
ar
X

iv
:2

40
3.

19
57

6v
1 

 [
m

at
h.

A
G

] 
 2

8 
M

ar
 2

02
4

THE COMPLEMENT OF TROPICAL CURVES IN MODERATE

POSITION ON TROPICAL SURFACES

YUKI TSUTSUI

Abstract. López de Medrano, Rincón and Shaw defined the Chern classes on
tropical manifolds as an extension of their theory of the Chern–Schwartz–MacPherson
cycles on matroids. This makes it possible to define the Riemann–Roch number
of tropical Cartier divisors on compact tropical manifolds. In this paper, we
introduce the notion of a moderate position, and discuss a conjecture that the
Riemann–Roch number RR(X ;D) of a tropical submanifold D of codimension 1
in moderate position on a compact tropical manifold X is equal to the topological
Euler characteristic of the complement X \D. In particular, we prove it and its
generalization when dimX = 2 and X admits a Delzant face structure.

1. Introduction

1.1. Background. López de Medrano, Rincón and Shaw defined the Chern classes
and the Todd classes on tropical manifolds in [LdMRS23] as an extension of their
theory of the Chern–Schwartz–MacPherson cycles on matroids [LdMRS20]. In par-
ticular, this makes it possible to define the Riemann–Roch number RR(X ;D) for
any (sedentarity-0) tropical Cartier divisor D on a compact (purely) n-dimensional
tropical manifold X;

RR(X ;D) :=

∫

X

ch(L(D)) td(X) (1.1)

where L(D) is the tropical line bundle associated with D, ch(L(D)) :=
∑∞

i=0
c1(L(D))i

i!

is the Chern character of L(D) and
∫

X
is the trace map of X. We can extend

the Riemann–Roch number for tropical cycles of codimension 1 by the Poincaré
duality of tropical cohomology (Definition 3.9). In algebraic geometry, the Riemann–
Roch number RR(X ;D) of a given Cartier divisor D on a smooth projective variety
corresponds to the Euler characteristic of the sheaf cohomology of the invertible sheaf
associated with D by the Hirzebruch–Riemann–Roch theorem or the Grothendieck–
Riemann–Roch theorem.

In tropical geometry, invertible sheaves, particularly the structure sheaf on tropi-
cal manifolds (e.g. [MZ14, §1]) do not form sheaves of Abelian groups. Consequently,
there is no direct analog of the Euler characteristic of the sheaf cohomology of trop-
ical Cartier divisors now. (A different tropical analog of the Euler characteristic
of line bundles is pursued in [Tsu23] by using ideas of the Strominger–Yau–Zaslow
conjecture and microlocal sheaf theory, but this approach is somewhat special.)

The tropical Riemann–Roch theorem for compact tropical curves was proved by
both Gathmann–Kerber [GK08] and Mikhalkin–Zharkov [MZ08] independently as a
generalization of the Riemann–Roch theorem for finite graphs established by Baker–
Norine [BN07]. The generalization of these results and their derivatives have devel-
oped in works such as [AC13, Car21, Sum21, BU22, GUZ22]. However, researchers
have not yet established the tropical Riemann–Roch theorem for higher-dimensional
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compact tropical manifolds as a direct generalization of the tropical Riemann–Roch
theorem for compact tropical curves by [GK08, MZ08].

Regardless of the specifics, it seems that understanding the tropical geometric
meaning of RR(X ;D) is important. At least, there exists a common interpreta-
tion for a geometric meaning of the Riemann–Roch number RR(X ; 0) for the trivial
divisor. In [LdMRS23, Conjecture 6.13], López de Medrano, Rincón and Shaw con-
jectured that RR(X ; 0) for a compact tropical manifold X is equal to the topological
Euler characteristic χ(X) of X, and they proved it when X is a compact tropical
surface admitting a Delzant face structure [LdMRS23, Theorem 6.3]. They also
proved a sufficiently broad range of tropical surfaces admitting Delzant face struc-
tures [LdMRS23, Corollary 6.11]. (The tropical Noether formula was studied in
[Sha15] previously. We also note a study of the Noether formula for tropical com-
plexes of dimension 2 in [Car15, Proposition 1.3]). Many researchers expect that the
topological Euler characteristic of compact tropical manifolds should be an analog of
that of the sheaf cohomology of the structure sheaves on complete smooth algebraic
varieties. In fact, the two are highly related via a good degeneration of algebraic
varieties [IKMZ19, Corollary 2]. Besides, the Conjecture 6.13 of [LdMRS23] is true
for compact integral affine manifolds from Klingler’s proof of Chern’s conjecture for
special affine manifolds [Kli17] since the Todd class of integral affine manifold is
trivial.

In this paper, we discuss a geometrical meaning of RR(X ;D) when D is in several
non-trivial cases. We mainly consider it when X is a compact tropical surface, but
we expect that there exists a generalization for higher-dimensional compact tropical
manifolds.

1.2. Main results. Firstly, we recall some elementary properties of divisors on
algebraic varieties. To clarify the similarities we wish to investigate, we will recall
them under strong conditions.

Let D be a nonsingular divisor on a nonsingular algebraic variety X, and a mor-
phism ι : D → X the closed embedding. Then, there exists the following exact
sequence of sheaves:

0 → OX(−D) → OX → ι∗OD → 0. (1.2)

From this, we get the following equation for the Euler characteristic of the sheaf
cohomology:

χ(X ;OX(−D)) = χ(X ;OX)− χ(D;OD). (1.3)

From (1.3), the conjecture below is very natural and seems to be widely believed
among many researchers before [LdMRS23], if we mildly ignore a technical condition
of tropical submanifolds [LdMRS23, Definition 2.14] (see also [Sha15, Definition 4.3])
and their definition of the Todd class of tropical manifolds.

Conjecture 1.1. Let X be a compact (purely) n-dimensional tropical manifold and
D a tropical submanifold of codimension 1 on X [LdMRS23, Definition 2.14]. Then,

RR(X ;−D) = χ(X)− χ(D) = χ(H•
c (X \D;R)) (1.4)

where H•
c (X \D;R) is the cohomology with compact support of X \D.

Example 1.2. If dimX = 1, then Conjecture 1.1 is trivial. Let dimX = 2 and KX

the canonical cycle of X [Mik06, Definition 5.8]. The adjunction formula for tropical
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submanifold of codimension 1 on X ([Sha15, Theorem 6] or [LdMRS23, Theorem
5.2]) gives

RR(X ;−D) =
deg(D.D +KX .D)

2
+ RR(X ; 0) = −χ(D) + RR(X ; 0). (1.5)

where KX .D is the intersection of KX and D in the meaning of [Sha15]. Therefore,
if X admits a Delzant face structure, then Conjecture 1.1 is true by [LdMRS23, The-
orem 6.3]. (In Proposition A.2, we will see the compatibility of different definition
of intersection numbers which is needed.)

The main conjecture of this paper is the following which gives the geometric
meaning of RR(X ;D), i.e., the dual of RR(X ;−D).

Conjecture 1.3. Let D be a tropical submanifold of codimension 1 of an n-
dimensional compact tropical manifold X [LdMRS23, Definition 2.14]. If D is in
moderate position (Definition 2.4) on X, then

RR(X ;D) =

∞∑

k=0

χ(|Dk|) = χ(H•(X \D;R)) (1.6)

where |Dk| is the support of the k-th power of D in X (Notation 3.5).

The first equation of Conjecture 1.3 is a certain tropical analog of [Hir95, §20.6.
(14)], and we will explain it in Example 3.13 and Remark 3.14. We believe that other
researchers also expect Conjectures 1.1 and 1.3 for the reason that, when X := TP n,
for the tropical hypersurface D := V (F ) defined by a d-degree tropical homogeneous
smooth polynomial F , Conjectures 1.1 and 1.3 follow as a consequence of facts that
are classically known. We will see it in Example 2.9. However, Conjecture 1.3 is
more non-trivial than Conjecture 1.1. In fact, many tropical submanifolds are in
moderate position, but we can easily construct of tropical submanifolds which are
not in moderate position. We also remark that the first equation of Conjecture 1.3
should hold for more general cases.

Example 1.4. Let C be a compact tropical curve and Creg the set of all points
whose valency are 2. A point p on C is in moderate position if and only if p ∈ Creg.

From easy calculation, for any tropical submanifold D of codimension 1, i.e., finite
subsets contained in Creg, we get

RR(C;D) = ♯(D) + χ(C) = χ(C \D). (1.7)

Therefore, Conjecture 1.3 is true for C. The first equation above also holds when
D is not in moderate position.

In Proposition 2.7 and Remark 2.8, we will see other examples for evidence why
it seems that Conjecture 1.3 is true. Moreover, we also prove the second equation
of Conjecture 1.3 when D is relatively uniform on X in Theorem 2.14. One of
interesting points of Conjectures 1.1 and 1.3 is that the complement of a tropical
submanifold in a tropical manifold is not usually considered an analog of Zariski
open subset of algebraic variety, but related with the Riemann–Roch number. For
instance, the complement of two points on a tropical elliptic curve R/Z is discon-
nected. This feature is far from that of the analytification of Zariski open subsets
of algebraic varieties. (In fact, Mikhalkin defined a tropical analog of the open sub-
set of a given polynomial as the complement of the full graph [Mik06, §3.3] of a
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tropical polynomial in [Mik06, Remark 3.5 and Example 3.6].) On the other hand,
in [NS16, AB19], interesting studies have been conducted on the complements of
tropical varieties in Rn based on motivations different from our paper.

Incidentally, the author arrived at Conjecture 1.3 as a derivation from the study in
[Tsu23] in order to construct a concrete method of creating permissible C∞-divisors
on compact tropical manifolds which satisfies [Tsu23, Conjecture 1.2]. We will see
relationships between this paper and [Tsu23] in Remark 2.18. The relationships
which are remarked in Remark 2.18 suggest that the cohomology of the complement
of a tropical submanifold of codimension 1 contains a piece of data of a homological
invariant of the line bundle associated with it.

One of main theorem in this paper is the following, and its proof is not difficult:

Theorem 1.5 (Main theorem). Let D be a tropical submanifold of codimension 1
in moderate position on a compact tropical surface X. Then,

χ(X \D) =
deg((D −KX).D)

2
+ χ(X). (1.8)

From [LdMRS23, Theorem 6.3] and Theorem 1.5, we get the following corollary:

Corollary 1.6. If X is a compact tropical surface admitting a Delzant face struc-
ture, then Conjecture 1.3 is true.

From this point, we will also consider an extension of both Conjectures 1.1 and 1.3.
We recall well-known properties in algebraic geometry again. Let X be a nonsingular
projective variety, D a nonsingular divisor on X and ι : D → X the inclusion of D.
For any divisor D′ on X, we have the short exact sequence:

0 → OX(D
′ −D) → OX(D

′) → OX(D
′)⊗OX

ι∗OD → 0. (1.9)

From the projection formula for locally free sheaves, we get

χ(X ;OX(D
′)⊗OX

ι∗OD) = χ(X ; ι∗(ι
∗OX(D

′)⊗OD
OD)) = χ(D; ι∗OX(D

′)).
(1.10)

If D′ is nonsingular and the intersection D′ ∩D is a nonsingular effective divisor
on D, then

χ(D; ι∗OX(D
′)) = χ(D;OD(D

′ ∩D)). (1.11)

It may seem that the assumption for a pair (D,D′) above is too strict. However,
through the application of the theorem of Bertini, we can select a pair (D,D′) of
divisors satisfying the condition above and D0 ∼ D′ −D for a given divisor D0 on
X. For such a pair, the following equation holds:

χ(X ;OX(D
′ −D)) = χ(X ;OX(D

′))− χ(D;OD(D
′ ∩D)). (1.12)

By combining the observation and Conjecture 1.3, we can also expect the following
conjecture:

Conjecture 1.7. Let X be a compact n-dimensional tropical manifold. Let D,D′

be tropical submanifolds of codimension 1 on X or empty. Assume D and D′ satisfy
the following conditions:

(1) D′ is in moderate position on X.
(2) The restrction D′|D of D′ on D is a tropical submanifold of D such that its

support is D′ ∩D.
(3) D′ ∩D is in moderate position on D.
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Then,

RR(X ;D′ −D) =
∞∑

k=0

χ(|D′k|)−
∞∑

k=0

χ(|(D′|D)
k|) =χ(H•(X \D′, D \D′;R))

(=χ(X \D′)− χ(D \ (D′ ∩D)))
(1.13)

where H•(X \D′, D \D′;R) is the relative cohomology of the pair (X \D′, D \D′).

Definition 1.8. A pair (D,D′) of tropical submanifolds of codimension 1 on a
compact tropical manifold X is in moderate position if (D,D′) satisfies the condition
(1)-(3) in Conjecture 1.7.

In this paper, we won’t discuss how many pairs of tropical submanifolds of codi-
mension 1 in moderate position exist, but we expect there exists a sufficient number
of them. Instead, we will see that we can deduce Conjecture 1.7 from Conjecture 1.3
and a conjecture about the Todd class of tropical manifolds (Conjecture 3.7) in
Proposition 3.15. From this observation, we will generalize Theorem 1.5 to Theo-
rem 3.17.

Remark 1.9. If both D and D′ is empty, then Conjecture 1.7 is equivalent to
[LdMRS23, Conjecture 6.13]. Conjecture 1.7 is equivalent to Conjecture 1.1 when
D′ is empty and D is not. Conjecture 1.3 is equivalent to Conjecture 1.1 when D is
empty and D′ is not. Therefore, we can consider Conjecture 1.7 as a generalization
of the three conjecture above. Moreover, it is important that the RHS of (1.13) can
be considered as a certain homological data. This data is also related with the study
in [Tsu23], so we expect Conjecture 1.7 is highly related with homological mirror
symmetry.

1.3. Outline of this paper. In Section 2, we mainly discuss Conjecture 1.3 and
give a proof of Theorem 1.5. In Section 3, we mainly discuss Conjecture 1.7
and Proposition 3.15. We also give a generalization of Theorem 1.5 in Theorem 3.17.

Acknowledgement. We would like to thank Kazushi Ueda for his continuous ad-
vice and encouragement. We are also thankful to Kris Shaw for answering my ques-
tions on [Sha15, LdMRS23]. This work was partially supported by JSPS KAKENHI
Grant Numbers JP21J14529 and JP21K18575.

2. Tropical submanifolds in moderate position

2.1. Tropical manifolds. In this subsection, we recall the theory of tropical man-
ifolds from [Sha11, MZ14, MR18, GS23, LdMRS23]. We also recall it from other
references if necessary. We mainly follow the sheaf theoretic approach of rational
polyhedral spaces in [GS23]. For simplicity, we adopt the definition of tropical
manifold in [LdMRS23, Definition 2.3]. Every tropical manifold in the sense of
[LdMRS23] induce a structure of a rational polyhedral space naturally, and it is a
tropical manifold in the sense of the preprint version [GS19, Definition 6.1] of [GS23].
To distinguish between the subtle differences in the definitions of tropical manifolds
according to different papers, similar to [GS23, §6], we will refer to tropical mani-
folds in the sense of [GS19, Definition 6.1] as locally matroidal rational polyhedral
spaces.
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Notation 2.1. Throughout this paper, T := R ∪ {−∞}. Let (X,O×
X) be a ra-

tional polyhedral space [GS23, Definition 2.2]. The dimension dimX of X is the
homological dimension of locally compact Hausdorff spaces (e.g. [Ive86, Chapter
III. Definition 9.4]). The local dimension of X at x ∈ X will be denoted by dimxX
[Ive86, Chapter III. Definition 9.10]. A rational polyhedral space (X,O×

X) is pure

dimensional if dimX is finite and dimX = dimxX for any x ∈ X. These defi-
nitions are compatible with [MR18, Definition 7.1.1]. We write Xreg for the set of
points in X such that they have an open neighborhood which is isomorphic to an
integral affine manifold [GS23, Definition 2.7] (see [JRS18, §4.1]). See also [KS06,
Definition 3] for the sheaf theoretical definition of integral affine manifolds. We write
Xsing := X \Xreg.

For a given loopless matroid M , let LM be the tropical linear space of M in the
sense of [GS23, §2.2]. When we consider LM as a tropical cycle on a vector space,
we say LM the matroidal tropical cycle associated to M like [LdMRS23]. We write
Ur,n for the uniform of matroid of rank r over [n] := {1, . . . , n}.

In this paper, a rational polyhedral subspace is meant in the following sense (cf.
[LdMRS23, Definition 2.14]).

Definition 2.2. Let (X,O×
X) be a rational polyhedral space and Y a subspace of

X. A rational polyhedral space (Y,O×
Y ) is a rational polyhedral subspace of (X,O×

X)
if for any x ∈ Y , there exists a chart ψ : U → V (⊂ Tn) of X [GS23, Definition 2.2]
such that x ∈ U and the restriction ψ|U∩Y : U ∩ Y → ψ(U ∩ Y ) is also a chart of Y .

We note that there exists rational polyhedral spaces (X,O×
X) and (Y,O×

Y ) such
that X = Y and the identity map of X is a morphism from (Y,O×

Y ) to (X,O×
X) but

not an isomorphism. (We can construct such an example from a tropical analog of
Frobenius morphism.) Every locally polyhedral set of a rational polyhedral space
[GS23, Definition 2.4 (d)] has a natural structure of a rational polyhedral subspace.

Let (X,O×
X) be a rational polyhedral space and LCxX the local cone of X at x

(∈ X) [GS23, §2.2]. Follwoing [MR18, Definition 7.1.8] and [LdMRS23, Definition
2.3], an atlas of X means a family {(Ui, ψi)}i∈I of charts ψi : Ui → Vi(⊂ Tni) such
that

⋃

i∈I Ui = X.
Let (X,O×

X) be a rational polyhedral space which is regular at infinity [GS23, §6.1]
(see also [MZ14, Definition 1.2] and [MR18, Definition 7.2.4 and Corollary 7.2.11]).
Then, every point x in X has an open neighborhood Ux which is isomorphic to an
open subset of LCxX×Tmx for somemx ∈ Z≥0. Therefore, every rational polyhedral
space which is regular at infinity is paracompact and locally contractible, so the
singular cohomology of it is isomorphic to the sheaf cohomology of the constant
sheaf on it, and thus we identify the two cohomologies. Moreover, every nonempty
rational polyhedral space which is regular at infinity has the sedentarity function
sedX : X → Z on X [MR18, Definition 7.2.6] (see also [LdMRS23, Definition 2.4]).

From definition, for any x ∈ X

sedX(x) + dimLCxX = dimxX. (2.1)

The sedentarity function sedX is upper semiconstant [MR18, Definition 7.1.11] so
sedX is upper semicontinuous. In particular, the following subsets are locally poly-
hedral [MR18, Proposition 7.1.12]:

X [≥k] := {p ∈ X | sedX(p) ≥ k}, X∞ := X [≥1]. (2.2)
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The polyhedral subspace X∞ is called the boundary of X (e.g. [LdMRS23]), or the
divisor at infinity of X (e.g. [MR18, Definition 7.2.9]). If X is a tropical toric
variety, then X∞ is a direct analog of toric boundary. A rational polyhedral space
(X,O×

X) which is regular at infinity is locally matroidal if LCxX ≃ LM for some
loopless matroid M [GS23, §6]. When a data (X, {ψα : Uα → Ωα ⊂ Xα}α∈I) is a
tropical manifold (in the sense of [LdMRS23, Definition 2.3]), then the associated
rational polyhedral space is locally matroidal.

Let (X,O×
X) be a rational polyhedral space and (Y,O×

Y ) a rational polyhedral
subspace. For every x ∈ Y , the inclusion map ι : Y → X induces an injection
ι∗,x : LCx Y → LCxX from the local cone LCx Y of Y at x to that of X at x. As
long as it does not lead to confusion, we will identify LCx Y with ι∗,x(LCx Y ), and
consider TxY as a subspace of TxX. We set

codim(Y/X) := dimX − dimY, codimx(Y/X) := dimxX − dimx Y. (2.3)

The rational polyhedral subspace Y of X is a rational polyhedral space of codi-

mension d if Y and X are pure dimensional and codim(Y/X) = d.
Let (X,O×

X) and (Y,O×
Y ) be rational polyhedral spaces which is regular at infinity

and assume that (Y,O×
Y ) is a rational polyhedral subspace of (X,O×

X). Then, the
following equations and inequalities hold for all x ∈ Y :

sedX(x)− sedY (x) = codimx(Y/X)− codim0(LCx Y/LCxX), (2.4)

codimx(Y/X) ≥ sedX(x)− sedY (x) ≥ 0. (2.5)

In particular, if codimx(Y/X) = 1, then sedX(x) − sedY (x) = 0 or 1. Follow-
ing [LdMRS23, §2.5], the rational polyhedral subspace Y of X is sedentarity-0 if
sedX(x) = sedY (x) for all x ∈ Y .

An injective morphism f : Y → X of rational polyhedral spaces is locally matroidal

if both X and Y are locally matroidal and for any inclusion LCx Y ⊂ LCxX of the
local cones at x comes from the inclusion LM ⊂ LN induced from some two matroids
M,N with the common ground set (see also [FR13, §3] or [Sha13, §2.4]). If X is a
tropical manifold and Y is a tropical submanifold of X [LdMRS23, Definition 2.14],
then the inclusion map Y →֒ X is locally matroidal. We note that a codimension
1 tropical submanifold of a given tropical manifold X is essentially same with a
locally degree 1 divisor on X [Sha15, Definition 4.3]. (We thank Kris Shaw for
answering our question about this). As stressed in [LdMRS23, Example 2.15], there
exist examples such that Y is a tropical manifold and a rational polyhedral subspace
of another tropical manifold X, but Y is not a tropical submanifold of X. We can
see such examples in [Vig10, BS15, Sha15]. The support of every tropical cycle in
a given rational polyhedral space is a closed subset of it, and thus every tropical
submanifold of a given tropical manifold X is a closed subset of X.

2.2. Moderate position. Let (X,O×
X) be a rational polyhedral space. For x ∈ X,

let lineal(X, x) be the (maximal) lineality space lineal(LCxX) of LCxX(⊂ TxX)
[GS21, §2.1] (see also [LdMRS23, §3]).

Remark 2.3. The lineality space of the local cone LCxX at a point x in a ra-
tional polyhedral space (X,O×

X) in the sense of [GS21, §2.1] is equivalent to the
maximal lineality space of LCxX in [FR13, §5]. We can check about this as
follows: Since every conical rational polyhedral set P has an isomorphism P ≃
P/ lineal(P )× lineal(P ), we may assume lineal(P ) is trivial. Therefore, to see that
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the two coincide, it is sufficient to observe that conical rational polyhedral sets al-
ways possess a fan structure. We can give a proof of it like that of the existence
theorem of a triangulation of compact convex polyhedron in Rn (cf. [RS82, Theo-
rem 2.11]). From definition, every conical rational polyhedral set P is a finite union
⋃

i∈I σi of rational polyhedral cones σi. Besides, we may assume every σi is strongly
convex. For every i ∈ I, there exists a complete fan Σi on Rn such that σi ∈ Σi.
(We can prove it by an application of Sumihiro’s compactification theorem for toric
varieties [Sum74, Theorem 3].) The refinement

∧

i∈I Σi of a family {Σi}i∈I of fans
gives a fan structure of P .

Definition 2.4. Let (X,O×
X) be a rational polyhedral space and (Y,O×

Y ) a ratio-
nal polyhedral subspace of X. The rational polyhedral subspace Y is in moderate

position on X if for any x ∈ Y

lineal(Y, x) ( lineal(X, x). (2.6)

We remark that the complement X \ Y of tropical submanifold Y in moderate
position on X does not usually satisfy the condition of finite type [MR18, Definition
7.1.14 (c)].

Example 2.5. We retain the notation of Definition 2.4.
(1) If Y is in moderate position onX, then Y ∩{x ∈ X | lineal(X, x) = {0}} = ∅.
(2) The rational polyhedral subspace Y ∩Xreg of Xreg is in moderate position on

Xreg. In particular, Y is always in moderate position when X is an integral
affine manifold.

If Y is in moderate position, then the inclusion LCx Y → LCxX induces the
following exact sequences:

0 lineal(Y, x) TxY TxY/ lineal(Y, x) 0

0 lineal(X, x) TxX TxX/ lineal(X, x) 0

.

Proposition 2.6. Let X be a tropical manifold and Y a tropical submanifold of
codimension 1 in moderate position on X. Then, Y is a sedentarity-0 submanifold
of X.

Proof. If Y is in moderate position, then LCx Y 6≃ LCxX for all x ∈ Y . On the
other hand, if x ∈ Y satisfies sedX(x)− sedY (x) = 1, then dimLCx Y = dimLCxX,
and thus LCx Y ≃ LCxX [FR13, Lemma 2.4]. Therefore, sedX(x) − sedY (x) = 0
when Y is in moderate position. �

Proposition 2.7. Let X be a purely n-dimensional compact integral affine manifold
and D a tropical submanifold of codimension 1. Then, Conjecture 1.1 is equivalent
to Conjecture 1.3. In particular, Conjecture 1.3 is true for all compact integral
affine manifolds when [LdMRS23, Conjecture 6.13] is true for any compact tropical
manifold.

Proof. Since X is an integral affine manifold, D is always in moderate position in
X. Since td(X) = 1 (see Definition 3.8), we have

RR(X ;−D) = (−1)dimX RR(X ;D). (2.7)
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Besides, X \D is a topological manifold, and thus we have the following equation
from the Poincaré duality:

χc(X \D) = (−1)dimXχ(X \D) (2.8)

where χc(X \D) := χ(H•
c (X \D;R)). Therefore, Proposition 2.7 follows from (2.7)

and (2.8). �

Remark 2.8 (Integral affine manifolds with singularities). We expect that we can
generalize Conjecture 1.3 and Proposition 2.7 for integral affine manifold with sin-
gularities (e.g. see [GS06, KS06, Rud21]).

Normally, integral affine manifolds with singularities are analogs of complex man-
ifolds whose canonical bundles are numerically trivial. If M is a compact and con-
nected complex manifold whose canonical bundle KM is numerically trivial, then
c1(KM) is a torsion, i.e., l · c1(KM) = 0 for some l ∈ Z>0. From the Atiyah–Singer
index formula and the Serre duality, for any divisor D on M , we have

χ(M ;OM (−D)) = (−1)dimMχ(M ;OM (D)). (2.9)

The equation (2.9) is similar with Proposition 2.7, and one of essential points of the
proof of it is that X \D is a topological manifold. Therefore, we expect that we can
generalize Conjectures 1.3 and 1.7 for integral affine manifolds with singularities and
this description is compatible with tropical contractions from tropical manifolds to
integral affine manifold with singularities [Yam21].

Example 2.9 ([LdMRS23, Example 2.11]). Let ei the i-th coordinate vector of Rn

and ∆n be the standard n-simplex generated by ei (i = 1, . . . , n) and the origin of
Rn. The normal fan Σ of ∆n induces a compactification XΣ of Rn. The space XΣ is a
typical example of tropical toric varieties [Kaj08, Pay09] and XΣ is isomorphic to the
tropical projective n-space TP n [Mik06, Example 3.10]. From a direct calculation of
the Čech cohomology of O×

XΣ
, we get H1(XΣ;O

×
XΣ

) ≃ H1,1(XΣ;Z) ≃ Z. In general,
the Picard group of toric schemes over semifields is studied in [JMT19]. (See also
[Mey11] and [MR18, Chapter 3] for more detail about tropical toric varieties.) Let f
be a Laurent polynomial on Rn whose Newton polytope is d∆n. The closure VT(f)
of VT(f) in XΣ is can be considered as an analog of a hypersurface of projective n-
space of a homogeneous polynomial of degree d (see also [MR18, Definition 3.4.6]).
The degree of VT(f) on TP n is equal to that of f and the first Chern class of the line
bundle L(VT(f)). The tropical hypersurface VT(f) of f is smooth (in the sense of
[MS15, §4.5]) if the regular subdivision of f is unimodular. If the regular subdivision
of f is unimodular, then VT(f) is a tropical manifold. Let d∆n(Z) be the set of lat-
tice points in d∆n, and int(d∆n)(Z) the set of lattice points in the (relative) interior
of d∆n. It is well-known that the complement TP n \ VT(f) is homotopy equivalent
to d∆n(Z) and VT(f) is homotopy equivalent to the ♯(int(d∆n)(Z))-th bouquet of
(n − 1)-spheres (e.g. [MS15, Proposition 3.1.6] or [MR18, Proposition 3.4.12]). In
particular, every connected component of TP n \VT(f) is a locally closed polyhedron
in TP n, so it is contractible. Moreover, the definition of Chern classes of tropical
toric manifolds is compatible with that of algebraic toric manifolds (cf. [CLS11,
Proposition 13.1.2]). Therefore, the Todd class of TP n also has the same repre-
sentation of that of algebraic toric manifolds (see also [CLS11, Theorem 13.1.6]).
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Therefore, we have

RR(TP n;VT(f)) = ♯d∆n(Z) = χ(TP n \ VT(f)). (2.10)

We can also get the following equation similarly:

RR(TP n;−VT(f)) = (−1)n♯ int(d∆n(Z)) = χc(TP
n \ VT(f)). (2.11)

The second equation of (2.11) follows from that χc(TP
n \VT(f)) = 1−χ(VT(f)) and

VT(f) is homotopy equivalent to the ♯ int(d∆n(Z))-th bouquet of (n−1)-dimensional
spheres.

2.3. Relatively uniform tropical submanifolds. In this subsection, we define
a good class of tropical submanifolds in moderate position and prove the second
equation of Conjecture 1.3 for this case in Theorem 2.14.

Definition 2.10. Let X be an n-dimensional tropical manifold X and ι : D → X is
the embedding map of a codimension-1 and sedentarity-0 tropical submanifold D on
X. The tropical submanifold D of X is relatively uniform on X if, for any x ∈ D,
the pushforward morphism ι∗x : LCxD → LCxX is isomorphic to

idLM
×i : LM × LUr,r+1 → LM × LUr+1,r+1 (2.12)

where M is a loopless matroid, r is a positive integer and i is the inclusion map
induced from the inclusion Ur,r+1 ⊂ Ur+1,r+1.

We note that (2.12) itself can be represented by a matroidal map induced from
the parallel connection of matroids (see [GS21, Lemma 3.1] or [LdMRS23, Proposi-
tion 3.7]). We don’t know whether there exists a tropical submanifold in moderate
position but not relatively uniform, so Definition 2.10 may be equivalent to Defini-
tion 2.4.

In the following proposition, we use Notation 3.5 but it is elementary.

Proposition 2.11. Let X be a purely n-dimensional tropical manifold and D a
relatively uniform tropical submanifold of codimension 1 on X. Then, for any x ∈
|Dj| for some j ∈ Z>0 there exists the following isomorphism:

LCx |D
j| ≃ LMx

× LUr−j+1,r+1
(2.13)

where Mx is a loopless matroid which is independent of the choice of j.

Proof. By direct calculation, we have |(LUr,r+1)
j| = LUr−j+1,r+1

(see [AR10, Example
3.9]). The proposition is local, so we may assume X = Tm × LM × LUr+1,r+1 and
D = Tm×LM×LUr,r+1 for some loopless matroid M . Let π|Dj | : |D

j| → LUr−j+1,r+1
be

the projection. Then, D = π∗
XLUr,r+1 and D|D = π∗

D(LUr,r+1|LUr,r+1
) = π∗

DLUr−1,r+1 =

Tm × LM × LUr−1,r+1. By repeating this, we obtain (2.13). �

The following proposition is also elementary, but important.

Proposition 2.12. Let X := LUn+1,n+1 ≃ Rn and D := LUn,n+1 . For Ui ∈ π0(X \D),
we write Ui the closure of Ui in X and (X \D)† :=

⊔

π0(X\D) Ui. Then, the canonical
inclusion i : X \D → (X \D)† is locally aspheric in the sense of [Ogu18, Chapter V.
Corollary 1.3.2], and the composition of i with the canonical map ι : (X \D)† → X
is the inclusion map j : X \D → X. In particular,

Rj∗RX\D = ι!R(X\D)† . (2.14)
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Remark 2.13. We can generalize the above partial compactification (X \D)† and
Proposition 2.12 when X is a tropical manifold and D is a relatively uniform tropical
submanifold of codimension 1 on X naturally. When X and D is compact, then the
partial compactification (X \D)† of X \D is also compact.

Theorem 2.14. Let X be a purely n-dimensional compact tropical manifold and
D a relatively uniform tropical submanifold of codimension 1 on X. Then,

χ(X \D) =

∞∑

k=0

χ(|Dk|) =

n∑

k=0

(k + 1)χc(|D
k| \ |Dk+1|). (2.15)

Proof. Let j : X \D → X be the inclusion map of X \D. Then, we have

H•(X \D;RX\D) ≃ H•(X ;Rj∗RX\D). (2.16)

From (2.13), we also get

Rj∗RX\D ≃ j∗RX\D, χ((j∗RX\D)x) =

∞∑

k=0

1|Dk|(x). (2.17)

Fix a finite tropical atlas U for X. From the inclusion-exclusion principle and the
Meyer–Vietoris sequence of sheaves (e.g. [Ive86, p.185]), we only need to check

χ(H•
c (U ; (j∗RX\D)|U)) =

∞∑

k=0

χc(|D
k| ∩ U). (2.18)

for any (U, φ) ∈ U . Since Tm is homeomorphic to Rm
≥0 via the extended exponential

map exp : Tm → Rm
≥0, we may consider every rational polyhedral set in some Tm

as a subanalytic set in Rm. From definition, we can choose an open subset V of
Rm such that exp ◦φ(U) is a closed subset of V . The restriction of every rational
polyhedral set in Tn on V is also subanalytic [KS94, Proposition 8.2.2.(iii)] on V . Let
ι := exp ◦φ. Then, ι∗(j∗RX\D)|U is an R-constructible sheaf on V [KS94, Definition
8.4.3] from Proposition 2.12. From [KS94, Theorem 9.7.1] and (2.17), we obtain
(2.18). �

Remark 2.15. In the proof of Theorem 2.14, we considered Rj∗RX\D in order
to calculate the Euler characteristic of X \ D. This method comes from Euler

calculus [Vir88, Sch91]. Euler calculus is an effective way to calculate the Euler
characteristic of the sheaf cohomology of constructible sheaves. We can consider the
Euler characteristic of compact supports of locally closed subsets of X as an analog
of signed measure, and the RHS of (2.15) as an integration of the following simple
function over it [Sch91, (3.4)]:

χ(Rj∗RX\D)(x) := χ((Rj∗RX\D)x) ≃ χ(lim
−→
U∋x

H•((X \D) ∩ U ;R)), (x ∈ X).

(2.19)

The value χ(Rj∗RX\D)(x) is called the local Euler–Poincaré index of Rj∗RX\D at
x. Euler calculus is also a useful way to investigate other constructible sheaves on
tropical manifolds. As stressed in [Rau23, Remark 4.8], we can interpret the first
equation of the tropical Poincaré–Hopf theorem [Rau23, Theorem 4.7] as the Euler
integration of the total complex Ω•

Z,X of the sheaves of tropical p-forms.
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2.4. For tropical surfaces. For the proof of Theorem 1.5, we use the following
well-known proposition for Bergman fans: the support of the Bergman fan of a
loopless matroid of rank 2 is isomorphic to the support of the Bergman fan of a
uniform matroid U2,n on [n] := {1, . . . , n}. In fact, we can deduce it from that
the supports of the Bergman fans of loopless matroids are isomorphic when the
simplification of them are isomorphic. Shaw classified local cones which comes from
for some tropical surface in [Sha15, Corollary 2.4].

Proposition 2.16. Let S be a compact tropical surface and C is a tropical sub-
manifold of codimension 1 in moderate position on S. Then,

|C2| = Csing ∩ Sreg. (2.20)

Proof. First, we will see the classification of the embeddings LCxC ⊂ LCx S of local
cones. If C is in moderate position on S, then dim lineal(S, x) = 1, 2 for any x ∈ C.
(1) Suppose dim lineal(S, x) = 2. Then, LCx S ≃ R2 and LCx C should be isomor-

phic to LU2,3 or LU2,2 . In particular, valC(x) = 2, 3 in this case.
(2) We assume dim lineal(S, x) = 1 and x ∈ C \C∞. Then, dim lineal(C, x) = 0. In

particular, valC(x) ≥ 3. From [Sha15, Corollary 2.4], we may assume LCx S ≃
LU2,m × R ≃ LU2,m⊕U1,1 for some m(≥ 3). From this description, we can check
valC(x) ≤ m. In particular, we can consider TxC as a proper vector subspace of
TxS.

Besides, we can check LCx C ∩ lineal(S, x) = {0} by indirect proof. In fact,
if LCxC ∩ lineal(S, x) 6= {0}, then L := Im(TxC → TxS/ lineal(S, x)) is a
proper subspace of TxS/ lineal(S, x). On the other hand, the convex hull of
L ∩ (LCx S/ lineal(S, x)) does not contain any nontrivial vector subspace. This
contradicts with dimTxS ≥ dimT0(LCxC) ≥ 2.

Since LCxC ∩ lineal(S, x) = {0}, TxC ∩ lineal(S, x) = {0}. Then, TxC ∩
LCx S ≃ LU2,m ≃ LCxC from the Balancing condition of LCxC. In particular,
LCx C is the intersection cycle of TxC and LCx S in TxS, so the self-intersection
cycle of LCx C in LCx S is trivial.

From the above classification of the embeddings of local cones, we obtain the proof.
�

Remark 2.17. We can also prove from [Sha13, Theorem 4.2] or [Sha15, Theorem
4.11] since the intersection pairing in the sense of [GS23] is compatible with that of
[Sha15, LdMRS23] (see Proposition A.1).

From now on, we will prove Theorem 1.5. Most of the proof is the same as
Theorem 2.14, but for simplicity, we will show it independently of Theorem 2.14.

Proof of Theorem 1.5. Let j : S \ C → S be the inclusion map of S \ C. Then, the
following equation holds:

χ(S \ C) = χ(Rj∗RS\C) := χ(H•(S;Rj∗RS\C)). (2.21)

If C is in moderate position on S, then the classification of the local cone of C gives

(Rj∗RS\C)x ≃







R[0], if x ∈ S \ C,

R3[0], if x ∈ Csing ∩ Sreg,

R2[0], otherwise.
(2.22)
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In particular, Rj∗RS\C ≃ j∗RS\C . Since j−1j∗ = idS\C , from [KS94, Proposition
2.3.6 (v)] there exists the following short exact sequence:

0 → j!RS\C → j∗RS\C → (j∗RS\C)C → 0. (2.23)

In particular, we have

χ(S \ C) = χc(S \ C) + χ((j∗RS\C)|C). (2.24)

From definition of the pushforward of sheaves, (j∗RS\C)|C is locally constant on Creg

and the stalk of it is R2. Therefore, we also have

χ((j∗RS\C)|C) = 2χc(Creg) + 3χc(Csing ∩ Sreg) + 2χc(Csing ∩ Ssing). (2.25)

Therefore,

χ(S \ C) = χc(S \ C) + 3χc(Csing ∩ Sreg) + 2χc(C \ (Csing ∩ Sreg)) (2.26)

= χc(S \ C) + 2χc(C) + χc(Csing ∩ Sreg)

= χ(S) + χ(C) + χ(|C2|) (2.27)

=
deg(C.(C −KS))

2
+ χ(S).

In the last equation, we use the adjunction formula of tropical curves [Sha15, The-
orem 4.11]. �

Proof of Corollary 1.6. It follows from Theorem 1.5 and Proposition A.2. �

Remark 2.18. In this remark, we discuss relationships between Conjecture 1.3 and
[Tsu23] in some cases. This remark highly depends on [Tsu23], and you can skip
this remark to understand the main theorem of this paper. As explained in the
introduction of this paper, the Euler characteristic χc(X \ D) of the cohomology
of compact support of the complement of a tropical submanifold D on a compact
tropical manifold X is an analog of (1.3), so it is natural to expect that Conjec-
ture 1.1 holds. We will explain about algebraic geometrical backgrounds of the first
equation of Conjecture 1.3 in Example 3.13 and Remark 3.14. However, the author
does not know some theorem in algebraic geometry or Berkovich geometry which
suggests the second equation of Conjecture 1.3 directly as like Conjecture 1.1, ex-
cept toric varieties or special cases like them. On the other hand, based on the
study in [Tsu23], we can expect that H•(X \ D) is highly related with the theory
of Floer cohomology of Lagrangian submanifolds, the homological mirror symmetry
and the Strominger–Yau–Zaslow conjecture. Below, we will see about it by using
examples. For simplicity, let X be R/Z and D a finite subset of X. Then, the
following isomorphisms of graded modules hold:

H•(X \D;Z) ≃
⊕

E∈π0(X\D)

H•(E;Z) ≃
⊕

E∈π0(X\D)

Z[0], (2.28)

H•
c (X \D;Z) ≃

⊕

E∈π0(X\D)

H•
c (E;Z) ≃

⊕

E∈π0(X\D)

Z[−1]. (2.29)

We can also define similar graded modules for C∞-divisors on X. In [Tsu23], the
author proposed the following approach inspired from microlocal sheaf theory and
the Strominger–Yau–Zaslow conjecture.
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Let A0,0
X be the sheaf of (0, 0)-superforms on X [JSS19, Definition 2.24]. Then,

the following exact sequence exists:

0 → O×
X → A0,0

X → A0,0
X /O×

X → 0. (2.30)

Since A0,0
X is acyclic, the connecting homomorphism

H0(X ;A0,0
X /O×

X) → H1(X ;O×
X); s 7→ L(s). (2.31)

is surjective. The group Div∞(X) := H0(X ;A0,0
X /O×

X) is an analog of the group
of Cartier divisors when X is a boundaryless tropical manifold. In [Tsu23], ele-
ments in Div∞(X) are called C∞-divisors on X. Let C0

X the sheaf of continuous
functions on X. Then, the group of tropical Cartier divisors on X and Div∞(X)
is in Γ(X ; C0

X/O
×
X). We note that the author defined the group of C∞-divisor for

any tropical manifold in [Tsu23]. If B is an integral affine manifold, then every
C∞-divisor on B defines a Lagrangian section of the standard Lagrangian torus fi-
bration f̌B : X̌(B) → B on B, we can consider C∞-divisors as derivative objects of
Lagrangian sections of Lagrangian torus fibrations.

For a given finite set D on X = R/Z, we can find a C∞-divisor s on X such that
L(D) = L(s) as follows. Let π : R → R/Z be the canonical universal covering. The
pullback π∗D is a principal divisor of a convex function f on R such that the set of
strictly convex points of f is π−1(D) and satisfies a quasi-periodicity. By smoothing
of f , we can find a quasi-periodic convex C∞-function g such that f(x) = g(x)
on the complement of a sufficiently small neighborhood of π−1(D). This g gives a
C∞-divisor sα on X such that the associated line bundle on X is equal to L(D).
Moreover, we can deform sα to another linearly equivalent C∞-divisor s1 on X such
that the intersection s0 ∩ s1 := L0 ∩ Ls1 of the associated Lagrangian section Ls1

of s1 and the zero section L0 is contained in X \ D and ♯(E ∩ L0 ∩ Ls1) = 1 for
any E ∈ π0(X \D). Then, s1 is a permissible C∞-divisor and π∗s1 is the principal
divisor of a strictly convex C∞-function. More generally, we can construct a map
s : [0, 1] → Γ(X ; C0

X/O
×
X) satisfies

(1) s(0) = D, s(1) = s1 and s(t) is a prepermissible C∞-divisor for all t ∈ (0, 1],
(2) for all t ∈ [0, 1], the line bundle L(s(t)) ∈ Pic(X) associated with s(t) is

equal,
(3) X \D ⊃ s0 ∩ s(t) ⊃ s0 ∩ s(u) for all 0 < t ≤ u ≤ 1,
(4) s0 ∩ s(t) is homotopy equivalent to X \D for all t ∈ (0, 1],
(5) for any x ∈ X \D, there exists t ∈ (0, 1] such that x ∈ s0 ∩ s(t).

In [Tsu23], the author defined the graded module LMD•(X ; s) for a permissible
C∞-divisor s on a compact tropical manifold X. By using the theory of [LdMRS23],
we can refine the Conjecture 1.2 in [Tsu23] like this: the Euler characteristic of
LMD•(X ; s) is equal to the Riemann–Roch number of L(s). ([Tsu23, Conjecture
1.2] does not give an explicit definition of the Riemann–Roch number since this
conjecture appeared before [LdMRS23].)

If X = R/Z, then X is an integral affine manifold and the graded module
LMD•(X ; s1) for s1 is isomorphic to the Floer complex associated with the La-
grangian section Ls1 of s1 [KS01, Remark 13] as a graded module (see also [Tsu23,
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§4.4] for more detail about it). In our case, we have the following isomorphisms:

LMD•(X ; s1) ≃
⊕

p∈s0∩s1

Z[0] ≃ H•(X \D;Z), (2.32)

LMD•(X ;−s1) ≃
⊕

p∈s0∩s1

Z[−1] ≃ H•
c (X \D;Z). (2.33)

The method presented here is indeed not canonical, but the isomorphisms are not
coincidences. In fact, a similar logic works for tropical toric varieties.

Let P be a top dimensional Delzant lattice polytope in Rn and XP the tropical
toric variety of P . Recall that, if f is a tropical Laurent polynomial on Rn whose
Newton polynomial is P and the regular subdivision of f is unimodular, then the
closure V (f) of the hypersurface of f in XP is a tropical submanifold of XP and the
set of connected component of XP \ V (f) is bijective with the set P (Z) of lattice
points in P . By using the Maslov dequantization of a family of nonnegative valued
Laurent polynomial which converges to f , we get a C∞-divisor sf on XP whose line
bundle is isomorphic to that of V (f), s0∩sf ⊂ XP \V (f), and π0(s0∩sf ) is bijective
with π0(XP \ V (f)). Then, we have

LMD•(XP ; sf) ≃
⊕

p∈P∩Zn

Z[0] ≃
⊕

W∈π0(XP \V (f))

H•(W ;Z)

≃ H•(XP \ V (f);Z), (2.34)

LMD•(XP ;−sf) ≃
⊕

p∈int(P )(Z)

Z[− dimXP ] ≃
⊕

W∈π0(XP \V (f))

H•
c (W ;Z)

≃ H•
c (XP \ V (f);Z). (2.35)

See also [Tsu23, Appendix D] for more detail about C∞-divisors on tropical toric
manifolds associated with lattice polytopes.

From these examples, it seems that the cohomology of the complement of tropical
submanifolds D of codimension 1 on a compact tropical manifold X has a piece
of data of homological invariant of L(D). From analogy of Floer cohomology, the
author expects that we can define the cohomology of L(D) if we can define a good
“Floer differential” for the graded module H•(X \ D) (over some Novikov field).
One of reason why we need some “Floer differential” for H•(X \D) is explained in
Remark 2.19. We also note that Demazure’s theorem [Dem70] is also related with
the current remark (see also [CLS11, §9.1]).

Remark 2.19. Let C be a compact tropical curve and D a finite set of C \ Csing.
Then, there exist the following relationships between the rank of cohomology of
compact support of C \D and the Baker–Norine rank r(D) of D [GK08, Definition
1.12]:

rankH0
c (C \D) = r(D) + 1 = 0, rankH1

c (C \D) = r(KC −D) + 1. (2.36)

The Baker–Norine rank r(D) is an analog of the rank of linear systems of divisors
on algebraic varieties. There is an explanation that the Baker–Norine rank is truly
a good analog of the rank of linear systems in [Bak08]. From (2.36), we can say the
rank of H•

c (C \D) also behave like the cohomology of a line bundle on an algebraic
variety. On the other hand, the cohomology H•(C \D) does not necessarily behave
as an analog of the cohomology of a line bundle on an algebraic variety.
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From now on, let C be a compact tropical curve of genus 2 like [MZ08, Figure 1].
Let E be a connected component of C \Csing, and D a nonempty finite subset of E.
Then,

rankH0(C \D) = ♯(D), rankH1(C \D) = 1. (2.37)

On the other hand, deg(KC −D) = 2− ♯(D). Therefore, when ♯(D) > 2, we get

r(D) + 1 = ♯(D)− 1, r(KC −D) + 1 = 0. (2.38)

In particular, rankH0(C\D) > r(D)+1 in this case. The equation rankH1(C\D) =
1 is independent of the degree of D. It is a very different point from behavior of
the cohomology of invertible sheaves on algebraic varieties. This is a main reason
why we stress that we need to define a “Floer differential” for H•(C \D) in order to
capture a homological data of tropical line bundles in Remark 2.18.

We expect that we can define such an appropriate differential of H•(C \ D) by
a combinatorial way as an analog of the Floer complex of Lagrangian sections on
trivalent graphs [AEK22]. We also expect the homological mirror symmetry gives a
new perspective on the specialization inequality of the Baker–Norine rank [Bak08,
Lemma 2.8].

3. The Riemann–Roch number of pairs of tropical submanifolds

In this section, we discuss Conjecture 1.7. In order to discuss Conjecture 1.7, we
need preparation from the theory of tropical homology and Chern classes of tropical
manifolds. First, we note the theory of Chern classes of tropical manifold [LdMRS23]
is new and the Chern(–Schwartz–MacPherson) class of tropical manifolds is not
defined from a direct analog of the theory of vector bundles on algebraic varieties.
Therefore, there is much that is not sufficiently understood about Chern classes of
tropical manifolds. (The theory of tropical vector bundle is studied in [All12, JMT24]
or [AP20, Theorem 1.8].) On the other hand, we can use facts which arise from
elementary properties of multiplicative sequences (or m-sequences) [Hir95, §1] (see
also [MS74, §19]). From these properties, we can investigate the Todd classes of
tropical manifolds to some extent.

In this section, we mainly discuss properties which the Todd classes should have
if a natural conjecture for tropical Chern classes (Conjecture 3.7) holds. We also
prove a generalization of Theorem 1.5 in Theorem 3.17.

3.1. Tropical homology. We recall the theory of tropical homology from [MZ14,
JRS18, GS23]. In this subsection, let Q be a subring of R and p, q ∈ Z. Let
(X,O×

X) be a rational polyhedral space and Ωp
Z,X the sheaf of tropical p-forms on

X [GS23, Definition 2.7] (cf. [MZ14, §2.4]). Let ω
•
X be the dualizing complex of

X (e.g. [KS94, Definition 3.1.16]). The (p, q)-tropical cohomology Hp,q(X ;Q) and
the (p, q)-tropical Borel–Moore homology HBM

p,q (X ;Q) of (X,O×
X) are the following

Q-modules [GS23, Definition 4.1 and 4.3]:

Hp,q(X ;Q) := HomDb(ZX)(ZX ,Ω
p
Z,X [q])⊗Z Q, (3.1)

HBM
p,q (X ;Q) := HomDb(ZX)(Ω

p
Z,X [q],ω

•
X)⊗Z Q. (3.2)

For comparison with the original tropical homology [MZ14, IKMZ19], see also
[GS23, Remark 2.8 and Theorem 4.20]. Let Ω•

Z,X :=
⊕

j∈Z≥0
Ωj

Z,X [−j] be the total
complex of Ωp

Z,X (see [Sma17, Proposition 3.1]). Since Ω•
Z,X is a sheaf of trivial

16



and graded-commutative dga, so the hypercohomology H•(X ; Ω•
Z,X) of Ω•

Z,X has a
natural graded-commutative ring structure (see [GW23, Remark 21.130]). Besides,
Ω•

Z,X is trivial, so there exists an isomorphism H•(X ; Ω•
Z,X) ≃

⊕

p,q∈ZH
p,q(X ;Z) as

Abelian groups. If f : X → Y is a morphism of rational polyhedral spaces, then f
induces the pullback f ∗ : H•(Y ; Ω•

Z,Y ) → H•(X ; Ω•
Z,X) [GS23, Proposition 4.18] and

f ∗ is a graded ring homomorphism. If f : X → Y is a proper morphism, then f
induces the pushforward f∗ : H

BM
p,q (X ;Q) → HBM

p,q (Y ;Q) [GS23, Definition 4.9].
Let Zk(X) be the group of tropical k-cycles on X [GS23, Definition 3.5]. The

presheaf U → Zk(U) on X is a sheaf, and we write Z X
k for it [GS23, p.591].

For any k ∈ Z≥0, there exists the cycle map cycX : Zk(X) → HBM
k,k (X ;Z) and

f∗ ◦ cycX = cycY ◦f∗ for any proper morphism f : X → Y of rational polyhedral
spaces [GS23, Definition 5.4 and Corollary 5.8] (see also [JRS18, Definition 4.13]). A
purely n-dimensional rational polyhedral space (X,O×

X) admits a fundamental class

if the constant function on X with value 1 forms an n-dimensional tropical cycle
1Xreg [GS23, §6.1], and the image [X ] := cycX(1Xreg) ∈ HBM

n,n (X ;Z) is called the fun-

damental class of X (see also [JRS18, Definition 4.8]). For simplicity, we sometimes
write X as 1Xreg . From definition, HBM

n,n (X ;Z) := HomDb(ZX )(Ω
n
X [n],ω

•
X), so the

multiplicative structure of Ω•
X and the fundamental class of X induces the following

morphism:

ηXp : Ωn−p
X [n]⊗L

ZX
Ωp

X → Ωn
X [n]

[X]
−−→ ω

•
X . (3.3)

The tensor-hom adjunction of ηXp is the following [GS23, p.627]:

δXp : Ωn−p
X [n] → DZX

(Ωp
X) := RHomZX

(Ωp
X ,ω

•
X). (3.4)

Of course, δX0 = [X ]. Besides, the natural isomorphism from
HomDb(ZX )(−⊗L

ZX
Ωp

X [q],ω
•
X) to HomDb(ZX)(−,DZX

(Ωp
X [q])) gives the following com-

mutative diagram for any α : ZX → Ωn−p
X [n− q]:

HomDb(ZX )(Ω
n−p
X [n− q]⊗L

ZX
Ωp

X [q],ω
•
X) HomDb(ZX )(Ω

n−p
X [n− q],DZX

(Ωp
X [q]))

HomDb(ZX )(Ω
p[q],ω•

X) HomDb(ZX )(ZX ,DZX
(Ωp[q])).

The morphism of each row of this commutative diagram is an isomorphism. In
particular, the image of ηXp by the homomorphism on the left column of the com-
mutative diagram is the cap product α ⌢ [X ] of α and [X ] [GS23, §4.6]. (For the
sake of visibility, we have reversed the action as in [GS23, §4.6].) Therefore, we can
identify the homomorphism

H−q(δXp ) : Hn−p,n−q(X ;Z) → H−q(X ;DZX
(Ωp

X))

with the cap product homomorphism

·⌢ [X ] : Hn−p,n−q(X ;Z) → HBM
p,q (X ;Z). (3.5)

In particular, if X is compact, then the unique morphism aX : X → {pt} to the
one-point space {pt} defines the trace map

∫

X
c := aX∗(c ⌢ [X ]) ∈ HBM

0,0 ({pt};Z) ≃

Z for c ∈ H•,•(X ;Z). An n-dimensional rational polyhedral space (X,O×
X) admitting

with a fundamental class satisfies Poincaré–Verdier duality if δXk is an isomorphism
for all k ∈ Z≥0 [GS23, Definition 6.4]. If (X,O×

X) satisfies Poincaré–Verdier duality,
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then (3.5) is an isomorphism [GS23, Coroolary 6.9]. We can see every tropical mani-
fold satisfies the Poincaré–Verdier duality from [JRS18, Proposition 5.5] and [GS23,
Theorem 6.7]. The integer valued Poincaré duality for tropical manifolds admitting
a global face structure was firstly proved in [JRS18, Theorem 5.3]. In recent work,
considerations have also been made using the Poincaré–Verdier duality and the lo-
cal Poincaré duality for rational polyhedral spaces as indicators of smoothness (e.g.
[Aks23, AP21, GS23]).

For simplicity, we will use the following notation.

Notation 3.1. Let (X,O×
X) be a rational polyhedral space admitting a fundamental

class [X ] and satisfying the Poincaré–Verdier duality. We write PDX for the inverse
of the cap product homomorphism · ⌢ [X ], and [Z]PD := PDX(Z) for all Z ∈
HBM

p,q (X ;Z).

3.2. Tropical Cartier divisors. Let (X,O×
X) be a rational polyhedral space and

PAffZ,X the sheaf of piecewise integral affine linear functions on X (see [JRS18,
Definition 4.1] or [GS23, Definition 3.8 and Remark 3.9]). From definition, there
exist the following exact sequence of sheaves:

0 → O×
X → PAffZ,X → PAffZ,X /O

×
X → 0. (3.6)

Besides, we use the notations below:

Div(X)[0] := H0(X ; PAffZ,X /O
×
X), Div

[0]
X := PAffZ,X /O

×
X . (3.7)

The connecting homomorphism δ : Div(X)[0] → H1(X ;O×
X) induced from (3.6) is

surjective [JRS18, Proposition 4.6]. From now on, for a given D ∈ Div(X)[0], let
L(D) be the associated line bundle of D (see [GS23, §3.5] and [MZ08, §4.3]).

Remark 3.2. The definition of rational functions on tropical manifolds varies de-
pending on authors. Therefore, the definition of tropical Cartier divisors on tropical
manifolds also varies. In [JRS18, GS23], the previously mentioned group Div(X)[0]

is called the group of tropical Cartier divisors on X, but this is different from
the meaning in [LdMRS23]. By [Sha15, Proposition 3.27], every tropical cycle of
codimension 1 on a tropical manifold is a tropical Cartier divisor in the sense of
[Sha15, LdMRS23]. In contrast, there exist codimension 1 tropical cycle which does
not come from any elements in Div(X)[0]. For example, the point {−∞} in T does
not come from Div(T)[0].

On the other hand, there exist advantages of the definition of tropical Cartier divi-
sors in the sense of [JRS18, GS23]. One of them is that every morphism f : X → Y of
rational polyhedral spaces always induces the pullback f ∗ : Div(Y )[0] → Div(X)[0],
and the pullback is compatible with that of Picard groups f ∗ : Pic(Y ) → Pic(X)
[GS23, Propoisition 3.15].

Moreover, there exists a natural pairing [GS23, §3.4] (cf. [AR10, Definition 6.5]):

Div(X)[0] × Zk(X) → Zk−1(X); (D,A) 7→ D · A. (3.8)

In particular, the following equation holds [GS23, Proposition 5.12]:

cycX(D · A) = c1(L(D))⌢ cycX(A). (3.9)

Notation 3.3. Let A be a tropical k-cycle on a rational polyhedral space (X,O×
X).

We write [A] := cycX(A). We also write [A]PD := PDX(cycX(A)) when (X,O×
X)

satisfies the Poincaré duality.
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When (X,O×
X) is a purely n-dimensional rational polyhedral space which admits

a fundamental class, there exists the following homomorphism [JRS18, Definition
4.14]:

divX : Div(X)[0] → Zn−1(X);D 7→ D ·X. (3.10)

See also [JRS18, Theorem 4.15].
Let A be a tropical k-cycle on X , |A| the support of A [GS23, Definition 3.5],

and i : |A| → X the inclusion of |A|. We note that we can consider A as an element
of Zk(|A|) and the trivial projection formula holds from definition:

i∗(D||A| ·A) = D · A. (3.11)

Proposition 3.4. If X is a purely n-dimensional tropical manifold, then the homo-
morphism (3.10) is injective.

Proof. The divisor map for each open subset of X naturally induces a sheaf homo-
morphism

divX : Div
[0]
X → Z

X
n−1. (3.12)

Therefore, it is enough to check the homomorphism of sheaves is injective. Let B be
an open basis of X. Then, the category of B-sheaves ([GW10, p.49-50]) is equivalent
to the category of sheaves onX, so we only need to check divU : Div

[0]
X (U) → Zn−1(U)

for any U ∈ B. Since X is a tropical manifold, we may assume U is isomorphic to
an open subset of LCxX × Tn for some x ∈ X. Moreover, we may assume every
piecewise integer affine linear function on U is the pullback of a piecewise integer
affine linear function on LCxX by the projection LCxX × Tn → LCxX locally. If
X is boundaryless, then a generalization of Proposition 3.4 holds [GS21, Theorem
4.5]. Therefore, it has been proved. �

Notation 3.5. From now on, we identify Div(X)[0] with divX(Div(X)[0]) when X
is a tropical manifold. Under this identification, we can consider every sedentarity-0
tropical submanifold as an element of Div(X)[0]. In particular, from (3.8), we can
define the k-th power Dk of D ∈ Div(X)[0] as an element of Zn−k(X) and satisfies

[Dk]PD = [D]kPD = c1(L(D))k. (3.13)

For simplicity, D0 := X. Additionally, we suppose D is a tropical submanifold on
X and the pullback D|D of D is a tropical submanifold on D. For the embedding
morphism ιD : D → X, we obtain the following equation:

ι|D|∗(D||D|) = D ·D. (3.14)

We can identify the support |D||D|| with |D2| within the scope where confusion does
not arise. Let D(1) := D and D(i+1) := D(i)||D(i)| = D||D(i)| for all i ∈ Z>0. Moreover,
if D(k) (k = 1, . . . , m) is tropical submanifolds of |Dk−1| and |Dk| = |D(k)|, then

ι|D(k)|∗(D
(k+1)) = ι|D(k)|∗(D

(k)||D(k)|) = D ·Dk = Dk+1. (3.15)

Thus, we can identify |Dk+1| with |D(k+1)| within the scope where confusion does
not arise.
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3.3. Chern classes and Todd classes of tropical manifolds. In this subsection,
we start to discuss Conjecture 1.7 and give a generalization of Theorem 1.5.

Notation 3.6. Let X be a purely n-dimensional tropical manifold and csmk(X) the
k-th Chern–Schwartz–MacPherson cycle of X [LdMRS23, Definition 3.4]. We note
that we can define the k-th Chern–Schwartz–MacPherson cycle of csmk(X) by a
sheaf theoretical approach from [LdMRS23, Proposition 3.11 and Lemma 3.12] and
[GS23, Lemma 4.13] (see also [SW22, Lemma 5.4]). Then, we write the k-th Chern
class of X as

csmk (X) := PDX ◦ cycn−k(csmn−k(X)) ∈ Hk,k(X ;Z). (3.16)

This notation csmk (X) is used to avoid confusion with the Chern classes of divisors.
As like this, we write the total Chern class of X as csm(X) :=

∑n

k=0 c
sm
k (X). For a

given L ∈ H1,1(X ;Z), we write the Chern character of L as follows:

ch(L) := exp(L) :=

∞∑

i=0

Li

i!
∈ H•,•(X ;Q). (3.17)

In order to discuss the Todd classes of tropical manifolds, we recall fundamental
properties of Chern classes of complex manifolds from [Hir95, Ful98, CLS11]. Let
M be a complex manifold and D a nonsingular divisor on D. Let TM be the tangent
bundle of M . For an embedding ι : D → M of D, we have the following exact
sequence:

0 → TD → ι∗TM → ι∗OM (D) → 0. (3.18)

From the axioms of Chern classes, (3.18) gives the adjunction formula for total
Chern classes:

ι∗c(TM) = c(TD)c(ι
∗OM(D)). (3.19)

Since c(OM (D)) = 1 + c1(OM(D)), the k-th part of (3.19) is

ι∗ck(TM ) = ck(TD) + ck−1(TD)c1(ι
∗OM(D)). (3.20)

We can discuss an analog of (3.19), and expect the following conjecture holds:

Conjecture 3.7. Let X be a pure dimensional compact tropical manifold and D a
tropical submanifold of X of codimension 1. Then, the following equations hold for
k ∈ Z≥0 and the inclusion ι : D → X:

ι∗csm(X) = csm(D)(1 + ι∗[D]PD), (3.21)

ι∗csmk (X) = csmk (D) + csmk−1(D)ι∗[D]PD (∈ Hk,k(D;Z)). (3.22)

We also expect that a version of Conjecture 3.7 for tropical Chow groups [Sha15,
Definition 3.30] also holds. When dimX = 1, Conjecture 3.7 holds trivially. When
dimX = 2, Conjecture 3.7 is just another representation of the adjunction formula of
locally degree 1 tropical curves on tropical surfaces ([Sha15, Theorem 6], [LdMRS23,
Theorem 5.2]). We will see later what corollaries appear when Conjecture 3.7 is true.

From now on, we discuss the Todd classes of tropical manifolds. At first, we recall
m-sequences. The notion of m-sequence is introduced by Hirzebruch in [Hir95, §1],
but some part of explanation in [MS74, §19] by Milnor–Stasheff are more compre-
hensible, and thus we also follow from [MS74, §19]. Let Todd := (Toddj)j∈Z≥0

be
the Todd m-sequence [Hir95, §1.7]. In complex geometry, the k-th Chern class
ck(M) := ck(TM) of a given complex manifold M is defined as an element of
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H2k(M ;Z). Let c(M) :=
∑∞

i=0 ci(M) be the total Chern class of M in the real
valued even cohomology ring Heven(X ;R). Since Heven(M ;R) is commutative and
a graded R-algebra and c0(M) = 1, so the total Chern class of M defines the Todd
class td(M) :=

∑∞
j=0Toddj(c1(M), . . . , cj(M)) of M [Hir95, §10].

We can define the Todd class td(X) of a given tropical manifold X by replacing
Heven(M ;R) with

⊕∞
i=0H

i,i(X ;R) (Definition 3.8). In [LdMRS23, Conjecture 6.13],
the Todd class of tropical manifold is defined as a tropical cycle. In this paper, we
use the Poincaré dual of the image of the cycle map of it in order to get closer to
the notation in algebraic geometry.

Definition 3.8 ([LdMRS23, §6]). Let X be a purely n-dimensional tropical man-
ifold. The j-th Todd class of X is a cycle in Hj,j(X ;R) defined from the Todd
m-sequence Todd := (Toddj)j∈Z≥0

with respect to
⊕∞

i=0H
i,i(X ;R) as follows:

tdj(X) := Toddj(c
sm
1 (X), . . . , csmj (X)), (3.23)

td(X) := Todd(csm(X)) :=
∞∑

j=0

tdj(X). (3.24)

Definition 3.9 ([Hir95, §12.1.(2)]). Let X be a purely n-dimensional compact tropi-
cal manifold. The Riemann–Roch number of D(∈ Zn−1(X)) is the following number:

RR(X ;D) :=

∫

X

ch([D]PD) td(X). (3.25)

If D ∈ Div(X)[0], then we can write (3.25) as (1.1) from [GS23, Proposition 5.12].
Following the theory of algebraic geometry, we define the generalized Gysin map

associated with proper morphism between tropical manifolds (see [CLS11, Chapter
13. Appendix] for classical cases). We note that the generalized Gysin map for
tropical manifolds have already appeared in [AP20].

Definition 3.10 (cf. [AP20]). Let X and Y be pure dimensional tropical manifolds
and Q a subring of R. Let f : X → Y be a proper morphism. The generalized Gysin

map of f is the morphism f! : H
•,•(X ;Q) → H•,•(Y ;Q) which commutes with the

following diagram:

H•,•(X ;Q) H•,•(Y ;Q)

HBM
•,• (X ;Q) HBM

•,• (Y ;Q)

·⌢[X] ·⌢[Y ]

f∗

f!

. (3.26)

From definition, there exists the following projection formula.

Proposition 3.11. Let f : X → Y be a proper morphism between pure dimensional
tropical manifolds X and Y . Then, for any c ∈ H•,•(Y ;Q) and d ∈ H•,•(X ;Q) the
following equation holds:

f!(f
∗(c) · d) = c · f!(d). (3.27)

In particular, f!(f ∗(c)) = c · f!(1) = c · [X ]PD when X is a rational polyhedral
subspace of Y and f is the inclusion map of X.
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Proof. Since · ⌢ [Y ] is an isomorphism, we only need to prove the following:

f!(f
∗(c) · d)⌢ [Y ] = (c · f!(d))⌢ [Y ]. (3.28)

We can get the projection formula for generalized Gysin map from that for the
pushforward of tropical Borel–Moore homologies as follows:

(c · f!(d))⌢ [Y ] = c ⌢ (f!(d)⌢ [Y ]) = c ⌢ f∗(d ⌢ [X ]) (3.29)

= f∗(f
∗(c)⌢ (d ⌢ [X ])) = f∗((f

∗(c) · d)⌢ [X ]) (3.30)

= f!(f
∗(c) · d)⌢ [Y ]. (3.31)

�

Example 3.12. Let X be a purely n-dimensional tropical manifold andD a tropical
submanifold of codimension 1 on X. If Conjecture 3.7 is true, then the generalized
Gysin map of the inclusion map ι : D → X induces

csm(X) · [D]PD = ι!c
sm(D)(1 + [D]PD). (3.32)

The first degree part of the equation above is

csm1 (X) · [D]PD = ι!c
sm
1 (D) + [D]PD · [D]PD. (3.33)

We may consider (3.33) as the Poincaré dual of the adjunction formula proved in
[LdMRS23, Theorem 5.2]. By using the canonical divisor of tropical manifolds,
(3.33) can be rewritten as follows:

ι![KD]PD = ([KX ]PD + [D]PD)[D]PD. (3.34)

If dimX = 2, then this equation also gives the adjunction formula of tropical surfaces
which is proved in [Sha15, Theorem 4.11] since H2,2(X ;Z) ≃ Z.

Example 3.13 (cf. [CLS11, Chapter 13 Appendix]). We retain the notation in
Example 3.12. We also assume Conjecture 3.7 is true again. From (3.21) and the
property of multiplicative sequences,

ι∗ td(X) = td(D)
ι∗[D]PD

1− exp(−ι∗[D]PD)
. (3.35)

From (3.35) we also get

td(D) = ι∗
(
1− exp(−[D]PD)

[D]PD
td(X)

)

. (3.36)

Moreover, the projection formula for ι gives

ι!(td(D)) = (1− ch(−[D]PD)) td(X). (3.37)

The equation (3.37) is an analog of the Grothendieck–Riemann–Roch theorem for a
special case.

Let D′ be a tropical (n − 1)-cycle on X. Then, the projection formula for the
embedding ι : D → X gives

ι!(ch(ι
∗([D′]PD)) td(D)) = ch([D′]PD)ι!(td(D))

= (ch([D′]PD)− ch([D′ −D]PD)) td(X). (3.38)

If D′ is in Div[0](X), then the pullback ι∗D′ = D′|D of D′ satisfies the following:

RR(X ;D′ −D) = RR(X ;D′)− RR(D;D′|D). (3.39)
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Similarity to the case of algebraic varieties, we can define the virtual T-genus of
D1, . . . , Dm ∈ Zn−1(X) as follows [Hir95, §11.2]:

T (X) := RR(X ; 0), T (X ;D1, . . . , Dm) :=

∫

X

m∏

j=1

(1− exp(−[Dj ]PD)) td(X).

(3.40)

We can see T (X ;D) = RR(D; 0) when Conjecture 3.7 is true.
As explained in [Hir95, §20.6], the following equation holds

exp([D1]PD) = (1− (1− exp(−[D1]PD)))
−1 =

n∑

j=0

(1− exp(−[D1]PD))
j. (3.41)

From this, we obtain the following equation [Hir95, §20.6.(14)]:

RR(X ;D1) =

n∑

j=0

T (X ;

j
︷ ︸︸ ︷

D1, . . . , D1). (3.42)

Additionally, we assume every Di (i = 1, . . . , m) is in Div[0](X) and D1 = D.
Then, from (3.39) and Proposition 3.11, we also obtain the following equations
[Hir95, Theorem 11.2.1]:

T (X ;D1, . . . , Dm) = T (D1;D2|D1, . . . , Dm|D1), (3.43)

n∑

j=1

T (X ;

j
︷ ︸︸ ︷

D, . . . , D) = RR(D; 0) +

n−1∑

j=1

T (D;

j
︷ ︸︸ ︷

D|D, . . . , D|D) = RR(X ;D|D). (3.44)

If D|D is also a tropical submanifold, then we can repeat this process.

Remark 3.14. In this remark, we see another explanation of an algebraic geomet-
rical meaning of the first equation of Conjecture 1.3. Let aX : X → Spec k be a
complete nonsingular algebraic variety over k and K0(X) the Grothendieck ring of
X (see, e.g., [Ful98, §15.1]). For a coherent sheaf F on X, let [F ] be the isomor-
phism class of F in K0(X). The addition of K0(X) is given from the direct sum of
coherent sheaves and the multiplication of K0(X) is given from the derived tensor
product of them. The unit of K0(X) is [OX ] where OX is the structure sheaf of
X. Since aX is a proper morphism, so aX induces the pushforward group homo-
morphism aX∗ : K0(X) → K0(Spec k), and aX∗([F ]) = χ(X ;F). For simplicity, we
write χ := aX∗. Let D be a nonsingular divisor on X and ι : D → X the embedding
morphism. Then, the following equations hold:

[OX(−D)] = [OX ]− [ι∗OD], [OX(D)] = ([OX ]− [ι∗OD])
−1 =

∞∑

k=0

[ι∗OD]
k, (3.45)

χ(X ;OX(−D)) = χ([OX ]− [ι∗OD]), χ(X ;OX(D)) =

∞∑

k=0

χ([ι∗OD]
k). (3.46)

This means that (3.46) is the algebraic geometric counterpart of the first equation
in Conjectures 1.1 and 1.3.

The following proposition demonstrates the relationships among the various con-
jectures presented in this paper.
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Proposition 3.15. If [LdMRS23, Conjecture 6.13], Conjectures 1.3 and 3.7 are
true, then Conjecture 1.7 is also true.

Proof. We suppose Conjecture 3.7 is true. From the assumption, D′ is sedentarity-0.
If Conjecture 1.3 and [LdMRS23, Conjecture 6.13] is true, then

RR(X ;D′ −D) =RR(X ;D′)− RR(D;D′|D)

=χ(X \D′)− χ(D \ (D′ ∩D)).

Therefore, the proposition has been proved. �

Remark 3.16. The above proposition suggests that the most difficult part for
proving Conjecture 1.7 is obtaining a proof of [LdMRS23, Conjecture 6.13].

Based on the above, we will generalize Theorem 1.5.

Theorem 3.17. Let X be a compact tropical surface and (D,D′) a pair of tropical
submanifolds of codimension 1 in moderate position on X. Then,

χ(X \D′)− χ(D \ (D′ ∩D)) =
deg((D′ −D).(D′ −D −KX))

2
+ χ(X). (3.47)

In particular, Conjecture 1.7 is true when X admits a Delzant face structure.

Proof. Since dimX = 2, Conjecture 3.7 is true from [LdMRS23, Theorem 5.2]. From
Theorem 1.5 and (3.39), we have

deg((D′ −D).(D′ −D −KX))

2
=RR(X ;D′)− RR(X ; 0)− RR(D;D′ ∩D) (3.48)

=χ(X \D′)− χ(X)− χ(D \ (D′ ∩D)). (3.49)

�

Remark 3.18. Let X be an n-dimensional compact tropical manifold and (D,D′)
a pair of codimension 1 tropical submanifold in moderate position on X. In Re-
mark 2.18, we stressed the cohomology H•(X \ D) of the complement X \ D is
related with the graded modules LMD•(X ; s) associated with a permissible C∞-
divisor s on X. In this remark, we explain χ(X \ D′) − χ(D \ (D′ ∩ D)) is also
the Euler characteristic of the relative cohomology H•(X \D,D \D′;R) of the pair
(X \ D′, D \ D′) [Ive86, Chapter IV. Definition 8.1] (see also [Bre97, Chapter II.
Proposition 12.3]).

Let RX is the constant sheaf of R on X and Mod(RX) be the category of sheaves
of RX-modules. Let Z be a locally closed subset of X and j : Z → X the inclusion
map. For a given F ∈ Mod(RX), let (F)Z := j!j

−1F [KS94, Proposition 2.3.6].
The functor (·)Z : Mod(RX) → Mod(RX);F → (F)Z is exact and has the right
adjoint left exact functor ΓZ : Mod(RX) → Mod(RX) [KS94, Definition 2.3.8]. If Z
is open, then ΓZF ≃ j∗j

−1F [KS94, Proposition 2.3.9 (iii)]. Therefore, the following
exact sequence exists

0 → (RX)X\D → RX → (RX)D → 0. (3.50)

The derived functor RΓX\D′ also gives the following exact triangle:

RΓX\D′((RX)X\D) → RΓX\D′(RX) → RΓX\D′((RX)D) → RΓX\D′((RX)X\D)[1].
(3.51)
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Let i : D → X be the inclusion map of D. From [KS94, (2.3.20)], we get

RΓX\D′((RX)D) ≃ i∗RΓD\D′RD, (3.52)

H•(X ;RΓX\D′((RX)X\D)) ≃ H•(X \D′; (RX\D′)X\(D∪D′)). (3.53)

The cohomology H•(X \D′; (RX\D′)X\(D∪D′)) is just the relative cohomology H•(X \
D,D \D′;R) of the pair (X \D′, D \D′). Hence, the following equation holds

χ(H•(X ;RΓX\D′((RX)X\D))) = χ(X \D′)− χ(D \ (D′ ∩D)). (3.54)

Besides, from definition we can check

H•(X ;RΓX((RX)X\D)) ≃ H•
c (X \D), H•(X ;RΓX\D′((RX)X)) ≃ H•(X \D′).

(3.55)

Therefore, the graded module H•(X ;RΓX\D′((RX)X\D)) is a generalization of
both H•

c (X \D) and H•(X \D), and H•(X ;RΓX\D′((RX)X\D)) is also related with
graded modules associated with permissible C∞-divisors that are studied in [Tsu23].

We expect that Conjecture 1.7 is also true for a pair (D1, D2) of rational poly-
hedral subspaces in moderate position on X such that each Di is a finite union of
codimension 1 tropical submanifolds whose intersections satisfy a good condition.

Appendix A. Compatibility of intersections of tropical cycles

In this appendix, we note the compatibility of intersections of tropical cycles in
[GS23, LdMRS23, Sha15].

Proposition A.1. Let (X,O×
X) be a tropical manifold and D1, D2 ∈ Div[0](X).

Then, the intersection D1 ∗D2 in the sense of [LdMRS23, §2.4] is equal to D1 · D2

[GS23, §3.4].

Proof. The definition of the intersection of Cartier divisors of both are local. There-
fore, we only need to find an atlas U := {(ψi : Ui → Vi)}i∈I of X such that Ui

satisfies Proposition A.1. For any x ∈ X, there exists a standard chart [MR18,
Definition 7.2.10], i.e., a chart ψx : Ux → LCxX × TsedX(x) such that ψx(x) =
(0,−∞) ∈ LCxX × TsedX(x). Furthermore, Ux can be replaced with the product
Vx ×Wx, where Vx is a contractible open neighborhood of 0 in LCxX, and Wx is
a contractible open neighborhood of −∞ in TsedX(x). Moreover, we also may as-
sume H1(Vx ×Wx;O

×
Vx×Wx

) = 0, and there exists an open subset Bx of TxX and
a piecewise integer affine linear function f on Bx such that divVx×Wx

(D1|Vx×Wx
) =

divVx
(f |Vx

) ×Wx. Therefore, in the context of [GS23], as well as in the context of
[LdMRS23], the intersection of sedentarity-0 Cartier divisors at x can be regarded
as the direct product of the intersection of principal divisors on Vx and Wx, and thus
it is enough to prove Proposition A.1 when sedX(x) = 0. From now on, we assume
sedX(x) = 0 and Vx is a closed subset of Bx. Let i : Vx → Bx be the closed inclusion
map of Vx. Then, for any D0 ∈ Div(Vx)

i∗((f |Vx
) ·D0) = (f) · i∗D0 ∈ Zn−2(Bx). (A.1)

Since Bx is an open subset of a finite dimensional real vector space, the pairing in
the sense of [GS23, §3.4] is determined by [AR10, Definition 3.4]. By the same logic,
the pairing in the sense of [LdMRS23, §2.4] is determined by the stable intersection
of tropical Cartier divisors and tropical cycles in Rn [Mik06, Definition 4.4] from
[Sha11, Proposition 2.1.9].
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As mentioned in [Sha13, §2], it has been shown in [Rau16] and [Kat12] that
the intersection of tropical cycles on Rn in the sense of [AR10] coincides with the
intersection in the sense of [RGST05, Mik06]. �

Next, we will see the compatibility of the intersection number of tropical 1-cycles
in compact surfaces (admitting a global face structure) in the sense of [Sha15,
LdMRS23] and in our sense. Before proving it, we recall eigenwave homomorphism
from [IKMZ19, JRS18]. Every rational polyhedral space (X,O×

X) has the following
exact sequence:

0 → RX → O×
X → Ω1

Z,X → 0. (A.2)

The exact sequence (A.2) defines the connecting homomorphism φ : H1,1(X ;Z) →
H0,2(X ;R). The connecting homomorphism φ is the dual of the eigenwave homomor-
phism φ̂ : HBM

n−1,n−1(X ;Z) → HBM
n,n−2(X ;R) [MZ14, (5.2)] (see also [JRS18, Definition

2.9]) when X is a tropical manifold admitting a global face structure. In fact, both
of them are compatible with the Poincaré duality for tropical manifolds admitting
a global face structure [JRS18, Lemma 5.13].

Proposition A.2. Let X be a compact tropical surface admitting a global face
structure and D1, D2 tropical 1-cycles on X. Then,

deg(D1.D2) =

∫

X

[D1]PD · [D2]PD. (A.3)

where D1.D2 is the intersection of D1 and D2 in the sense of [Sha15].

Proof. Let i = 1, 2. From [MZ14, Theorem 5.4] (or more generally [JRS18, The-
orem 1.1]), [Di] := cycX(Di) is in the kernel of the eigenwave homomorphism
φ̂ : HBM

1,1 (X ;Z) → HBM
2,0 (X ;R) (see also [GS23, Theorem 5.13] to verify that the cycle

map in [JRS18, Definition 4.13] is equivalent to the cycle map in [GS23, Definition
5.4]). Since φ̂ is compatible with the connecting homomorphism φ : H1,1(X ;Z) →

H0,2(X ;R) [JRS18, Lemma 5.13], we can find D′
i ∈ Div[0](X) such that [D′

i] =
c1(L(D

′
i)) ⌢ [X ] = [Di] from [GS23, Proposition 5.12]. Then, from [Sha15, Propo-

sition 3.34] we get

D1.D2 = D′
1.D

′
2,

∫

X

[D1]PD · [D2]PD =

∫

X

[D′
1]PD · [D′

2]PD. (A.4)

Therefore, we may assume D1 and D2 are in Div(X)[0]. Moreover, the definition of
trace map, [GS23, Proposition 5.12], and the projection formula deduce

∫

X

[D1]PD · [D2]PD = aX∗(c1(L(D1))⌢ [D2]) = aX∗(cycX(D1 ·D2)). (A.5)

By [Sha11, Theorem 3.1.7], the intersection number of tropical 1-cycles in [Sha15] is
equivalent to that in [Sha11]. Furthermore, the intersection of D1, D2 ∈ Div[0](X)
defined in [LdMRS23, §2.4], is based on [Sha11], so the intersection in [LdMRS23]
and that in [Sha15] are compatible with each other. From Proposition A.1, the
intersection ofD1 andD2 in [LdMRS23] equivalent to [GS23], so we obtain (A.3). �
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