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q-CHROMATIC POLYNOMIALS

ESME BAJO, MATTHIAS BECK, AND ANDRÉS R. VINDAS-MELÉNDEZ

ABSTRACT. We introduce and study a q-version of the chromatic polynomial of a given graph G =
(V,E), namely,

χλ
G(q,n) := ∑

proper colorings
c :V→[n]

q∑v∈V λvc(v),

where λ ∈ZV is a fixed linear form. Via work of Chapoton (2016) on q-Ehrhart polynomials, χλ
G(q,n)

turns out to be a polynomial in the q-integer [n]q, with coefficients that are rational functions in q.

Additionally, we prove structural results for χλ
G(q,n) and exhibit connections to neighboring concepts,

e.g., chromatic symmetric functions and the arithmetic of order polytopes. We offer a strengthened

version of Stanley’s conjecture that the chromatic symmetric function distinguishes trees, which leads

to an analogue of P-partitions for graphs.

1. INTRODUCTION

The chromatic polynomial of a graph G = (V,E),

χG(n) := #{c : V → [n] : c(v) 6= c(w) if vw ∈ E} ,

where [n] := {1,2, . . . ,n}, is a famous and much-studied enumerative invariant of G. We introduce

and study the following refinement: given λ := (λ1,λ2, . . . ,λ|V |) ∈ ZV , let

χλ
G(q,n) := ∑

proper colorings
c :V→[n]

q∑v∈V λvc(v).

Naturally, χλ
G(1,n) = χG(n). On the other hand, consider Stanley’s chromatic symmetric func-

tion [21]

XG(x1,x2, . . .) := ∑
proper colorings

c:V→Z>0

x
#c−1(1)
1 x

#c−1(2)
2 · · ·

(so that XG(1,1, . . . ,1,0,0, . . . ) = χG(n) ). Its principal evaluation (sometimes referred to as the

principal specialization)

(1) XG(q,q
2, . . . ,qn,0,0, . . .) = ∑

proper colorings
c:V→[n]

q∑v∈V c(v) = χ1
G(q,n)
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is the special case λ = 1 ∈ ZV , i.e., λ is a vector whose entries are all 1. In fact, χ1
G(q,n) was also

the subject of [13]. We think of XG(x1,x2, . . .) and χλ
G(q,n) as (quite) different generalizations of

the chromatic polynomial, which meet in (1) and still generalize χG(n).
Our first result says that χλ

G(q,n) has a polynomial structure whose coefficients are rational func-

tions in q, in the following sense:

Theorem 1. There exists a unique polynomial χ̃λ
G(q,x) ∈Q(q)[x] such that

χ̃λ
G(q, [n]q) = χλ

G(q,n),

where [n]q := 1−qn

1−q
.

We thus call χ̃λ
G(q,x) (and sometimes, by a slight abuse of nomenclature, χλ

G(q,n)) the q-chromatic

polynomial of G with respect to λ . Our main goal is to initiate the study of this polynomial.

Example 1. Consider the path P2 with 2 vertices. The following table shows χ̃λ
G(q,x) and χλ

G(q,n)
for λ = (1,1) and (1,2).

λ χ̃λ
P2
(q,x) χλ

P2
(q,n)

(1,1)
2q2

q+1
x2 +

−2q2

q+1
x q2

((
1−qn

1−q

)2

−

(
1−q2n

1−q2

))

(1,2)
q5 +q4 −2q3

q3 +2q2 +q+1
x3 +

−q5 +2q4 +5q3

q3 +2q2 +q+1
x2 +

−3q3

q2 +q+1
x q3

(
1−qn

1−q

1−q2n

1−q2
−

1−q3n

1−q3

)

Note that the chromatic polynomial χP2
(n) = n2 −n appears for q = 1.

There are several motivations to study χλ
G(q,n) and χ̃λ

G(q,x). Their definition and basic structure

mirror Chapoton’s study of q-Ehrhart polynomials [4] and, in fact, Theorem 1 follows from Chapo-

ton’s work and the interplay of chromatic and order polynomials, as we will show in Section 2

below. On the graph-theoretic side, Stanley famously conjectured that XG(x1,x2, . . .) distinguishes

trees; this conjecture has been checked for trees with ≤ 29 vertices [11], but remains open in gen-

eral. The literature contains several variations of Stanley’s chromatic symmetric function; some

references on those different variations include [1, 8, 10, 16, 17]. We particularly point out recent

work of Crew and Spirkl [6] who introduced a weighted form of the chromatic symmetric function

(and so χλ
G(q,n) is a special evaluation, with the weights given by λ ) and of Loehr and Warring-

ton [14] who conjectured, more strongly, that the principal evaluation (1) distinguishes trees; they

confirmed this conjecture for all trees with ≤ 17 vertices. We offer the following further strengthen-

ing, which we have checked for all trees with ≤ 16 vertices.

Conjecture 1. The leading coefficient of the q-chromatic polynomial χ̃1
G(q,x) distinguishes trees.

Section 3 of this paper contains several further structural results for q-chromatic polynomials:

deletion–contraction musings (Theorems 8 and 9), a combinatorial reciprocity theorem (Theorem

10), and a formula for χ̃λ
G(q,x) in terms of the Möbius function of the flats of the given graph (The-

orem 11). We mostly concentrate on results on the polynomial χ̃λ
G(q,x); there are further structural

results on the enumeration function χλ
G(q,n) that are direct consequences of their counterparts on

the (weighted) chromatic symmetric function side.
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In Section 4 we give several formulas for χ̃1
G(q,x). One of them naturally suggests an analogue

of Stanley’s P-partitions [18], moving from posets to graphs: we introduce and study G-partitions

in Section 5 and show that Conjecture 1 is equivalent to saying that G-partitions distinguish trees.

2. q-EHRHART POLYNOMIALS

Chapoton [4] introduced a weighted generalization of the Ehrhart polynomial of a lattice polytope

P ⊆ Rd (i.e., P is the convex hull of finitely many integer lattice points in Zd). We briefly sketch

this theory and its application to order polytopes, which in turn allows us to exhibit a connection to

q-chromatic polynomials.

Let λ : Zd → Z be a linear form, and define

ehrλ
P(q,n) := ∑

m∈nP∩Zd

qλ(m).

The classical Ehrhart polynomial [7] is the specialization ehrλ
P(1,n). Chapoton proved that there is

a polynomial ẽhr
λ

P(x) ∈Q(q)[x], such that

(2) ẽhr
λ

P([n]q) = ehrλ
P(q,n) .

We refer to ẽhr
λ

P(x) as the q-Ehrhart polynomial with respect to λ . We often denote the linear form

λ as a vector (λ1, . . . ,λd) ∈ Zd, where λ j = λ (e j).

Parallel to the classical case, structural results for ehrλ
P(q,n) follow from studying the q-Ehrhart

series

(3) Ehrλ
P(q,z) := ∑

n≥0

ehrλ
P(q,n)zn.

Chapoton [4] showed that (3) can be written as a rational function whose denominator consists of

factors 1− q jz, where j = λ (v) for a vertex v of P. Furthermore, Chapoton proved the reciprocity

theorem

(4) (−1)dim(P) ẽhr
λ

P(q, [−n]q) = ẽhr
λ

P◦

(
1
q
, [n] 1

q

)
,

where P◦ denotes the (relative) interior of P. The case q = 1 in (4) recovers the classical Ehrhart–

Macdonald reciprocity theorem [2, 15].

Given a poset Π = ([d],�), the order polytope O(Π) is the lattice polytope

O(Π) :=
{
(x1, . . . ,xd) ∈ [0,1]d : xi ≤ x j if i � j

}
.

Order polytopes were introduced by Stanley [20]; they contain much information about a given

poset and have provided important examples in polyhedral geometry.

Since all vertices of O(Π) are 0/1-vectors, Ehrλ
O(Π)(q,z) can be written as a rational function

with factors 1−q jz in the denominator where j is a sum of some of the entries of λ . This yields the

following corollary, which we record for future purposes.

Lemma 2. Let Λ := λ1 +λ2 + · · ·+λd. The coefficients of [Λ]q! ẽhr
λ

O(Π)(x) are polynomials in q.
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Kim and Stanton [12, Corollary 9.7] gave the following (equivalent) formulas for the case when

λ = 1:

Ehr1
O(Π)(q,z) =

∑
σ∈L (Π)

qcomaj(σ)zdes(σ)

(1− z)(1−qz) · · · (1−qdz)

ehr1
O(Π)(q,n) = ∑

σ∈L (Π)

qcomaj(σ)

[
n+d−des(σ)

d

]

q

,(5)

where L (Π) is the set of linear extensions of Π and, writing a given linear extension σ as a permu-

tation of [d], and 1

Des(σ) := { j : σ( j+1)< σ( j)},

des(σ) := |Des(σ)|, and

comaj(σ) := ∑
j∈Des(σ)

(d − j).

See [2, Chapter 6] for details on the interplay of linear extensions of a poset, their descent statistics,

and the arithmetic of order polytopes.

Given a graph G, let A (G) denote the set of acyclic orientations of G; each acyclic orientation ρ
naturally induces a poset, which we denote Πρ . There is a well-known connection (essentially going

back to [19]) between the chromatic polynomial of a given graph G and the Ehrhart polynomials

of the order polytopes of the acyclic orientations of G. In the language of q-chromatic polynomials

and q-Ehrhart polynomials, it reads as follows.

Lemma 3. The q-chromatic polynomial with respect to λ equals

χλ
G(q,n) = ∑

ρ∈A (G)

ehrλ
O(Πρ )◦

(q,n+1) .

Proof. We follow the philosophy of inside-out polytopes [3]. Let d = |V |. We may interpret each

n-coloring of the vertices of G is a lattice point in the (n+ 1)st dilate of the open unit cube (0,1)d

(where the jth coordinate is the color of vertex j). Furthermore, every proper n-coloring of [d] is a

lattice point that is not contained in the graphical hyperplane arrangement

(6) HG :=
{

xi = x j : i j ∈ E
}
.

The regions of (0,1)d \HG are precisely the open order polytopes O(Πρ)
◦ for ρ an acyclic orien-

tation of G. That is, each proper coloring c of G induces an acyclic orientation ρc of G, where the

edge i j is oriented from i to j if c(i)< c( j) and from j to i if c( j)< c(i). Therefore,

χλ
G(q,n) = ∑

proper colorings
c:[d]→[n]

qλ1c(1)+···+λdc(d) = ∑
ρ∈A (G)

∑
c∈(n+1)O(Πρ )◦∩Zd

qλ1c1+···+λdcd

= ∑
ρ∈A (G)

ehrλ
O(Πρ )◦

(q,n+1) . �

1Here we fix a natural labeling of Π, i.e., an order-preserving bijection Π → [d]. The permutation corresponding to

a given linear extension σ can be read off from this labeling. Unfortunately, there are two different (and conflicting)

definitions of the comajor index in the literature: the one we use here, and the sum of the ascent positions.
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Lemma 4. Suppose f (x) and g(x) are polynomials with coefficients that are rational functions in q

such that

f ([n]q) = g([n]q) for all n ∈ Z>0 .

Then f (x) = g(x).

Proof. By our assumptions, the polynomial f (x)−g(x) ∈Q(q)[x] has infinitely many zeros and so

must be the zero polynomial. �

Together with Chapoton’s result (2), Lemmas 3 and 4 prove Theorem 1. In fact, we can see more,

namely, that the analogue of Lemma 2 holds also for q-chromatic polynomials.

Corollary 5. Let Λ := λ1 +λ2 + · · ·+λd. The coefficients of [Λ]q! χ̃λ
G(x) are polynomials in q.

The case λ = 1 is particularly nice because we can employ (5).

Corollary 6. For any graph G = (V,E),

χ1
G(q,n) = ∑

ρ∈A (G)
∑

σ∈L (Πρ)

q(
d+1

2 )−comaj σ

[
n+desσ

d

]

q

.

Proof. We apply (4) and (5):

ehr1
O(Πρ )◦

(q,n) = (−1)d ehr1
O(Πρ )

(1
q
,−n) = ∑

σ∈L (Πρ )

q(
d+1

2 )−comajσ

[
n+desσ −1

d

]

q

,

and so Lemma 3 finishes the proof. �

We record a few consequences of the last corollary.

Corollary 7. Let G = ([d],E) and express χ1
G(q,n) in the form

χ1
G(n) = ∑

j≥0

β j(q)

[
n+ j

d

]

q

.

(1) Each βi(q) is a polynomial in q with nonnegative coefficients.

(2) β0(q) = |A (G)|q(
d+1

2 ); in particular, if G is a tree then β0(q) = 2d−1q(
d+1

2 ).

(3) The largest value i for which βi(q) 6= 0 is d − ξ where ξ is the chromatic number of G.

Moreover,

βd−ξ (q) = ∑
proper colorings

c:V→ξ

q∑v∈V c(v).

Remark 1. Corollary 6 gives another way of realizing the largest value j for which β j(q) 6= 0,

namely, as the maximal number m of descents in a linear extension of a poset induced by an acyclic

orientation of G. Therefore, the chromatic number of G is equal to d −m, which is one more than

the minimal number of ascents in a linear extension of a poset induced by an acyclic orientation of

G. This fact is known as the Gallai–Hasse–Roy–Vitaver Theorem (see, e.g., [5, Theorem 7.17]).

We also remark that βd−ξ (q) distinguishes between some trees as the next example illustrates.
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Example 2. Let T1 be the path of length 3 and let T2 be the star with degree sequence (3,1,1,1).
We compute

χ1
T1
(q,n) = 8q10

[n

4

]
q
+(4q9 +6q8 +4q7)

[
n+1

4

]

q

+2q6

[
n+2

4

]

q

χ1
T2
(q,n) = 8q10

[n

4

]
q
+(5q9 +4q8 +5q7)

[
n+1

4

]

q

+(q7 +q5)

[
n+2

4

]

q

.

In particular, χ1
T1
(q,2) = 2q6 while χ1

T2
(q,2) = q7 + q5. However, the coefficient βd−2(q) is not

enough to distinguish all non-isomorphic trees on d vertices.

3. THE STRUCTURE OF q-CHROMATIC POLYNOMIALS

As with the classic chromatic polynomial, the q-chromatic polynomial satisfies a deletion–contraction

relation. Naturally, this strongly relates to the deletion–contraction formula for Crew–Spirkl’s

weighted version of the chromatic symmetric function [6, Lemma 2].

Theorem 8. Suppose G = ([d],E) is a graph, λ = (λ1, . . . ,λd) ∈ Zd, and e = 12 ∈ E. Then

χλ
G(q,n) = χλ

G\e(q,n)− χ
(λ1+λ2,λ3,...,λd )
G/e

(q,n) .

Proof. As usual, we observe that the proper n-colorings of G are precisely the proper n-colorings c

of G\e that satisfy the additional condition c(1) 6= c(2). Therefore, we may count them by counting

all proper n-colorings c of G\ e and then removing all such colorings c for which c(1) = c(2):

χλ
G(q,n) = ∑

proper colorings
c:[d]→[n] of G

qλ1c(1)+···+λdc(d)

= ∑
proper colorings
c:[d]→[n] of G\e

qλ1c(1)+···+λdc(d)− ∑
proper colorings
c:[d]→[n] of G\e

where c(1)=c(2)

qλ1c(1)+···+λdc(d)

= χλ
G\e(q,n)− χ

(λ1+λ2,λ3,...,λd)
G/e

(q,n) . �

We observe that a similar computation enables us to express any q-chromatic polynomial (for

general λ with positive entries) as a linear combination of q-chromatic polynomials with λ = 1, via

a repeated expansion–addition process as follows. If G = ([d],E) is a graph and λ = (λ1, . . . ,λd) ∈
Zd
≥0 with λ1 ≥ 2, split the vertex 1 into two vertices 1′ and 1′′ with weights λ1−1 and 1, respectively.

Create the expansion graph exp(G,e) of G at 1 with vertex set {1′,1′′,2, . . . ,d} and edge set

{1′i,1′′i : i ∈ {2, . . . ,d} such that 1i ∈ E}∪{i j : i, j ∈ {2, . . . ,d} such that i j ∈ E} ,

and let the addition graph add(G,e) of G at 1 be exp(G,e) with an edge added between the new

vertices 1′ and 1′′. Then

χλ
G(q,n) = χ

(λ1−1,1,λ2 ,...,λd )
exp(G,e) (q,n)− χ

(λ1−1,1,λ2 ,...,λd )
add(G,e) (q,n) .

By repeatedly applying this process, we obtain the following result:
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Theorem 9. If G= ([d],E) is a graph and λ =(λ1, . . . ,λd)∈Zd
≥0, then there exist graphs H1, . . . ,Hℓ

on λ1 + · · ·+λd vertices and integers k1, . . . ,kℓ such that

χλ
G(q,n) =

ℓ

∑
i=1

ki χ1
Hi
(q,n) .

Our next result extends Stanley’s famous reciprocity theorem for the chromatic polynomial to

the q-setting. A (not necessarily proper) coloring c of a graph G is compatible with an acyclic

orientation ρ of G if c (weakly) increases along oriented edges. Stanley [19] proved that |χG(−n)|
equals the number of pairs of an n-coloring and a compatible acyclic orientation of G. In particular,

|χG(−1)| equals the number of acyclic orientations of G. This generalizes as follows.

Theorem 10. Given a graph G = (V,E) and λ ∈ ZV , let Λ := ∑v∈V λv. Then

(−1)|V |qΛ χ̃λ
G

(
1
q
, [−n] 1

q

)
= ∑

(c,ρ)

q∑v∈V(G) λvc(v),

where the sum is over all pairs of an n-coloring c and a compatible acyclic orientation ρ .

Example 3. For λ = 1, the path on 2 vertices has q-chromatic polynomial

χ̃1
P2
(q,x) =

2q2x2 −2q2x

1+q
.

Therefore,

(−q)2 χ̃1
P2
(1

q
,x) = q2 2q−2x2 −2q−2x

1+q−1
=

2qx2 −2qx

1+q

and so, e.g.,

(−q)2 χ̃1
P2
(1

q
,−q−q2) =

2q(−q−q2)2 −2q(−q−q2)

1+q
= 2q4 +2q3 +2q2.

Indeed, this sums q∑c(v) for the six pairs of 2-colorings and compatible acyclic orientations.

Proof of Theorem 10. Let d := |V |. We apply Chapoton’s reciprocity result (4) to Lemma 3:

(−1)d χ̃λ
G(q, [−n]q) = ∑

ρ∈A(G)

(−1)d ẽhr
λ

O(Πρ )◦(q, [−n+1]q)

= ∑
ρ∈A(G)

(−1)d ẽhr
λ

O(Πρ )

(
1
q
, [n−1] 1

q

)
.

Therefore,

(−1)d χ̃λ
G

(
1
q
, [−n] 1

q

)
= ∑

ρ∈A(G)

(−1)d ẽhr
λ

O(Πρ )(q, [n−1]q)

= ∑
ρ∈A(G)

ehrλ
O(Πρ )

(q,n−1) .(7)



8 ESME BAJO, MATTHIAS BECK, AND ANDRÉS R. VINDAS-MELÉNDEZ

The integer lattice points in (n−1)O(Πρ) can be interpreted as colorings of G using the color set

{0,1, . . . ,n−1} that are compatible with ρ , and so (7) equals

∑
(c,ρ)

q∑v∈V(G) λv(c(v)−1). �

We conclude this section with one more way of computing q-chromatic polynomials. A flat of

a given graph G = (V,E) is a subset S ⊆ E such that for any edge e /∈ S, the subgraph (V,S) has

strictly more connected components than (V,S ∪{e}). Geometrically, the intersection HS of the

hyperplanes of the graphical arrangement HG in (6) corresponding to S form a flat of HG. Let

P(S) be the collection of vertex sets of the connected components induced by S, and for W ⊆V and

λ ∈ ZV
≥0, let

ΛW := ∑
v∈W

λv .

The flats of G form a poset (in fact, a lattice), whose Möbius function helps us compute, again via

inside-out polytopes [3] (see also [2, Chapter 7]), that

χλ
G(q,n) = ∑

flats S⊆E

µ(∅,S)ehrλ
(0,1)V∩HS

(n+1) = ∑
flats S⊆E

µ(∅,S) ∏
C∈P(S)

qΛC [n]qΛC

= qΛV ∑
flats S⊆E

µ(∅,S) ∏
C∈P(S)

[n]qΛC .

In particular, for a tree T = (V,E),

χλ
T (q,n) = qΛV ∑

S⊆E

(−1)|S| ∏
C∈P(S)

[n]qΛC .

These formulas can be viewed as analogues of [21, Theorem 2.5], where Stanley proves an expres-

sion for the chromatic symmetric function in the power sum basis.

Next, we employ the following trick from [4]: for integers n ≥ 0 and k ≥ 1,

1− (1+qx− x)k

1−qk

∣∣∣∣
x=[n]q

= [n]qk .

This yields the following formulas for q-chromatic polynomials.

Theorem 11. Given a graph G = (V,E) and λ ∈ ZV ,

χ̃λ
G(q,x) = qΛV ∑

flats S⊆E

µ(∅,S) ∏
C∈P(S)

1− (1+qx− x)ΛC

1−qΛC
.

In particular, for a tree T = (V,E),

χ̃λ
T (q,x) = qΛV ∑

S⊆E

(−1)|S| ∏
C∈P(S)

1− (1+qx− x)ΛC

1−qΛC
.

Remark 2. In the following section, we will study the leading coefficient of this polynomial and see

that it appears to distinguish trees. This is certainly not true of all other coefficients. For example,
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we can see that any tree on d vertices with the same total vertex weight ΛV has the same linear

coefficient (and the same constant 0, like the ordinary chromatic polynomial). Since

1− (1+(q−1)x)ΛC

1−qΛC
=

−ΛC(q−1)x−
(

ΛC

2

)
(q−1)2x2 −·· ·

1−qΛC
,

the only linear terms of χ̃ come from edge subsets S that result in 1 connected component; for trees

T , the only such set is S = E . Thus, for a tree, the linear coefficient is determined only by d and ΛV .

Example 4. Theorem 11 suggests highly structured formulas for certain families of graphs; we

exercise this for the path Pk on k vertices when λ = 1, in analogy with the chromatic symmetric

function [22, Exercise 7.47(k)].

χ̃1
Pk
(q,x) = qk ∑

S⊆E

(−1)|S| ∏
C∈P(S)

1− (1+qx− x)|C|

1−q|C|
= (−q)k ∑

S⊆E
∏

C∈P(S)

Φ(q,x, |C|),

where

Φ(q,x, j) := −
1− (1+qx− x) j

1−q j

and we used the fact that (for a tree) |S|+ |P(S)|= |E|+1. The subsets of E (for the path Pk) are in

one-to-one correspondence with the compostions (i.e., ordered partitions) of k, with parts given by

the sizes of the sets in P(S). Thus

∑
k≥1

χ̃1
Pk
(q,x) tk = ∑

k≥1
∑

S⊆E
∏

C∈P(S)

Φ(q,x, |C|)(−qt)k = ∑
µ

∏
m∈P(µ)

Φ(q,x,m)(−qt)|µ | ,

where the sum is over all compositions µ , we collect the parts of µ in the multiset P(µ), and |µ | is

the sum of the parts of µ .

Example 5. The analogous computation for the star Sk+1 on k+1 vertices gives

χ̃1
Sk+1

(q,x) = (−q)k+1 ∑
S⊆E

∏
C∈P(S)

Φ(q,x, |C|) = (−q)k+1
k

∑
j=0

(
k

j

)
Φ(q,x, j+1)(−x)k− j

and so

∑
k≥0

χ̃1
Sk+1

(q,x) tk+1 = ∑
k≥0

k

∑
j=0

(
k

j

)
Φ(q,x, j+1)(−x)k− j (−qt)k+1

= −qt ∑
j≥0

Φ(q,x, j+1)(−x)− j ∑
k≥ j

(
k

j

)
(xqt)k

= −qt ∑
j≥0

Φ(q,x, j+1)(−x)− j (xqt) j

(1− xqt) j+1

= ∑
j≥0

(−1) j+1Φ(q,x, j+1)

(
qt

1− xqt

) j+1

.
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4. THE LEADING COEFFICIENT OF A q-CHROMATIC POLYNOMIAL

We now focus our attention on the leading coefficient cλ
T (q) of χ̃λ

T (q,n) stemming from Theo-

rem 11.

Corollary 12. Given a tree T = (V,E) and λ ∈ ZV , the leading coefficient of χ̃λ
T (q,n) equals

cλ
T (q) = (−1)|V |(q2 −q)ΛV ∑

S⊆E
∏

C∈P(S)

1

1−qΛC
.

In particular,

[ΛV ]q! cλ
T (q) = qΛV (−1)|V |+ΛV ∑

S⊆E

(1−q)ΛV−κ(S) [ΛV ]q!

∏C∈P(S)[ΛC]q

(where κ(S) denotes the number of components of the subgraph induced by S) is visibly a polyno-

mial in q, as the fraction is a q-multinomial coefficient times a polynomial.

Remark 3. Deletion–contraction extends to cλ
T (q), and we provide a formula here which might be

helpful for computations. Let l be a leaf of T and

A := {S ⊂ E : l /∈ e for all e ∈ S}

B := {S ⊂ E : l ∈ e for for some e ∈ S} .

Let T ′ = (V ′,E ′) be the tree with l deleted; we will denote the number of connected components

induced by S ⊆ E ′ by κ ′(S). We further define λ ′ to be the vector λ with lth entry removed, and λ+

to stem from λ where we add λl to the entry corresponding to the neighbor of l, with corresponding

notation Λ+
W for W ⊆ E ′. Then

∑
S∈A

(1−q)ΛV−κ(S) [ΛV ]q!

∏C∈P(S)[ΛC]q
= (1−q)λl−1 [ΛV ]q!

[λl]q [ΛV ′ ]q!
∑

S⊆E ′

(1−q)ΛV ′−κ ′(S) [ΛV ′ ]q!

∏C∈P(S)[ΛC]q

and

∑
S∈B

(1−q)ΛV−κ(S) [ΛV ]q!

∏C∈P(S)[ΛC]q
= ∑

S⊆E ′

(1−q)Λ+
V ′−κ ′(S) [Λ+

V ′ ]q!

∏C∈P(S)[Λ
+
C ]q

.

Thus,

[ΛV ]q! cλ
T (q) = qΛV (−1)|V |+ΛV (1−q)λl−1 [ΛV ]q!

[λl]q [ΛV ′ ]q!
∑

S⊆E ′

(1−q)ΛV ′−κ ′(S) [ΛV ′ ]q!

∏C∈P(S)[ΛC]q

+qΛV (−1)|V |+ΛV ∑
S⊆E ′

(1−q)Λ+
V ′−κ ′(S) [Λ+

V ′ ]q!

∏C∈P(S)[Λ
+
C ]q

= qλl (q−1)λl−1 [ΛV ]q!

[λl]q [ΛV ′ ]q!

(
[ΛV ′ ]q! cλ ′

T ′(q)
)
−
(
[Λ+

V ′ ]q! cλ+

T ′ (q)
)
.

Again, the fraction is a polynomial (via a q-binomial coefficient).

We now further focus on the case λ = 1. Corollaries 6 and 12 give the following two (quite

different) expressions for the leading coefficient.
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Corollary 13. Given a tree T = (V,E) on d vertices, the leading coefficient of χ̃1
T (q,n) equals

c1
T (q) = (q−q2)d ∑

S⊆E
∏

C∈P(S)

1

1−qΛC

=
1

[d]q!
∑
(ρ ,σ)

qd+maj σ ,

where the sum ranges over all pairs of acyclic orientations ρ of T and linear extensions σ of the

poset induced by ρ .

Proof. The first formula follows directly from Corollary 12. The second follows from Corollary 6.

The q-binomial coefficient in Corollary 6 can be expressed in terms of the q-integers via
[

n+desσ

d

]

q

=
[n+desσ ]q · · · [n]q · · · [n+desσ − (d −1)]q

[d]q!

=
1

[d]q!

(
qdes σ [n]q +[desσ ]q

)
· · · [n]q · · ·

(
[n]q − [ascσ ]q

qascσ

)

(since (d −1)−desσ = ascσ , the number of ascents of σ ), which gives

c1
T (q) =

1

[d]q!
∑

ρ∈A (G)
∑

σ∈L (Πρ )

q(
d+1

2 )+(
desσ+1

2 )−(asc σ+1
2 )−comajσ .

Using the relation ascσ +desσ = d −1 again, the exponent simplifies to
(

d +1

2

)
+

(
desσ +1

2

)
−

(
ascσ +1

2

)
− comajσ = d+majσ . �

In Corollary 13, the latter expression for c1
T (q) illustrates that 1

qd [d]q!c1
T (q) is a polynomial in

q with nonnegative coefficients. We provide this expression for all non-isomorphic trees on d = 6

vertices in Figure 1.

Example 6. Continuing Example 4, we return to the path Pk on k vertices. Corollary 12 gives

c1
Pk
(q) = (q−q2)k ∑

S⊆E
∏

C∈P(S)

1

1−q|C|

and thus

∑
k≥1

c1
Pk
(q) tk = ∑

k≥1
∑

S⊆E
∏

C∈P(S)

1

1−q|C|

(
(q−q2) t

)k
= ∑

µ
∏

m∈P(µ)

1

1−qm

(
(q−q2) t

)|µ |
,

where again the sum is over all compositions µ .

Example 7. Continuing Example 5 along similar lines, we compute for the star

c1
Sk+1

(q) = (q−q2)k+1
k

∑
j=0

(
k

j

)
1

(1−q j+1)(1−q)k− j
= qk+1

k

∑
j=0

(
k

j

)
(1−q) j+1

1−q j+1

and so

∑
k≥0

c1
Sk+1

(q) tk+1 = ∑
j≥0

(1−q) j+1

1−q j+1 ∑
k≥ j

(
k

j

)
(qt)k+1 = ∑

j≥0

1

1−q j+1

(
qt(1−q)

1−qt

) j+1
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T

[d]q!

qd
c1

T (q)

2q12 + 8q11 + 18q10 + 36q9 + 62q8 + 78q7 + 102q6 +
102q5 +106q4 +80q3 +62q2 +32q+32

q13 + q12 + 10q11 + 16q10 + 41q9 + 57q8 + 81q7 + 95q6 +
108q5 +100q4 +83q3 +59q2 +36q+32

4q12+8q11+18q10+42q9+58q8+78q7+92q6+110q5+
98q4 +82q3 +58q2 +40q+32

2q12+9q11+20q10+34q9+65q8+77q7+96q6+104q5+
107q4 +76q3 +62q2 +36q+32

q13 +3q12 +11q11 +18q10 +39q9 +60q8 +78q7 +87q6 +
110q5 +101q4 +79q3 +59q2 +42q+32

q14 + 9q12 + 9q11 + 20q10 + 39q9 + 60q8 + 72q7 + 81q6 +
112q5 +99q4 +79q3 +58q2 +49q+32

FIGURE 1. A table of the leading coefficients of the q-chromatic polynomials of

the non-isomorphic trees on d = 6 vertices.

is a classical Lambert series.

Remark 4. Corollary 13 immediately distinguishes stars from all other trees: the largest possible

major index one can obtain from a tree is from the linear extension [1,d,d − 1, . . . ,3,2], and the

only tree that realizes this is the star (with acyclic orientation where all edges point out from center).

Consequently, the degree of [d]q!c1
T (q) for a star is strictly larger than that of any other tree with the

same number of vertices.
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5. G-PARTITIONS

The second formula in Corollary 13 is reminiscent of Stanley’s P-partitions [18] and organically

suggests an extension of that concept to graphs. We first review the part of Stanley’s theory that we

will need.

Given a poset Π = ([d],�), a strict Π-partition of n ∈ Z>0 is a tuple m ∈ Zd
>0, such that2

d

∑
j=1

m j = n and m j < mk whenever j ≺ k .

Let pΠ(n) denote the number of strict Π-partitions of n, with accompanying generating function

PΠ(q) := ∑
n>0

pΠ(n)qn.

Then by [2, Exercise 6.23],

(8) PΠ(q) =
qd ∑σ∈L (Π)∏ j∈Ascσ qd− j

(1−q)(1−q2) · · · (1−qd)
=

qd ∑σ∈L (Π) qmajσop

(1−q)(1−q2) · · · (1−qd)
,

where Ascσ denotes the ascent set of σ , and we define σ op( j) := σ(d + 1− j). Note that we

compute ascents and descents as in Section 2: we fix some natural labeling of Π, i.e., an order-

preserving bijection Π → [d]. The permutation corresponding to a given linear extension σ can be

read off from this labeling. Viewing a poset as an (acyclic) directed graph, the following definition

gives the natural analogue for an undirected graph.

Let G = (V,E) be a graph. A G-partition3 of n ∈ Z>0 is a tuple m ∈ ZV
>0, such that

∑
v∈V

mv = n and mv 6= mw whenever vw ∈ E .

Let pG(n) denote the number of G-partitions of n, with accompanying generating function PG(q) :=

∑n>0 pG(n)qn.

Theorem 14. Let G be a graph on d vertices. Then

PG(q) =
qd ∑(ρ ,σ) qmaj σop

(1−q)(1−q2) · · · (1−qd)

=
q(

d+1
2 )∑(ρ ,σ) q−maj σ

(1−q)(1−q2) · · · (1−qd)
,

where each sum ranges over all pairs of acyclic orientations ρ of G and linear extensions σ of the

poset induced by ρ .

Proof. Since every G-partition is a Πρ -partition for exactly one acyclic orientation ρ of G (and,

conversely, every Πρ -partition is a G-partition),

pG(n) = ∑
ρ∈A (G)

pΠρ (n)

2Our definition differs from Stanley’s inequalities, but the methodology is the same.
3We follow the (somewhat misleading) nomenclature of Stanley—in general, neither P- nor G-partitions are partitions,

rather they are compositions, i.e., ordered partition of a given integer n.



14 ESME BAJO, MATTHIAS BECK, AND ANDRÉS R. VINDAS-MELÉNDEZ

and so (8) gives the first formula:

PG(q) =
qd ∑ρ∈A (G) ∑σ∈L (Πρ) qmaj σop

(1−q)(1−q2) · · · (1−qd)
.

To see the second formula, we note that each ρ ∈ A (G) has a partner orientation ρ ∈ A (G) in

which the direction of each edge is reversed. A linear extension σ ∈ L (Πρ) has the corresponding

linear extension σ ∈ L (Πρ) defined via

σ( j) := d +1−σ(d+1− j) = d +1−σ op( j) .

In particular, j ∈ Des(σ op) if and only if j ∈ Asc(σ), and so

∑
(ρ ,σ)

qmaj σop

= ∑
(ρ ,σ)

q(
d
2)−majσ . �

This yields a third equation that can be added to the ones in Corollary 13.

Corollary 15. Given a tree T = (V,E) on d vertices, the leading coefficient of χ̃1
T (q,n) equals

c1
T (q) = (−1)dqd PG

(
1
q

)
.

We can now see Remark 4 through this new lens: the star graph on d vertices is unique with

pG(d+1) = 1. More generally, Corollary 15 implies that Conjecture 1 is equivalent to the following.

Conjecture 2. The G-partition function pG(n) distinguishes trees.

We conclude by making note of the connection between G-partitions and the stable principal

evaluation XG(q,q
2,q3, . . .) of the chromatic symmetric function. Namely, from first principles we

can see that

PG(q) = XG(q,q
2,q3, . . .) .

This yields one final equation for the leading coefficient that can be added to the ones in Corol-

lary 13.

Corollary 16. Given a tree T = (V,E) on d vertices, the leading coefficient of χ̃1
T (q,n) equals

c1
T (q) = (−1)dqd XG

(
1
q
, 1

q2 ,
1
q3 , . . .

)
.

That is, when we express the principal evaluation of the chromatic symmetric function as a poly-

nomial in the q-integers, the stable principal evaluation appears in its leading coefficient.

6. OPEN QUESTIONS

From our construction of χ̃λ
T (q,n) for general λ , a natural weakening of Conjecture 1 (that is

perhaps easier to prove) arises.

Conjecture 3. For any pair of non-isomorphic trees S and T on d vertices, there exists a vector

λ = (λ1, . . . ,λd) ∈ Z>0 such that χλ
S (q,n) 6= χλ

T (q,n).

Another line of open questions emerges concerning the coefficients of the q-chromatic polyno-

mial. The classical chromatic polynomial χG(n) is very well studied, and many of its coefficients

have nice combinatorial interpretations. Can we generalize these to χ̃1
G(q,n)? For example:
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(1) The second coefficient of χG(n) is (negative) the number of edges of G. Can we refine this

to a q version, i.e., does the second coefficient of χ̃1
G(q,n) count the number of edges of G,

but graded by some property of the edges?

(2) Can the same be done for the linear coefficient which, in the classical case, counts the

number of acyclic orientations with a unique sink at one fixed vertex? (This is not interesting

for trees by Remark 2, but could be interesting for general graphs.)

(3) The coefficients of χG(n) are alternating. Can we show that the coefficients of χ̃1
G(q,n) are

“strongly alternating,” in the sense that the coefficient of x j in [d]q! · χ̃1
G(q,x) is a polynomial

in q with either all positive or all negative coefficients (depending on the parity of d − j)?

Finally, as we mentioned in the introduction, there are further structural results and questions that

stem from viewing χλ
G(q,n) as an evaluation of a (weighted) chromatic symmetric function. It is

then natural to ask if there is anything to be gained by zeroing in on the polynomial χ̃λ
G(q,x); for

example:

(4) Is there some (interesting) variant of the (3+1)-free Conjecture of Stanley and Stembridge

[23] for χ̃λ
G(q,x)?

(5) There exist variants of Whitney’s Broken-Circuit Theorem for weighted chromatic symmet-

ric functions; see [6, Lemma 3] and [9, Theorem 6.8]. Do they give rise to a meaningful

broken-circuit result for the coefficients of χ̃λ
G(q,x)?
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1. José Aliste-Prieto, Anna de Mier, and José Zamora, On the smallest trees with the same restricted U-polynomial and

the rooted U-polynomial, Discrete Math. 344 (2021), no. 3, 9 pages, Id 112255.

2. Matthias Beck and Raman Sanyal, Combinatorial reciprocity theorems: An invitation to enumerative geometric

combinatorics, Graduate Studies in Mathematics, vol. 195, American Mathematical Society, Providence, RI, 2018.

3. Matthias Beck and Thomas Zaslavsky, Inside-out polytopes, Adv. Math. 205 (2006), no. 1, 134–162.

4. Frédéric Chapoton, q-analogues of Ehrhart polynomials, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 2, 339–358.

5. Gary Chartrand and Ping Zhang, Chromatic graph theory, Discrete Math. Appl. (Boca Raton), Boca Raton, FL:

Chapman & Hall/CRC, 2009.

6. Logan Crew and Sophie Spirkl, A deletion-contraction relation for the chromatic symmetric function, Eur. J. Comb.

89 (2020), 19 pages, Id/No 103143.
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