol
.

Since ϕ∗Vol is mutually absolutely continuous with the Lebesgue measure
on ϕ (U), which we will abbreviate generally by λ, it follows that

r (Diffr (U) ,Vol) = r (Diffr (ϕ (U)) , ϕ∗Vol) = r (Diffr (ϕ (U)) , λ) ,

is mutually absolutely continuous with the Lebesgue measure, the choice between those
measures does not affect the ergodicity of the Maharam extension.
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where the former ratio set is the one of the tautological action of Diffr (U) ⊂
Diffr (M) on U , and the latter ratio set is the one of the tautological ac-
tion of Diffr (ϕ (U)) ⊂ Diffr

(
R
d
)
on ϕ (U). Thus, it suffices to show that

r (Diffr (Ω) , λ) = R for every open domain Ω ⊂ R
d equipped with the

Lebesgue measure λ and the nonsingular tautological action of Diffr (Ω).
Let Ω ⊂ R

d be an open domain and let s ∈ R be arbitrary. It is typically
hard to compute essential values on a general Borel set, so it is a common
practice to compute essential values on Borel sets in a certain generating
collection and then using approximation (see e.g. [8, Fact 2.7]). In our case
of the Euclidean space Rd we work with the collection of open cubes. Thus,
to show that s ∈ r (Diffr (Ω) , λ) it suffices to verify the following property.

For every open cube C ⊂ Ω and every ǫ > 0, there is a Borel
set C0 ⊂ C and a diffeomorphism f0 ∈ Diffr (Ω), such that

λ (C0) > e−|s|λ (C) , f0 (C0) ⊂ C and log∇f0 (C0) ⊂ (s− ǫ, s+ ǫ) .

(The cost of considering only cubes is that not only C0 is of positive measure,
but further the ratio of the volume of C0 and of C stays away from zero).
Indeed, given an open cube C = Cp (u0) centred at u0 ∈ Ω with side length
p > 0 (the ǫ is irrelevant as we will see), let C0 = Cp/(e|s|/d) (u0) and let

f0 ∈ Diffr (Ω) be any diffeomorphism such that

f0 (u) = es/d (u− u0) + u0 for every u ∈ C0.

It is then evident that

λ (C0) =
(
p/e|s|/d

)d
= e−|s|λ (C) , f0 (C0) ⊂ C and log∇f0 |C0

≡ s. �
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