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THE MOTIVIC HECKE ALGEBRA FOR PEL SHIMURA

VARIETIES

MATTIA CAVICCHI

Abstract. We construct a motivic lift of the action of the Hecke algebra
on the cohomology of PEL Shimura varieties SK . To do so, when SK is
associated with a reductive algebraic group G and V is a local system on SK

coming from a G-representation, we define a motivic Hecke algebra HM (G,K)
as a natural sub-algebra of the endomorphism algebra, in the triangulated
category of motives, of the constructible motive associated with SK and V .
The algebra HM (G,K) is such that realizations induce an epimorphism from
it onto the classical Hecke algebra. We then consider Wildeshaus’ theory of
interior motives, along with the necessary hypotheses for it to be employed.
Whenever those assumptions hold, one gets a Chow motive realizing to interior
V -valued cohomology of SK , equipped with an action of HM (G,K) as an
algebra of correspondences modulo rational equivalence. We give a list of
known cases where this applies.
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2 MATTIA CAVICCHI

1. Introduction

Ever since Scholl’s definition of motives for modular forms [21], one of the frus-
trating features of the available constructions of motives for automorphic forms is
the fact that they are only able to produce homological motives, i.e., very roughly
speaking, direct factors of smooth projective varieties cut out by algebraic corre-
spondences which are idempotent modulo homological equivalence. For arithmetic
applications, and especially for the study of special values of L-functions according
to Beilinson’s conjectures [18], one would rather dispose of Chow motives, with
rational equivalence replacing the homological one. The aim of this paper is to
provide a hopefully useful tool to study these questions: namely, to construct, in
some generality, an explicit algebra of correspondences modulo rational equivalence,
where the hoped-for idempotents should live.

Let us be more precise. When one replaces modular curves, seen as moduli
spaces of elliptic curves with level structures, by moduli spaces of higher dimen-
sional abelian varieties, equipped with a level structure as well as with a polarization
of a given type and an action of some prescribed algebra of endomorphisms, one
obtains higher dimensional Shimura varieties SK of PEL type, defined over a num-
ber field E. They come associated with a reductive algebraic group G over Q,
whose finite-dimensional representations provide natural local systems V on the
complex variety SK(C). The singular cohomology spaces of the latter carry a nat-
ural action of algebras H(G,K) of Hecke operators of level K ⊆ G(Af ) - which
will always supposed to be small enough for SK to be smooth. A similar action
exists on the étale cohomology of the ℓ-adic analogues of V . In order to study
such actions, we have nowadays at our disposal not only the triangulated category
DMc(S) of constructible motives with rational coefficients over general bases S,
but also, because of the last 15 years of progresses in the motivic theory, objects
lying in it which are relevant for our purposes. First, the six functor formalism à
la Cisinski-Déglise for constructible motives [7], coupled with a theorem of Ancona
[1], provides objects M(SK , V ) in DMc(E), whose realizations coincide with the
cohomology spaces H•(SK , V ). Second, the relation of morphisms in DMc(E) with
K-theory tells us that the spaces EndDMc(E)(M(SK , V )) are the correct generaliza-
tions of Chow groups CH∗(X ×X)Q of algebraic correspondences modulo rational
equivalence on a smooth, projective variety X .

With these notations, the main result of this paper is then the following.

Theorem A. (Theorem 5.11) Let SK be a Shimura variety of PEL type, with
underlying group G. For any representation V of G, there exists a canonical sub-
algebra

HM (G,K) →֒ EndDMc(E)(M(SK , V ))

such that realization induces an algebra epimorphism

HM (G,K) ։ H(G,K)

In the above statement, one can fix ideas by taking as realization the Betti
realization. The algebra HM (G,K) (the motivic Hecke algebra of the title) is then
a lift of the classical Hecke algebra, acting on singular cohomology H•(SK(C), V ),
to an algebra acting on motives. Some special cases of this theorem where known
(in particular, in the case of modular curves and Hilbert modular varieties, by [22]),
but the construction is already new when SK is a Siegel threefold, i.e. a moduli
space of polarized abelian surfaces, corresponding to G = GSp4.
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In order to explain the relation of this theorem with the problems mentioned at
the beginning, let us now describe another instance of recent motivic advances. In
a series of papers culminating with [24], Wildeshaus has developed criteria allowing
to construct motives for automorphic forms. Starting from [22], those criteria
have been shown to hold in a number of new cases beyond modular curves, thus
making the first progress on these questions since Scholl’s work - the most recent one
being due to the present author [4] and corresponding to PEL Shimura varieties for
G = ResF |Q GSp4,F , for F a totally real number field. Given a PEL Shimura variety
SK and a system of coefficients V , Wildeshaus’ key idea is to exploit Bondarko’s
theory of weight structures [3] to functorially extract, under some conditions which
will be made explicit in the main text (see Thm. 6.3), a “lowest weight-graded
quotient” Gr0 M(SK , V ) of the motive M(SK , V ). By construction, the object
Gr0 M(SK , V ) is then an object of the full subcategory CHM(E) →֒ DMc(E) of
Chow motives ; it is called interior motive since its realizations coincide with interior
cohomology

H•
! (SK , V ) := Im(H•

c (SK , V )→ H•(SK , V ))

The Hecke algebra still acts on interior cohomology, and we can consider its image,
again denoted by H(G,K), in the endomorphisms of H•

! (SK , V ). The functoriality
properties of Gr0 M(SK , V ) allow us to deduce the following directly from Theorem
A.

Theorem B. (Theorem 6.5) Let SK be a Shimura variety of PEL type, of under-
lying group G, and suppose that the representation V of G is such that the interior
motive Gr0 M(SK , V ) is defined. Then, there exists a canonical sub-algebra

HM (G,K) →֒ EndCHM(E)(Gr0 M(SK , V ))

such that realization induces an algebra epimorphism

HM (G,K) ։ H(G,K)

Let us stress that now, the motivic Hecke algebra HM (G,K) of the above theo-
rem can be identified with a subalgebra of an algebra C of correspondences modulo
rational equivalence; i.e., some C arising as the image of CH∗(X ×X)Q under some
idempotent element p, for some smooth projective variety X - the power of the
method lying in the fact that the existence of X and p is granted without having to
construct explicitly neither of them! Let us also observe that one very interesting
case in which Theorem B applies is the above-mentioned one of G = ResF |Q GSp4,F ,
when the coefficient system V is regular, because then, by the main result of [4],
the weight hypotheses under which the interior motive exists are satisfied.

We conclude by recalling that H•
! (SK , V ) decomposes as a direct sum of sim-

ple H(G,K)-modules, among which there are modules π corresponding to cuspidal
cohomological automorphic representations of G. The associated idempotent ele-
ments e(π) in H(G,K) cut out direct factors of the homological motive underlying
Gr0 M(SK , V ), providing motives associated to those automorphic representations.
Our results say nothing about the difficult question of whether the e(π)’s lift to
idempotent endomorphisms of Gr0(M(SK , V )) - which would yield Chow motives
for automorphic forms - but it exhibits at least a natural, explicitly defined sub-
algebraHM (G,K) of endomorphisms containing some lift of e(π). We felt that this
was a necessary step for all further investigations on these matters, and we expect
the study of HM (G,K), which we plan to pursue, to be interesting and helpful.
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1.1. Plan of the paper. Section 2 serves as a reference for all the rest of the paper:
it collects all we need to know and to use about constructible motives over a base
and the about hearts of the weight structures on them, i.e. relative Chow motives.
Special attention is paid to duality on smooth relative Chow motives, since some
finer properties of the rigid tensor structure on those are needed later, for the proof
of Proposition 5.7 and hence of our main result. Section 3 recalls the fundamental
theorems on motives of abelian schemes due to Deninger-Murre, Künnemann and
Kings, which then intervene crucially in Section 4: there, we gather basic facts
and notations for PEL Shimura varieties SK with underlying group G, and then
we pass to describe Ancona’s construction of the motivic lifts of of sheaves on SK

corresponding to representations of G, which makes use of certain algebras Bi of
relative cycles whose definition depends vitally on the results reviewed in Section
3. In Section 5, we first recall the classical definition of Hecke algebras acting on
the cohomology of Shimura varieties and give some of their properties; then, we
arrive at the heart of the matter, i.e. the construction of the motivic Hecke algebra
HM (G,K). The key technical result is Proposition 5.7, saying that when AK is
the universal abelian scheme over the PEL Shimura variety SK , direct factors of
h1(AK)⊗i cut out by idempotents in Ancona’s algebra Bi are respected by a certain
morphism, which lifts the morphism, entering in the definition of classical Hecke
operators, to motives. From this, we construct HM (G,K) (Definition 5.10) and
we deduce Theorem A (Theorem 5.11 in the text). Finally, Section 6 first reviews
Wildeshaus’ theory of interior motives and explains how to deduce Theorem B
(Theorem 6.5 in the text) from Theorem A, then provides the list of currently
known cases in which Theorem B applies (Theorem 6.7).

1.2. Relation with past work and future directions. As recalled above, Wilde-
shaus has already highlighted a strategy to produce Hecke algebra actions since the
beginning of his program for constructing motives for modular forms; see [22, Cor.
3.8] where the construction is achieved for Hilbert modular varieties. Our definition
is a generalization of the one of loc. cit. Moreover, he gives in [23, pp. 591-592] a
definition of Hecke endomorphisms acting on motives coming from direct factors of
abelian schemes over very general (not necessarily PEL) Shimura varieties SK , but
it is not a priori clear that such a definition provides an Hecke algebra action: we
discuss this point in Remark 5.12.(2). Nevertheless, when SK is of PEL type, the
theory of op. cit. produces Hecke endomorphisms acting on intersection motives
of SK with values in coefficients V , which are defined even when V does not satisfy
the weight assumption necessary for constructing the interior motive appearing in
Theorem B. It would be interesting to see whether our Theorem A can be used to
provide canonical such endomorphisms, so to obtain an algebra action even on such
intersection motives; we hope to come back to this question in the future.

We further note that the classical Hecke algebraH(G,K) acting on cohomology is
the image of an Hecke algebra C∞c (G,K) of bi-invariant functions through a natural
algebra homomorphism (5.5). It is not clear to us whether the latter factors through
our motivic Hecke algebra HM (G,K); we find this question stimulating, both in
itself and for applications to the case of intersection motives, and even for the study
of the structure of HM (G,K) in cases where its construction was already known:
most notably, the one of classical modular curves.
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1.3. Notations and conventions. Throughout the paper, we will say base scheme
to mean a quasi-projective scheme S over a characteristic zero field E, with algebraic
closure Ē. We will denote the complex analytic space associated to such a S (under
the choice of a complex embedding of E) by San.

If X is a variety (i.e., a reduced, separated finite type scheme over a field) which
is moreover smooth and projective, then CHi(X) stands for the Chow group with
rational coefficients of algebraic cycles of codimension i on X . When f : X → Y is
a morphism of smooth projective varieties, Γf will denote both its graph and the
class of the latter in CH∗(X × Y ). Under these hypotheses, the notation tZ for an
algebraic cycle Z in X ×Y will denote (the class of) its transpose, i.e. the pullback
of Z under the exchange of factors in X × Y .

When S is a variety over E, the notation H•(S,A) will be employed both for
the singular cohomology spaces of San with values in some sheaf A of vector spaces
for the analytic topology and for the étale ℓ-adic cohomology spaces of SĒ with
values in an étale ℓ-adic sheaf A (for some choice of prime ℓ). Same conventions
for cohomology with compact support H•

c (S,A). We will use freely the six functor
formalism available for the categories of sheaves just mentioned. If f : X → S
is a morphism from a variety to a base scheme, then Hi

S(X) will mean the i-th
cohomology sheaf ofRf∗1X , with 1X being the constant sheaf, either in the analytic
or in the étale ℓ-adic case; we will even write Hi(X) if the base is understood and
the context makes it clear that we are considering the relative setting. The category
of lisse étale ℓ-adic sheaves over S will be denoted by Etℓ(S), whereas VHS(S) will
denote the category of polarizable (semisimple) variations of Hodge structure over
San.

If K is a subgroup of a group G, and g ∈ G, we will denote Kg := K∩gKg−1. If
G is an algebraic group over Q, and F a characteristic zero field, then RepGF will
denote the category of algebraic representations of GF in finite-dimensional vector
spaces over F .

2. Review of constructible motives and relative Chow motives

2.1. Constructible motives over a base. For each base scheme S, we consider
the triangulated categories DMc(S,Q) of constructible motives over S, with ra-
tional coefficients. Various models for these categories exist: the reader can keep
in mind the ones provided by constructible Beilinson motives ([7, Def. 15.1.1]) or
equivalently ([7, Thm. 16.2.22]) by the compact objects in the P1-stable A1-derived
étale category.

These categories are pseudo-abelian and symmetric monoidal, with tensor prod-
uct denoted by ⊗ and unit given by the constant motive 1S over S. They satisfy the
six functor formalism as defined in [7, A.5.1]. In particular, one has cohomological
motives over S: given any morphism f : X → S, we write:

hS(X) := f∗(1X).

The motive hS(P
1
S) is canonically a direct sum of 1S and of a ⊗-invertible object

LS called Lefschetz motive. The latter is also denoted by 1S(−1) and we call i-th
Tate twist the operation of tensoring a motive M by an integer power 1S(−i) :=
1S(−1)⊗i, with resulting object denoted by M(i).

Whenever the base S is clear from the context, we will drop the subscript S and
write h(X), L, 1(i).
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2.2. Chow motives over a base. By [13, Thm. 3.3, Thm. 3.8 (i)-(ii)], the
category DMc(S) is endowed with a canonical weight structure (in the sense of [3,
Def. 1.1.1]), called the motivic weight structure, well-behaved with respect to the
six functors, whose heart, called the category CHM(S) of Chow motives over S,
is generated (in the pseudo-abelian sense) by the motives hS(X)(p), with X → S
proper with regular source, and p ∈ Z. By the main theorem of [11], CHM(S) is
canonically equivalent to the category of relative Chow motives introduced by Corti
and Hanamura in [8], thus justifying its name.

When S is regular, we can in particular consider the full subcategory

CHMs(S) →֒ CHM(S)

of smooth Chow motives over S, generated by the hS(X)(p) as above but with
X → S in addition smooth. It is the same category defined in [10, 1.6]. Spaces
of morphisms between motives hS(X), hS(Y ) in CHMs(S), with X connected of
relative dimension d over S, verify then

(2.1) HomDMc(S)(hS(X), hS(Y )) ≃ CHd(X ×S Y )

(compatibly with composition). For f : X → Y a morphism of smooth projective
schemes over S, the corresponding morphism f∗ : hS(Y ) → hS(X) in DMc(S) is
given, under (2.1), by tΓf .

2.3. Duality for smooth Chow motives. Let S be regular. The category
CHMs(S) is a linear, pseudo-abelian, rigid symmetric monoidal category, and we
will denote by M∨ the dual of an object M in CHMs(S). By definition, there are
evaluation and coevaluation morphisms

ǫM : M ⊗M∨ → 1S , ηM : 1S →M∨ ⊗M

such that

(ǫM ⊗ idM ) ◦ (idM ⊗ηM ) = idM , (idM∨ ⊗ǫM ) ◦ (ηM ⊗ idM∨) = idM∨

Then, the adjunction isomorphism

(2.2) adj : HomCHMs(S)(A⊗B,C) ≃ HomCHMs(S)(B,A∨ ⊗ C)

is defined by sending f : A⊗B → C to

B −−−−−→
ηA⊗idB

A∨ ⊗A⊗B −−−−−→
idA∨ ⊗f

A∨ ⊗ C

with inverse adj−1 sending g : B → A∨ ⊗ C to

A⊗B −−−−→
idA ⊗g

A⊗A∨ ⊗ C −−−−−→
ǫA⊗idC

C

Moreover, given f : A → B in CHMs(S), the dual map f∨ : B∨ → A∨ is defined
as the composition

B∨ −−−−−−→
ηA⊗idB∨

A∨ ⊗A⊗B∨ −−−−−−−−−−→
idA∨ ⊗f⊗idB∨

A∨ ⊗B ⊗B∨ −−−−−−→
idA∨⊗ǫB

A∨

An useful reference for the above material is [2, 6.1]).
Then, one checks that the previous definitions imply the following formulae.

Lemma 2.1. Let A,B,C,D be objects in C := CHMs(S).
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(1) For any λ ∈ HomC(A⊗ B,C) and µ ∈ HomC(C,D), we have

adj(µ ◦ λ) = (idA∨ ⊗µ) ◦ adj(λ)

(2) For any λ ∈ HomC(A,B) and µ ∈ HomC(B ⊗ C,D), we have

adj(µ ◦ (λ⊗ idC)) = (λ∨ ⊗ idD) ◦ adj(µ)

(3) For any λ ∈ HomC(A,B) and µ ∈ HomC(B,C ⊗D), we have

adj−1(µ ◦ λ) = adj−1(µ) ◦ (idC∨ ⊗λ)

(4) For any λ ∈ HomC(A,B ⊗D) and µ ∈ HomC(B,C), we have

adj−1((µ⊗ idD) ◦ λ) = adj−1(λ) ◦ (µ∨ ⊗ idA)

2.4. Coefficients. The construction of DMc(S) can be done taking an arbitrary
Q-algebra F as ring of coefficients instead of Q ([7, 14.2.20]), yielding triangulated,
F -linear categories DMc(S)F , such that the canonical functor DMc(S) ⊗Q F →
DMc(S)F is fully faithful, and satisfying the F -linear analogues of the properties of
DMc(S). In particular, such categories are again pseudo-Abelian ([13, Sect. 2.10]).
The same then holds for the full subcategories CHM(S)F and CHMs(S)F , defined
in the same way as in the case F = Q. All the properties stated in Subsection 2.3
hold, mutatis mutandis, in CHMs(S)F .

2.5. Realizations. Given our assumptions on base schemes, we have at our dis-
posal the following triangulated realization functors, commuting with the six func-
tors:

• for each complex embedding σ of the base field E, the Betti realization:

ρB : DMc(S,Q)→ Db
c(S

an,Q)

whose target is the constructible derived category of rational sheaves over
the analytic site of San = Sσ(C) (see [5, end of Sec. 1] for a quick review
of the definition of this functor);
• for each prime ℓ, the ℓ-adic realization:

ρℓ : DMc(S,Q)→ Db
c(Sét,Qℓ)

whose target is the constructible derived category of Ekedahl’s étale Qℓ-
sheaves (see [6, 7.2.24]).

Actually, we will always consider the cohomological versions of these functors, i.e.
their composition with the functor “direct sum of cohomology objects”

Db
c(C)→ C

K 7→ Hi(K)

For a regular base S, and ρ equal to any one of the above two functors, the restriction
of ρ to the full subcategory CHMs(S) admits a factorization, denoted in the same
way, through the fully faithful embedding of a certain abelian subcategory A :

• for ρ = ρB, one takes A equal to the category of Q-local systems over the
analytic site of San ;
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• for ρ = ρℓ, one takes A equal to the category Etℓ(S).

Moreover, ρB has a factorization ρH , called the Hodge realization, through the
forgetful functor from VHS(S) towards Q-local systems.

When speaking of realizations, we will mean any one of the above functors (the
cohomological ones with triangulated source, or, if the context permits, the above-
described factorizations of their restrictions to smooth Chow motives).

For any Q-algebra F of coefficients, there are F -linear analogues of all these
functors, between the F -linear versions of the relevant categories.

3. Motives of abelian schemes

In this section, A → S will denote an abelian scheme over a base scheme S, of
relative dimension d. We will write End(A) for its algebra of endomorphisms (as an
abelian scheme), tensored with Q, and n for the endomorphism of multiplication
by an integer n.

In the complex-analytic setting, the i-th cohomology sheaf Hi(A) is endowed
with the structure of a polarizable variation of Hodge structure over San, of pure
weight i. Then, recall the following.

Proposition 3.1. ([9, 4.4.3]) Fix an embedding E →֒ C. The functor H1 induces
an (anti-)equivalence of categories
{

abelian schemes over SC

modulo isogeny

}

≃

{

polarizable variations of Q-Hodge structure
over San of type (1, 0), (0, 1)

}

We will need the following facts about motives of abelian schemes.

Theorem 3.2. ([10, Thm. 3.1, Cor. 3.2])

(1) For each i ∈ {0, · · · , 2d} there exist canonical idempotents piA ∈ CHd(A×S A)
(called the Chow-Künneth projectors) uniquely characterized by the equation

(3.1) tΓn ◦ p
i
A = nipiA = piA ◦

tΓn

in CHd(A ×S A). We call i-th Chow-Künneth component of h(A) (or of A) the
direct factor of h(A) in CHMs(S) determined by piA, and we denote it by hi(A).
(2) In CHMs(S), we have an isomorphism1

(3.2) h(A) ≃
2d
⊕

i=0

hi(A)

(3) If ρ is either the Betti or the ℓ-adic realization, we have, for each i ∈ {0, . . . , 2d}

(3.3) ρ(hi(A)) = Hi(A).

1Strictly speaking, the isomorphism is correct as given only when working with the category
CHMs(S) as defined in [10], or as a full subcategory of the category CHM(S) as defined in [8].
Under the fully faithful embedding of the latter category into DMc(S) as the heart of the motivic
weight structure, the formula reads instead

h(A) ≃
2d⊕

i=0

hi(A)[−i]
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Remark 3.3. (1) The Chow-Künneth projectors piA are such that, for any i, the
equation

tpiA = p2d−i
A

holds ([10, Remark 3, page 218]). See [16, proof of Thm. 3.1.1] for a proof. This
implies that for all 0 ≤ i ≤ 2d, there exists a canonical Poincaré duality isomorphism

(3.4) h2d−i
S (A)∨ = hi

S(A)(d)

(2) For any homomorphism f : A→ B of abelian schemes over S, we have
tΓf ◦ p

i
B = piA ◦

tΓf ,

so that any such f induces a map

f∗ : hi(B)→ hi(A)

for all i ([10, Prop. 3.3]).
(3) The previous two points imply that for any isogeny f : A → B of abelian
schemes over S, we have

Γf ◦ p
i
A = piB ◦ Γf ,

so that any such f induces a map

f∗ : hi(A)→ hi(B)

For the following definition, note that for any motive M , for all n, the symmetric
group Sn acts on M⊗n. We denote by Symn M the image of the projector

(3.5) π :=
∑

σ∈Sn

σ

on M⊗n.

Theorem 3.4. [16, Thm. 3.3.1], [15, p. 85] Let A → S be an abelian scheme of
relative dimension d.

(1) For all 0 ≤ i ≤ 2d, there exists a canonical isomorphism

(3.6) Symi h1(A) ≃ hi(A)

(2) Any polarization of A induces a Lefschetz isomorphism

hi(A) ≃ h2d−i(A)(d− i)

Corollary 3.5. Combining point (2) above with the isomorphism (3.4), any polar-
ization of A induces an isomorphism

(3.7) I : h1(A) ≃ h1(A)∨(−1)

By adjunction ( (2.2)), the isomorphism I induces a map

(3.8) p : h1(A)⊗ h1(A)→ L

and the isomorphism I−1 induces a map

(3.9) ι : L→ h1(A)⊗ h1(A)
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Remark 3.6. The realizations of the isomorphisms (3.6) coincide indeed, for each
i, with the classical isomorphisms

ΛiH1(A) ≃ Hi(A)

The fact that symmetric powers of h1(A) realize to alternating powers of H1(A) is
a consequence of the definition of the symmetry constraint of the tensor structure
on motives, see [1, Rem. 2.5] for a discussion.

Proposition 3.7. [14, Prop. 2.2.1] The functor h1 (on the category of abelian
schemes over S) induces an isomorphism of Q-algebras

(3.10) End(A)op ≃ EndCHMs(S)(h
1(A))

4. PEL Shimura varieties and the motivic canonical construction

In this section, we keep the notations concerning abelian schemes of the previous
section. We will denote by F an arbitrary number field.

4.1. Rational PEL data and PEL type Shimura varieties. A rational PEL
datum is a tuple (V,B, ∗, 〈·, ·〉, h0) where

- B is a finite dimensional semisimple Q-algebra with positive involution ∗
- V is a finite dimensional Q-vector space on which B acts
- 〈·, ·〉 is an alternating pairing on V
- h0 is a R-algebra homomorphism C→ EndBR

(VR)
These data are required to satisfy a series of conditions, which we will not recall

here ; we refer the reader to [17, 5.1] for complete definitions and for more details
on the facts that we are going to state.

Definition 4.1. Let (V,B, ∗, 〈·, ·〉) be a rational PEL datum.

(1) We define the group G underlying (or associated with) (V,B, ∗, 〈·, ·〉) as the
(reductive) Q-algebraic group of automorphisms of V commuting with B and pre-
serving the pairing 〈·, ·〉 up to a rational scalar.
(2) If G is associated with (V,B, ∗, 〈·, ·〉), we denote by Q(1) the 1-dimensional
representation of G (called Tate twist) on which G acts by the character g 7→ gg∗.
For any representation W of G, for any positive integer n, we denote W (n) :=
W ⊗Q(1)⊗n, W (−n) := W ⊗ (Q(1)∨)⊗n.

Remark 4.2. If G is the group associated to a rational PEL datum (V,B, ∗, 〈·, ·〉),
the pairing 〈·, ·〉 induces a morphism of G-representations

(4.1) V ⊗ V → Q(1)

and an isomorphism

(4.2) V ∨ ≃ V (−1).

We put X := G(R) · h0, and we will suppose from now on that (G,X) is a
Shimura datum. It is then called a PEL-type Shimura datum. In this case, for any
compact open subgroup K ⊂ G(Af ), the coset space

G(Q)\X ×G(Af )/K

coincides with the C-points of a quasi-projective algebraic variety SK , called Shimura
variety (of PEL type) associated with G and of level K, canonically defined over a
number field E (called its reflex field).



THE MOTIVIC HECKE ALGEBRA FOR PEL SHIMURA VARIETIES 11

Convention 1. For the rest of the paper, whenever we talk of a Shimura variety
SK , we will implicitly suppose that K is small enough, so that SK is smooth.

The varieties SK can be identified with (a disjoint union of connected components
of) moduli spaces of abelian varieties A equipped, in particular, with a polarization
of a specific type induced by (4.2), with an injection B →֒ End(A), and with
a suitable level structure (the terminology PEL comes in fact from polarization,
endomorphisms, level). As a consequence, there exist universal abelian schemes
AK → SK of relative dimension d = 1

2 dimQ V , equipped with a polarization and
with an injection of Q-algebras B →֒ End(AK).

4.2. The canonical construction of motivic sheaves on PEL Shimura va-

rieties. Following the notations and conventions of the previous subsection, let
(G,X) be a PEL Shimura datum, with underlying rational PEL datum

(V,B, ∗, 〈·, ·〉, h0)

and associated Shimura varieties SK .
The connected components of X are all homeomorphic to each other and con-

tractible. They coincide with the universal cover of each connected component
San,+
K of San

K . Under our assumptions, any such San,+
K has fundamental group

isomorphic to G(Q) ∩ gKg−1 for a suitable g ∈ G(Af ). This provides, for any rep-
resentation V of GF , a local system µK(V ) of F -vector spaces on San

K , functorially
in V . The total space of the vector bundle associated with µK(V ) is given by

(4.3) G(Q)\V (R)×X ×G(Af )/K

with the obvious left action of G(Q) on V (R) defined by the representation V .
By the very definition of a Shimura datum, this construction gives rise to the

following.

Definition 4.3. The Hodge canonical construction functor is the exact tensor
functor

(4.4) µK
H : Rep(GF )→ VHSF (SK).

naturally enriching µK (cfr. [19, 1.18]).

An analogous construction can be carried out in the étale setting:

Definition 4.4. The ℓ-adic canonical construction functor is the natural functor
(cfr. [20, 4.1]

µK
ℓ : Rep(GF )→ Etℓ,F (SK)

Remark 4.5. (1) By the construction of the universal abelian scheme AK over
the PEL type Shimura variety SK , each of µK

H and µK
ℓ sends (in the appropriate

category)
V ∨ 7→ H1(AK)

(2) Applying µK
H to the pairing (4.1), we get a polarization (in the sense of varia-

tions of Hodge structure on San
K )

(4.5) 〈·, ·〉 : H1(AK)∨ ×H1(AK)∨ → Q(1)

We now pass to define the algebra of relative cycles that will play a vital role in
what follows.
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Definition 4.6. [1, Def. 5.2] Let d be the relative dimension of the universal
abelian scheme AK over SK . For each positive integer i, the F -algebra Bi,F is
defined2 as the sub-F -algebra

Bi,F →֒ EndCHM(SK)F ((h
1(AK))⊗i)

generated by the following:

• the permutation group Si,
• the ring Bop

F ⊗ Id⊗i−1
h1(AK) (seen as a subalgebra of EndCHM(SK)F ((h

1(AK))⊗i

through Proposition 3.7),

• if i ≥ 2, the morphism P ⊗ Id
⊗(i−2)
h1(AK), where P is defined, using the mor-

phisms ι and p associated in (3.9) and (3.8) with the given polarization on
AK , as the projector

1

2d
ι ◦ p ∈ EndCHM(SK)F (h

1(AK)⊗ h1(AK))

Definition 4.7. [1, 8.1] Let AK be as in the previous definition, and let i, r be
positive integers. Use the identifications

hi(Ar
K) = Symi h1(Ar

K)

h1(Ar
K) = h1(AK)⊕r

and
(h1(AK)⊕r)⊗i = (h1(AK)⊗i)⊕ri

to see the algebra B⊕ri

i,F as a subalgebra of EndCHMs(SK)((h
1(Ar

K))⊗i). Using the

projector π ∈ EndCHMs(SK)((h
1(Ar

K))⊗i) of (3.5) (for the object M = h1(Ar
K)), we

define the sub-algebra Bi,r,F of B⊕ri

i,F as

Bi,r,F := π ◦ B⊕ri

i,F ◦ π

The algebra Bi,F is the key for the following fundamental theorem, allowing one
to lift the canonical construction functors to the motivic setting.

Theorem 4.8. ([1, Thms. 8.5-8.6] There exists a F -linear monoidal3 functor

(4.6) µ̃ : Rep(GF )→ CHMs(SK)F

called the motivic canonical construction, commuting with Tate twists and sending
V to h1(A)(1), such that, if ρ is the Hodge, resp. étale realization, then ρ ◦ µ̃ is
isomorphic to µK

H , resp. µK
ℓ .

It induces isomorphisms of F -algebras

EndRep(GF )((V
∨)⊗i) ≃ Bi,F

and
EndRep(GF )((Λ

i(V ∨))⊕r) ≃ Bi,r,F

2Notice that we are adapting the original definition, given for general abelian schemes, to the
more restricted context of loc. cit., Section 8.3.

3It is not a tensor functor since it is not symmetric, because of the definition of the symmetry

constraint on motives, cfr. Remark 3.6.
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Remark 4.9. For every positive integer r, let Ar
K → SK be the r-fold fibred

product of AK with itself over SK . Observe that since the group G underlies a
PEL Shimura datum, it is isomorphic over R to a product of classical groups ([17,
pag. 51]); hence, the direct sum V ⊕ V ∨ of the standard representation V with
its dual generates the Tannakian category Rep(G), by taking tensor products and
direct summands. As a consequence, Theorem 4.8 implies that when F = Q, every
object in the essential image of µ̃ is isomorphic (using the isomorphism (3.7) when
necessary) to a finite direct sum

⊕

j

Mj, where each Mj is a direct factor of a

Tate twist of a Chow motive of the form h(A
rj
K ), for suitable rj ’s. An analogous

statement holds for more general coefficients F .

5. The Hecke algebra

Keep the notations and the conventions of the previous section. In particular,
we fix a Shimura variety SK of PEL-type, with underlying group G and associated
PEL datum (V,B, ∗, 〈·, ·〉, h0). In this section, which is the heart of the paper, we
are going to construct the motivic Hecke algebra HM (G,K) lifting the classical,
cohomological Hecke algebra H(G,K) acting on H•(SK , V ). In the first subsection
we will review the latter algebra; in the second subsection, we will switch to the
motivic setting.

The construction starts by considering, for any given g ∈ G(Af ), the diagram of
finite, étale morphisms

SKg

[·1]

||③③
③③
③③
③③ [·g]

""❉
❉❉

❉❉
❉❉

❉

SK SK

defined as follows. For every g ∈ G(Af ), there are holomorphic, finite maps (cfr.
[19, 3.4])

[·g] : San
Kg → San

K

G(Q)(x, h)Kg 7→ G(Q)(x, hg)K

Then (cfr. [20, (3.4)]), these maps algebraize and give rise to maps

(5.1) [·g] : SKg → SK

which are étale coverings if K is small enough (which we will always suppose).

5.1. The cohomological Hecke algebra. For the facts recalled in this section,
we refer the reader to [12, 5.2 and 15.2-5].

Denote by µK either the Hodge or the ℓ-adic canonical construction (Definitions
4.3, 4.4). Fix V ∈ Rep(GF ). For any g ∈ G(Af ), there are canonical isomorphisms
(in the appropriate categories)

(5.2) [·1]∗µK(V )
θ-1
1
≃ //

θ

22µKg (V )
θg
≃ // [·g]∗µK(V )
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In the analytic case, the isomorphism θg is given on the underlying total spaces
(cfr. Eq. (4.3)) by

µKg(V )→ [·g]∗µK(V ) = µK(V )×SK ,[·g] SK,g

[v, x, h] 7→ ([v, x, hg], [x, h])(5.3)

where the symbols [·, ·, ·] or [·, ·] denote the appropriate equivalence classes.
We get isomorphisms

θ : H•(SKg
, [·1]∗µK(V )) ≃ H•(SKg

, [·g]∗µK(V )).

Moreover, we have canonical adjunction morphisms

[·1]∗ : H•(SK , µK(V ))→ H•(SK , [·1]∗[·1]
∗µK(V )) ≃ H•(SKg

, [·1]∗µK(V ))

and, using that [·g] is finite,

[·g]∗ : H•(SKg
, [·g]∗µK(V )) ≃ H•(SK , [·g]∗[·g]

∗µK(V ))→ H•(SK , µK(V ))

The following compatibility between the isomorphisms θg and the polarization com-
ing from the PEL datum is then immediate from the definitions.

Lemma 5.1. Let V be the standard representation of G. For g ∈ G(Af ), denote
by 〈·, ·〉g the pairing on

[·g]∗µK
H(V ) = [·g]∗H1(AK)∨

obtained by functoriality from the pairing of (4.5) on µK
H(V ) = H1(AK)∨. Then,

for any g,
〈·, ·〉 = 〈θg(·), θg(·)〉g

as pairings on µ
Kg

H (V ) = H1(AKg
)∨.

Definition 5.2. The Hecke operator TK,g ∈ EndH•(SK , µK(V )) associated to
g ∈ G(Af ) is defined by

(5.4) TK,g := [·g]∗ ◦ θ ◦ [·1]
∗.

We denote by C∞c (G,K)F the Hecke algebra of compactly supported, smooth
F -valued functions on G(Af ) which are bi-invariant under K, with product given
by convolution. It is generated by characteristic functions 1KgK with g ∈ G(Af ).
Definition 5.2 provides us with a morphism of F -algebras

C∞c (G,K)F → EndH•(SK , µK(V ))

1KgK 7→ TK,g

(5.5)

Definition 5.3. The cohomological Hecke algebra (associated to V ) is the F -
subalgebra4

H(G,K) →֒ EndH•(SK , µK(V ))

defined as the image of the morphism (5.5).

Remark 5.4.

4The existence of the comparison isomorphism (after extending scalars appropriately) between
Betti and étale ℓ-adic cohomology, and the compatibility of the above-defined θ, [·]∗ and [·g]∗
with the comparison isomorphism, imply that the definition, up to canonical isomorphism, is
independent of the cohomology theory used.
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An Hecke algebra action on H•
c (S, µ

K(V )) can be defined in an analogous way, so
that the canonical map

H•
c (S, µ

K(V ))→ H•(S, µK(V ))

is equivariant with respect with the actions. Hence, we get an Hecke algebra action
on µK(V )-valued interior cohomology, i.e. on

(5.6) H•
! (SK , µ(V )) := Im(H•

c (SK , µ(V ))→ H•(SK , µ(V )))

5.2. The motivic Hecke algebra. Fix an element g ∈ G(Af ). There is a compact
open subgroup W of V (Af ) such that the complex points of the universal abelian
scheme AK → SK over SK can be written as

AK(C) = V (Q)⋊G(Q)\V (R)×X × V (Af )⋊G(Af )/W ⋊K

where the semidirect product is defined by the standard representation of G on
V . Analogously, seeing g as an element of V (Af ) ⋊ G(Af ) and denoting Wg :=
W ∩ gWg−1, the complex points of the universal abelian scheme AKg

over SKg
are

given by

AKg
(C) = V (Q)⋊G(Q)\V (R)×X × V (Af )⋊G(Af )/Wg ⋊Kg

Now define the abelian schemes AK,1 and AK,g over SKg
as the fiber products of

AK and SKg
over SK along the morphisms, respectively, [·1] and [·g]. These objects

and morphisms fit in the following diagram, where all subdiagrams commute and
the two lower subdiagrams are cartesian:

AKg

f1

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

��

fg

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

AK,1
//

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

SKg

[·1]

��
[·g]

		

AK,g
oo

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

SK

AK

OO

The morphisms f1, fg are isogenies; each fg is concretely described on C-points as

AKg
(C)→ AK(C)×SK(C),[·g] SKg

(C)

[(v, x), (w, h)] 7→ ([(v, x), (wg, hg)], [(x, h)])(5.7)

where square brackets denote the appropriate equivalence classes.
Let d denote the relative dimension of the abelian schemes under consideration.

We define the morphism

(5.8) φg ∈ HomDMc(SKg )
(h(AK,1), h(AK,g)) = CHd(AK,1 ×SKg

AK,g)

(cfr. (2.1)) as the (class of the) correspondence Γfg ◦
tΓf1 . The Chow-Künneth

components are contravariantly functorial with respect to morphisms of abelian
schemes, and functorial with respect to isogenies (Rem. 3.3.(2),(3)). Hence, we get
from (5.8) a morphism

(5.9) φ1
g : h1(AK,1)→ h1(AK,g),
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Lemma 5.5. There exist canonical isomorphisms

[·1]∗(h1(AK)⊗i) ≃ h1(AK,1)
⊗i

and
h1(AK,g)

⊗i ≃ [·g]∗(h1(AK)⊗i)

Proof. By proper base change, we have canonical isomorphisms

(5.10) [·1]∗h(AK) ≃ h(AK,1)

and

(5.11) h(AK,g) ≃ [·g]∗h(AK)

Since the characterization (3.1) of Chow-Künneth projectors shows immediately
that the Chow-Künneth components are compatible with pullback, and since the
functors [·1]∗, [·g]∗ are monoidal, these isomorphisms induce the isomorphisms in
the statement. �

Definition 5.6. For any positive integer i, we define the morphism

(5.12) φ1,i
g : [·1]∗(h1(AK)⊗i)→ [·g]∗(h1(AK)⊗i).

as the one obtained from the morphism induced by (5.9)

(5.13) (φ1
g)

⊗i : h1(AK,1)
⊗i → h1(AK,g)

⊗i

by composing with the isomorphisms of Lemma 5.5.

Proposition 5.7. Let AK → SK be the universal abelian scheme over a PEL
Shimura variety with underlying group G. For any idempotent element e of the al-
gebra Bi,F of Definition 4.6, call N e the corresponding direct factor in CHMs(SK)F

N e →֒ h1(AK)⊗i

Then for any g ∈ G(Af ), the morphism φ1,i
g of Definition 5.6 induces a morphism

φe
g : [·1]∗N e → [·g]∗N e

Proof. Let g ∈ G(Af ). By functoriality, the algebra Bi,F acts on both [·1]∗h1(AK)⊗i

and [·g]∗h1(AK)⊗i. Hence, through the isomorphisms of Lemma 5.5, we can see Bi,F
as an algebra of endomorphisms of both h1(AK,1)

⊗i and h1(AK,g)
⊗i. With these

conventions, the desired statement will be proven once we will show the following
equality of morphisms in CHMs(SKg

)

(φ1
g)

⊗i ◦ e = e ◦ (φ1
g)

⊗i

with (φ1
g)

⊗i being the morphism

(φ1
g)

⊗i : h1(AK,1)
⊗i → h1(AK,g)

⊗i

of Eq. (5.13). To see this, it will be enough to show that for any β in the explicit
set of generators of Bi,F provided by Def. 4.6, the commutation equality

(φ1
g)

⊗i ◦ β = β ◦ (φ1
g)

⊗i

holds.
Commutativity of (φ1

g)
⊗i with elements β of the symmetric group Si is clear.

Hence, let us fix b ∈ B and turn our attention to commutativity with

β = b⊗ Id⊗i−1
h1(AK,�)
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with � being either equal to 1 or to g. Let us simultaneously see the algebra B
as an algebra of endomorphisms of each of the three objects h1(AK,1), h

1(AK,g)
and h1(AKg

). With this convention, given the definition of φg in (5.8), the desired
commutativity relation will follow once we prove that b commutes with tΓf1 and
Γf2 . The morphisms f1 and fg being isogenies, we have that b commutes with tΓf1 ,
tΓfg if and only if it commutes with Γf1 , Γfg . But the validity of the latter assertion
is immediate from the analytical description (5.7) of the morphisms f1, fg.

Finally, let again � be either equal to 1 or to g and let us show commutativity of
(φ1

g)
⊗i with β = P ⊗ Id⊗i−2

h1(AK,�) and thus conclude the proof. We will show that the

projector P (as defined in Def. 4.6) commutes with (φ1
g)

⊗2. By functoriality and
by the isomorphisms of Lemma 5.5, the isomorphism (3.7) induces isomorphisms

I : h1(AK,�) ≃ h1(AK,�)
∨(−1)

and hence, by adjunction, we get morphisms

p : h1(AK,�)⊗ h1(AK,�)→ L

and
ι : L→ h1(AK,�)⊗ h1(AK,�)

analogously to (3.8), (3.9). With these slightly abusive notations, we have to show
the identity

(5.14) ι ◦ p ◦ (φ1
g ⊗ φ1

g) = (φ1
g ⊗ φ1

g) ◦ ι ◦ p

To this end, we first claim that the diagram

h1(AK,1)

φ1
g

��

I

≃
// h1(AK,1)

∨(−1)

h1(AK,g)
I

≃
// h1(AK,g)

∨(−1)

(φ1
g)

∨(−1)

OO
(5.15)

commutes. Granting this for a moment, we have that, by definition of ι and p, and
by remembering the isomorphism adj from (2.2),

ι ◦ p ◦ (φ1
g ⊗ φ1

g) =

= adj(I−1) ◦ adj−1(I) ◦ φ1
g ⊗ φ1

g =

(by commutativity of (5.15))

= adj(φ1
g ◦ I

−1 ◦ (φ1
g)

∨(−1)) ◦ adj−1(I) ◦ φ1
g ⊗ φ1

g =

(by Lemma 2.1 in its instance (1), choosing µ = φ1
g and λ = I−1 ◦ (φ1

g)
∨(−1))

= (Idh1(AK,g)⊗φ
1
g) ◦ adj(I

−1 ◦ (φ1
x)

∨(−1)) ◦ adj−1(I) ◦ φ1
g ⊗ φ1

g =

(by Lemma 2.1 in its instance (2), choosing µ = I−1 and λ = (φ1
g)

∨)

= (Idh1(AK,g)⊗φ
1
g) ◦ (φ

1
g ⊗ Idh1(AK,1)) ◦ adj(I

−1) ◦ adj−1(I) ◦ φ1
g ⊗ φ1

g =

(by factorizing φ1
g ⊗ φ1

g = (Idh1(AK,g)⊗φ
1
g)) ◦ (φ

1
g ⊗ Idh1(AK,1))

= φ1
g ⊗ φ1

g ◦ ι ◦ adj
−1(I) ◦ (Idh1(AK,g)⊗φ

1
g) ◦ (φ

1
g ⊗ Idh1(AK,1)) =

(by Lemma 2.1 in its instance (3), choosing µ = I and λ = Idh1(AK,g)⊗φ
1
g)
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= φ1
g ⊗ φ1

g ◦ ι ◦ adj
−1(I ◦ φ1

g) ◦ (φ
1
g ⊗ Idh1(AK,1)) =

(by Lemma 2.1 in its instance (4), choosing µ = (φ1
g)

∨ and λ = I ◦ φ1
g)

= φ1
g ⊗ φ1

g ◦ ι ◦ adj
−1((φ1

g)
∨(−1) ◦ I ◦ φ1

g) =

(by commutativity of (5.15))

= φ1
g ⊗ φ1

g ◦ ι ◦ adj
−1(I) =

= (φ1
g ⊗ φ1

g) ◦ ι ◦ p.

So, identity (5.14) is proven, and it remains only to justify the commutativity
of (5.15). This can be checked by applying a pullback and working in the category
of smooth Chow motives over SKg,C, where, as a consequence of the isomorphism
(3.10) and of the equivalence of categories of Prop. 3.1, we can equivalently show
the commutativity of the corresponding diagram in the category of polarizable
variations of Q-Hodge structure on SKx

(C), obtained by realization. It is clear by
the analytical description (5.7) of f1, fg that under the base change isomorphisms

[·1]∗H1(AK) ≃ H1(AK,1), [·g]∗H1(AK) ≃ H1(AK,g)

the Hodge realization ρ = ρH sends the morphisms of motives tf1, fg to the iso-

morphisms of sheaves θ−1
1 , resp. θg defined analytically in Eq. (5.3). With these

identifications being understood, our task amounts then to showing the commuta-
tivity of the following diagrams of variations of Hodge structure on SKg

(C):

H1(AK,1)

θ
−1

1

��

ρ(I)

≃
// H1(AK,1)

∨(−1)

H1(AKg
)

ρ(I)

≃
// H1(AKg

)∨(−1)

(θ−1

1
)∨(−1)

OO
H1(AKg

)

θg

��

ρ(I)

≃
// H1(AKg

)∨(−1)

H1(AK,g)
ρ(I)

≃
// H1(AK,g)

∨(−1)

(θg)
∨(−1)

OO

Since ρ(I) corresponds under adjunction to (the base change of) the pairing 〈·, ·〉
of (4.5), the desired commutativity follows from Lemma 5.1. �

Corollary 5.8. Let V be any object in RepF (G) and consider the object µ̃(V ) in
CHMs(SK)F , where µ̃ is the motivic canonical construction functor of Theorem 4.

Then, for any g ∈ G(Af ), there exists a canonical morphism in CHMs(SKg
)F

φg : [·1]∗µ̃(V )→ [·g]∗µ̃(V )

whose realizations coincide with the morphism θ of Eq. (5.2).

Proof. By Remark 4.9, the object µ̃(V ) is a direct sum of Tate twists of direct factors
of motives h(Ar

K). By the Chow-Künneth decomposition (3.2) of the abelian scheme
Ar

K , we may suppose that each such direct factor is cut out by an idempotent in the
subalgebra Bi,r,F of B⊕r

i,F of Definition 4.7 (for a suitable i). For each such idempo-
tent e, Proposition 5.7 provides morphisms φe

g, whose direct sum gives the desired
morphism φg as in the statement (notice that the commutativity of diagram (5.15)
assures the compatibility of φg with the identifications h1(AK) ≃ h1(AK)∨(−1)
being made to get the conclusion of Remark 4.9). The statement about realizations
comes from the assertions on realizations of the morphisms tf1, fg in the last part
of the proof of Proposition 5.7. �

Let g ∈ G(Af ) and V ∈ RepF (G). We have adjunction morphisms in CHMs(SK)F

a1 : µ̃(V )→ [·1]∗[·1]
∗µ̃(V ), ag : [·g]∗[·g]∗µ̃(V ) = [·g]![·g]!µ̃(V )→ µ̃(V )
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Let s : SK → Spec(E) denote the structure morphism and apply s∗ to a1 and ag.
Then one gets morphisms in DMc(E)F

(5.16) s∗(a1) : s∗µ̃(V )→ (s◦[·1])∗[·1]
∗µ̃(V ), s∗(ag) : (s◦[·g])∗[·g]

∗µ̃(V )→ s∗µ̃(V )

By applying (s ◦ [·1])∗ = (s ◦ [·g])∗ to the morphism φg of Corollary 5.8, one gets
another morphism in DMc(E)F

(5.17) (s ◦ [·1])∗(φg) : (s ◦ [·1])∗[·1]
∗µ̃(V )→ (s ◦ [·g])∗[·g]

∗µ̃(V )

Definition 5.9. Let V ∈ RepF (G). The Hecke correspondence on s∗µ̃(V ) associ-
ated to g ∈ G(Af ) is the element KgK ∈ EndDMc(E)F (s∗µ̃(V )) defined by

(5.18) KgK := s∗(ag) ◦ (s ◦ [·1])∗(φg) ◦ s∗(a1) : s∗µ̃(V )→ s∗µ̃(V ).

Definition 5.10. The motivic Hecke algebra HM (G,K) is the subalgebra

HM (G,K) →֒ EndDMc(E)F (s∗µ̃(V ))

generated by the correspondences KgK of Definition 5.9.

We are then ready to formulate, and to easily deduce, our main result.

Theorem 5.11. Any one of the realization functors induces an F -algebra epimor-
phism

ρ : HM (G,K) ։ H(G,K)

Proof. It is an immediate consequence of the definitions, of the compatibility of
realizations with the six functors, and of Corollary 5.8. �

Remark 5.12. (1) A motivic Hecke algebra action on s!µ̃(V ) can be defined in
an analogous way, so that the canonical map s!µ̃(V )→ s∗µ̃(V ) is equivariant with
respect to the Hecke actions.
(2) Let s : SK → Spec(E) be any Shimura variety (not necessarily of PEL type)
and let MK be a mixed Shimura variety ([19, Def. 3.1]) equipped with a mor-
phism MK → SK giving to MK the structure of an abelian scheme over SK .
Given any direct factor N of hSK

(MK) in CHM(SK)F , an endomorphism KgK ∈
EndDMc(E)F (s∗N ) is defined in [23, pp. 591-592] for any g ∈ G(Af ), by a formula
formally identical to the one of Definition 5.9, up to replacing our morphism φg by

a morphism φ̃g (the notation is ours) defined in a different way.
Let us explain the difference by looking at the basic case of interest here, i.e. MK

being equal to a power Ar
K of the universal abelian scheme AK over a PEL Shimura

variety SK . There is a morphism φg : [·1]∗h(Ar
K)→ [·g]∗h(Ar

K) defined analogously

to (5.8). Then φ̃g is obtained by pre-composing φg with the inclusion [·1]∗N →֒
[·1]∗h(Ar

K) and post-composing it with the projection [·g]∗h(Ar
K) ։ [·g]∗N . One

could define the motivic Hecke algebra as the one generated by correspondences
KgK defined in this way; suppose one does this, obtaining algebras HM (G,K,N )
for each N . Then the following problem would arise. Choose any realization ρ
and for the sake of this remark, keep, for the cohomological Hecke algebra as well,
the notation H(G,K, ρ(N )) remembering the coefficient system ρ(N ). There is an
idempotent e cutting out N in h(Ar

K), inducing an idempotent E := s∗(e) acting on
the absolute motive s∗h(A

r
K) and on its cohomology. Then, ρ induces an algebra

epimorphism
ρ : HM (G,K,N ) ։ E ◦ H(G,K,H•(Ar

K)) ◦ E
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but there is a priori no reason for the arrow

E ◦ H(G,K,H•(Ar
K)) ◦ E→ H(G,K, ρ(N ))

to even be an algebra homomorphism.

6. The Hecke action on interior motives of PEL Shimura varieties

We keep the setting of the previous section. In particular, s : SK → Spec(E) is a
PEL Shimura variety of underlying group G and for any V ∈ RepF (G), we have the
smooth Chow motive µ̃(V ) over SK of Theorem 4 at our disposal. We will denote
by µ either the Hodge (Def. 4.3) or the ℓ-adic (Def. 4.4) canonical construction
functors on SK .

In [24], Wildeshaus has shown that under certain conditions, it is possible to
construct a functorial factorization of the canonical morphism s!µ̃(V )→ s∗µ̃(V ) in
DMc(E)F

Gr0(s∗µ̃(V ))

&&◆◆
◆◆

◆◆
◆◆

◆◆

s!µ̃(V )

88qqqqqqqqqq
// s∗µ̃(V )

in such a way that Gr0(s∗µ̃(V )) is a Chow motive, called interior motive of SK

with values in µ̃(V ). Its name comes from the fact that it realizes to µ(V )-valued
interior cohomology of SK (5.6).

The aim of this final section is twofold. First, we explain that when it exists, the
interior motive carries an action of the motivic Hecke algebra constructed in the
previous section. Second, we briefly review a list of cases in which the existence of
the interior motive is indeed known, so that our main result applies.

Let us start by recalling the principle of construction, by adopting the point
of view of intersection motives. This requires a choice of compactification of SK ,
which we take to be the Baily-Borel compactification S∗

K (see e.g. [20, (3.5)]), a
projective variety over E equipped with morphisms

j : SK →֒ S∗
K ←֓ ∂S∗

K : i

with j the open, dense immersion of SK , and i the closed immersion of the boundary
∂S∗

K .

Definition 6.1. For any objectM ∈ DMc(SK)F , we define ∂M as the constructible
motive

∂M := i∗j∗M ∈ DMc(∂S
∗
K)F

The full subcategory
CHM(SK)F,∂w 6=0,1

of CHM(SK)F is defined as having objects those M ∈ CHM(SK)F such that ∂M
avoids weights 0 and 1, in the sense of the motivic weight structure on DMc(∂S

∗
K)F .

Remark 6.2. (1) By combining [24, Def. 2.4, Rem. 2.6(d)] with [23, Thm. 7.2],
one knows that there exists a functor

j!∗ : CHM(SK)F,∂w 6=0,1 → CHM(S∗
K)F

enjoying in particular the following property. Consider the full subcategory

CHM(SK)abF →֒ CHM(SK)F
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consisting of those relative Chow motives which are the pullback to SK of a motive
of abelian type over S∗

K ([24, Def. 4.1]). Then, the restriction of j!∗ to the intersec-
tion of CHM(SK)F,∂w 6=0,1 with CHM(SK)abF realizes to the intermediate extension
functor defined in the theory of perverse sheaves. We refer to [23, Thm. 7.2] for
the precise formulation of the latter realization statement. Note that by [23, Thm.
8.5], the objects µ̃(V ) belong to CHM(SK)abF for any V in RepF (G).
(2) By the properties of the motivic weight structure, pushforward along proper
morphisms sends weight zero objects to weight zero objects. Hence, if s̄ : S∗

K →
Spec(E) denotes the structure morphism, the functor j!∗ of the previous point
allows us to define a functor

s̄∗ ◦ j!∗ : CHM(SK)F,∂w 6=0,1 → CHM(E)F

We then have the following.

Theorem 6.3. [24, Thms. 3.4 and 3.5, Rmk. 3.13(b)] Let s : SK → Spec(E) be a
PEL Shimura variety of PEL type, of underlying group G. Let V ∈ RepF (G) and
suppose that µ̃F (V ) belongs to the subcategory CHM(SK)F,∂w 6=0,1 of Def. 6.1. Let
s̄ : S∗

K → Spec(E) be the structure morphism from the Baily-Borel compactification
of SK . Then

(1) the Chow motive s̄∗j!µ̃(V ) (see Remark 6.2.(2)) sits in a canonical factorization
in DMc(E)F

s̄∗j!∗µ̃(V )

%%▲▲
▲▲

▲▲
▲▲

▲▲

s!µ̃(V )

99rrrrrrrrrr
// s∗µ̃(V )

and behaves functorially with respect to both objects s!µ̃(V ) and s∗µ̃(V );
(2) there is a canonical isomorphism between µ(V )-valued interior cohomology of
SK (5.6) and µ(V )-valued intersection cohomology of S∗

K . For any realization ρ,
there is a canonical isomorphism

ρ(s̄∗j!µ̃(V )) ≃ H•
! (SK , µ(V ))

Point (2) of the above theorem motivates the following definition.

Definition 6.4. Let s : SK → Spec(E) be a PEL Shimura variety of PEL type,
of underlying group G. Let V ∈ RepF (G) and suppose that µ̃F (V ) belongs to
CHM(SK)∂w 6=0,1. The Chow motive s̄∗j!∗µ̃(V ) over E of Theorem 6.3 is called
interior motive of SK , with values in µ(V ), and denoted by5

Gr0 s∗µ̃(V )

Our final theorem reads then as follows.

Theorem 6.5. Let s : SK → Spec(E) be a PEL Shimura variety, of underlying
group G. Let V ∈ RepF (G) and suppose that µ̃F (V ) belongs to the subcategory
CHM(SK)F,∂w 6=0,1 of Definition 6.1.

5The notation Gr0 refers to the fact that under the weight avoidance assumption at the bound-
ary, the object s̄∗j!∗µ̃(V ) has to be thought, in a sense made precise by the theory of weight struc-
tures, as the “lowest weight-graded quotient” of s∗µ̃(V ). One manifestation of this phenomenon
is the following: under our assumptions, the Hodge realization of s̄∗j!∗µ̃(V ) can be identified as
well with the lowest graded quotient of the Hodge-theoretic weight filtration on H•(SK , µ(V )).
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Then, there is a canonical action of the motivic Hecke algebra HM (G,K) of Def.
5.9 on the interior motive Gr0 s∗µ̃(V ) of Def. 6.4, realizing to the Hecke algebra
action of Remark 5.4 on µ(V )-valued interior cohomology of SK .

Proof. It suffices to combine Theorem 5.11 with Thm. 6.3 above. �

Remark 6.6. (1) Consider the notations of Theorem 6.3. By [23, Thms. 0.1-0.2],
a Chow motive j!∗µ̃(V ) over S∗

K , extending µ̃(V ) and realizing to the intermediate
extension of µ(V ) in the perverse sheaf-theoretic sense, is known to exist for any
V , even without the weight avoidance hypothesis at the boundary, and to be such
that any endomorphism of s∗µ̃(V ) induces an endomorphism of s̄∗j!∗µ̃(V ). This
extension property can be then applied, in particular, to the elements of the motivic
Hecke algebra6 HM (G,K). However, we do not know whether this provides an
algebra action of HM (G,K) on s̄∗j!∗µ̃(V ). The problem comes from the lack of
functoriality of the association

µ̃(V ) 7→ j!∗µ̃(V )

when one does not assume the weight avoidance hypothesis of Theorem 6.5.
(2) [23, Cor. 8.8 (b)] gives conditions under which the problem raised by the
previous point can be solved. According to [23, Rmk. 8.9 (a) and (c)], one may
expect these conditions to be met if V is an irreducible representation of GF .

We want to conclude with a list of cases where the weight assumption of Theo-
rem 6.5 is known to hold. The first tautological situation (but still giving rise to
interesting Hecke-equivariant Chow motives) is when SK is projective, for then the
weight assumption is empty. In order to give the statements for the non-projective
case, choose the field of coefficients F in such a way that the reductive group GF

is split, so that we have the theory of highest weights at our disposal. Denote by
Vλ an irreducible representation of GF of highest weight λ. Let us then write

λV

for the object µ̃(Vλ) of CHM(SK)F . In [24], the following is asked.

Question 1. [24, Question 5.13] Let SK be non-projective. Suppose the highest
weight λ to be regular. Does the Chow motive λV over SK belong to CHM(SK)F,∂w 6=0,1

?

Thanks to the work of Ancona, of the present author, of Clôıtre, and of Wilde-
shaus, the following is known (see [24, Section 5] for details and for the precise
references).

Theorem 6.7. The answer to Question 1 is positive when SK is associated to the
standard PEL Shimura datum having as G one of the following groups7 :

(1) ResF |Q GL2,F , for F a totally real number field (Hilbert modular varieties,
hence modular curves when F = Q);

6In fact, the results of loc. cit. apply in far greater generality: one gets relative Chow motives
j!∗N , enjoying the above properties, for any direct factor N of any motive hSK

(MK) of the
form discussed in Remark 5.12.(2). One then gets Hecke-type endomorphisms KgK of s̄∗j!∗N as
defined in op. cit., pp. 591-592.

7In order to satisfy the rational similitude factor condition in the definition of a rational PEL
datum, one actually considers suitable subgroups of the given G’s, with same derived subgroup
and smaller center.
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(2) ResF+|Q GU(V, J), for F a CM field with maximal totally real subfield F+, V
a 3-dimensional F -vector space V , and J a F -valued hermitian form J on V of
signature (2, 1) at each archimedean place (Picard modular varieties);
(3) ResF |Q GSp4,F , for F a totally real number field (Hilbert-Siegel varieties of
genus two, hence Siegel threefolds when F = Q).

Remark 6.8. In cases (1) and (3) when F 6= Q, and in case (2) when F+ 6= Q,
weaker conditions on λ than regularity are known to be sufficient for the weight
assumption to be satisfied. For example, the notion of corank, controlling the
existence of sections of automorphic bundles on SK , which restrict non-trivially to
strata of ∂S∗

K of a given dimension, arises when characterizing the validity of the
weight assumption in case (3) ([4]). Once again, we refer to [24, Section 5] for a
global discussion.

Corollary 6.9. The hypotheses, and hence the conclusion, of Theorem 6.5 hold
whenever SK is one of the Shimura varieties in Theorem 6.7 and V = Vλ with λ a
weight of G as in Remark 6.8 (for example, a regular weight).

Remark 6.10. Theorem 6.5 was already known when the PEL Shimura variety
is a Hilbert modular variety ([22, Cor. 3.8]), by means of the explicit formulae,
provided in op. cit., for the idempotents cutting out the relevant direct factors λV
from the motive of a suitable power of AK .
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